JP5482532B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5482532B2
JP5482532B2 JP2010162057A JP2010162057A JP5482532B2 JP 5482532 B2 JP5482532 B2 JP 5482532B2 JP 2010162057 A JP2010162057 A JP 2010162057A JP 2010162057 A JP2010162057 A JP 2010162057A JP 5482532 B2 JP5482532 B2 JP 5482532B2
Authority
JP
Japan
Prior art keywords
injection
amount
actual
learning
command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010162057A
Other languages
Japanese (ja)
Other versions
JP2012021514A (en
Inventor
資人 越田
佑輔 真島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010162057A priority Critical patent/JP5482532B2/en
Priority to CN2011102332224A priority patent/CN102337977A/en
Publication of JP2012021514A publication Critical patent/JP2012021514A/en
Application granted granted Critical
Publication of JP5482532B2 publication Critical patent/JP5482532B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、学習噴射を実行して燃料噴射弁の噴射量の補正量を学習する燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device that performs learning injection to learn a correction amount of an injection amount of a fuel injection valve.

従来、機差または経時変化等により生じる燃料噴射弁の指令噴射量に対する実噴射量のずれ量を学習し、実噴射量が指令噴射量になるように噴射量の補正量を算出することが知られている。例えば、特許文献1では、NOxおよび燃焼騒音を低減するためにメイン噴射の前に微少量のパイロット噴射を実施するディーゼルエンジンにおいて、パイロット噴射による微少噴射量を補正する噴射量学習を実施している。   Conventionally, it is known to learn the amount of deviation of the actual injection amount from the command injection amount of the fuel injection valve caused by machine difference or change over time, and calculate the correction amount of the injection amount so that the actual injection amount becomes the command injection amount. It has been. For example, in Patent Document 1, in a diesel engine that performs a small amount of pilot injection before main injection in order to reduce NOx and combustion noise, injection amount learning for correcting a small injection amount by pilot injection is performed. .

また、特許文献2では、主噴射の前に実行される噴射量の少ない予備噴射に対して駆動パルス幅を徐々に延ばして予備噴射が開始されるときの駆動パルス幅のずれを学習し、予備噴射を実行させる駆動パルス幅を調整している。   Further, in Patent Document 2, a drive pulse width shift when the preliminary injection is started by gradually extending the drive pulse width with respect to the preliminary injection with a small injection amount executed before the main injection is learned, and the preliminary injection is performed. The drive pulse width for executing the injection is adjusted.

このように噴射量を学習する場合、指令噴射量と、指令噴射量の学習噴射を実行することにより生じるエンジン運転状態の変動量との関係を機種毎に予め基本噴射特性として測定しておき、基本噴射特性に基づいて、学習噴射により生じるエンジン運転状態の変動量から実噴射量を推定することが行われている。   When learning the injection amount in this way, the relationship between the command injection amount and the fluctuation amount of the engine operating state caused by executing the learning injection of the command injection amount is measured in advance as a basic injection characteristic for each model, Based on the basic injection characteristics, the actual injection amount is estimated from the fluctuation amount of the engine operation state caused by the learning injection.

特開2005−140046号公報Japanese Patent Laid-Open No. 2005-140046 特開平3−100350号公報Japanese Patent Laid-Open No. 3-100350

しかしながら、基本噴射特性は機種毎に異なるため、特に商用車、農業機械および建設機械のように多くの機種が用意されている場合、機種毎に燃料圧力に応じて基本噴射特性を測定してマップ等を作成するためには多くの工数が必要になるという問題がある。   However, since the basic injection characteristics differ from model to model, especially when many models such as commercial vehicles, agricultural machinery, and construction machines are prepared, the basic injection characteristics are measured according to the fuel pressure for each model and mapped. There is a problem that a lot of man-hours are required to create the above.

本発明は、上記問題を解決するためになされたものであり、学習噴射を実行することにより検出する実噴射量特性に基づいて基本噴射特性を推定する燃料噴射制御装置を提供することを目的とする。   The present invention has been made to solve the above-described problem, and an object of the present invention is to provide a fuel injection control device that estimates basic injection characteristics based on actual injection amount characteristics detected by executing learning injection. To do.

請求項1から4に記載の発明によると、指令噴射量の異なる学習噴射を噴射指令手段が燃料噴射弁に指令し、噴射指令手段が燃料噴射弁に指令する指令噴射量と、燃料噴射弁が学習噴射を実行することにより生じる内燃機関の運転状態の実変動量との相関を表す実噴射特性を実噴射特性検出手段が検出し、実噴射特性検出手段が検出する実噴射特性を平行移動して、指令噴射量と運転状態の変動量との相関を表す基本噴射特性を基本噴射特性推定手段が推定し、基本噴射特性推定手段が推定する基本噴射特性と実噴射特性との指令噴射量の増減方向における差を噴射量を補正する学習値として学習値算出手段が算出する。 According to the first to fourth aspects of the present invention, the injection command means instructs the fuel injection valve to perform learning injection with different command injection quantities, and the fuel injection valve instructs the fuel injection valve to instruct the fuel injection valve. The actual injection characteristic detecting means detects the actual injection characteristic that represents the correlation with the actual fluctuation amount of the operating state of the internal combustion engine caused by executing the learning injection, and the actual injection characteristic detected by the actual injection characteristic detecting means is translated. Thus, the basic injection characteristic estimating means estimates the basic injection characteristic representing the correlation between the command injection quantity and the fluctuation amount of the operating state, and the command injection quantity between the basic injection characteristic estimated by the basic injection characteristic estimating means and the actual injection characteristic is calculated. The learning value calculation means calculates the difference in the increase / decrease direction as a learning value for correcting the injection amount.

このように、指令噴射量と運転状態の実変動量との相関を表す実噴射特性と基本噴射特性とにずれが生じても、そのずれはオフセット方向のずれであることに着目し、学習噴射を実行して実噴射特性を検出することにより、実噴射特性を平行移動して基本噴射特性を推定することができる。   In this way, even if there is a deviation between the actual injection characteristic representing the correlation between the command injection amount and the actual fluctuation amount of the operating state and the basic injection characteristic, the difference is in the offset direction, and the learning injection By executing the above and detecting the actual injection characteristics, the basic injection characteristics can be estimated by translating the actual injection characteristics.

これにより、どのような車両の機種であっても、予め基本噴射特性を測定することなく、内燃機関を運転させながら基本噴射特性を推定できる。これにより、基本噴射特性と実噴射特性との指令噴射量の増減方向における差を燃料噴射弁の噴射量を補正する学習値として算出できる。   Thereby, it is possible to estimate the basic injection characteristic while operating the internal combustion engine without measuring the basic injection characteristic in advance for any type of vehicle. Thereby, the difference in the increase / decrease direction of the command injection amount between the basic injection characteristic and the actual injection characteristic can be calculated as a learning value for correcting the injection amount of the fuel injection valve.

