JP2015140664A - Fuel injection controller - Google Patents

Fuel injection controller Download PDF

Info

Publication number
JP2015140664A
JP2015140664A JP2014012233A JP2014012233A JP2015140664A JP 2015140664 A JP2015140664 A JP 2015140664A JP 2014012233 A JP2014012233 A JP 2014012233A JP 2014012233 A JP2014012233 A JP 2014012233A JP 2015140664 A JP2015140664 A JP 2015140664A
Authority
JP
Japan
Prior art keywords
injection
angular velocity
amount
cylinder
velocity difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014012233A
Other languages
Japanese (ja)
Inventor
昌宏 立石
Masahiro Tateishi
昌宏 立石
義彰 煙石
Yoshiaki Enseki
義彰 煙石
敏浩 上村
Toshihiro Kamimura
敏浩 上村
千典 平林
Kazunori Hirabayashi
千典 平林
信吾 岡本
Shingo Okamoto
信吾 岡本
一生 大磯
Kazuo Oiso
一生 大磯
直哉 三石
Naoya Mitsuishi
直哉 三石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014012233A priority Critical patent/JP2015140664A/en
Publication of JP2015140664A publication Critical patent/JP2015140664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fuel injection controller capable of improving the accuracy for calculating an inter-cylinder variation of an injection amount.SOLUTION: A fuel injection controller comprises: an injection-time angular-velocity-difference-variation calculation unit 23 calculating an inter-cylinder variation of an angular velocity difference in a compression stroke or an expansion stroke during fuel injection, and calculating a deviation of this angular velocity difference; a non-injection-time angular-velocity-difference variation calculation unit 24 calculating an inter-cylinder variation of the angular velocity difference during non-injection and calculating a deviation of this angular velocity difference; and a final-injection-amount variation calculation unit 26 calculating an inter-cylinder variation of an injection amount on the basis of the deviation of the angular velocity difference during the injection and the deviation of the angular velocity difference during the non-injection, the injection amount of the injected fuel to each cylinder 2 being corrected on the basis of the injection-amount inter-cylinder variation calculated by the final-injection-amount-variation calculation unit 26.

Description

本発明は、複数の気筒および当該各気筒に対してそれぞれ燃料を噴射可能な複数の燃料噴射装置を有するエンジンに設けられて、前記各気筒に前記燃料噴射装置からそれぞれ噴射される噴射量を補正可能な燃料噴射制御装置に関する。   The present invention is provided in an engine having a plurality of cylinders and a plurality of fuel injection devices capable of injecting fuel to the respective cylinders, and corrects an injection amount injected from the fuel injection device to each cylinder. It relates to a possible fuel injection control device.

従来より、多気筒エンジンにおいて、インジェクタの個体差すなわちインジェクタの機差ばらつきやインジェクタの経時劣化等によりインジェクタから噴射される噴射量および燃焼状態が気筒間で変動し、エンジンの振動等が大きくなるという問題に対して、この噴射量の気筒間変動量を算出して噴射量を補正することが行われている。   Conventionally, in a multi-cylinder engine, the injection amount and the combustion state injected from the injector fluctuate between cylinders due to individual differences of injectors, that is, variations in injector machine differences, aging deterioration of the injectors, etc., and the vibration of the engine increases. In order to solve the problem, an injection amount is corrected by calculating an inter-cylinder fluctuation amount of the injection amount.

例えば、特許文献1には、噴射時の各気筒の回転速度変動とこれら回転速度変動の全気筒での平均値との偏差に応じて噴射量を補正する装置が開示されている。   For example, Patent Document 1 discloses a device that corrects the injection amount in accordance with the deviation between the rotational speed fluctuation of each cylinder during injection and the average value of these rotational speed fluctuations in all cylinders.

特開2003−254139号公報JP 2003-254139 A

前記特許文献1の装置では、噴射時の気筒間での回転速度変動の差が全て噴射量の気筒間での変動量に起因するとして、噴射量の補正量を算出しているが、実際は、この噴射時の気筒間での回転速度変動の差には、エンジン機差要因による気筒間変動も含まれており、このエンジン機差によって、噴射量の補正量の算出に誤差が出るという問題がある。   In the apparatus of Patent Document 1, the correction amount of the injection amount is calculated on the assumption that the difference in the rotational speed variation between the cylinders at the time of injection is all due to the variation amount between the cylinders of the injection amount. The difference in rotational speed fluctuation between cylinders at the time of injection includes fluctuations between cylinders due to engine machine difference factors, and this engine machine difference causes an error in the calculation of the injection amount correction amount. is there.

本発明は、かかる点に鑑みてなされたものであり、噴射量の気筒間での変動量をより精度よく算出することのできる燃料噴射制御装置の提供を目的とする。   The present invention has been made in view of such a point, and an object of the present invention is to provide a fuel injection control device capable of calculating the amount of fluctuation of the injection amount between cylinders with higher accuracy.

前記課題を解決するために、本発明は、複数の気筒および当該各気筒に対してそれぞれ燃料を噴射可能な複数の燃料噴射装置を有するエンジンに設けられて、前記各気筒に前記燃料噴射装置からそれぞれ噴射される噴射量をクランクシャフトの角速度を基に補正可能な燃料噴射制御装置であって、前記各燃料噴射装置が燃料噴射を停止している無噴射状態において、各気筒について、特定の第1クランク角度における角速度と特定の第2クランク角度における角速度との差である角速度差を算出するとともに、これら角速度差の気筒間での偏差を無噴射時の角速度差の気筒間変動量として算出する無噴射時角速度差変動量算出部と、前記各燃料噴射装置が燃料を噴射している状態において、各気筒について、膨張行程の特定の第3クランク角度における角速度と膨張行程の特定の第4クランク角度における角速度との差である角速度差を算出するとともに、これら角速度差の気筒間での偏差を噴射時の角速度差の気筒間変動量として算出する噴射時角速度差変動量算出部と、前記噴射時角速度差変動量算出部で算出された噴射時の角速度差の気筒間変動量と、前記無噴射時角速度差変動量算出部で算出された無噴射時の角速度差の気筒間変動量とに基づいて、前記噴射量の気筒間での偏差である噴射量気筒間変動量を算出する最終噴射量変動量算出部とを有し、前記最終噴射量変動量算出部で算出された噴射量気筒間変動量に基づいて、各気筒に噴射される噴射量を補正することを特徴とする燃料噴射制御装置を提供する(請求項1)。   In order to solve the above-described problems, the present invention is provided in an engine having a plurality of cylinders and a plurality of fuel injection devices capable of injecting fuel to the respective cylinders. A fuel injection control device capable of correcting an injection amount to be injected based on an angular velocity of a crankshaft, wherein each fuel injection device is in a non-injection state in which fuel injection is stopped. An angular speed difference which is a difference between an angular speed at one crank angle and an angular speed at a specific second crank angle is calculated, and a deviation between the cylinders of the angular speed difference is calculated as an inter-cylinder fluctuation amount of the angular speed difference at the time of no injection. A specific third crank angle of the expansion stroke for each cylinder in a state where the non-injection angular velocity difference variation calculation unit and each of the fuel injection devices inject fuel. An angular velocity difference that is the difference between the angular velocity at the specific fourth crank angle of the expansion stroke and the angular velocity at the expansion stroke is calculated, and the deviation of the angular velocity difference between the cylinders is calculated as the amount of variation between the cylinders in the angular velocity difference at the time of injection The hourly angular velocity difference variation calculation unit, the inter-cylinder variation amount of the angular velocity difference during injection calculated by the injection angular velocity difference variation calculation unit, and the non-injection angular velocity difference variation calculation unit calculated by the non-injection angular velocity difference variation calculation unit A final injection amount fluctuation amount calculation unit that calculates an injection amount inter-cylinder fluctuation amount that is a deviation between cylinders of the injection amount based on an inter-cylinder fluctuation amount of the angular velocity difference at the time, and the final injection amount A fuel injection control device is provided that corrects the injection amount to be injected into each cylinder based on the injection amount variation amount between cylinders calculated by the variation amount calculation unit (Claim 1).

