JP5648646B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5648646B2
JP5648646B2 JP2012064064A JP2012064064A JP5648646B2 JP 5648646 B2 JP5648646 B2 JP 5648646B2 JP 2012064064 A JP2012064064 A JP 2012064064A JP 2012064064 A JP2012064064 A JP 2012064064A JP 5648646 B2 JP5648646 B2 JP 5648646B2
Authority
JP
Japan
Prior art keywords
injection
amount
learning
fuel
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012064064A
Other languages
Japanese (ja)
Other versions
JP2013194650A (en
Inventor
大輔 宮田
大輔 宮田
資人 越田
資人 越田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2012064064A priority Critical patent/JP5648646B2/en
Publication of JP2013194650A publication Critical patent/JP2013194650A/en
Application granted granted Critical
Publication of JP5648646B2 publication Critical patent/JP5648646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • F02D41/247Behaviour for small quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、学習用噴射を実行して燃料噴射弁の噴射量を学習する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that learns an injection amount of a fuel injection valve by executing learning injection.

従来、機差または経時変化等により生じる燃料噴射弁の目標噴射量に対する実噴射量のずれ量を学習し、実噴射量が目標噴射量になるように燃料噴射弁に噴射を指令する噴射指令値の補正量を算出することが知られている(例えば、特許文献1参照。)。   Conventionally, an injection command value for instructing the fuel injection valve to inject fuel so that the actual injection amount becomes the target injection amount by learning the deviation amount of the actual injection amount with respect to the target injection amount of the fuel injection valve caused by machine difference or aging It is known to calculate the correction amount (see, for example, Patent Document 1).

特許文献1では、無噴射減速運転中において学習用噴射を実行し、エンジン回転数の変動量を内燃機関の運転状態を表わす物理量としてトルクに換算し、トルクを噴射量に換算して実噴射量を検出している。 In Patent Document 1, the injection for learning is executed during the non-injection deceleration operation, the fluctuation amount of the engine speed is converted into a torque as a physical quantity representing the operating state of the internal combustion engine, and the torque is converted into the injection quantity to obtain the actual injection quantity. Is detected.

特開2009−74435号公報JP 2009-74435 A

無噴射減速運転中は運転状態に対する外乱が小さく学習用噴射による運転状態の変化を高精度に検出できるものの、無噴射減速運転の発生頻度が低い場合には噴射量学習の実行機会を確保することが困難であるという問題がある。そこで、通常運転時に噴射量学習を実行し、噴射量学習の実行機会を確保することが要求されている。特に、建設機械や発電機に使用される内燃機関のように無噴射減速運転状態が発生しない場合には、通常運転時において噴射量学習を実行する必要がある。   During non-injection deceleration operation, the disturbance to the operation state is small and changes in the operation state due to learning injection can be detected with high accuracy, but if the frequency of non-injection deceleration operation is low, an opportunity to perform injection amount learning should be secured There is a problem that is difficult. Therefore, it is required to execute the injection amount learning during normal operation and to secure an opportunity to execute the injection amount learning. In particular, when the non-injection deceleration operation state does not occur as in an internal combustion engine used for a construction machine or a generator, it is necessary to perform injection amount learning during normal operation.

しかしながら、通常運転時には内燃機関の運転状態に対する外乱が大きいので、運転状態を表わす物理量から噴射量を検出し、検出した噴射量に基づいて噴射量学習を実現することは困難である。   However, since the disturbance to the operating state of the internal combustion engine is large during normal operation, it is difficult to detect the injection amount from the physical quantity representing the operating state and realize the injection amount learning based on the detected injection amount.

本発明は、上記問題を解決するためになされたものであり、通常運転時において噴射量学習を実現する燃料噴射制御装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel injection control device that realizes injection amount learning during normal operation.

請求項1から6に記載の発明によると、噴射指令手段は、通常運転時に学習条件が成立すると、内燃機関に燃料を噴射する燃料噴射弁の最低保証噴射量に相当する学習用噴射を通常噴射パターンに追加した学習用噴射パターンで燃料噴射弁に噴射を指令し、運転状態取得手段は、通常噴射パターンで燃料噴射弁が燃料を噴射したときと、学習用噴射パターンで燃料噴射弁が燃料を噴射したときとにおける内燃機関のそれぞれの運転状態を表わす物理量を取得し、判定手段は、通常噴射パターンと学習用噴射パターンとの噴射で運転状態取得手段が取得する物理量を比較して最低保証噴射量が噴射されているか否かを判定する。尚、最低保証噴射量とは、燃料噴射弁において保証されている噴射量の最低値である。 According to the first to sixth aspects of the present invention, when the learning condition is satisfied during normal operation, the injection command means normally injects learning injection corresponding to the minimum guaranteed injection amount of the fuel injection valve that injects fuel into the internal combustion engine. The fuel injection valve is instructed to inject with the learning injection pattern added to the pattern, and the operation state acquisition means has the fuel injection valve injecting fuel with the normal injection pattern and when the fuel injection valve injects fuel with the learning injection pattern. The physical quantity representing each operation state of the internal combustion engine at the time of injection is acquired, and the determination means compares the physical quantity acquired by the operation state acquisition means with the injection of the normal injection pattern and the learning injection pattern, and the minimum guaranteed injection It is determined whether the quantity is being injected. The minimum guaranteed injection amount is a minimum value of the injection amount guaranteed in the fuel injection valve.

この構成によれば、最低保証噴射量に相当する学習用噴射のない通常噴射パターンと最低保証噴射量に相当する学習用噴射を通常噴射パターンに追加した学習用噴射パターンとによる噴射をそれぞれ実行したときの運転状態を表わす物理量を比較するので、例えば物理量に所定の変化があるか否かのいずれであるかを判定することにより、外乱の大きい通常噴射時において、最低保証噴射量の燃料が燃料噴射弁から実際に噴射されているか否かを判定できる。   According to this configuration, the normal injection pattern without the learning injection corresponding to the minimum guaranteed injection amount and the learning injection pattern in which the learning injection corresponding to the minimum guaranteed injection amount is added to the normal injection pattern are respectively executed. Since the physical quantity representing the operating state at the time is compared, for example, by determining whether there is a predetermined change in the physical quantity, at the time of normal injection with a large disturbance, the fuel with the minimum guaranteed injection quantity is It can be determined whether or not the fuel is actually injected from the injection valve.

さらに、請求項1から6に記載の発明によると、補正手段は、通常噴射パターンと学習用噴射パターンとの噴射による物理量を比較して最低保証噴射量が噴射されているとともに、通常噴射パターンと学習用噴射パターンとの噴射による物理量の変化量が上限値以下であり学習が終了したと判定手段が判定すると、学習終了時の学習用噴射の噴射指令値に基づいて最低保証噴射量に相当する噴射指令値を補正する。この構成によれば、補正した噴射指令値により、最低保証噴射量の噴射を実現できる。Further, according to the invention described in claims 1 to 6, the correcting means compares the physical quantity by the injection of the normal injection pattern and the learning injection pattern, and the minimum guaranteed injection amount is injected, and the normal injection pattern When the determination means determines that the amount of change in the physical quantity due to the injection with the learning injection pattern is equal to or less than the upper limit value and learning has ended, it corresponds to the minimum guaranteed injection amount based on the injection command value of the learning injection at the end of learning. Correct the injection command value. According to this configuration, it is possible to realize injection with the minimum guaranteed injection amount by using the corrected injection command value.

さらに、請求項1から6に記載の発明によると、補正手段は、学習終了時の学習用噴射の噴射指令値に基づいて、最低保証噴射量を下限値とする所定の微小量噴射範囲における噴射指令値を補正する。Further, according to the first to sixth aspects of the invention, the correction means performs injection in a predetermined minute amount injection range in which the minimum guaranteed injection amount is a lower limit value based on the injection command value of learning injection at the end of learning. Correct the command value.

この構成によれば、最低保証噴射量に相当する噴射指令値の補正量を、最低保証噴射量を下限値とする所定の微小量噴射範囲の噴射指令値に適用するので、最低保証噴射量以外の所定の微小量噴射範囲において噴射量学習を省略できる。According to this configuration, the correction amount of the injection command value corresponding to the minimum guaranteed injection amount is applied to the injection command value in the predetermined minute amount injection range having the minimum guaranteed injection amount as the lower limit value. The injection amount learning can be omitted in the predetermined minute amount injection range.