さらに、請求項1から4に記載の発明によると、実噴射特性検出手段は、噴射量の異なる複数の指令噴射量と実変動量との相関係数の2乗が所定値以下の場合、該当する実変動量を学習用データとして採用しない。
このように、噴射量の異なる複数の指令噴射量と実変動量との相関係数の2乗が所定値以下の場合、指令噴射量と実変動量との相関を表す実噴射特性を検出しても信頼度が低い。したがって、指令噴射量と実変動量との相関係数が所定値以下の場合、該当する実変動量を学習用データとして採用しないことが望ましい。特に、走行中に、指令噴射量と実変動量との相関関係のばらつきが大きい燃焼状態で学習噴射を実行する場合に、学習精度の低下を防止する点で効果的である。
請求項2に記載の発明によると、噴射指令手段は、走行中の燃料噴射状態で燃料噴射弁に学習噴射を指令する。
このように、走行中の燃料噴射状態で学習噴射を実行することにより、噴射量の学習頻度を高めることができる。
Further, according to the first to fourth aspects of the present invention, the actual injection characteristic detecting means is applicable when the square of the correlation coefficient between the plurality of command injection amounts and the actual variation amounts having different injection amounts is equal to or less than a predetermined value. The actual fluctuation amount to be used is not adopted as learning data.
In this way, when the square of the correlation coefficient between the plurality of command injection amounts having different injection amounts and the actual variation amount is equal to or less than a predetermined value, the actual injection characteristic representing the correlation between the command injection amount and the actual variation amount is detected. But reliability is low. Therefore, when the correlation coefficient between the command injection amount and the actual fluctuation amount is equal to or less than a predetermined value, it is desirable not to adopt the corresponding actual fluctuation amount as the learning data. In particular, when learning injection is performed in a combustion state in which the correlation between the command injection amount and the actual variation amount is large during traveling, this is effective in preventing a decrease in learning accuracy.
According to the second aspect of the invention, the injection command means commands learning injection to the fuel injection valve in the fuel injection state during traveling.
In this way, the learning frequency of the injection amount can be increased by executing the learning injection in the fuel injection state during traveling.

請求項3に記載の発明によると、実噴射特性検出手段は、同じ指令噴射量で学習噴射を実行したときの実変動量のばらつきが所定範囲を超えている場合、該当する実変動量を学習用データとして採用しない。   According to the third aspect of the present invention, the actual injection characteristic detecting means learns the corresponding actual variation when the variation in the actual variation when the learning injection is executed with the same command injection amount exceeds a predetermined range. Not adopted as data for use.

このように、同じ指令噴射量で学習噴射を実行したときの実変動量のばらつきが所定範囲を超えている場合には、学習用データの信頼度が低いので採用しないことが望ましい。特に、走行中の燃料噴射状態で学習噴射を実行する結果、学習噴射以外の要因で実変動量がばらつく場合に、学習精度の低下を防止する点で効果的である。   In this way, when the variation in the actual fluctuation amount when the learning injection is executed with the same command injection amount exceeds the predetermined range, it is desirable not to employ the learning data because the reliability of the learning data is low. In particular, it is effective in preventing a decrease in learning accuracy when the actual fluctuation amount varies due to a factor other than the learning injection as a result of executing the learning injection in the fuel injection state during traveling.

請求項4に記載の発明によると、実噴射特性検出手段は、指令噴射量を所定噴射量まで増加して学習噴射を実行しても実変動量が所定変動量を超えない場合、該当する実変動量を学習用データとして採用しない。   According to the fourth aspect of the present invention, the actual injection characteristic detecting means, when the actual fluctuation amount does not exceed the predetermined fluctuation amount even when the command injection amount is increased to the predetermined injection amount and the learning injection is executed, The amount of variation is not used as learning data.

このように、指令噴射量を所定噴射量まで増加して学習噴射を実行しても実変動量が所定変動量を超えない場合は、指令噴射量に対する実変動量の変化率、言い換えれば実噴射特性の感度が低いので、実噴射特性の検出精度は低くなる。検出精度の低い実噴射特性から推定する基本噴射特性と実噴射特性との差に基づいて噴射量の補正量を算出しても補正精度が低くなるので、該当する実変動量を学習用データとして採用しないことが望ましい。特に、走行中に、実噴射特性の感度が低くなる燃焼状態で学習噴射を実行する場合に、学習精度の低下を防止する点で効果的である。   Thus, if the actual fluctuation amount does not exceed the predetermined fluctuation amount even when the command injection amount is increased to the predetermined injection amount and the learning injection is executed, the rate of change of the actual fluctuation amount with respect to the command injection amount, in other words, the actual injection Since the characteristic sensitivity is low, the detection accuracy of the actual injection characteristic is low. Even if the correction amount of the injection amount is calculated based on the difference between the basic injection characteristic estimated from the actual injection characteristic with low detection accuracy and the actual injection characteristic, the correction accuracy is low, so the corresponding actual fluctuation amount is used as learning data. It is desirable not to adopt. In particular, when learning injection is performed in a combustion state in which the sensitivity of the actual injection characteristics is low during traveling, this is effective in preventing a decrease in learning accuracy.

尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組み合わせにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。   The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

本実施形態による燃料噴射システムを示すブロック図。The block diagram which shows the fuel-injection system by this embodiment. 学習噴射による仕事相当量の増加を示す説明図。Explanatory drawing which shows the increase in work equivalent amount by learning injection. 噴射特性のずれを示す特性図。The characteristic view which shows the shift | offset | difference of an injection characteristic. 学習噴射による仕事相当量のばらつきを示す分布図。The distribution map which shows the dispersion | variation in the work equivalent amount by learning injection. 学習した仕事相当量の感度を示す特性図。The characteristic view which shows the sensitivity of the work equivalent amount learned. 指令噴射量と仕事相当量との相関を示す特性図。The characteristic view which shows the correlation with instruction | command injection amount and work equivalent amount.

以下、本発明の実施の形態を図に基づいて説明する。
本実施形態による燃料噴射システムを図1に示す。
(燃料噴射システム10)
燃料噴射システム10は、例えば、自動車用の4気筒のディーゼルエンジン(以下、単に「エンジン」ともいう。)2に燃料を噴射するためのものである。燃料噴射システム10は、燃料供給ポンプ14と、コモンレール20と、燃料噴射弁30と、電子制御装置(Electronic Control Unit:ECU)40とを備えている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
A fuel injection system according to this embodiment is shown in FIG.
(Fuel injection system 10)
The fuel injection system 10 is for injecting fuel into, for example, a four-cylinder diesel engine (hereinafter also simply referred to as “engine”) 2 for an automobile. The fuel injection system 10 includes a fuel supply pump 14, a common rail 20, a fuel injection valve 30, and an electronic control unit (ECU) 40.