この装置では、噴射量の気筒間での変動量以外の原因によって生じた無噴射時の角速度差の気筒間での変動量と、噴射時の角速度差の気筒間での変動量とに基づいて、噴射量の気筒間での変動量が算出されており、噴射量の気筒間での変動量によってのみ生じた角速度差の気筒間での変動量を精度よく抽出することができ、この角速度差の気筒間変動量からより精度よく噴射量の気筒間変動量を算出することができる。そして、このように高精度に算出された噴射量の気筒間変動量を考慮して各気筒に噴射される噴射量が補正されるため、各気筒に実際に噴射される噴射量をより均一として、エンジンの回転変動および振動を小さく抑えることができる。   In this device, based on the fluctuation amount between the cylinders of the angular velocity difference at the time of non-injection caused by causes other than the fluctuation amount between the cylinders of the injection amount and the fluctuation amount between the cylinders of the angular velocity difference at the time of injection. The amount of change in the injection amount between the cylinders is calculated, and the amount of change in the angular velocity difference caused by the amount of change in the injection amount between the cylinders can be accurately extracted. The inter-cylinder fluctuation amount of the injection amount can be calculated with higher accuracy from the inter-cylinder fluctuation amount. Since the injection amount injected into each cylinder is corrected in consideration of the inter-cylinder fluctuation amount of the injection amount calculated with high accuracy in this way, the injection amount actually injected into each cylinder is made more uniform. Rotational fluctuations and vibrations of the engine can be kept small.

本発明において、前記最終噴射量変動量算出部は、エンジン回転数が特定の学習回転数の場合における前記無噴射時の角速度差の気筒間変動量に基づいて、前記噴射量気筒間変動量を算出し、前記無噴射時角速度差変動量算出部は、エンジン回転数が前記学習回転数以外の回転数において前記角速度差の気筒間変動量を算出した場合は、この算出された角速度差の気筒間変動量を、算出時のエンジン回転数と前記学習回転数とに基づいて前記最終噴射量変動量算出部で用いられる前記学習回転数における角速度差の気筒間変動量に換算するのが好ましい(請求項2)。   In the present invention, the final injection amount fluctuation amount calculation unit calculates the injection amount inter-cylinder fluctuation amount based on the inter-cylinder fluctuation amount of the angular velocity difference during non-injection when the engine speed is a specific learning speed. When the non-injection angular velocity difference variation calculation unit calculates the inter-cylinder variation amount of the angular velocity difference at an engine speed other than the learning rotational speed, the cylinder of the calculated angular speed difference is calculated. It is preferable to convert the inter-cycle fluctuation amount into the inter-cylinder fluctuation amount of the angular speed difference at the learning rotation speed used in the final injection amount fluctuation amount calculation unit based on the engine speed at the time of calculation and the learning rotation speed ( Claim 2).

このようにすれば、無噴射時の角速度差の気筒間変動量の算出機会を多く確保して、この変動量の算出頻度を高めることができるとともに、同一エンジン回転数条件での値に換算された無噴射時の角速度差の気筒間変動量と、噴射時の角速度差の気筒間変動量とに基づいて噴射量の気筒間変動量を算出するため、エンジン回転数の相違が角速度差の気筒間変動量へ与える影響を除外することができ、噴射量の気筒間変動量の算出精度をより高めることができる。   In this way, it is possible to secure a large number of opportunities for calculating the variation amount between the cylinders of the angular velocity difference at the time of non-injection, to increase the calculation frequency of the variation amount, and to convert the value to the value under the same engine speed condition. Because the cylinder-to-cylinder fluctuation amount of the injection amount is calculated based on the cylinder-to-cylinder fluctuation amount of the angular velocity difference during non-injection and the cylinder-to-cylinder variation amount of the angular speed difference during injection, The influence on the inter-cylinder fluctuation amount can be excluded, and the calculation accuracy of the inter-cylinder fluctuation amount of the injection amount can be further increased.

また、前記構成において、前記無噴射時角速度差変動量算出部は、前記学習回転数における無噴射時の角速度差の気筒間変動量を複数算出した後、これら複数の気筒間変動量の平均値を気筒毎に算出し、当該平均値を前記最終噴射量変動量算出部で用いられる前記無噴射時の角速度差の気筒間変動量として算出するのが好ましい(請求項3)。   In the above-described configuration, the non-injection angular velocity difference variation calculation unit calculates a plurality of inter-cylinder variation amounts of the angular velocity difference during non-injection at the learning rotational speed, and then averages the plurality of inter-cylinder variation amounts. Is calculated for each cylinder, and the average value is preferably calculated as an inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection used in the final injection quantity fluctuation amount calculation unit.

このようにすれば、噴射の有無以外の運転条件の相違が角速度差の気筒間変動量へ与える影響を除外することができ、噴射量の気筒間変動量の算出精度をより高めることができる。   In this way, it is possible to eliminate the influence of the difference in operating conditions other than the presence or absence of injection on the variation amount between cylinders of the angular velocity difference, and it is possible to further improve the calculation accuracy of the variation amount between cylinders of the injection amount.

前記構成において、前記無噴射時角速度差変動量算出部は、算出した前記学習回転数における無噴射時の角速度差の気筒間変動量が予め設定された正常範囲を超える場合は、この越えた値を前記気筒間変動量の平均値の算出に用いないのが好ましい(請求項4)。   In the above-described configuration, the non-injection angular velocity difference variation calculation unit calculates a value exceeding this when the calculated inter-cylinder variation of the angular velocity difference during non-injection at the learning rotational speed exceeds a preset normal range. Is preferably not used for calculating the average value of the inter-cylinder variation.

また、前記無噴射時角速度差変動量算出部は、算出した複数の前記学習回転数における無噴射時の角速度差の気筒間変動量の標準偏差を気筒毎に算出するとともに、気筒毎に、当該標準偏差に基づいて設定された限界値と前記各学習回転数における無噴射時の角速度差の気筒間変動量とを比較し、この学習回転数における無噴射時の角速度差の気筒間変動量が前記限界値を超える場合は、この越えた値を前記気筒間変動量の平均値の算出に用いないのが好ましい(請求項5)。   In addition, the non-injection angular velocity difference variation calculation unit calculates, for each cylinder, a standard deviation of an inter-cylinder variation in angular velocity difference at the time of non-injection at the calculated plurality of learning rotational speeds. The limit value set based on the standard deviation is compared with the inter-cylinder fluctuation amount of the angular speed difference when there is no injection at each of the learning rotational speeds. When exceeding the limit value, it is preferable not to use the value exceeding the limit value for calculating the average value of the inter-cylinder fluctuation amount (Claim 5).