請求項1に記載の発明によると、通常噴射パターンと学習用噴射パターンとの噴射による物理量を比較して最低保証噴射量が噴射されていないと判定手段が判定すると、噴射指令手段は燃料噴射弁に対する学習用噴射の噴射指令値を増加する。According to the first aspect of the present invention, when the determination means determines that the minimum guaranteed injection amount is not injected by comparing the physical quantities by the injection of the normal injection pattern and the learning injection pattern, the injection command means is the fuel injection valve. The injection command value for the learning injection is increased.

この構成によれば、学習用噴射の噴射指令値を増加して最低保証噴射量が噴射されていると判定されれば、そのときの噴射指令値が最低保証噴射量に相当する噴射指令値であると学習できる。According to this configuration, if it is determined that the injection command value for learning injection is increased and the minimum guaranteed injection amount is being injected, the injection command value at that time is an injection command value corresponding to the minimum guaranteed injection amount. If there is, you can learn.

請求項2および3に記載の発明によると、通常噴射パターンと学習用噴射パターンとの噴射による物理量の変化量が所定の上限値を超えていると判定手段が判定すると、噴射指令手段は燃料噴射弁に対する学習用噴射の噴射指令値を減少する。According to the second and third aspects of the invention, when the determination means determines that the amount of change in the physical quantity due to the injection between the normal injection pattern and the learning injection pattern exceeds a predetermined upper limit value, the injection command means Decrease the injection command value of the learning injection for the valve.

この構成によれば、物理量の変化量が所定の上限値を超えており、燃料噴射弁から噴射されている噴射量が最低保証噴射量を過度に超えていると判定される場合には学習用噴射の噴射指令値を減少し、物理量の変化量が上限値以下であると判定されれば、そのときの噴射指令値が最低保証噴射量に相当する噴射指令値であると学習できる。According to this configuration, when it is determined that the change amount of the physical quantity exceeds the predetermined upper limit value and the injection quantity injected from the fuel injection valve exceeds the minimum guaranteed injection quantity excessively, If the injection command value of the injection is decreased and it is determined that the change amount of the physical quantity is equal to or less than the upper limit value, it can be learned that the injection command value at that time is an injection command value corresponding to the minimum guaranteed injection amount.

請求項4に記載の発明によると、運転状態取得手段は、燃料噴射弁が燃料を噴射したときの内燃機関の仕事量を運転状態を表わす物理量として取得する。According to the fourth aspect of the present invention, the operation state acquisition means acquires the work amount of the internal combustion engine when the fuel injection valve injects the fuel as a physical quantity representing the operation state.
運転状態取得手段が取得する内燃機関の仕事量は、例えば、所定の角度周期で検出した内燃機関の回転速度を内燃機関の爆発周期の帯域フィルタにてフィルタリングすることで瞬時トルクを算出し、その瞬時トルクを内燃機関の爆発周期毎に積分する、といった手順で算出される。仕事量の算出手順については、特開2007−32540号公報等に開示されているため、本明細書では、より詳細な説明は省略する。The amount of work of the internal combustion engine acquired by the operating state acquisition means is calculated by, for example, calculating the instantaneous torque by filtering the rotational speed of the internal combustion engine detected at a predetermined angular cycle with a band filter of the explosion cycle of the internal combustion engine, The instantaneous torque is calculated by a procedure of integrating every explosion cycle of the internal combustion engine. Since the procedure for calculating the workload is disclosed in Japanese Patent Application Laid-Open No. 2007-32540 and the like, detailed description thereof is omitted in this specification.

内燃機関の回転速度は、内燃機関の運転を制御するために通常設置されているセンサにより検出できるので、運転状態を表わす物理量を検出するために新たにセンサを設ける必要がない。Since the rotational speed of the internal combustion engine can be detected by a sensor that is normally installed to control the operation of the internal combustion engine, it is not necessary to provide a new sensor to detect a physical quantity representing the operating state.

ところで、通常噴射パターンおよび学習用噴射パターンによりそれぞれ燃料を噴射したときの物理量を比較する場合、例えば複数回噴射したときの両噴射パターンの物理量の平均の差だけに着目すると、両噴射パターンにおける物理量の平均に対する分散の程度によっては、最低保証噴射量の噴射に相当する物理量の変化があったか否かを判定することが困難な場合がある。By the way, when comparing the physical quantities when the fuel is injected by the normal injection pattern and the learning injection pattern, for example, focusing only on the average difference between the physical quantities of the two injection patterns when injected multiple times, the physical quantities in both injection patterns Depending on the degree of dispersion with respect to the average, it may be difficult to determine whether or not there has been a change in physical quantity corresponding to the minimum guaranteed injection amount.

そこで、請求項5に記載の発明によると、運転状態取得手段は、通常噴射パターンにより燃料噴射弁が燃料を複数回噴射したとき、ならびに学習用噴射パターンにより燃料噴射弁が燃料を複数回噴射したときのそれぞれにおいて、物理量の平均値および分散を取得し、判定手段は、通常噴射パターンと学習用噴射パターンとの噴射による物理量の平均値および分散に基づいて最低保証障噴射量が噴射されているか否かを判定する。Therefore, according to the fifth aspect of the present invention, the operating state acquisition means is configured such that when the fuel injection valve injects the fuel a plurality of times according to the normal injection pattern, and the fuel injection valve injects the fuel a plurality of times according to the learning injection pattern. In each case, the average value and variance of the physical quantity are obtained, and the determination means determines whether the minimum guaranteed failure injection quantity is injected based on the average value and variance of the physical quantity resulting from the injection of the normal injection pattern and the learning injection pattern. Determine whether or not.
この構成によれば、両噴射パターンの噴射による物理量の平均および分散に基づいて、最低保証噴射量が噴射されているか否かを高精度に判定できる。According to this configuration, it is possible to determine with high accuracy whether or not the minimum guaranteed injection amount is being injected, based on the average and dispersion of the physical quantities resulting from the injections of both injection patterns.

請求項6に記載の発明によると、補正手段は、所定の微小量噴射範囲よりも噴射指令値の増加側および減少側に向けて、噴射指令値に対する補正量の絶対値を徐々に減少する。According to the sixth aspect of the invention, the correction means gradually decreases the absolute value of the correction amount for the injection command value toward the increase side and the decrease side of the injection command value from the predetermined minute amount injection range.
この構成によれば、所定の微小量噴射範囲の境界で補正後の噴射指令値が急激に変化することを防止し、噴射指令値の急激な変化によるトルク変動を防止できる。According to this configuration, it is possible to prevent the corrected injection command value from changing abruptly at the boundary of the predetermined minute amount injection range, and to prevent torque fluctuation due to the rapid change in the injection command value.

尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組み合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。   The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

本実施形態による燃料噴射システムを示すブロック図。 The block diagram which shows the fuel-injection system by this embodiment. 噴射量学習処理を示すフローチャート。 The flowchart which shows the injection quantity learning process. 仕事量学習処理を示すフローチャート。 The flowchart which shows work amount learning processing. 学習用噴射による仕事量の変化を示す説明図。 Explanatory drawing which shows the change of the work amount by the injection for learning. 各気筒の爆発行程で得られる仕事量の算出手順を説明するタイムチャート。 The time chart explaining the calculation procedure of the work amount obtained in the explosion stroke of each cylinder. 基本噴射指令値と補正後噴射指令値との関係を示す特性図。 The characteristic view which shows the relationship between a basic injection command value and a corrected injection command value.