燃料供給ポンプ14は、燃料タンク12から燃料を汲み上げるフィードポンプを内蔵している。燃料供給ポンプ14は、カムシャフトのカムの回転に伴いプランジャが往復移動することにより、フィードポンプから加圧室に吸入した燃料を加圧する公知のポンプである。   The fuel supply pump 14 incorporates a feed pump that pumps fuel from the fuel tank 12. The fuel supply pump 14 is a known pump that pressurizes the fuel sucked into the pressurizing chamber from the feed pump when the plunger reciprocates as the cam of the camshaft rotates.

調量アクチュエータとしての調量弁16は、燃料供給ポンプ14の吸入側に設置されており、電流制御されることにより燃料供給ポンプ14の各プランジャが吸入行程で吸入する燃料吸入量を調量する。燃料吸入量が調量されることにより、燃料供給ポンプ14の各プランジャからの燃料吐出量が調量される。燃料供給ポンプ14の吐出側に設置される調量弁により、燃料供給ポンプ14の各プランジャからの燃料吐出量を調量してもよい。   The metering valve 16 serving as a metering actuator is installed on the suction side of the fuel supply pump 14 and controls the amount of fuel sucked by each plunger of the fuel supply pump 14 in the suction stroke by current control. . By adjusting the fuel intake amount, the fuel discharge amount from each plunger of the fuel supply pump 14 is adjusted. The amount of fuel discharged from each plunger of the fuel supply pump 14 may be measured by a metering valve installed on the discharge side of the fuel supply pump 14.

コモンレール20は、燃料供給ポンプ14から吐出される燃料を蓄圧する中空の部材である。コモンレール20には、内部の燃料圧力(コモンレール圧)を検出する圧力センサ22、および、コモンレール圧が所定圧を超えると開弁してコモンレール20内の燃料を排出するプレッシャリミッタ24が設けられている。   The common rail 20 is a hollow member that accumulates fuel discharged from the fuel supply pump 14. The common rail 20 is provided with a pressure sensor 22 that detects the internal fuel pressure (common rail pressure), and a pressure limiter 24 that opens to discharge the fuel in the common rail 20 when the common rail pressure exceeds a predetermined pressure. .

エンジン2には、運転状態を検出するセンサとして、エンジン回転数(NE)を検出する回転数センサ32が設置されている。さらに、運転状態を検出する他のセンサとして、運転者によるアクセルペダルの操作量であるアクセル開度(ACCP)を検出するアクセルセンサ、冷却水の温度(水温)、吸入空気の温度(吸気温)をそれぞれ検出する温度センサ等が燃料噴射システム10に設けられている。   The engine 2 is provided with a rotational speed sensor 32 that detects an engine rotational speed (NE) as a sensor that detects an operating state. Further, as other sensors for detecting the driving state, an accelerator sensor for detecting an accelerator opening (ACCP) that is an operation amount of an accelerator pedal by a driver, a temperature of cooling water (water temperature), a temperature of intake air (intake air temperature). The fuel injection system 10 is provided with a temperature sensor or the like for detecting each of these.

燃料噴射弁30は、エンジン2の各気筒に設置されており、コモンレール20で蓄圧された燃料を気筒内に噴射する。燃料噴射弁30は、例えば、噴孔を開閉するノズルニードルのリフトを制御室の圧力で制御する公知の電磁弁である。燃料噴射弁30の噴射量は、ECU40から指令される噴射指令信号のパルス幅によって制御される。噴射指令信号のパルス幅が長くなると噴射量が増加する。   The fuel injection valve 30 is installed in each cylinder of the engine 2 and injects fuel accumulated in the common rail 20 into the cylinder. The fuel injection valve 30 is, for example, a known electromagnetic valve that controls the lift of the nozzle needle that opens and closes the nozzle hole with the pressure in the control chamber. The injection amount of the fuel injection valve 30 is controlled by the pulse width of the injection command signal commanded from the ECU 40. As the pulse width of the injection command signal increases, the injection amount increases.

ECU40は、CPU、RAM、ROM、フラッシュメモリ等を中心とするマイクロコンピュータにて主に構成されている。ECU40は、ROMまたはフラッシュメモリに記憶されている制御プログラムをCPUが実行することにより、圧力センサ22、回転数センサ32を含む各種センサから取り込んだ出力信号に基づき、燃料噴射システム10の各種制御を実行する。   The ECU 40 is mainly configured by a microcomputer centering on a CPU, RAM, ROM, flash memory and the like. The ECU 40 executes various control of the fuel injection system 10 based on output signals taken from various sensors including the pressure sensor 22 and the rotation speed sensor 32 by the CPU executing a control program stored in the ROM or flash memory. Run.

例えば、ECU40は、圧力センサ22が検出するコモンレール圧が目標圧力になるように調量弁16への通電量を制御し、燃料供給ポンプ14の吐出量を調量する。ECU40は、調量弁16を制御する電流値と吐出量との相関を表す特性マップに基づいて、調量弁16を制御する電流値を設定する。   For example, the ECU 40 controls the energization amount to the metering valve 16 so that the common rail pressure detected by the pressure sensor 22 becomes the target pressure, and regulates the discharge amount of the fuel supply pump 14. The ECU 40 sets a current value for controlling the metering valve 16 based on a characteristic map representing a correlation between the current value for controlling the metering valve 16 and the discharge amount.

また、ECU40は、燃料噴射弁30の燃料噴射量、燃料噴射時期、ならびに、メイン噴射の前にパイロット噴射、プレ噴射、パイロット噴射の後にアフター噴射、ポスト噴射等を実施する多段噴射のパターンを制御する。   Further, the ECU 40 controls the fuel injection amount of the fuel injection valve 30, the fuel injection timing, and the pattern of the multistage injection in which the pilot injection, the pre-injection before the main injection, the after injection, the post injection after the pilot injection, etc. To do.