このようにすれば、偶発的に発生する異常値を除外できるので、噴射量の気筒間変動量の算出精度をより高めることができる。   In this way, accidental abnormal values can be excluded, so that the calculation accuracy of the inter-cylinder fluctuation amount of the injection amount can be further increased.

また、本発明において、前記第3クランク角度が、前記第1クランク角度と同一の角度であるとともに、前記第4クランク角度が、前記第2クランク角度と同一の角度であるのが好ましい(請求項6)。   In the present invention, it is preferable that the third crank angle is the same angle as the first crank angle, and the fourth crank angle is the same angle as the second crank angle. 6).

このようにすれば、クランク角度の違いという噴射の有無以外の影響を除外して、噴射時の角速度差の気筒間変動量と無噴射時の角速度差の気筒間変動量とに基づき噴射量の気筒間変動量を算出することができるため、噴射量の気筒間変動量の算出精度をより高めることができる。   In this way, the influence other than the presence or absence of the injection of the difference in the crank angle is excluded, and the injection amount of the injection amount is determined based on the inter-cylinder fluctuation amount of the angular velocity difference during injection and the inter-cylinder fluctuation amount of the angular velocity difference during non-injection. Since the inter-cylinder fluctuation amount can be calculated, the calculation accuracy of the inter-cylinder fluctuation amount of the injection amount can be further increased.

また、本発明において、外部からの信号を入力可能な外部入力部を有し、前記無噴射時角速度差変動量算出部は、前記外部入力部から特定の信号が入力されると、前記角速度差の気筒間変動量の算出を開始するのが好ましい(請求項7)。   Further, in the present invention, an external input unit capable of inputting an external signal is provided, and the non-injection angular velocity difference variation calculation unit calculates the angular velocity difference when a specific signal is input from the external input unit. It is preferable to start calculation of the inter-cylinder fluctuation amount.

このようにすれば、より好ましい条件下で無噴射時の角速度差の気筒間変動量を算出することができ、この変動量ひいては噴射量の気筒間変動量をより精度よく算出することができる。   By doing this, it is possible to calculate the variation amount between the cylinders of the angular velocity difference at the time of non-injection under more preferable conditions, and it is possible to calculate the variation amount and thus the variation amount between the cylinders of the injection amount more accurately.

また、本発明において、前記エンジンは車両に搭載されており、前記無噴射時角速度差変動量算出部は、前記車両の走行中において前記各燃料噴射装置が燃料噴射を停止する燃料カット時に、前記角速度差の気筒間変動量を算出するのが好ましい(請求項8)。   In the present invention, the engine is mounted on a vehicle, and the non-injection angular velocity difference variation calculation unit is configured to perform the fuel cut when each fuel injection device stops fuel injection while the vehicle is running. It is preferable to calculate the variation amount between the cylinders of the angular velocity difference.

このようにすれば、無噴射時の角速度差の気筒間変動量の算出機会を多く確保して、この変動量ひいては噴射量の気筒間変動量を精度よく算出することができる。   In this way, it is possible to secure a large number of opportunities for calculating the variation amount between the cylinders of the angular velocity difference at the time of non-injection, and to calculate the variation amount and thus the variation amount between the cylinders of the injection amount with high accuracy.

以上説明したように、本発明によれば、噴射量の気筒間変動量を精度よく算出することができる。   As described above, according to the present invention, it is possible to accurately calculate the inter-cylinder fluctuation amount of the injection amount.

本発明の実施形態に係るエンジンシステムの概略図である。1 is a schematic diagram of an engine system according to an embodiment of the present invention. 気筒間の角速度差変動量を説明するための図である。It is a figure for demonstrating the angular velocity difference variation | change_quantity between cylinders. 気筒間の角速度差変動量を説明するための図である。It is a figure for demonstrating the angular velocity difference variation | change_quantity between cylinders. 噴射量の補正手順を示したフローチャートである。It is the flowchart which showed the correction | amendment procedure of the injection quantity. 不揮発性メモリに記憶される学習回転数における無噴射時の角速度差の気筒間変動量の平均値を示した図である。It is the figure which showed the average value of the fluctuation amount between cylinders of the angular velocity difference at the time of no injection in the learning rotation speed memorize | stored in a non-volatile memory. 無噴射時の角速度差変動量の算出手順を示したフローチャートである。It is the flowchart which showed the calculation procedure of the angular velocity difference fluctuation amount at the time of non-injection. 噴射量補正手順を示したフローチャートである。It is the flowchart which showed the injection quantity correction | amendment procedure. 複数のエンジン回転数での無噴射時の角速度差変動量を示したグラフである。It is the graph which showed the angular velocity difference variation | change_quantity at the time of the non-injection in several engine speed. 学習回転数に換算した後の無噴射時の角速度差変動量を示したグラフである。It is the graph which showed the angular velocity difference variation | change_quantity at the time of the non-injection after converting into learning rotation speed. 角速度差の気筒間変動量の算出手順を説明するための図である。It is a figure for demonstrating the calculation procedure of the variation amount between cylinders of an angular velocity difference. 角速度差の気筒間変動量の算出手順を説明するための図である。It is a figure for demonstrating the calculation procedure of the variation amount between cylinders of an angular velocity difference. 噴射量の補正手順を説明するための図である。It is a figure for demonstrating the correction procedure of the injection quantity.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の燃料噴射制御装置が適用されるエンジン1を含むエンジンシステム100の概略図である。ここでは、エンジン1が、4サイクルのエンジンであって4気筒直噴エンジンである場合について説明する。   FIG. 1 is a schematic diagram of an engine system 100 including an engine 1 to which a fuel injection control device of the present invention is applied. Here, a case where the engine 1 is a four-cycle engine and a four-cylinder direct injection engine will be described.

エンジンシステム100は、少なくとも、エンジン1と、複数のインジェクタ3(燃料噴射装置)と、蓄圧レール4と、燃圧センサ5と、クランク角センサ6と、カム角センサ7と、エンジン1に対して各種制御を実施するコントローラ10とを有する。   The engine system 100 is different from at least the engine 1, a plurality of injectors 3 (fuel injection devices), a pressure accumulation rail 4, a fuel pressure sensor 5, a crank angle sensor 6, a cam angle sensor 7, and the engine 1. And a controller 10 that performs control.