以下、本発明の実施の形態を図に基づいて説明する。本実施形態による燃料噴射システムを図1に示す。
(燃料噴射システム10)

燃料噴射システム10は、例えば、自動車用の4気筒のディーゼルエンジン(以下、単に「エンジン」ともいう。)2に燃料を噴射するためのものである。 The fuel injection system 10 is for injecting fuel into, for example, a 4-cylinder diesel engine (hereinafter, also simply referred to as "engine") 2 for automobiles. 燃料噴射システム10は、燃料供給ポンプ14と、コモンレール20と、燃料噴射弁30と、電子制御装置(Electronic Control Unit:ECU)40とを備えている。 The fuel injection system 10 includes a fuel supply pump 14, a common rail 20, a fuel injection valve 30, and an electronic control unit (ECU) 40. Hereinafter, embodiments of the present invention will be described with reference to the drawings. A fuel injection system according to this embodiment is shown in FIG. Embodied, embodiments of the present invention will be described with reference to the drawings. A fuel injection system according to this embodiment is shown in FIG.
(Fuel injection system 10) (Fuel injection system 10)
The fuel injection system 10 is for injecting fuel into, for example, a four-cylinder diesel engine (hereinafter also simply referred to as “engine”) 2 for an automobile. The fuel injection system 10 includes a fuel supply pump 14, a common rail 20, a fuel injection valve 30, and an electronic control unit (ECU) 40. The fuel injection system 10 is for injecting fuel into, for example, a four-cylinder diesel engine (hereinafter also simply referred to as “engine”) 2 for an automobile. The fuel injection system 10 includes a fuel supply pump 14, a common rail 20, a fuel injection valve 30, and an electronic control unit (ECU) 40.

燃料供給ポンプ14は、燃料タンク12から燃料を汲み上げるフィードポンプを内蔵している。燃料供給ポンプ14は、カムシャフトのカムの回転に伴いプランジャが往復移動することにより、フィードポンプから加圧室に吸入した燃料を加圧する公知のポンプである。   The fuel supply pump 14 incorporates a feed pump that pumps fuel from the fuel tank 12. The fuel supply pump 14 is a known pump that pressurizes the fuel sucked into the pressurizing chamber from the feed pump when the plunger reciprocates as the cam of the camshaft rotates.

調量アクチュエータとしての調量弁16は、燃料供給ポンプ14の吸入側に設置されており、電流制御されることにより燃料供給ポンプ14の各プランジャが吸入行程で吸入する燃料吸入量を調量する。燃料吸入量が調量されることにより、燃料供給ポンプ14の各プランジャからの燃料吐出量が調量される。燃料供給ポンプ14の吐出側に設置される調量弁により、燃料供給ポンプ14の各プランジャからの燃料吐出量を調量してもよい。   The metering valve 16 serving as a metering actuator is installed on the suction side of the fuel supply pump 14 and controls the amount of fuel sucked by each plunger of the fuel supply pump 14 in the suction stroke by current control. . By adjusting the fuel intake amount, the fuel discharge amount from each plunger of the fuel supply pump 14 is adjusted. The amount of fuel discharged from each plunger of the fuel supply pump 14 may be measured by a metering valve installed on the discharge side of the fuel supply pump 14.

コモンレール20は、燃料供給ポンプ14から吐出される燃料を蓄圧する中空の部材である。コモンレール20には、内部の燃料圧力(コモンレール圧)を検出する圧力センサ22、および、コモンレール圧が所定圧を超えると開弁してコモンレール20内の燃料を排出するプレッシャリミッタ24が設けられている。   The common rail 20 is a hollow member that accumulates fuel discharged from the fuel supply pump 14. The common rail 20 is provided with a pressure sensor 22 that detects the internal fuel pressure (common rail pressure), and a pressure limiter 24 that opens to discharge the fuel in the common rail 20 when the common rail pressure exceeds a predetermined pressure. .

エンジン2には、運転状態を検出するセンサとして、エンジン2の所定の回転角度毎(例えば30°CA毎)に回転角信号を発生する回転角センサ32が設置されている。ECU40は、回転角センサ32が30°CA毎に出力する回転角信号に基づき、エンジン回転速度およびエンジン回転数を算出する。   The engine 2 is provided with a rotation angle sensor 32 that generates a rotation angle signal at every predetermined rotation angle (for example, every 30 ° CA) of the engine 2 as a sensor for detecting an operation state. The ECU 40 calculates the engine rotation speed and the engine rotation speed based on the rotation angle signal output by the rotation angle sensor 32 every 30 ° CA.

さらに燃料噴射システム10には、運転状態を検出する他のセンサとして、運転者によるアクセルペダルの操作量であるアクセル開度(ACCP)を検出するアクセルセンサ、冷却水の温度(水温)、吸入空気の温度(吸気温)をそれぞれ検出する温度センサ等が設けられている。   Further, in the fuel injection system 10, as other sensors for detecting a driving state, an accelerator sensor for detecting an accelerator opening (ACCP) that is an operation amount of an accelerator pedal by a driver, a temperature (water temperature) of cooling water, intake air A temperature sensor or the like for detecting the temperature (intake air temperature) is provided.

燃料噴射弁30は、エンジン2の各気筒に設置されており、コモンレール20で蓄圧された燃料を気筒内に噴射する。燃料噴射弁30は、例えば、噴孔を開閉するノズルニードルのリフトを制御室の圧力で制御する公知の電磁駆動式弁である。燃料噴射弁30の噴射量は、ECU40から指令される噴射指令信号のパルス幅によって制御される。噴射指令信号のパルス幅が長くなると噴射量が増加する。   The fuel injection valve 30 is installed in each cylinder of the engine 2 and injects fuel accumulated in the common rail 20 into the cylinder. The fuel injection valve 30 is, for example, a known electromagnetically driven valve that controls the lift of the nozzle needle that opens and closes the nozzle hole with the pressure in the control chamber. The injection amount of the fuel injection valve 30 is controlled by the pulse width of the injection command signal commanded from the ECU 40. As the pulse width of the injection command signal increases, the injection amount increases.

ECU40は、CPU、RAM、ROM、フラッシュメモリ等を中心とするマイクロコンピュータにて主に構成されている。ECU40は、ROMまたはフラッシュメモリに記憶されている制御プログラムをCPUが実行することにより、圧力センサ22、回転角センサ32を含む各種センサから取り込んだ出力信号に基づき、燃料噴射システム10の各種制御を実行する。   The ECU 40 is mainly configured by a microcomputer centering on a CPU, RAM, ROM, flash memory and the like. The ECU 40 executes various control of the fuel injection system 10 based on output signals taken from various sensors including the pressure sensor 22 and the rotation angle sensor 32 when the CPU executes a control program stored in the ROM or the flash memory. Run.

例えば、ECU40は、圧力センサ22が検出するコモンレール圧が目標圧力になるように調量弁16への通電量を制御し、燃料供給ポンプ14の吐出量を調量する。ECU40は、調量弁16を制御する電流値と吐出量との相関を表す特性マップに基づいて、調量弁16を制御する電流値を設定する。   For example, the ECU 40 controls the energization amount to the metering valve 16 so that the common rail pressure detected by the pressure sensor 22 becomes the target pressure, and regulates the discharge amount of the fuel supply pump 14. The ECU 40 sets a current value for controlling the metering valve 16 based on a characteristic map representing a correlation between the current value for controlling the metering valve 16 and the discharge amount.

また、ECU40は、燃料噴射弁30の燃料噴射量、燃料噴射時期、ならびに、メイン噴射の前にパイロット噴射、プレ噴射、パイロット噴射の後にアフター噴射、ポスト噴射等を実施する多段噴射のパターンを制御する。   Further, the ECU 40 controls the fuel injection amount of the fuel injection valve 30, the fuel injection timing, and the pattern of the multistage injection in which the pilot injection, the pre-injection before the main injection, the after injection, the post injection after the pilot injection, etc. To do.

ECU40は、燃料噴射弁30に噴射を指令する噴射指令信号のパルス幅(T)と噴射量(Q)との相関を示す所謂TQマップを、コモンレール圧の所定の圧力範囲毎にROMまたはフラッシュメモリに記憶している。そして、ECU40は、エンジン回転速度およびアクセル開度に基づいて燃料噴射弁30の噴射量が決定されると、圧力センサ22が検出したコモンレール圧に応じて該当する圧力範囲のTQマップを参照し、決定された噴射量を燃料噴射弁30に指令する噴射指令信号のパルス幅をTQマップから取得する。   The ECU 40 stores a so-called TQ map indicating the correlation between the pulse width (T) of the injection command signal for instructing the fuel injection valve 30 and the injection amount (Q) into a ROM or flash memory for each predetermined pressure range of the common rail pressure. I remember it. Then, when the injection amount of the fuel injection valve 30 is determined based on the engine rotational speed and the accelerator opening, the ECU 40 refers to the TQ map of the corresponding pressure range according to the common rail pressure detected by the pressure sensor 22, The pulse width of the injection command signal that commands the determined injection amount to the fuel injection valve 30 is acquired from the TQ map.