ECU40は、燃料噴射弁30に噴射を指令する噴射指令信号のパルス幅(T)と噴射量(Q)との相関を示す所謂TQマップを、コモンレール圧の所定の圧力範囲毎にROMまたはフラッシュメモリに記憶している。そして、ECU40は、エンジン回転数およびアクセル開度に基づいて燃料噴射弁30の噴射量が決定されると、圧力センサ22が検出したコモンレール圧に応じて該当する圧力範囲のTQマップを参照し、決定された噴射量を燃料噴射弁30に指令する噴射指令信号のパルス幅をTQマップから取得する。   The ECU 40 stores a so-called TQ map indicating the correlation between the pulse width (T) of the injection command signal for instructing the fuel injection valve 30 and the injection amount (Q) into a ROM or flash memory for each predetermined pressure range of the common rail pressure. I remember it. Then, when the injection amount of the fuel injection valve 30 is determined based on the engine speed and the accelerator opening, the ECU 40 refers to the TQ map of the corresponding pressure range according to the common rail pressure detected by the pressure sensor 22, The pulse width of the injection command signal that commands the determined injection amount to the fuel injection valve 30 is acquired from the TQ map.

(噴射量学習)
ECU40は、以下に示す噴射量学習条件(1)、(2)が成立していると、燃料噴射弁30に学習用のパイロット噴射を指令する。
(1)所定走行距離毎として例えば5000km毎、または、所定運転時間毎として例えば500時間毎。
(2)エンジン運転状態が安定しているとき。例えば、回転数、コモンレール圧、噴射量の変動がそれぞれ所定範囲内。
(Injection amount learning)
The ECU 40 instructs the fuel injection valve 30 to perform pilot injection for learning when the following injection amount learning conditions (1) and (2) are satisfied.
(1) Every predetermined traveling distance, for example, every 5000 km, or every predetermined driving time, for example, every 500 hours.
(2) When the engine operating state is stable. For example, fluctuations in the rotation speed, common rail pressure, and injection amount are within predetermined ranges.

学習用のパイロット噴射は、燃焼騒音の低減を目的として指令される通常の多段噴射におけるパイロット噴射とは異なり、パイロット噴射が無しのときと有りのときとにおけるエンジン2の運転状態の変動量を検出するために指令される。   The pilot injection for learning is different from the pilot injection in the normal multi-stage injection commanded for the purpose of reducing combustion noise, and detects the fluctuation amount of the operating state of the engine 2 when there is no pilot injection and when there is no pilot injection. To be commanded.

上記学習条件が成立すると、ECU40は、噴射量学習を実行する気筒において、図2の(A)に示すように、例えばパイロット噴射なしでプレ噴射およびメイン噴射を所定回数指令し、次に、図2の(B)に示すように、プレ噴射およびメイン噴射にパイロット噴射を加えた多段噴射を所定回数指令する。そして、パイロット噴射が加わったことにより変動するエンジン回転数の変動量(図2の(C)の実線部分)に基づいて、パイロット噴射により変動するエンジン運転状態の実変動量としてエンジン2の仕事量に相当する実際の仕事相当量を算出する。   When the learning condition is satisfied, the ECU 40 commands the pre-injection and the main injection a predetermined number of times without pilot injection, for example, as shown in FIG. As shown in (B) of 2, multi-stage injection in which pilot injection is added to pre-injection and main injection is commanded a predetermined number of times. Then, based on the fluctuation amount of the engine speed that fluctuates due to the addition of the pilot injection (the solid line portion in FIG. 2C), the work amount of the engine 2 as the actual fluctuation amount of the engine operating state that fluctuates due to the pilot injection. The actual work equivalent amount corresponding to is calculated.

エンジン回転数の変動量から仕事相当量を算出するとき、エンジン回転数の検出信号からノイズを除去するバンドパスフィルタ(BPF)のフィルタ作用が安定するまで、図2の点線200に示すように、学習噴射のパイロット噴射無しと、パイロット噴射有りとの最初の数回分の噴射データを無視する。   When calculating the work equivalent amount from the fluctuation amount of the engine speed, until the filter action of the bandpass filter (BPF) for removing noise from the detection signal of the engine speed is stabilized, as shown by a dotted line 200 in FIG. Ignoring the first few injection data of pilot injection with learning injection and without pilot injection.

そして、BPFのフィルタ作用が安定してから、パイロット噴射無しと、パイロット噴射有りとにおける、例えばそれぞれ10回分の噴射の仕事相当量の平均値の差から、指令パイロット噴射量で噴射されたパイロット噴射による仕事相当量(ΔW)を算出する。   Then, after the filter function of the BPF is stabilized, the pilot injection injected at the command pilot injection amount from, for example, the difference between the average values of the work equivalent amounts of the injections for each of the 10 injections when there is no pilot injection and when there is pilot injection. The work equivalent amount (ΔW) is calculated.

そして、この仕事相当量の算出を指令パイロット噴射量毎に例えば5回繰り返し、その平均値を、該当する指令パイロット噴射量における仕事相当量とする。
そして、パイロット噴射の指令噴射量を0mm3から所定噴射量として例えば5mm3まで1mm3ずつ増加させ、指令パイロット噴射量と仕事相当量との相関を表す学習用データに対して、最小二乗法により、指令パイロット噴射量と実際の仕事相当量との相関を表す実噴射特性を算出する。尚、指令パイロット噴射量と仕事相当量との相関は、1次式で表される。
The calculation of the work equivalent amount is repeated, for example, five times for each command pilot injection amount, and the average value is set as the work equivalent amount for the corresponding command pilot injection amount.
Then, the command injection quantity of the pilot injection is increased from 0 mm 3 to each 1 mm 3 for example 5 mm 3 as the predetermined injection amount, relative to the learning data representing the correlation between the command pilot injection quantity and work substantial amount by the least square method Then, an actual injection characteristic representing the correlation between the command pilot injection amount and the actual work equivalent amount is calculated. The correlation between the command pilot injection amount and the work equivalent amount is expressed by a linear expression.

図3に示すように、このようにして得られた実噴射特性100が、指令パイロット噴射量=0mm3、仕事相当量=0の原点を通っていない場合、指令パイロット噴射量と仕事相当量との相関を表す基本噴射特性110に対して、機差または経時変化により生じる実噴射特性100のずれは、特性の傾きではなくオフセット方向のずれにより生じていると判断する。 As shown in FIG. 3, when the actual injection characteristic 100 obtained in this way does not pass through the origin of the command pilot injection amount = 0 mm 3 and the work equivalent amount = 0, the command pilot injection amount and the work equivalent amount are It is determined that the deviation of the actual injection characteristic 100 caused by the machine difference or the change with time with respect to the basic injection characteristic 110 representing the correlation is caused by the deviation in the offset direction rather than the inclination of the characteristic.