エンジン1は、前述のように、4サイクル4気筒直噴エンジンであり、4つの気筒2(第1気筒2a、第2気筒2b、第3気筒2c、第4気筒2d)を有する。各気筒2は、各気筒2を連結するクランクシャフト(不図示)が2回転する間に吸気、圧縮、膨張、排気の4つの行程を行う。本実施形態では、第1気筒2a、第3気筒2c、第4気筒2d、第2気筒2bの順で、各行程が順に実施される。   As described above, the engine 1 is a four-cycle four-cylinder direct injection engine and includes four cylinders 2 (a first cylinder 2a, a second cylinder 2b, a third cylinder 2c, and a fourth cylinder 2d). Each cylinder 2 performs four strokes of intake, compression, expansion, and exhaust while a crankshaft (not shown) connecting the cylinders 2 rotates twice. In the present embodiment, each stroke is performed in the order of the first cylinder 2a, the third cylinder 2c, the fourth cylinder 2d, and the second cylinder 2b.

インジェクタ3は、各気筒2に取り付けられており、これら気筒2内に直接燃料を噴射する。蓄圧レール4は、燃料ポンプ(不図示)から送られた高圧の燃料を貯蔵する。蓄圧レール4内の高圧の燃料は、各インジェクタ3に送られ、各インジェクタ3は、この高圧の燃料を、所定のタイミングで所定期間、気筒2内に噴射する。燃圧センサ5は、蓄圧レール4内の圧力すなわちインジェクタ3の噴射圧力を検出するためのものであり、蓄圧レール4に取り付けられている。   The injector 3 is attached to each cylinder 2 and directly injects fuel into these cylinders 2. The pressure accumulation rail 4 stores high-pressure fuel sent from a fuel pump (not shown). The high-pressure fuel in the pressure accumulation rail 4 is sent to each injector 3, and each injector 3 injects this high-pressure fuel into the cylinder 2 at a predetermined timing for a predetermined period. The fuel pressure sensor 5 is for detecting the pressure in the pressure accumulation rail 4, that is, the injection pressure of the injector 3, and is attached to the pressure accumulation rail 4.

クランク角センサ6およびカム角センサ7は、クランクシャフトの回転角度すなわちクランク角およびエンジン回転数を算出するためのものである。クランクシャフトには、クランクシャフトと一体に回転するクランク角側パルスロータ6aが固定されている。クランク角側パルスロータ6aには、所定の間隔で切欠きが形成されている。クランク角センサ6は、クランク角側パルスロータ6aに対向して設けられており、クランク角側パルスロータ6aの切欠きがクランク角センサ6を通過すると所定の信号を出力する。本実施形態では、クランク角センサ6は、6°CA毎の信号を出力する。クランクシャフトが2回転する間に1回転するカムシャフト7aには、カムシャフト7aと一体に回転するカムシャフト側パルスロータ7bが固定されている。このカムシャフト側パルスロータ7bにも、所定の位置に切欠きが形成されている。カム角センサ7は、カムシャフト側パルスロータ7bに対向して設けられており、カムシャフト側パルスロータ7bの切欠きの通過を検出する。   The crank angle sensor 6 and the cam angle sensor 7 are for calculating the rotation angle of the crankshaft, that is, the crank angle and the engine speed. A crank angle side pulse rotor 6a that rotates integrally with the crankshaft is fixed to the crankshaft. Notches are formed in the crank angle side pulse rotor 6a at predetermined intervals. The crank angle sensor 6 is provided opposite to the crank angle side pulse rotor 6 a, and outputs a predetermined signal when a notch of the crank angle side pulse rotor 6 a passes through the crank angle sensor 6. In the present embodiment, the crank angle sensor 6 outputs a signal every 6 ° CA. A camshaft side pulse rotor 7b that rotates integrally with the camshaft 7a is fixed to the camshaft 7a that rotates once while the crankshaft rotates twice. The camshaft side pulse rotor 7b is also formed with a notch at a predetermined position. The cam angle sensor 7 is provided so as to face the camshaft side pulse rotor 7b, and detects passage of a notch in the camshaft side pulse rotor 7b.

これらセンサ6,7の信号は、それぞれコントローラ10に送られ、コントローラ10は、これらの信号に基づいて、クランクシャフト2回転を1単位としたクランクシャフトの回転角度すなわち0〜720°CAの範囲でのクランク角を算出するとともに、エンジン回転数を算出する。   The signals of these sensors 6 and 7 are sent to the controller 10, respectively. Based on these signals, the controller 10 rotates the crankshaft 2 rotations as one unit, that is, in the range of 0 to 720 ° CA. And the engine speed is calculated.

コントローラ10は、前述のように、クランク角、エンジン回転数を算出するとともに、エンジン1に対して各種制御を実施する。本実施形態では、このコントローラ10が、本発明に係る燃料噴射制御装置として機能する。具体的には、コントローラ10には、エンジン1を制御するための種々の制御部が設けられており、その一部である燃料噴射量制御部20が本発明に係る燃料噴射制御装置として機能する。なお、コントローラ10は、周知のマイクロコンピュータをベースとするコントローラであって、プログラムを実行する中央演算処理装置(CPU)と、例えばRAMやROMにより構成されてプログラム及びデータを格納するメモリと、電気信号の入出力を行う入出力(I/O)バスとを有している。   As described above, the controller 10 calculates the crank angle and the engine speed, and performs various controls on the engine 1. In the present embodiment, the controller 10 functions as a fuel injection control device according to the present invention. Specifically, the controller 10 is provided with various control units for controlling the engine 1, and the fuel injection amount control unit 20 as a part thereof functions as the fuel injection control device according to the present invention. . The controller 10 is a controller based on a well-known microcomputer, and includes a central processing unit (CPU) that executes a program, a memory that includes a RAM and a ROM, for example, and stores a program and data, And an input / output (I / O) bus for inputting and outputting signals.

本実施形態では、コントローラ10は、車両組み立て後の検査時やディーラーでの点検時等においてコントローラ10に所定の信号を入力するためのマニュアルスイッチ30と接続可能に構成されており、コントローラ10には、このマニュアルスイッチ30からの信号を受け取る外部信号入力部26が設けられている。   In the present embodiment, the controller 10 is configured to be connectable to a manual switch 30 for inputting a predetermined signal to the controller 10 at the time of inspection after vehicle assembly, inspection at a dealer, or the like. An external signal input unit 26 for receiving a signal from the manual switch 30 is provided.

また、本実施形態に係るエンジン1が搭載された車両には、アクセルペダルの開度を検出するためのアクセルセンサ8が設けられており、コントローラ10には、このアクセルセンサ8で検出されたアクセルペダルの開度が入力される。   Further, the vehicle equipped with the engine 1 according to the present embodiment is provided with an accelerator sensor 8 for detecting the opening degree of the accelerator pedal, and the controller 10 detects the accelerator detected by the accelerator sensor 8. The pedal opening is input.

コントローラ10に設けられた燃料噴射制御部20は、インジェクタ3によって気筒2内に噴射させる噴射量である目標噴射量を、インジェクタ3毎すなわち気筒2毎に決定する。燃料噴射制御部20は、機能的に、基本目標噴射量算出部21と噴射量補正量算出部22とを有する。   The fuel injection control unit 20 provided in the controller 10 determines a target injection amount that is an injection amount to be injected into the cylinder 2 by the injector 3 for each injector 3, that is, for each cylinder 2. The fuel injection control unit 20 functionally includes a basic target injection amount calculation unit 21 and an injection amount correction amount calculation unit 22.