(噴射量学習処理)
次に、ECU40がROM等に記憶されている制御プログラムにより実行する噴射量学習処理について説明する。図2および図3のフローチャートにおいて「S」はステップを表わしている。図2のフローチャートは、所定走行距離として例えば5000km毎、または所定運転時間として例えば500時間毎に実行される。
(Injection amount learning process)
Next, an injection amount learning process executed by the ECU 40 using a control program stored in the ROM or the like will be described. In the flowcharts of FIGS. 2 and 3, “S” represents a step. The flowchart of FIG. 2 is executed every 5000 km as the predetermined travel distance or every 500 hours as the predetermined operation time, for example.

まず、ECU40は、通常運転時において噴射量学習条件が成立しているか否かを判定する(S400)。噴射量学習条件としては、エンジン運転状態が安定していること、例えば、水温、吸気温、回転数、アクセル開度、コモンレール圧等のエンジン運転状態を表わすパラメータの値がそれぞれ所定範囲内であり、各パラメータの変動量が所定範囲内であることである。   First, the ECU 40 determines whether or not an injection amount learning condition is satisfied during normal operation (S400). The injection amount learning condition is that the engine operating state is stable, for example, the values of parameters representing the engine operating state such as water temperature, intake air temperature, rotation speed, accelerator opening, common rail pressure, etc. are within a predetermined range. The variation amount of each parameter is within a predetermined range.

学習条件が成立すると(S400:Yes)、コモンレール圧の学習圧力領域および噴射量学習を実行する気筒を決定し、通常噴射パターンと学習用噴射パターンとにより学習対象気筒の燃料噴射弁30にそれぞれ燃料噴射を指令し、両噴射パターンの噴射によるエンジン2の運転状態を表わす物理量としてエンジン2の仕事量を学習する(S402)。   When the learning condition is satisfied (S400: Yes), the learning pressure region of the common rail pressure and the cylinder for executing the injection amount learning are determined, and fuel is supplied to the fuel injection valve 30 of the learning target cylinder by the normal injection pattern and the learning injection pattern, respectively. The injection is commanded, and the work amount of the engine 2 is learned as a physical quantity representing the operation state of the engine 2 by the injection of both injection patterns (S402).

前回までに噴射量学習が実行され学習結果が反映されている場合、燃料噴射弁30に対する噴射指令は、補正後の噴射指令値により行う。
ECU40は、学習圧力領域として、例えば低、中、高の3圧力水準のうちどの圧力領域で学習するかを決定し、決定した圧力水準にコモンレール圧を調圧する。
When the injection amount learning is executed and the learning result is reflected by the previous time, the injection command for the fuel injection valve 30 is performed by the corrected injection command value.
The ECU 40 determines, for example, one of three pressure levels of low, medium, and high as the learning pressure region, and adjusts the common rail pressure to the determined pressure level.

次に、S402、および後述するS408、S416で実行する仕事量の学習処理について、図3のフローチャートに基づいて説明する。ECU40は、噴射量学習を実行する気筒において、図4に示すように、通常噴射パターンとして、例えばパイロット噴射なしでプレ噴射およびメイン噴射を所定回数指令し、通常噴射パターンの噴射によるエンジン回転速度を検出して運転状態を表わす仕事量を算出する(S430)。   Next, the work amount learning process executed in S402 and later-described S408 and S416 will be described based on the flowchart of FIG. In the cylinder that performs injection amount learning, as shown in FIG. 4, the ECU 40 commands, for example, pre-injection and main injection a predetermined number of times without pilot injection as a normal injection pattern, and sets the engine rotation speed by the injection of the normal injection pattern. The amount of work that is detected and represents the driving state is calculated (S430).

仕事量の算出は、図5に示すように、まず、回転角信号に基づきエンジン2の所定回転角度毎(例えば30°CA毎)に検出した回転速度を、エンジン2の爆発周期(本実施形態では、エンジン2が4気筒であるので180°CAとなる)の帯域フィルタにてフィルタリングすることで、なまされた瞬時トルクを算出し、その算出した瞬時トルクを、学習対象気筒の爆発周期内で積分する、といった手順で行われる。   As shown in FIG. 5, the calculation of the work amount is performed by first calculating the rotation speed detected at every predetermined rotation angle (for example, every 30 ° CA) of the engine 2 based on the rotation angle signal as the explosion cycle of the engine 2 (this embodiment). In this case, since the engine 2 has four cylinders, it becomes 180 ° CA), and the instantaneous torque that has been smoothed is calculated, and the calculated instantaneous torque is calculated within the explosion cycle of the learning target cylinder. It is performed by the procedure of integrating with.

尚、帯域フィルタのフィルタ作用が安定するまで、図4の点線100に示すように、通常噴射パターンと、後述するパイロット噴射有りの学習用噴射パターンとの噴射において、最初の数回分の噴射データを無視する。前述したように、仕事量の算出手順は、特開2007−32540号公報等に開示されているため、ここでは詳細な説明は省略する。   Until the filter action of the bandpass filter is stabilized, as shown by a dotted line 100 in FIG. 4, the injection data for the first several times in the normal injection pattern and the learning injection pattern with pilot injection described later are used. ignore. As described above, the procedure for calculating the work amount is disclosed in Japanese Patent Application Laid-Open No. 2007-32540 and the like, and detailed description thereof is omitted here.

そして、帯域フィルタのフィルタ作用が安定してから、通常噴射パターンによる複数回の噴射の仕事量の平均値Wnoおよび分散σnoを算出する(S432)。図4では、帯域フィルタのフィルタ作用が安定してから通常噴射パターンによる噴射を10回繰り返している。   Then, after the filter action of the band filter is stabilized, the average value Wno and variance σno of the work amount of the multiple injections by the normal injection pattern are calculated (S432). In FIG. 4, the injection with the normal injection pattern is repeated 10 times after the filter action of the bandpass filter is stabilized.

通常噴射パターンによる噴射が終了すると、プレ噴射およびメイン噴射からなる通常噴射パターンに最低保証噴射量に相当する学習用噴射としてパイロット噴射を加えた学習用噴射パターンによる多段噴射を所定回数指令し、帯域フィルタのフィルタ作用が安定してから、学習用噴射パターンの噴射によるエンジン回転速度を検出して運転状態を表わす仕事量を算出する(S434)。最低保証噴射量は例えば3mm3に設定されている。 When the injection by the normal injection pattern is completed, the multi-stage injection by the learning injection pattern in which the pilot injection is added as the learning injection corresponding to the minimum guaranteed injection amount to the normal injection pattern consisting of the pre-injection and the main injection is commanded a predetermined number of times. After the filter action of the filter is stabilized, the engine speed due to the injection of the learning injection pattern is detected to calculate the work amount representing the operating state (S434). The minimum guaranteed injection amount is set to 3 mm 3 , for example.

そして、学習用噴射パターンによる複数回の噴射の仕事量の平均値Wadおよび分散σadを算出し(S436)、本処理を終了する。
通常噴射パターンおよび学習用噴射パターンによる仕事量の算出を、例えばそれぞれ5回程度の複数回繰り返し、その平均値および分散を算出してもよい。
Then, an average value Wad and a variance σad of the work amount of the plurality of injections by the learning injection pattern are calculated (S436), and this process ends.
The calculation of the work amount by the normal injection pattern and the learning injection pattern may be repeated a plurality of times, for example, about 5 times, and the average value and variance may be calculated.

S402の仕事量学習処理が終了すると、通常噴射パターンと学習用噴射パターンとの噴射による仕事量を比較することにより、最低保証噴射量に相当する学習用噴射についての学習結果を判定する(S404)。学習結果の判定方法を以下に示す。   When the work amount learning process in S402 ends, the learning result for the learning injection corresponding to the minimum guaranteed injection amount is determined by comparing the work amounts of the normal injection pattern and the learning injection pattern (S404). . The method for determining the learning result is shown below.