これにより、指令パイロット噴射量=0mm3、仕事相当量=0の原点を通るように実噴射特性100をオフセット方向、つまり指令パイロット噴射量の増減方向に平行移動することにより、基本噴射特性110を推定することができる。例えば、最小二乗法で算出した実噴射特性の1次式が次式(1)で表されている場合、基本噴射特性110は次式(2)で表される。 Thus, the basic injection characteristic 110 is changed by translating the actual injection characteristic 100 in the offset direction, that is, the increase / decrease direction of the command pilot injection quantity so as to pass through the origin of the command pilot injection quantity = 0 mm 3 and the work equivalent quantity = 0. Can be estimated. For example, when the primary expression of the actual injection characteristic calculated by the least square method is expressed by the following expression (1), the basic injection characteristic 110 is expressed by the following expression (2).

ΔW=α×Q+β ・・・(1)
ΔW=α×Q ・・・(2)
Q:指令パイロット噴射量。
ΔW:パイロット噴射有りのときの仕事相当量。
α:噴射特性の傾き。
β:実噴射特性の切片。
ΔW = α × Q + β (1)
ΔW = α × Q (2)
Q: Command pilot injection amount.
ΔW: work equivalent when pilot injection is present.
α: Slope of injection characteristics.
β: intercept of actual injection characteristics.

したがって、実噴射特性100と基本噴射特性110とのずれである噴射量ΔQは、次式(3)から算出できる。
α×Q2+β=α×Q1
α(Q2−Q1)=−β
(Q2−Q1)=−β/α
ΔQ=−β/α ・・・(3)
ECU40は、学習条件が成立しているときに上記の噴射量学習を実行し、そのときのコモンレール圧毎に学習した噴射量ΔQを記憶しておく。この場合、ECU40は、燃料供給ポンプ14の吐出量を調整してコモンレール圧を増減させることにより、所定の圧力範囲毎に、基本噴射量特性と実噴射量特性とから噴射量ΔQを学習してもよい。
Therefore, the injection amount ΔQ, which is a difference between the actual injection characteristic 100 and the basic injection characteristic 110, can be calculated from the following equation (3).
α × Q2 + β = α × Q1
α (Q2−Q1) = − β
(Q2−Q1) = − β / α
ΔQ = −β / α (3)
The ECU 40 executes the above-described injection amount learning when the learning condition is satisfied, and stores the injection amount ΔQ learned for each common rail pressure at that time. In this case, the ECU 40 learns the injection amount ΔQ from the basic injection amount characteristic and the actual injection amount characteristic for each predetermined pressure range by adjusting the discharge amount of the fuel supply pump 14 to increase or decrease the common rail pressure. Also good.

ECU40は、式(3)により噴射量を補正する学習値として算出した噴射量ΔQに基づいて、該当するコモンレール圧における指令噴射量を補正することにより、通常噴射における微少噴射量を補正する。   The ECU 40 corrects the minute injection amount in the normal injection by correcting the command injection amount at the corresponding common rail pressure based on the injection amount ΔQ calculated as a learning value for correcting the injection amount by the equation (3).

尚、微少噴射量補正は、エンジン運転領域に関わらず、学習値として算出した共通の噴射量ΔQに基づいて行ってもよいし、エンジン運転領域毎に学習した噴射量ΔQに基づいて行ってもよい。   Note that the minute injection amount correction may be performed based on the common injection amount ΔQ calculated as the learning value regardless of the engine operation region, or may be performed based on the injection amount ΔQ learned for each engine operation region. Good.

(学習用データの信頼度)
次に、学習噴射により測定する学習用データの信頼度を、(1)ばらつき、(2)感度、(3)相関性について説明する。
(Reliability of learning data)
Next, the reliability of the learning data measured by the learning injection will be described with respect to (1) variation, (2) sensitivity, and (3) correlation.

(1)ばらつき
図2の上段に示すように、パイロット噴射無しと、パイロット噴射有りとで実施した学習噴射により取得した指令パイロット噴射量毎の仕事相当量において、図4に示すパイロット噴射無しのときの仕事相当量の標準偏差σnxとパイロット噴射有りのときの仕事相当量の標準偏差σaxとの関係が、次式(4)の場合、ECU40は、そのときの指令パイロット噴射量における仕事相当量を学習用データとして採用せず、学習噴射をリトライする。
(1) Variation As shown in the upper part of FIG. 2, when there is no pilot injection shown in FIG. 4 in the work equivalent amount for each command pilot injection amount obtained by learning injection performed with no pilot injection and with pilot injection. When the relationship between the standard deviation σ nx of the work equivalent amount and the standard deviation σ ax of the work equivalent amount with pilot injection is the following expression (4), the ECU 40 corresponds to the work at the command pilot injection amount at that time The quantity is not adopted as learning data, and the learning injection is retried.

σax>2σnx ・・・(4)
これは、パイロット噴射無しに対してパイロット噴射有りのときの仕事相当量のばらつきが所定範囲を超えて大きくなりすぎており、データの信頼度が低いからである。
σ ax > 2σ nx (4)
This is because the variation of the work equivalent amount when the pilot injection is performed with respect to the absence of pilot injection is too large exceeding the predetermined range, and the reliability of the data is low.

尚、式(4)を満たさず、所定回数、学習噴射のリトライを繰返しても式(4)を満たさない場合には、ECU40は噴射量学習を中止する。
(2)感度
図5に白丸で示すように、パイロット噴射量を、0mm3から1mm3ずつ増加させ、5mm3になっても、パイロット噴射無しのときの仕事相当量と、パイロット噴射有りのときの仕事相当量とについて、有意水準1%で片側検定を行った結果、検定統計量uが次式(5)を満たす場合、ECU40は、今回の指令パイロット噴射量における仕事相当量を学習用データとして採用せず、噴射量学習をリトライする。
If the equation (4) is not satisfied and the equation (4) is not satisfied even if the learning injection is retried a predetermined number of times, the ECU 40 stops the injection amount learning.
(2) As shown in sensitivity Figure 5 by a white circle, the pilot injection quantity increases from 0 mm 3 by 1 mm 3, even at 5 mm 3, and the work substantial amount of time without the pilot injection, when there pilot injection When the test statistic u satisfies the following equation (5) as a result of the one-sided test with a significance level of 1%, the ECU 40 obtains the work equivalent in the current command pilot injection amount as learning data. Retry the injection amount learning.

u<2.326 ・・・(5)
これは、パイロット噴射を実施したにも関わらず、仕事相当量が十分に増加していないので、実噴射特性の一次直線を算出する感度が低く、実噴射特性を算出する精度が低いからである。尚、所定回数、噴射量学習のリトライを繰返しても式(5)を満たさない場合には、ECU40は噴射量学習を中止する。
u <2.326 (5)
This is because the work equivalent amount has not increased sufficiently despite the pilot injection, but the sensitivity for calculating the primary line of the actual injection characteristics is low, and the accuracy of calculating the actual injection characteristics is low. . If the equation (5) is not satisfied even after repeating the injection amount learning for a predetermined number of times, the ECU 40 stops the injection amount learning.