基本目標噴射量算出部21は、インジェクタ3によって気筒2内に噴射させる噴射量の基本値である基本目標噴射量を、運転状態に基づいて算出する。この基本目標噴射量の算出手順についての詳細説明は省略するが、簡単に説明すると、基本目標噴射量算出部21は、エンジン回転数とアクセルセンサ8で検出されたアクセルペダルの開度とに基づいて、記憶しているマップ等から基準目標噴射量を算出するとともに、エンジン水温等により補正を行って、基本目標噴射量を算出する。   The basic target injection amount calculation unit 21 calculates a basic target injection amount that is a basic value of the injection amount to be injected into the cylinder 2 by the injector 3 based on the operating state. Although a detailed description of the calculation procedure of the basic target injection amount is omitted, in brief, the basic target injection amount calculation unit 21 is based on the engine speed and the accelerator pedal opening detected by the accelerator sensor 8. In addition, the reference target injection amount is calculated from the stored map and the like, and the basic target injection amount is calculated by correcting the reference target injection amount based on the engine water temperature or the like.

噴射量補正量算出部22は、各インジェクタ3により実際に噴射される噴射量のインジェクタ3間すなわち気筒間の変動量を算出する。すなわち、各インジェクタ3は、その個体差等から、同一の指令噴射量に対して互いに異なる噴射量を噴射する場合があり、噴射量補正量算出部22は、この噴射量の気筒間での差すなわち噴射量の気筒間での変動量を算出する。   The injection amount correction amount calculation unit 22 calculates the amount of fluctuation of the injection amount actually injected by each injector 3 between the injectors 3, that is, between the cylinders. That is, the injectors 3 may inject different injection amounts with respect to the same command injection amount due to individual differences and the like, and the injection amount correction amount calculation unit 22 determines the difference between the injection amounts among the cylinders. That is, the fluctuation amount of the injection amount between the cylinders is calculated.

燃料噴射制御部20は、実際に各気筒2内に噴射される噴射量が均一となるように、基本目標噴射量算出部21で算出された基本目標噴射量を、噴射量補正量算出部22で算出された噴射量の気筒間での変動量により補正して、インジェクタ3毎すなわち気筒毎に、最終的な噴射量の目標値である最終噴射量を算出する。   The fuel injection control unit 20 converts the basic target injection amount calculated by the basic target injection amount calculation unit 21 into an injection amount correction amount calculation unit 22 so that the injection amount actually injected into each cylinder 2 becomes uniform. The final injection amount, which is a target value of the final injection amount, is calculated for each injector 3, that is, for each cylinder, by correcting the amount of injection calculated in step 5 between the cylinders.

このように、本実施形態に係るエンジンシステム100では、気筒間での噴射量の変動量により基本目標噴射量が補正されており、気筒間での実噴射量の変動量が小さく抑えられる。そのため、気筒間の燃焼状態がより均一となり、エンジン1の回転変動や振動を小さく抑えることができる。   As described above, in the engine system 100 according to the present embodiment, the basic target injection amount is corrected by the variation amount of the injection amount between the cylinders, and the variation amount of the actual injection amount between the cylinders is suppressed to be small. Therefore, the combustion state between the cylinders becomes more uniform, and the rotational fluctuation and vibration of the engine 1 can be suppressed to a small level.

ここで、従来においても、多気筒エンジンにおいて、気筒間での噴射量の変動量を算出してこの変動量により噴射量を補正することは行われている。具体的には、圧縮行程や膨張行程(燃焼行程)時のクランクシャフトの角速度差すなわち回転変動差を各気筒について算出し、この角速度差の気筒間での平均値からの差すなわち偏差を噴射量に換算して噴射量の気筒間での変動量とし、この変動量により噴射量の補正が行われている。   Here, conventionally, in a multi-cylinder engine, a fluctuation amount of the injection amount between cylinders is calculated and the injection amount is corrected by the fluctuation amount. Specifically, the angular velocity difference of the crankshaft during the compression stroke and the expansion stroke (combustion stroke), that is, the rotational fluctuation difference is calculated for each cylinder, and the difference from the average value between the cylinders, that is, the deviation, is calculated as the injection amount. In other words, the amount of injection is changed between cylinders, and the amount of injection is corrected by this amount of change.

図2に基づいて従来の噴射量の補正手順の詳細を説明する。図2は、横軸をクランク角とし、第1気筒の圧縮上死点を0°CAとしてクランクシャフトの回転速度変動を模式的に示したものである。この図2において、実線は、各気筒2内に燃料が噴射されて各気筒2内で燃焼が行われた場合の回転速度変動の波形である。この図2において、0°CA〜180°CAにおいて第1気筒が膨張行程(燃焼工程)にあり、180°CA〜360°CAにおいて第3気筒が膨張行程にあり、360°CA〜540°CAにおいて第4気筒が膨張行程にあり、540°CA〜720°CAにおいて第2気筒が膨張行程にある。そして、0°CAが第1気筒の圧縮上死点、180°CAが第3気筒の圧縮上死点、360°CAが第4気筒の圧縮上死点、540°CAが第2気筒の圧縮上死点である。   The details of the conventional injection amount correction procedure will be described with reference to FIG. FIG. 2 schematically shows fluctuations in the rotational speed of the crankshaft with the horizontal axis being the crank angle and the compression top dead center of the first cylinder being 0 ° CA. In FIG. 2, the solid line is a waveform of fluctuations in rotational speed when fuel is injected into each cylinder 2 and combustion is performed in each cylinder 2. In FIG. 2, the first cylinder is in the expansion stroke (combustion process) at 0 ° CA to 180 ° CA, the third cylinder is in the expansion stroke at 180 ° CA to 360 ° CA, and 360 ° CA to 540 ° CA. The fourth cylinder is in the expansion stroke, and the second cylinder is in the expansion stroke at 540 ° CA to 720 ° CA. Then, 0 ° CA is the compression top dead center of the first cylinder, 180 ° CA is the compression top dead center of the third cylinder, 360 ° CA is the compression top dead center of the fourth cylinder, and 540 ° CA is the compression top dead center of the second cylinder. Top dead center.

従来では、まず、燃料噴射中の各気筒について、角速度の代用特性として、膨張行程中においてクランクシャフトが所定角度変化するのに要する時間を算出する。このとき、膨張行程中の特定の2つの角度付近の時間をそれぞれ算出する。具体的には、角速度が最も遅くなる圧縮上死点付近において所定角度変化するのに要する時間Tmax_k(k=1〜4:kは気筒番号)と、圧縮上死点後であって角速度が最も早くなる角度付近において所定角度変化するのに要する時間Tmin_k(k=1〜4)とを、各気筒について算出する。次に、これらの時間の差ΔT_kを各気筒について算出する。具体的には、時間差ΔT_kをΔT_k=Tmax_k―Tmin_k(k=1〜4)により算出する。そして、これら時間差ΔT_k(k=1〜4)を気筒間で平均するとともに、各気筒の時間差ΔT_kのこれらの平均値との差すなわち偏差を算出する。そして、この偏差を気筒間での噴射量の差として各気筒の噴射量補正量に換算する。   Conventionally, for each cylinder during fuel injection, first, the time required for the crankshaft to change by a predetermined angle during the expansion stroke is calculated as a substitute characteristic of the angular velocity. At this time, each time near two specific angles during the expansion stroke is calculated. Specifically, a time Tmax_k (k = 1 to 4: k is a cylinder number) required to change a predetermined angle near the compression top dead center where the angular velocity is the slowest, and the angular velocity is the highest after the compression top dead center. A time Tmin_k (k = 1 to 4) required for a predetermined angle change in the vicinity of the earlier angle is calculated for each cylinder. Next, a difference ΔT_k between these times is calculated for each cylinder. Specifically, the time difference ΔT_k is calculated by ΔT_k = Tmax_k−Tmin_k (k = 1 to 4). Then, the time difference ΔT_k (k = 1 to 4) is averaged between the cylinders, and the difference, that is, the deviation, of the time difference ΔT_k of each cylinder from these average values is calculated. The deviation is converted into an injection amount correction amount for each cylinder as a difference in injection amount between the cylinders.