まず、通常噴射パターンと学習用噴射パターンとの噴射による仕事量の変化量として、平均値の差が所定の上限値を超えていれば、燃料噴射弁30に指令したパイロット噴射量に対して燃料噴射弁30が実際に噴射した実噴射量が大きすぎる噴射量大(Q大)であると判断する。平均値の差は次式(1)から取得する。
ΔW=Wad−Wno ・・・(1)
仕事量の平均値の差が上限値以下であれば、次に、パイロット噴射量として少なくとも最低保証噴射量が噴射されているか否かを判定する。この判定は、各噴射パターンによる噴射回数をnとすると、次式(2)に示す統計上の検定値が所定値以上であるか否かで判定する。
検定値=(Wad−Wno)/{(σad 2 /n)+(σno 2 /n)} 1/2 Test value = (Wad-Wno) / {(σad 2 / n) + (σno 2 / n)} 1/2
・・・(2) ... (2)
検定値と比較する所定値kは、例えば2〜3の範囲内で適宜設定される。 The predetermined value k to be compared with the test value is appropriately set within the range of, for example, 2 to 3. 噴射量大ではなく、かつ検定値≧kであれば、最低保証噴射量が正常に噴射されていると判定する。 If the injection amount is not large and the test value ≥ k, it is determined that the minimum guaranteed injection amount is normally injected. 噴射量大ではなく、かつ検定値<kであれば、最低保証噴射量の燃料が噴射されていない噴射量小(Q小)であると判定する。 If the injection amount is not large and the test value <k, it is determined that the fuel with the minimum guaranteed injection amount is not injected and the injection amount is small (Q small). First, as the amount of change in the work amount due to the injection between the normal injection pattern and the learning injection pattern, if the difference between the average values exceeds a predetermined upper limit value, the fuel is supplied to the pilot injection amount commanded to the fuel injection valve 30. It is determined that the actual injection amount actually injected by the injection valve 30 is too large (Q large). The average value difference is obtained from the following equation (1). First, as the amount of change in the work amount due to the injection between the normal injection pattern and the learning injection pattern, if the difference between the average values ​​exceeds a predetermined upper limit value, the fuel is supplied to the pilot injection amount commanded To the fuel injection valve 30. It is determined that the actual injection amount actually injected by the injection valve 30 is too large (Q large). The average value difference is obtained from the following equation (1).
ΔW = Wad−Wno (1) ΔW = Wad−Wno (1)
If the difference between the average values of the work amounts is not more than the upper limit value, it is next determined whether or not at least the minimum guaranteed injection amount is injected as the pilot injection amount. This determination is made based on whether or not the statistical test value shown in the following equation (2) is equal to or greater than a predetermined value, where n is the number of injections by each injection pattern. If the difference between the average values ​​of the work amounts is not more than the upper limit value, it is next determined whether or not at least the minimum guaranteed injection amount is injected as the pilot injection amount. This determination is made based on whether or not the statistical test value shown in the following equation (2) is equal to or greater than a predetermined value, where n is the number of injections by each injection pattern.
Test value = (Wad−Wno) / {(σad 2 / n) + (σno 2 / n)} 1/2 Test value = (Wad−Wno) / {(σad 2 / n) + (σno 2 / n)} 1/2
... (2) ... (2)
The predetermined value k to be compared with the test value is appropriately set within a range of 2 to 3, for example. If the injection amount is not large and the test value ≧ k, it is determined that the minimum guaranteed injection amount is normally injected. If the injection amount is not large and the test value <k, it is determined that the minimum guaranteed injection amount of fuel is not injected (small Q). The predetermined value k to be compared with the test value is appropriately set within a range of 2 to 3, for example. If the injection amount is not large and the test value ≧ k, it is determined that the minimum guaranteed injection amount is normally if the injection amount is not large and the test value <k, it is determined that the minimum guaranteed injection amount of fuel is not injected (small Q).

以上の判定結果に基づき、S404において学習結果が正常であれば、噴射指令値を補正せず本処理を終了する。
S404において噴射量小(Q小)であれば、パイロット噴射量の噴射指令値を例えば1mm 3増加し(S406)、図3に示す仕事量の学習処理を実行する(S408)。 If the injection amount is small (Q small) in S404, the injection command value of the pilot injection amount is increased by, for example, 1 mm 3 (S406), and the work amount learning process shown in FIG. 3 is executed (S408). S410において学習結果を判定し、学習結果が噴射量小であればS406に処理を移行し、パイロット噴射量の噴射指令値を増加して仕事量の学習処理を繰り返す。 The learning result is determined in S410, and if the learning result is a small injection amount, the process is shifted to S406, the injection command value of the pilot injection amount is increased, and the work amount learning process is repeated. If the learning result is normal in S404 based on the above determination result, the present process is terminated without correcting the injection command value. If the learning result is normal in S404 based on the above determination result, the present process is terminated without correcting the injection command value.
If the injection amount is small (Small Q) in S404, the injection command value for the pilot injection amount is increased by, for example, 1 mm 3 (S406), and the work amount learning process shown in FIG. 3 is executed (S408). In S410, the learning result is determined. If the learning result is a small injection amount, the process proceeds to S406, the pilot instruction value for the pilot injection amount is increased, and the learning process for the work amount is repeated. If the injection amount is small (Small Q) in S404, the injection command value for the pilot injection amount is increased by, for example, 1 mm 3 (S406), and the work amount learning process shown in FIG. 3 is executed ( S408). In S410, the learning result is determined. If the learning result is a small injection amount, the process proceeds to S406, the pilot instruction value for the pilot injection amount is increased, and the learning process for the work amount is repeated ..

S410において学習結果が正常であれば、噴射指令値の増加量を補正量とし(S412)、本処理を終了する。
S404において噴射量大(Q大)であれば、パイロット噴射量の噴射指令値を減少し(S414)、図3に示す仕事量の学習処理を実行する(S416)。 If the injection amount is large (Q large) in S404, the injection command value of the pilot injection amount is reduced (S414), and the work amount learning process shown in FIG. 3 is executed (S416). S418において学習結果を判定し、学習結果が噴射量大であればS414に処理を移行し、パイロット噴射量の噴射指令値を例えば1mm 3減少して仕事量の学習処理を繰り返す。 The learning result is determined in S418, and if the learning result is a large injection amount, the process is shifted to S414, the injection command value of the pilot injection amount is reduced by, for example, 1 mm 3 , and the learning process of the work amount is repeated. If the learning result is normal in S410, the amount of increase in the injection command value is set as the correction amount (S412), and this process ends. If the learning result is normal in S410, the amount of increase in the injection command value is set as the correction amount (S412), and this process ends.
If the injection amount is large (Q large) in S404, the injection command value of the pilot injection amount is decreased (S414), and the work amount learning process shown in FIG. 3 is executed (S416). In S418, the learning result is determined. If the learning result is a large injection amount, the process proceeds to S414, and the pilot instruction injection command value is reduced by, for example, 1 mm 3 to repeat the work learning process. If the injection amount is large (Q large) in S404, the injection command value of the pilot injection amount is decreased (S414), and the work amount learning process shown in FIG. 3 is executed (S416). In S418, the learning result is determined. If the learning result is a large injection amount, the process proceeds to S414, and the pilot instruction injection command value is reduced by, for example, 1 mm 3 to repeat the work learning process.

S418において学習結果が正常であれば、噴射指令値の減少量を補正量とし(S420)、本処理を終了する。
尚、図2のS412およびS420で噴射指令値を補正する場合、最低保証噴射量に相当する噴射指令値だけを補正してもよいし、学習した同じ補正量により最低保証噴射量を下限値とする所定の微小量噴射範囲における噴射指令値を補正してもよい。 When the injection command value is corrected in S412 and S420 of FIG. 2, only the injection command value corresponding to the minimum guaranteed injection amount may be corrected, or the minimum guaranteed injection amount is set as the lower limit value by the same learned correction amount. The injection command value in a predetermined minute amount injection range may be corrected. If the learning result is normal in S418, the reduction amount of the injection command value is set as the correction amount (S420), and this process is terminated. If the learning result is normal in S418, the reduction amount of the injection command value is set as the correction amount (S420), and this process is terminated.
When correcting the injection command value in S412 and S420 in FIG. 2, only the injection command value corresponding to the minimum guaranteed injection amount may be corrected, or the minimum guaranteed injection amount is set as the lower limit value by the same learned correction amount. The injection command value in a predetermined minute amount injection range to be corrected may be corrected. When correcting the injection command value in S412 and S420 in FIG. 2, only the injection command value corresponding to the minimum guaranteed injection amount may be corrected, or the minimum guaranteed injection amount is set as the lower limit value by the same learned correction amount . The injection command value in a predetermined minute amount injection range to be corrected may be corrected.