これに対し、パイロット噴射量を、0mm3から1mm3ずつ増加させていくときに、式(5)の関係から変化して次式(6)を満たすと、ECU40は噴射量学習に必要な感度を満たすデータが取得できたと判断する。 In contrast, the pilot injection amount, when going is increased from 0 mm 3 by 1 mm 3, the change from the relationship of formula (5) satisfies the following equation (6), ECU 40 sensitivity required injection amount learning It is determined that the data satisfying the conditions has been acquired.

u≧2.326 ・・・(6)
そして、式(6)を最初に満たす指令パイロット噴射量を含み、その直前の指令パイロット噴射量とそれ以降の計5個の異なる指令パイロット噴射量と仕事相当量との関係から、実噴射特性を算出する。例えば、図5に示す黒丸においては、3mm3で式(6)を最初に満たすので、その直前の2mm3を含み、2mm3〜6mm3における計5個の異なる指令パイロット噴射量と仕事相当量との関係から、最小二乗法により実噴射特性100を算出する。
u ≧ 2.326 (6)
The actual injection characteristic is calculated from the relationship between the command pilot injection amount that first satisfies the equation (6), the command pilot injection amount immediately before the command pilot injection amount, and a total of five different command pilot injection amounts and work equivalent amounts thereafter. calculate. For example, in a black circle shown in FIG. 5, is satisfied equation (6) to the beginning 3 mm 3, comprises a 2 mm 3 immediately before, 2 mm 3 in total in ~6Mm 3 5 pieces of different command pilot injection amount and work substantial amount Therefore, the actual injection characteristic 100 is calculated by the least square method.

ただし、指令パイロット噴射量を増加して5mm3になっても式(6)を満たさない場合、ECU40は噴射量学習を中止する。
一方、指令パイロット噴射量が0mm3のときに点線120で示すように、パイロット噴射無しのときの仕事相当量の標準偏差σnxと、仕事相当量ΔWとの関係が次式(7)を満たす場合、指令パイロット噴射量に対する仕事相当量の感度が高すぎるとして、ECU40は噴射量学習を中止する。
However, when the command pilot injection amount is increased to 5 mm 3 and the equation (6) is not satisfied, the ECU 40 stops the injection amount learning.
On the other hand, as indicated by the dotted line 120 when the command pilot injection amount is 0 mm 3 , the relationship between the standard deviation σ nx of the work equivalent amount without pilot injection and the work equivalent amount ΔW satisfies the following equation (7). In this case, since the sensitivity of the work equivalent amount to the command pilot injection amount is too high, the ECU 40 stops the injection amount learning.

ΔW>5σnx ・・・(7)
(3)相関性
指令パイロット噴射量と仕事相当量との関係を表す複数の学習データから、最小二乗法により実噴射特性100を算出しても、図6に示すように、実噴射特性100と学習用データとの距離が大きい場合は、検出した指令パイロット噴射量と仕事相当量との相関は低く、算出した実噴射特性100の信頼度が低いと判断する。指令パイロット噴射量と仕事相当量との相関の程度を表す基準として、次式(8)に示す相関係数(R)の二乗を採用する。
ΔW> 5σ nx (7)
(3) Correlation Even if the actual injection characteristic 100 is calculated by the least square method from a plurality of learning data representing the relationship between the command pilot injection amount and the work equivalent amount, as shown in FIG. When the distance from the learning data is large, it is determined that the correlation between the detected command pilot injection amount and the work equivalent amount is low and the reliability of the calculated actual injection characteristic 100 is low. As a standard representing the degree of correlation between the command pilot injection amount and the work equivalent amount, the square of the correlation coefficient (R) shown in the following equation (8) is adopted.

2={(Σ(xi−xave)(yi−yave)}2
/{Σ(xi−xave2Σ(yi−yave2
=(Σxii−nxaveave2
/{(Σxi 2−nxave 2)(Σyi 2−nyave 2)}・・・(8)
n :データ数。
i :指令パイロット噴射量の各データ。
ave:指令パイロット噴射量の平均。
ave:仕事相当量の平均。
i :仕事相当量の各データ。
R 2 = {(Σ (x i −x ave ) (y i −y ave )} 2
/ {Σ (x i −x ave ) 2 Σ (y i −y ave ) 2 }
= (Σx i y i −nx ave y ave ) 2
/ {(Σx i 2 −nx ave 2 ) (Σy i 2 −ny ave 2 )} (8)
n: Number of data.
x i : Each data of the command pilot injection amount.
x ave : Average of command pilot injection amount.
y ave : Average of work equivalent amount.
y i : Each data of work equivalent amount.

相関係数(R)が1または−1に近づくほど、検出した指令パイロット噴射量と仕事相当量との相関性は高くなる。そこで、R2が所定値よりも大きいかを判定し、例えば、R2>0.7を満たす場合、今回学習した指令パイロット噴射量と仕事相当量との相関性は高いと判定し、学習データとして採用する。相関係数(R)の2乗ではなく、相関係数(R)の値で直接、所定値との大小関係を判定してもよい。 The closer the correlation coefficient (R) is to 1 or -1, the higher the correlation between the detected command pilot injection amount and the work equivalent amount. Therefore, it is determined whether R 2 is larger than a predetermined value. For example, when R 2 > 0.7 is satisfied, it is determined that the correlation between the command pilot injection amount learned this time and the work equivalent amount is high, and learning data Adopt as. The magnitude relationship with the predetermined value may be determined directly based on the value of the correlation coefficient (R) instead of the square of the correlation coefficient (R).

一方、R2が所定値以下、例えばR2≦0.7の場合、ECU40は、今回学習した指令パイロット噴射量と仕事相当量との相関性は低いと判定し、学習用データとして採用せず、噴射量学習をリトライする。尚、所定回数、噴射量学習のリトライを繰返してもR2≦0.7の場合には、ECU40は噴射量学習を中止する。 On the other hand, when R 2 is equal to or less than a predetermined value, for example, R 2 ≦ 0.7, the ECU 40 determines that the correlation between the command pilot injection amount learned this time and the work equivalent amount is low, and does not adopt it as learning data. Retry the injection amount learning. If R 2 ≦ 0.7 even if the injection amount learning is repeated a predetermined number of times, the ECU 40 stops the injection amount learning.