このように、従来の補正手順では、各気筒の圧縮行程や膨張行程中の特定の2つの角度において所定角度変化するのに要する時間(Tmax_k、Tmin_k)の差ΔT_k(k=1〜4)の気筒間の変動が、全て噴射量の変動により生じていると仮定して、この時間の差が気筒間で均一となるように噴射量を補正している。すなわち、図2に示す例では、実線で示した波形が波線で示した波形となるように噴射量が補正されている。なお、図2では、説明を容易にするため、各気筒の圧縮上死点での時間Tmax_kが同一であって時間差ΔT_kを均一とする補正によりTmin_kが同一になる場合について示したが、この圧縮上死点での時間が気筒間で異なる場合には、その差に応じて補正後のTmin_kの値も異なる値となる。   As described above, in the conventional correction procedure, the difference ΔT_k (k = 1 to 4) of the time (Tmax_k, Tmin_k) required to change by a predetermined angle at two specific angles during the compression stroke and the expansion stroke of each cylinder. Assuming that all the fluctuations between the cylinders are caused by fluctuations in the injection quantity, the injection quantity is corrected so that this time difference is uniform between the cylinders. That is, in the example shown in FIG. 2, the injection amount is corrected so that the waveform shown by the solid line becomes the waveform shown by the wavy line. For ease of explanation, FIG. 2 shows the case where the time Tmax_k at the compression top dead center of each cylinder is the same and the time difference ΔT_k is made uniform by making the time difference ΔT_k uniform. When the time at the top dead center is different among the cylinders, the value of Tmin_k after the correction is also different depending on the difference.

しかしながら、前記従来の補正手順では、噴射量の気筒間での変動が十分に補正できない場合がある。この点について、本発明者らは、鋭意研究の結果、前記特定の2つのクランク角度において所定角度変化するのに要する時間の差すなわち2つのクランク角度における角速度の差の気筒間での変動が、噴射量の気筒間変動のみによってではなく、それ以外の変動によっても生じることがあり、従来の補正手順では、この噴射量の気筒間変動以外の原因によって生じた角速度差の気筒間での変動をも噴射量の気筒間での変動として計算を行うため、噴射量の気筒間での変動量に大きな誤差が生じることを突き止めた。具体的には、図3に模式的に示すように、角速度差の気筒間変動量は、実際には、噴射量の気筒間変動に起因するAと、この噴射量の気筒間変動以外の要因に起因するBとからなり、従来の補正手順では、これらAとBとを含めた全体の値を噴射量の気筒間変動量として計算しているため、噴射量の気筒間変動量に誤差が生じる。   However, the conventional correction procedure may not sufficiently correct the variation in the injection amount among the cylinders. With regard to this point, as a result of intensive studies, the inventors have found that the difference between the cylinders in the difference in time required to change a predetermined angle at the two specific crank angles, that is, the difference in angular velocity at the two crank angles, This may be caused not only by the cylinder-to-cylinder fluctuation of the injection amount, but also by other fluctuations. In the conventional correction procedure, the angular velocity difference caused by the cause other than the cylinder-to-cylinder fluctuation of the injection quantity is changed between the cylinders. Since the calculation is performed as the variation of the injection amount between the cylinders, it has been found that a large error occurs in the variation of the injection amount between the cylinders. Specifically, as schematically shown in FIG. 3, the fluctuation amount of the angular velocity difference between the cylinders is actually a factor other than A resulting from the fluctuation of the injection amount between the cylinders and the fluctuation of the injection amount between the cylinders. In the conventional correction procedure, since the entire value including A and B is calculated as the inter-cylinder variation amount of the injection amount, there is an error in the inter-cylinder variation amount of the injection amount. Arise.

そこで、本発明者らは、角速度差の気筒間変動量から、噴射量の気筒間変動以外の原因による変動量Bを除外し、角速度差の気筒間変動量のうち噴射量の気筒間変動に起因する変動量Aのみを抽出して、この変動量Aに基づいて噴射量の気筒間変動量を算出することで、噴射量の気筒間変動量の算出精度ひいては噴射量の補正精度を高めるようにした。   Therefore, the present inventors exclude the fluctuation amount B caused by causes other than the fluctuation of the injection amount between the cylinders from the fluctuation amount of the angular velocity difference between the cylinders, and change the injection amount among the fluctuation amounts of the angular velocity difference between the cylinders. By extracting only the resulting variation amount A and calculating the inter-cylinder variation amount of the injection amount based on this variation amount A, the calculation accuracy of the inter-cylinder variation amount of the injection amount and hence the correction accuracy of the injection amount is improved. I made it.

また、本発明者らは、気筒間で角速度差に変動を生じさせる噴射量以外の原因としては、主に、クランク角センサ6の欠け歯形状のばらつき、クランク角センサ6の取り付け誤差、クランクシャフトのねじり等によるクランク角の検出誤差があり、これらにより生じる角速度差の気筒間での変動は、気筒2内に燃料が噴射されていない場合にも生じ、前記変動量Bは、気筒2内に燃料が噴射されていない無噴射時の角速度差の気筒間変動量に相当することを突き止めた。そこで、本発明者らは、無噴射時の角速度差の気筒間変動量を算出してこの変動量を、前記変動量Bとし、噴射時の角速度差の気筒間変動量から、この変動量Bを除外することで、純粋に噴射量の気筒間変動量に起因する角速度差の気筒間変動量Aを抽出して、噴射量の気筒間変動量を算出するよう構成した。   Further, the present inventors mainly cause variations in the shape of the missing teeth of the crank angle sensor 6, the mounting error of the crank angle sensor 6, the crankshaft as causes other than the injection amount that causes the variation in the angular velocity difference between the cylinders. There is a crank angle detection error due to torsion of the cylinder, and the variation in the angular velocity difference caused by these occurs even when no fuel is injected into the cylinder 2, and the variation B is within the cylinder 2. It was found that this corresponds to the amount of variation between cylinders in the angular velocity difference when no fuel is not injected. Therefore, the present inventors calculate the amount of fluctuation between cylinders of the angular velocity difference at the time of non-injection and set this amount of fluctuation as the amount of fluctuation B. From the amount of fluctuation between the cylinders of the angular velocity difference at the time of injection, the amount of fluctuation B By excluding the above, the inter-cylinder fluctuation amount A of the angular velocity difference due to the injection amount purely between the cylinders is extracted, and the inter-cylinder fluctuation amount of the injection amount is calculated.