所定の微小量噴射範囲の噴射指令値を補正する場合、例えば初回の噴射量学習であれば、図6に示すように基本噴射指令値と補正量が0の補正後噴射指令値との関係を示す初期噴射特性200を補正する。この場合、S412であれば補正量が正の補正後噴射特性202を取得し、S420であれば補正量が負の補正後噴射特性204を取得する。基本噴射指令値は、TQマップにおいて目標噴射量に対応するパルス幅を示す値である。   When correcting the injection command value in a predetermined minute amount injection range, for example, if the first injection amount learning is performed, the relationship between the basic injection command value and the corrected injection command value with a correction amount of 0 is set as shown in FIG. The initial injection characteristic 200 shown is corrected. In this case, if S412, the corrected injection characteristic 202 having a positive correction amount is acquired, and if S420, the corrected injection characteristic 204 having a negative correction amount is acquired. The basic injection command value is a value indicating a pulse width corresponding to the target injection amount in the TQ map.

学習した同じ補正量により所定の微小量噴射範囲の噴射指令値を補正する場合、図6に示すように、所定の微小量噴射範囲よりも噴射指令値の増加側および減少側に向けて、噴射指令値の補正量の絶対値を徐々に減少することが望ましい。これにより、所定の微小量噴射範囲の上限および下限において補正後の噴射指令値が急激に変化し、トルク変動が生じることを防止できる。   When correcting the injection command value in the predetermined minute amount injection range with the same correction amount learned, as shown in FIG. 6, the injection is directed toward the increase side and the decrease side of the injection command value from the predetermined minute amount injection range. It is desirable to gradually decrease the absolute value of the command value correction amount. As a result, it is possible to prevent the corrected injection command value from changing abruptly at the upper limit and the lower limit of the predetermined minute amount injection range and causing torque fluctuations.

以上説明した本実施形態では、通常噴射パターンと最低保証噴射量に相当する学習用噴射を通常噴射パターンに追加した学習用噴射パターンとによる噴射をそれぞれ実行したときの仕事量を比較するので、例えば仕事量に所定の変化があるか否かのいずれであるかを判定することにより、外乱の大きい通常噴射時において、最低保証噴射量の燃料が燃料噴射弁30から実際に噴射されているか否かを判定し、噴射量学習を実現できる。   In the present embodiment described above, the amount of work when each of the normal injection pattern and the learning injection pattern obtained by adding the learning injection corresponding to the minimum guaranteed injection amount to the normal injection pattern is compared. By determining whether or not there is a predetermined change in the work amount, whether or not the fuel with the minimum guaranteed injection amount is actually injected from the fuel injection valve 30 during normal injection with a large disturbance The injection amount learning can be realized.

本実施形態では、ECU40が本発明の燃料噴射制御装置に相当する。また、ECU40は、本発明の噴射指令手段、運転状態取得手段、判定手段および補正手段として機能する。   In the present embodiment, the ECU 40 corresponds to the fuel injection control device of the present invention. In addition, the ECU 40 functions as an injection command unit, an operation state acquisition unit, a determination unit, and a correction unit of the present invention.

また、図2のS402、S408、S416の仕事量学習処理を説明する図3のS430およびS434において燃料噴射弁30に燃料噴射を指令する処理は本発明の噴射指令手段が実行する機能に相当し、図3のS430およびS434においてエンジン回転速度から仕事量を算出する処理、ならびにS432およびS436において仕事量の平均および分散を算出する処理は本発明の運転状態取得手段が実行する機能に相当し、図2のS404、S410およびS418の処理は本発明の判定手段が実行する機能に相当し、S412およびS420の処理は本発明の補正手段が実行する機能に相当する。   Further, the processing for instructing the fuel injection valve 30 to inject fuel in S430 and S434 in FIG. 3 for explaining the work amount learning processing in S402, S408, and S416 in FIG. 2 corresponds to the function executed by the injection command means of the present invention. 3, the processing for calculating the work amount from the engine speed in S430 and S434, and the processing for calculating the average and variance of the work amounts in S432 and S436 correspond to the functions executed by the operating state acquisition means of the present invention. The processing of S404, S410, and S418 in FIG. 2 corresponds to the function executed by the determination unit of the present invention, and the processing of S412 and S420 corresponds to the function executed by the correction unit of the present invention.

[他の実施形態]
上記実施形態では、エンジン2の運転状態を表わす物理量としてエンジン回転速度から仕事量を取得した。仕事量以外にも、排ガス中の酸素濃度、各気筒に筒内圧を測定する筒内圧センサが設置されている場合には燃焼時の筒内圧などを、エンジン2の運転状態を表わす物理量として取得してもよい。
[Other Embodiments]
In the above embodiment, the work amount is acquired from the engine speed as a physical quantity representing the operating state of the engine 2. In addition to the amount of work, the in-cylinder pressure sensor that measures the oxygen concentration in the exhaust gas and the in-cylinder pressure is installed in each cylinder, and the in-cylinder pressure during combustion is acquired as a physical quantity representing the operating state of the engine 2. May be. In the above embodiment, the work amount is acquired from the engine speed as a physical quantity representing the operating state of the engine 2. In addition to the amount of work, the in-cylinder pressure sensor that measures the oxygen concentration in the exhaust gas and the in-cylinder pressure is installed in each cylinder, and the in-cylinder pressure during combustion is acquired as a physical quantity representing the operating state of the engine 2. May be.

上記実施形態では、学習用噴射として最低保証噴射量が噴射されているか否かを、通常噴射パターンと学習用噴射パターンとにより燃料噴射弁30から複数回噴射したときの平均値および分散に基づいて判定した。これに対し、通常噴射パターンと学習用噴射パターンとにより燃料噴射弁30から複数回噴射したときの平均値の差が所定の下限値以上であれば、学習用噴射として最低保証噴射量が噴射されていると判定してもよい。   In the above embodiment, whether or not the minimum guaranteed injection amount is injected as the learning injection is based on the average value and the dispersion when the fuel injection valve 30 injects a plurality of times using the normal injection pattern and the learning injection pattern. Judged. In contrast, if the difference between the average values when the fuel injection valve 30 injects a plurality of times from the normal injection pattern and the learning injection pattern is equal to or greater than a predetermined lower limit value, the minimum guaranteed injection amount is injected as the learning injection. It may be determined that

また、上記実施形態では、自動車用のディーゼルエンジンを例にして説明したが、微小量噴射を実行する内燃機関であれば、どのような用途に使用される内燃機関に本発明の噴射量学習を適用してもよい。特に、無噴射減速運転状態の発生しない建設機械、発電機等に使用される内燃機関に適用すると効果的である。   In the above embodiment, an automobile diesel engine has been described as an example. However, as long as the internal combustion engine performs minute amount injection, the internal combustion engine used for any application can perform the injection amount learning of the present invention. You may apply. In particular, the present invention is effective when applied to an internal combustion engine used in a construction machine, a generator, or the like that does not generate a non-injection deceleration operation state.