以上説明した上記実施形態では、走行中の燃料噴射状態で検出する実噴射特性から基本噴射特性を推定する。これにより、予め基本噴射特性を測定する必要がないので、機種毎に基本噴射特性を測定する工数を省略できる。そして、どのような機種であっても、基本噴射特性と実噴射特性との指令噴射量の差を燃料噴射弁の噴射量を補正する学習値として算出できる。   In the above-described embodiment, the basic injection characteristic is estimated from the actual injection characteristic detected in the fuel injection state during traveling. Thereby, since it is not necessary to measure the basic injection characteristics in advance, the man-hour for measuring the basic injection characteristics for each model can be omitted. In any model, the difference in the command injection amount between the basic injection characteristic and the actual injection characteristic can be calculated as a learning value for correcting the injection amount of the fuel injection valve.

そして、算出した学習値に基づいて指令噴射量を補正することにより、通常噴射時において、パイロット噴射、ポスト噴射等の微少量噴射を実行するときに、所望の誤差範囲で微少量噴射を実行できる。これにより、微少量噴射が無噴射になることを防止できる。   Then, by correcting the command injection amount based on the calculated learning value, it is possible to execute a minute injection within a desired error range when performing a minute injection such as pilot injection or post injection during normal injection. . Thereby, it can prevent that very small amount injection becomes non-injection.

また、走行中の燃料噴射状態で学習噴射を実行するので、学習噴射の実行頻度を高めることができる。さらに、走行中の燃料噴射状態における広い燃料圧力範囲で学習噴射を実行できる。   Further, since the learning injection is executed in the fuel injection state during traveling, the execution frequency of the learning injection can be increased. Furthermore, the learning injection can be executed in a wide fuel pressure range in the fuel injection state during traveling.

また、学習噴射により測定した学習用データの信頼度を、ばらつき、感度および相関性について判定し、学習用データの採否、噴射量学習の中止を決定するので、特に、走行中の燃料噴射状態で学習噴射を実行する場合に、学習噴射以外の要因で実変動量がばらつく場合に、学習精度の低下を防止する点で効果的である。   In addition, the reliability of the learning data measured by the learning injection is determined with respect to variation, sensitivity, and correlation, and it is determined whether or not to use the learning data and cancel the injection amount learning. When performing the learning injection, it is effective in preventing a decrease in learning accuracy when the actual variation varies due to factors other than the learning injection.

本実施形態では、エンジン2が本発明の内燃機関に相当し、燃料噴射弁30が本発明の燃料噴射弁に相当し、ECU40が本発明の燃料噴射制御装置に相当する。
また、ECU40は、本発明の噴射指令手段、実噴射特性検出手段、基本噴射特性推定手段および学習値算出手段として機能する。
In this embodiment, the engine 2 corresponds to the internal combustion engine of the present invention, the fuel injection valve 30 corresponds to the fuel injection valve of the present invention, and the ECU 40 corresponds to the fuel injection control device of the present invention.
The ECU 40 also functions as an injection command means, actual injection characteristic detection means, basic injection characteristic estimation means, and learned value calculation means of the present invention.

[他の実施形態]
上記実施形態では、走行中の燃料噴射状態で学習噴射を実行した。これ以外にも、学習噴射による騒音、振動、ドライバビリティ等の悪化が許容される範囲内であれば、例えば、減速無噴射運転状態、アイドル運転状態で学習噴射を実行してもよい。
[Other Embodiments]
In the above embodiment, the learning injection is executed in the fuel injection state during traveling. In addition to this, as long as the noise, vibration, drivability, and the like due to the learning injection are within the allowable range, the learning injection may be executed in the deceleration no-injection operation state and the idle operation state, for example.

また、上記実施形態では、学習噴射により測定した学習用データの信頼度を確保するため、学習用データのばらつき、感度および相関性について判定し、学習用データの採否、噴射量学習の中止を決定した。これに対し、学習用データの信頼度に対する要求精度によっては、測定した学習用データをそのまま採用し、噴射量学習を実行してもよい。   Further, in the above embodiment, in order to ensure the reliability of the learning data measured by the learning injection, it is determined about the variation, sensitivity, and correlation of the learning data, and whether to accept the learning data and cancel the injection amount learning are determined. did. On the other hand, depending on the required accuracy for the reliability of the learning data, the measured learning data may be used as it is, and the injection amount learning may be executed.

上記実施形態では、噴射指令手段、実噴射特性検出手段、基本噴射特性推定手段および学習値算出手段の機能を制御プログラムにより機能が特定されるECU40により実現している。これに対し、上記手段の機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the injection command means, the actual injection characteristic detection means, the basic injection characteristic estimation means, and the learning value calculation means are realized by the ECU 40 whose functions are specified by the control program. On the other hand, at least a part of the functions of the above means may be realized by hardware whose function is specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

2:ディーゼルエンジン(内燃機関)、30:燃料噴射弁、40:ECU(燃料噴射制御装置、噴射指令手段、実噴射特性検出手段、基本噴射特性推定手段、学習値算出手段) 2: diesel engine (internal combustion engine), 30: fuel injection valve, 40: ECU (fuel injection control device, injection command means, actual injection characteristic detection means, basic injection characteristic estimation means, learning value calculation means)

Claims (4)