燃料噴射制御部20による噴射量の補正手順の詳細について次に説明する。   The details of the injection amount correction procedure by the fuel injection control unit 20 will be described next.

図1に示すように、前記噴射量補正量算出部22は、機能的に、噴射時角速度差変動量算出部23と、無噴射時角速度差変動量算出部24と、最終噴射量変動量算出部25とを有する。   As shown in FIG. 1, the injection amount correction amount calculation unit 22 functionally includes an injection angular velocity difference variation calculation unit 23, a non-injection angular velocity difference variation calculation unit 24, and a final injection amount variation calculation. Part 25.

図4のフローチャートに示すように、燃料噴射制御部20は、まず、各種信号を読み込む(ステップS10)。そして、燃料噴射制御部20(無噴射時角速度差変動量算出部24)は、サブルーチンS20の無噴射時角速度差変動料算出処理を実行し、その後、燃料噴射制御部20(噴射時角速度差変動量算出部23、最終噴射量変動量算出部25)は、サブルーチンS40の噴射量補正処理を実行して、噴射量の気筒間変動量を算出して、この変動量により各気筒について噴射量補正を行い、気筒毎の最終目標噴射量を算出する。   As shown in the flowchart of FIG. 4, the fuel injection control unit 20 first reads various signals (step S10). Then, the fuel injection control unit 20 (non-injection angular velocity difference variation calculation unit 24) executes a non-injection angular velocity difference variation calculation process of subroutine S20, and then the fuel injection control unit 20 (injection angular velocity difference variation). The amount calculation unit 23 and the final injection amount fluctuation amount calculation unit 25) execute the injection amount correction processing of the subroutine S40, calculate the amount of fluctuation of the injection amount between cylinders, and correct the injection amount for each cylinder based on the amount of fluctuation. To calculate the final target injection amount for each cylinder.

図6に示すように、サブルーチンS20のステップS21において、無噴射時角速度差変動量算出部24は、無噴射時の角速度差の気筒間変動量を算出する条件である無噴射時変動量算出条件が成立しているかどうかを判定する。本実施形態では、車両組み立て後の検査時におけるシャシーローラ走行中や、ディーラーでの点検時等において、コントローラ10の外部信号入力部26にマニュアルスイッチ30から所定の信号が入力された状態であって車両が所定のエンジン回転数範囲内でアクセルOFF、すなわち、気筒2内に噴射が行われていない場合に、無噴射時の角速度差の気筒間変動量を算出する条件が成立していると判定される。この判定がNOの場合はそのまま処理が終了される。一方、この判定がYESの場合は、ステップS22へ進む。   As shown in FIG. 6, in step S21 of the subroutine S20, the non-injection angular velocity difference variation calculation unit 24 calculates the non-injection variation amount calculation condition that is a condition for calculating the inter-cylinder variation amount of the angular velocity difference during non-injection. It is determined whether or not is established. In the present embodiment, a predetermined signal is input from the manual switch 30 to the external signal input unit 26 of the controller 10 during traveling of the chassis roller at the time of inspection after vehicle assembly or at the time of inspection by a dealer. When the vehicle is in the predetermined engine speed range and the accelerator is OFF, that is, when no injection is performed in the cylinder 2, it is determined that the condition for calculating the inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection is satisfied. Is done. If this determination is NO, the process is terminated as it is. On the other hand, if this determination is YES, the process proceeds to step S22.

ステップS22において、無噴射時角速度差変動量算出部24は、各気筒の無噴射時の角速度差を算出する。ここで、本実施形態では、前記従来の補正手順で説明した例と同様に、各気筒2(k=1〜4)について、角速度が最も遅い圧縮上死点付近(第1クランク角)における所定角度変化に要する時間TNemax_k(k=1〜4)と、圧縮上死点後であって角速度が最も早くなる角度付近(第2クランク角)における所定角度変化に要する時間TNemin_k(k=1〜4)とを算出するとともに、これらの差をとって各気筒の無噴射時の角速度差に相当する時間差DTNE_kを算出する。   In step S22, the non-injection angular velocity difference variation calculation unit 24 calculates the angular velocity difference of each cylinder during non-injection. Here, in the present embodiment, as in the example described in the conventional correction procedure, for each cylinder 2 (k = 1 to 4), a predetermined value near the compression top dead center (first crank angle) where the angular velocity is the slowest. Time required for angle change TNemax_k (k = 1 to 4) and time TNemin_k (k = 1 to 4) required for a predetermined angle change in the vicinity of the angle (second crank angle) after the compression top dead center where the angular velocity is the fastest. ) And the time difference DTNE_k corresponding to the angular velocity difference at the time of no injection of each cylinder is calculated.

次に、ステップS23において、無噴射時角速度差変動量算出部24は、ステップS22で算出した各気筒の時間差DTNE_kの平均値を算出するとともに、この平均値と各気筒の時間差DTNE_kとの差すなわちこの時間差DTNE_kの気筒間での偏差を、無噴射時の角速度差の気筒間変動量(角速度差の偏差)DTNEOF1_k(k=1〜4)として算出する。   Next, in step S23, the non-injection angular velocity difference variation calculation unit 24 calculates the average value of the time differences DTNE_k of the cylinders calculated in step S22, and the difference between the average value and the time difference DTNE_k of each cylinder, that is, The deviation of the time difference DTNE_k between the cylinders is calculated as an inter-cylinder fluctuation amount (angular speed difference deviation) DTNEOF1_k (k = 1 to 4) of the angular velocity difference when there is no injection.

ここで、無噴射時の角速度差変動量は、エンジン回転数によって異なる。そのため、噴射量の気筒間変動に起因する角速度差の変動量ひいては噴射量の気筒間変動量をより精度よく算出するためには、エンジン回転数の違いによる影響を除外するべく、あらかじめ決められた学習回転数N1であって通常走行時に最も頻度が多い回転数において無噴射時の角速度差の気筒間変動量を算出し、この学習回転数における無噴射時の角速度差の気筒間変動量と、この学習回転数における噴射時の角速度差の気筒間変動量とに基づいて、噴射量の気筒間変動量を算出し、これにより、エンジン回転数の相違による影響を除外するのが好ましい。しかしながら、エンジン回転数が前記学習回転数の場合にのみ、無噴射時の角速度差の気筒間変動量を検出・算出するよう構成すると、この気筒間変動量の検出・算出の機会が少なくなる。   Here, the amount of change in angular velocity difference during no injection varies depending on the engine speed. Therefore, in order to more accurately calculate the fluctuation amount of the angular velocity difference caused by the fluctuation of the injection amount between the cylinders and hence the fluctuation amount of the injection amount between the cylinders, it is determined in advance to exclude the influence of the difference in the engine speed. An inter-cylinder fluctuation amount of the angular speed difference at the time of non-injection at the learning rotational speed N1 at the most frequent rotational speed during normal traveling is calculated, It is preferable to calculate the inter-cylinder fluctuation amount of the injection amount based on the inter-cylinder fluctuation amount of the angular velocity difference at the time of injection at the learning rotational speed, thereby excluding the influence due to the difference in engine speed. However, if the inter-cylinder fluctuation amount of the angular velocity difference during non-injection is detected and calculated only when the engine speed is the learning rotational speed, the chances of detecting and calculating the inter-cylinder fluctuation amount are reduced.