上記実施形態では、噴射指令手段、運転状態取得手段、判定手段および補正手段の機能を制御プログラムにより機能が特定されるECU40により実現している。これに対し、上記手段の機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the injection command means, the operating state acquisition means, the determination means, and the correction means are realized by the ECU 40 whose functions are specified by the control program. On the other hand, at least a part of the functions of the above means may be realized by hardware whose function is specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。 As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

2:ディーゼルエンジン(内燃機関)、30:燃料噴射弁、40:ECU(燃料噴射制御装置、噴射指令手段、運転状態取得手段、判定手段、補正手段) 2: diesel engine (internal combustion engine), 30: fuel injection valve, 40: ECU (fuel injection control device, injection command means, operating state acquisition means, determination means, correction means)

Claims (6)

  1. 通常運転時に学習条件が成立すると、内燃機関に燃料を噴射する燃料噴射弁の最低保証噴射量に相当する学習用噴射を通常噴射パターンに追加した学習用噴射パターンで前記燃料噴射弁に噴射を指令する噴射指令手段と、
    前記通常噴射パターンで前記燃料噴射弁が燃料を噴射したときと、前記学習用噴射パターンで前記燃料噴射弁が燃料を噴射したときとにおける前記内燃機関のそれぞれの運転状態を表わす物理量を取得する運転状態取得手段と、
    前記通常噴射パターンと前記学習用噴射パターンとの噴射で前記運転状態取得手段が取得する前記物理量を比較して前記最低保証噴射量が噴射されているか否かを判定する判定手段と、
    前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量を比較して前記最低保証噴射量が噴射されているとともに、前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量の変化量が前記上限値以下であり学習が終了したと前記判定手段が判定すると、学習終了時の前記学習用噴射の前記噴射指令値に基づいて、前記最低保証噴射量を下限値とする所定の微小量噴射範囲における前記噴射指令値を補正する補正手段と、 The minimum guaranteed injection amount is injected by comparing the physical quantity obtained by the injection of the normal injection pattern and the learning injection pattern, and the physical quantity changes due to the injection of the normal injection pattern and the learning injection pattern. When the determination means determines that the amount is equal to or less than the upper limit value and the learning is completed, a predetermined minute amount with the minimum guaranteed injection amount as the lower limit value based on the injection command value of the learning injection at the end of learning. A correction means for correcting the injection command value in the quantity injection range, and
    を備え、 With
    前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量を比較して前記最低保証噴射量が噴射されていないと前記判定手段が判定すると、前記噴射指令手段は前記燃料噴射弁に対する前記学習用噴射の噴射指令値を増加する、 When the determination means determines that the minimum guaranteed injection amount is not injected by comparing the physical quantity obtained by injection of the normal injection pattern and the learning injection pattern, the injection command means learns the fuel injection valve. Increase the injection command value of the injection
    ことを特徴とする燃料噴射制御装置。 A fuel injection control device characterized by this. When the learning condition is satisfied during normal operation, the fuel injection valve is commanded to be injected with a learning injection pattern in which a learning injection corresponding to the minimum guaranteed injection amount of the fuel injection valve that injects fuel into the internal combustion engine is added to the normal injection pattern. Injection command means for When the learning condition is satisfied during normal operation, the fuel injection valve is commanded to be injected with a learning injection pattern in which a learning injection corresponding to the minimum guaranteed injection amount of the fuel injection valve that injects fuel into the internal combustion engine is added to the normal injection pattern. Injection command means for
    Operation for acquiring physical quantities representing respective operating states of the internal combustion engine when the fuel injection valve injects fuel in the normal injection pattern and when the fuel injection valve injects fuel in the learning injection pattern State acquisition means; Operation for acquiring physical quantities representing operating states of the internal combustion engine when the fuel injection valve injects fuel in the normal injection pattern and when the fuel injection valve injects fuel in the learning injection pattern State acquisition means;
    A determination unit that determines whether or not the minimum guaranteed injection amount is injected by comparing the physical quantity acquired by the operating state acquisition unit with the injection of the normal injection pattern and the learning injection pattern; A determination unit that determines whether or not the minimum guaranteed injection amount is injected by comparing the physical quantity acquired by the operating state acquisition unit with the injection of the normal injection pattern and the learning injection pattern;
    The minimum guaranteed injection amount is injected by comparing the physical amount by the injection of the normal injection pattern and the learning injection pattern, and the change in the physical amount by the injection of the normal injection pattern and the learning injection pattern When the determination means determines that the amount is equal to or less than the upper limit value and learning is completed, a predetermined minute value with the minimum guaranteed injection amount as a lower limit value is determined based on the injection command value of the learning injection at the end of learning. Correction means for correcting the injection command value in the quantity injection range; The minimum guaranteed injection amount is injected by comparing the physical amount by the injection of the normal injection pattern and the learning injection pattern, and the change in the physical amount by the injection of the normal injection pattern and the learning injection pattern When the determination means determines that the amount is equal to or less than the upper limit value and learning is completed, a predetermined minute value with the minimum guaranteed injection amount as a lower limit value is determined based on the injection command value of the learning injection at the end of learning. Correction means for correcting the injection command value in the quantity injection range;
    With With
    When the determination means determines that the minimum guaranteed injection amount is not injected by comparing the physical quantities resulting from the injection of the normal injection pattern and the learning injection pattern, the injection command means determines the learning for the fuel injection valve. Increase the injection command value for When the determination means determines that the minimum guaranteed injection amount is not injected by comparing the physical quantities resulting from the injection of the normal injection pattern and the learning injection pattern, the injection command means determines the learning for the fuel injection valve. Increase the injection command value for
    A fuel injection control device. A fuel injection control device.
  2. 前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量の変化量が所定の上限値を超えていると前記判定手段が判定すると、前記噴射指令手段は前記燃料噴射弁に対する前記学習用噴射の噴射指令値を減少することを特徴とする請求項1に記載の燃料噴射制御装置。 When the determination means determines that the amount of change in the physical quantity due to the injection of the normal injection pattern and the learning injection pattern exceeds a predetermined upper limit value, the injection command means causes the learning injection to the fuel injection valve. The fuel injection control device according to claim 1 , wherein the injection command value is reduced.
  3. 通常運転時に学習条件が成立すると、内燃機関に燃料を噴射する燃料噴射弁の最低保証噴射量に相当する学習用噴射を通常噴射パターンに追加した学習用噴射パターンで前記燃料噴射弁に噴射を指令する噴射指令手段と、
    前記通常噴射パターンで前記燃料噴射弁が燃料を噴射したときと、前記学習用噴射パターンで前記燃料噴射弁が燃料を噴射したときとにおける前記内燃機関のそれぞれの運転状態を表わす物理量を取得する運転状態取得手段と、
    前記通常噴射パターンと前記学習用噴射パターンとの噴射で前記運転状態取得手段が取得する前記物理量を比較して前記最低保証噴射量が噴射されているか否かを判定する判定手段と、
    前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量を比較して前記最低保証噴射量が噴射されているとともに、前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量の変化量が前記上限値以下であり学習が終了したと前記判定手段が判定すると、学習終了時の前記学習用噴射の前記噴射指令値に基づいて、前記最低保証噴射量を下限値とする所定の微小量噴射範囲における前記噴射指令値を補正する補正手段と、 The minimum guaranteed injection amount is injected by comparing the physical quantity obtained by the injection of the normal injection pattern and the learning injection pattern, and the physical quantity changes due to the injection of the normal injection pattern and the learning injection pattern. When the determination means determines that the amount is equal to or less than the upper limit value and the learning is completed, a predetermined minute amount with the minimum guaranteed injection amount as the lower limit value based on the injection command value of the learning injection at the end of learning. A correction means for correcting the injection command value in the quantity injection range, and
    を備え、 With
    前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量の変化量が所定の上限値を超えていると前記判定手段が判定すると、前記噴射指令手段は前記燃料噴射弁に対する前記学習用噴射の噴射指令値を減少する、 When the determination means determines that the amount of change in the physical quantity due to the injection between the normal injection pattern and the learning injection pattern exceeds a predetermined upper limit value, the injection command means jets the learning injection to the fuel injection valve. Decrease the injection command value of
    ことを特徴とする燃料噴射制御装置。 A fuel injection control device characterized by this. When the learning condition is satisfied during normal operation, the fuel injection valve is commanded to be injected with a learning injection pattern in which a learning injection corresponding to the minimum guaranteed injection amount of the fuel injection valve that injects fuel into the internal combustion engine is added to the normal injection pattern. Injection command means for When the learning condition is satisfied during normal operation, the fuel injection valve is commanded to be injected with a learning injection pattern in which a learning injection corresponding to the minimum guaranteed injection amount of the fuel injection valve that injects fuel into the internal combustion engine is added to the normal injection pattern. Injection command means for
    Operation for acquiring physical quantities representing respective operating states of the internal combustion engine when the fuel injection valve injects fuel in the normal injection pattern and when the fuel injection valve injects fuel in the learning injection pattern State acquisition means; Operation for acquiring physical quantities representing operating states of the internal combustion engine when the fuel injection valve injects fuel in the normal injection pattern and when the fuel injection valve injects fuel in the learning injection pattern State acquisition means;
    A determination unit that determines whether or not the minimum guaranteed injection amount is injected by comparing the physical quantity acquired by the operating state acquisition unit with the injection of the normal injection pattern and the learning injection pattern; A determination unit that determines whether or not the minimum guaranteed injection amount is injected by comparing the physical quantity acquired by the operating state acquisition unit with the injection of the normal injection pattern and the learning injection pattern;
    The minimum guaranteed injection amount is injected by comparing the physical amount by the injection of the normal injection pattern and the learning injection pattern, and the change in the physical amount by the injection of the normal injection pattern and the learning injection pattern When the determination means determines that the amount is equal to or less than the upper limit value and learning is completed, a predetermined minute value with the minimum guaranteed injection amount as a lower limit value is determined based on the injection command value of the learning injection at the end of learning. Correction means for correcting the injection command value in the quantity injection range; The minimum guaranteed injection amount is injected by comparing the physical amount by the injection of the normal injection pattern and the learning injection pattern, and the change in the physical amount by the injection of the normal injection pattern and the learning injection pattern When the determination means determines that the amount is equal to or less than the upper limit value and learning is completed, a predetermined minute value with the minimum guaranteed injection amount as a lower limit value is determined based on the injection command value of the learning injection at the end of learning. Correction means for correcting the injection command value in the quantity injection range;
    With With
    When the determination means determines that the amount of change in the physical quantity due to the injection of the normal injection pattern and the learning injection pattern exceeds a predetermined upper limit value, the injection command means causes the learning injection to the fuel injection valve. Reduce the injection command value of When the determination means determines that the amount of change in the physical quantity due to the injection of the normal injection pattern and the learning injection pattern exceeds a predetermined upper limit value, the injection command means causes the learning injection to the fuel injection valve. the injection command value of
    A fuel injection control device. A fuel injection control device.
  4. 前記運転状態取得手段は、前記燃料噴射弁が燃料を噴射したときの前記内燃機関の仕事量を前記物理量として取得することを特徴とする請求項1から3のいずれか一項に記載の燃料噴射制御装置。 4. The fuel injection according to claim 1, wherein the operation state acquisition unit acquires a work amount of the internal combustion engine when the fuel injection valve injects fuel as the physical quantity. 5. Control device.
  5. 前記運転状態取得手段は、前記通常噴射パターンにより前記燃料噴射弁が燃料を複数回噴射したとき、ならびに前記学習用噴射パターンにより前記燃料噴射弁が燃料を複数回噴射したときのそれぞれにおいて、前記物理量の平均値および分散を取得し、
    前記判定手段は、前記通常噴射パターンと前記学習用噴射パターンとの噴射による前記物理量の平均値および分散に基づいて前記最低保証障噴射量が噴射されているか否かを判定する、
    ことを特徴とする請求項1から4のいずれか一項に記載の燃料噴射制御装置。 The fuel injection control device according to any one of claims 1 to 4, wherein the fuel injection control device is characterized. The operating state acquisition means is configured so that each of the physical quantity is obtained when the fuel injection valve injects the fuel a plurality of times according to the normal injection pattern and when the fuel injection valve injects the fuel a plurality of times according to the learning injection pattern. Get the mean and variance of The operating state acquisition means is configured so that each of the physical quantity is obtained when the fuel injection valve injects the fuel a plurality of times according to the normal injection pattern and when the fuel injection valve injects the fuel a plurality of times according to the learning injection pattern. Get the mean and variance of
    The determination means determines whether or not the minimum guaranteed failure injection amount is injected based on an average value and variance of the physical quantities by injection of the normal injection pattern and the learning injection pattern. The determination means determines whether or not the minimum guaranteed failure injection amount is injected based on an average value and variance of the physical quantities by injection of the normal injection pattern and the learning injection pattern.
    The fuel injection control device according to any one of claims 1 to 4, wherein The fuel injection control device according to any one of claims 1 to 4, wherein
  6. 前記補正手段は、前記所定の微小量噴射範囲よりも前記噴射指令値の増加側および減少側に向けて、前記噴射指令値に対する補正量の絶対値を徐々に減少することを特徴とする請求項1から5のいずれか一項に記載の燃料噴射制御装置。 Wherein the correction means, the claims toward the increase side and the decrease side of the injection command value than the predetermined minute amount injection range, characterized by gradually decreasing the absolute value of the correction amount with respect to the injection command value The fuel injection control device according to any one of 1 to 5 .
JP2012064064A 2012-03-21 2012-03-21 Fuel injection control device Active JP5648646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012064064A JP5648646B2 (en) 2012-03-21 2012-03-21 Fuel injection control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012064064A JP5648646B2 (en) 2012-03-21 2012-03-21 Fuel injection control device
DE102013102783.0A DE102013102783B4 (en) 2012-03-21 2013-03-19 Fuel injection controller