指令噴射量の異なる学習噴射を燃料噴射弁に指令する噴射指令手段と、
前記噴射指令手段が指令する前記指令噴射量と、前記燃料噴射弁が前記学習噴射を実行することにより生じる内燃機関の運転状態の実際の変動量である実変動量との相関を表す実噴射特性を検出する実噴射特性検出手段と、
前記実噴射特性検出手段が検出する前記実噴射特性を平行移動して、前記指令噴射量と前記運転状態の変動量との相関を表す基本噴射特性を推定する基本噴射特性推定手段と、
前記基本噴射特性推定手段が推定する前記基本噴射特性と前記実噴射特性との前記指令噴射量の増減方向における差を噴射量を補正する学習値として算出する学習値算出手段と、
を備え
前記実噴射特性検出手段は、噴射量の異なる複数の前記指令噴射量と前記実変動量との相関係数の2乗が所定値以下の場合、該当する前記実変動量を学習用データとして採用しない、
ことを特徴とする燃料噴射制御装置。
Injection command means for instructing the fuel injection valve to perform learning injection with different command injection amounts;
An actual injection characteristic representing a correlation between the command injection amount commanded by the injection command means and an actual variation amount that is an actual variation amount of the operating state of the internal combustion engine caused by the fuel injection valve executing the learning injection An actual injection characteristic detecting means for detecting
A basic injection characteristic estimation unit that translates the actual injection characteristic detected by the actual injection characteristic detection unit and estimates a basic injection characteristic that represents a correlation between the command injection amount and the fluctuation amount of the operating state;
Learning value calculating means for calculating a difference in the increase / decrease direction of the command injection amount between the basic injection characteristic estimated by the basic injection characteristic estimating means and the actual injection characteristic as a learning value for correcting the injection amount;
Equipped with a,
The actual injection characteristic detecting means adopts the corresponding actual variation amount as learning data when the square of the correlation coefficient between the plurality of command injection amounts having different injection amounts and the actual variation amount is a predetermined value or less. do not do,
A fuel injection control device.
前記噴射指令手段は、走行中の燃料噴射状態で前記燃料噴射弁に前記学習噴射を指令することを特徴とする請求項1に記載の燃料噴射制御装置。   The fuel injection control device according to claim 1, wherein the injection command means commands the learning injection to the fuel injection valve in a fuel injection state during traveling. 前記実噴射特性検出手段は、同じ前記指令噴射量で前記学習噴射を実行したときの前記実変動量のばらつきが所定範囲を超えている場合、該当する前記実変動量を学習用データとして採用しないことを特徴とする請求項1または2に記載の燃料噴射制御装置。   The actual injection characteristic detection means does not adopt the corresponding actual variation amount as learning data when the variation in the actual variation amount when the learning injection is executed with the same command injection amount exceeds a predetermined range. The fuel injection control device according to claim 1, wherein the fuel injection control device is a fuel injection control device. 前記実噴射特性検出手段は、前記指令噴射量を所定噴射量まで増加して前記学習噴射を実行しても前記実変動量が所定変動量を超えない場合、該当する前記実変動量を学習用データとして採用しないことを特徴とする請求項1から3のいずれか一項に記載の燃料噴射制御装置。   The actual injection characteristic detection means increases the command injection amount to a predetermined injection amount, and if the actual fluctuation amount does not exceed the predetermined fluctuation amount even when the learning injection is executed, the corresponding actual fluctuation amount is used for learning. The fuel injection control device according to any one of claims 1 to 3, wherein the fuel injection control device is not adopted as data.
JP2010162057A 2010-07-16 2010-07-16 Fuel injection control device Active JP5482532B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010162057A JP5482532B2 (en) 2010-07-16 2010-07-16 Fuel injection control device
CN2011102332224A CN102337977A (en) 2010-07-16 2011-07-15 Fuel injection control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010162057A JP5482532B2 (en) 2010-07-16 2010-07-16 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2012021514A JP2012021514A (en) 2012-02-02
JP5482532B2 true JP5482532B2 (en) 2014-05-07

Family

ID=45513892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010162057A Active JP5482532B2 (en) 2010-07-16 2010-07-16 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP5482532B2 (en)
CN (1) CN102337977A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5648646B2 (en) * 2012-03-21 2015-01-07 株式会社デンソー Fuel injection control device
JP6036519B2 (en) * 2013-04-24 2016-11-30 株式会社デンソー Fuel injection control device
JP6213351B2 (en) * 2014-04-01 2017-10-18 株式会社デンソー Injection amount learning device for internal combustion engine
US10316786B2 (en) * 2014-12-01 2019-06-11 Ford Global Technologies, Llc Methods and systems for adjusting a direct fuel injector
US9689342B2 (en) * 2014-12-01 2017-06-27 Ford Global Technologies, Llc Methods and systems for adjusting a direct fuel injector
CN113006954B (en) * 2021-03-31 2022-06-07 同济大学 Prediction control parallel computing method for gas circuit coordination of turbocharged gasoline engine
CN114991977A (en) * 2022-05-09 2022-09-02 潍柴动力股份有限公司 Natural gas injection valve control method and system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5385129A (en) * 1991-07-04 1995-01-31 Robert Bosch Gmbh System and method for equalizing fuel-injection quantities among cylinders of an internal combustion engine
JP4234221B2 (en) * 1998-02-18 2009-03-04 いすゞ自動車株式会社 Engine fuel injection control device
DE19812305C2 (en) * 1998-03-20 2001-12-06 Siemens Ag Method for cylinder equalization in a direct-injection internal combustion engine
DE19936944A1 (en) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Method for metering fuel using a fuel injector
JP4277677B2 (en) * 2003-06-27 2009-06-10 株式会社デンソー Injection quantity control device for diesel engine
JP4075774B2 (en) * 2003-11-07 2008-04-16 株式会社デンソー Injection quantity control device for diesel engine
JP4696863B2 (en) * 2005-11-15 2011-06-08 株式会社デンソー Fuel injection control device
JP4483823B2 (en) * 2006-04-06 2010-06-16 株式会社デンソー Fuel injection control device
JP5000396B2 (en) * 2007-06-27 2012-08-15 株式会社モリタホールディングス In-vehicle water tank and fire engine equipped with the same
JP4858345B2 (en) * 2007-07-25 2012-01-18 株式会社デンソー Fuel injection control device and fuel injection system using the same
JP4501974B2 (en) * 2007-08-31 2010-07-14 株式会社デンソー Fuel injection control device for internal combustion engine
JP4424393B2 (en) * 2007-08-31 2010-03-03 株式会社デンソー Fuel injection control device for internal combustion engine

Also Published As

Publication number Publication date
CN102337977A (en) 2012-02-01
JP2012021514A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP4596064B2 (en) Internal combustion engine control device and internal combustion engine control system
JP4600484B2 (en) Fuel property detection device and fuel injection system using the same
JP5482532B2 (en) Fuel injection control device
JP4277677B2 (en) Injection quantity control device for diesel engine
JP4650478B2 (en) Diesel engine control device
US7650226B2 (en) Fuel injection system with learning control to compensate for actual-to-target injection quantity
US6990958B2 (en) Injection control system of diesel engine
US7317983B2 (en) Fuel injection controlling apparatus for internal combustion engine
US8527182B2 (en) Fuel injection amount control apparatus for internal combustion engine, control system for power unit, and fuel injection amount control method for internal combustion engine
JP2010275989A (en) Fuel injection control apparatus for internal combustion engine
JP2010261334A (en) Fuel injection control device
JP4158272B2 (en) Abnormality judgment method of high-pressure fuel injection system
JP5126196B2 (en) Fuel injection control device
US20100211291A1 (en) Abnormality detection device
JP2005171931A (en) Fuel injection control device
EP2693031B1 (en) Cetane number estimation device
US6932059B2 (en) Fuel injection system of internal combustion engine
JP4840296B2 (en) Fuel injection control device for internal combustion engine
JP5648646B2 (en) Fuel injection control device
JP4532532B2 (en) Fuel injection control device and fuel injection system
JP5644805B2 (en) Fuel injection control device
JP5640776B2 (en) Fuel injection control device
JP6036519B2 (en) Fuel injection control device
JP5353670B2 (en) Fuel injection control device
CN110857680B (en) Method for detecting actual fuel injection quantity, corresponding control unit and readable program carrier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140203

R151 Written notification of patent or utility model registration

Ref document number: 5482532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250