Publications (2)

Publication Number Publication Date
JP2013194650A JP2013194650A (en) 2013-09-30
JP5648646B2 true JP5648646B2 (en) 2015-01-07

Family

ID=49112352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012064064A Active JP5648646B2 (en) 2012-03-21 2012-03-21 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP5648646B2 (en)
DE (1) DE102013102783B4 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3929747A1 (en) * 1989-09-07 1991-03-14 Bosch Gmbh Robert Method and device for controlling fuel injection
JP2721799B2 (en) * 1994-04-14 1998-03-04 四国計測工業株式会社 Machine abnormality judgment method
JP4400526B2 (en) * 2005-07-29 2010-01-20 株式会社デンソー Control device for internal combustion engine
JP4345861B2 (en) * 2007-09-20 2009-10-14 株式会社デンソー Fuel injection control device and fuel injection system using the same
DE102008054690B4 (en) * 2008-12-16 2020-11-26 Robert Bosch Gmbh Method and device for calibrating partial injections in an internal combustion engine, in particular a motor vehicle
JP2010265822A (en) * 2009-05-14 2010-11-25 Isuzu Motors Ltd Fuel injection control device for internal combustion engine and fuel injection control method for internal combustion engine
JP5482532B2 (en) * 2010-07-16 2014-05-07 株式会社デンソー Fuel injection control device

Also Published As

Publication number Publication date
JP2013194650A (en) 2013-09-30
DE102013102783A1 (en) 2013-09-26
DE102013102783B4 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP1340900B1 (en) Fuel injection control system for engine
EP0905359B1 (en) A fuel injection method and device for engines
JP4026368B2 (en) Accumulated fuel injection system
US7055503B2 (en) Fuel injection controller for engine
US6722345B2 (en) Fuel injection system for internal combustion engine
JP4588971B2 (en) Method and apparatus for controlling an internal combustion engine
JP4631937B2 (en) Learning device and fuel injection system
JP4289280B2 (en) Injection amount learning control device
JP4075774B2 (en) Injection quantity control device for diesel engine
EP2031221B1 (en) Fuel injection system with injection characteristic learning function
JP4743030B2 (en) Fuel injection control device for diesel engines
DE19945618B4 (en) Method and device for controlling a fuel metering system of an internal combustion engine
CN1308584C (en) Diesel engine control system and control method
US7032582B2 (en) Injection control system of internal combustion engine
DE602004000955T2 (en) Method for controlling the injection quantity of a diesel engine
JP4515729B2 (en) Fuel injection device
EP1647695B1 (en) Fuel injection control device for internal combustion engine
EP2220356B1 (en) Controller for diesel engine and method of controlling diesel engine
DE102009003121B4 (en) Fuel injection control device and fuel injection system with selbiger
JP4462287B2 (en) Abnormality diagnosis device for internal combustion engine and control system for internal combustion engine
JP4407730B2 (en) Fuel injection control device for internal combustion engine
JP4428405B2 (en) Fuel injection control device and engine control system
EP1832737B1 (en) Abnormality-determining device and method for fuel supply system
US7769530B2 (en) Process for the open-and closed-loop control of an internal combustion engine with a common rail system including individual accumulators
EP2031220B1 (en) Fuel injection system with injection characteristic learning function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141014

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141027

R151 Written notification of patent or utility model registration

Ref document number: 5648646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250