これに対して、本発明者らは、無噴射時の角速度差の気筒間変動量がエンジン回転数に比例して変化することを突き止めた。そして、本実施形態では、この知見に基づき、学習回転数以外の回転数においても無噴射時の角速度差の気筒間変動量を算出するとともに、その算出結果を学習回転数での値に換算することで、無噴射時の角速度差の気筒間変動量の算出機会を確保しつつ、噴射量の気筒間変動量の算出精度を高く維持している。   On the other hand, the present inventors have found that the amount of variation between cylinders in the angular velocity difference during non-injection changes in proportion to the engine speed. In the present embodiment, based on this knowledge, the fluctuation amount between the cylinders of the angular velocity difference at the time of non-injection is calculated even at a rotational speed other than the learning rotational speed, and the calculation result is converted into a value at the learning rotational speed. Thus, the calculation accuracy of the inter-cylinder fluctuation amount of the injection amount is maintained high while ensuring the opportunity to calculate the inter-cylinder fluctuation amount of the angular velocity difference when there is no injection.

すなわち、本実施形態では、前述のように無噴射時変動量算出条件として、エンジン回転数を特定せず、無噴射時角速度差変動量算出部24は、種々のエンジン回転数において、無噴射時の角速度差の気筒間変動量DTNEOF1_kを算出する。そして、この種々のエンジン回転数における角速度差の気筒間変動量DTNEOF1_kを前記学習回転数N1での値DTNEOF2_kに換算する。   That is, in the present embodiment, as described above, the engine speed is not specified as the non-injection fluctuation amount calculation condition, and the non-injection angular velocity difference fluctuation amount calculation unit 24 performs the non-injection non-injection time at various engine speeds. The inter-cylinder fluctuation amount DTNEOF1_k of the angular velocity difference is calculated. Then, the inter-cylinder fluctuation amount DTNEOF1_k of the angular speed difference at the various engine speeds is converted into a value DTNEOF2_k at the learning speed N1.

具体的には、ステップS24において、学習回転数N1における無噴射時の角速度差の気筒間変動量DTNEOF2_kを、ステップS23で算出された各気筒の無噴射時の角速度差の気筒間変動量DTNEOF1_kと、この気筒間変動量DTNEOF1_kの算出に用いた角速度差DTNE_kを検出した際のエンジン回転数Neとを用いて、換算式DTNEOF2_k=DTNEOF1_k×Ne/N1により算出する。なお、検出時のエンジン回転数が学習回転数の場合は、ステップS23で算出された各気筒の無噴射時の角速度差の気筒間変動量(角速度差の偏差)DTNEOF1_kがそのまま学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kとされる。   Specifically, in step S24, the inter-cylinder fluctuation amount DTNEOF2_k of the angular speed difference during non-injection at the learning rotational speed N1 is calculated as the inter-cylinder fluctuation amount DTNEOF1_k of the angular speed difference during non-injection of each cylinder calculated in step S23. Then, using the engine speed Ne when the angular speed difference DTNE_k used to calculate the inter-cylinder fluctuation amount DTNEOF1_k is calculated, a conversion formula DTNEOF2_k = DTNEOF1_k × Ne / N1 is used. When the engine speed at the time of detection is the learning speed, the variation amount between cylinders (angular speed difference deviation) DTNEOF1_k of the non-injection angular speed difference calculated in step S23 remains unchanged at the learning speed. The variation amount between cylinders of the angular velocity difference at the time of injection is defined as DTNEOF2_k.

図8と図9の折れ線は、この学習回転数における値に換算する前後での無噴射時の角速度差の気筒間変動量を示す。これら、図8は、換算前の無噴射時の角速度差の気筒間変動量(無噴射時の時間差の偏差)DTNEOF1_kを示しており、図9は、学習回転数における値に換算した後の無噴射時の角速度差の気筒間変動量(無噴射時の時間差の偏差)DTNEOF2_kを示している。図8、図9の複数の線は、互いにエンジン回転数が異なる場合における値である。これら図の比較から明らかなように、前記換算式による換算によって、種々のエンジン回転数において算出された無噴射時の角速度差の気筒間変動量は、互いに近い値に換算される。   The broken lines in FIGS. 8 and 9 indicate the inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection before and after the conversion to the value at the learning rotational speed. FIG. 8 shows the inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection before conversion (time difference deviation at the time of no injection) DTNEOF1_k, and FIG. 9 shows the value after conversion to the value at the learning rotational speed. A variation amount between cylinders of an angular velocity difference at the time of injection (deviation of a time difference at the time of non-injection) DTNEOF2_k is shown. The plurality of lines in FIGS. 8 and 9 are values when the engine speeds are different from each other. As is apparent from the comparison of these figures, the amount of fluctuation between cylinders of the angular velocity difference at the time of non-injection calculated at various engine speeds is converted to a value close to each other by the conversion using the conversion formula.

ステップS24の後に進むステップS25では、無噴射時角速度差変動量算出部24は、ステップS24で算出された学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが予め設定された正常範囲内かどうかを判定する。この正常範囲は、例えば、クランク角センサ6の機差を考慮しても理論上有り得ない値をガード値として設定されている。ステップS25での判定がYESであって学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが正常範囲にある場合は、ステップS26に進む。   In step S25, which proceeds after step S24, the non-injection angular velocity difference variation calculation unit 24 calculates a normal range in which the inter-cylinder variation amount DTNEOF2_k of the angular velocity difference in non-injection at the learning rotation speed calculated in step S24 is set in advance. Determine if it is within. For example, the normal range is set as a guard value that is theoretically impossible even when the machine difference of the crank angle sensor 6 is considered. When the determination in step S25 is YES and the inter-cylinder variation amount DTNEOF2_k of the angular velocity difference at the time of no injection at the learning rotational speed is in the normal range, the process proceeds to step S26.

ステップS26では、無噴射時角速度差変動量算出部24は、ステップS24で算出した学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kを、各気筒について仮メモリ(S−RAM)に記憶する。   In step S26, the non-injection angular velocity difference fluctuation amount calculation unit 24 stores the inter-cylinder fluctuation amount DTNEOF2_k of the angular velocity difference in the non-injection angular velocity at the learning rotational speed calculated in step S24 in a temporary memory (S-RAM) for each cylinder. Remember.

一方、ステップS26での判定がNOであって、テップS24で算出した学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが正常範囲外の場合は、この算出したDTNEOF2_kの値が異常値であるとして、この値を仮メモリに記憶することなく、S21へ戻る。   On the other hand, if the determination in step S26 is NO, and the inter-cylinder fluctuation amount DTNEOF2_k of the angular speed difference during non-injection at the learning rotational speed calculated in step S24 is outside the normal range, the calculated value of DTNEOF2_k is abnormal. Assuming that the value is a value, the process returns to S21 without storing this value in the temporary memory.

ステップ26の後に進むステップS27では、無噴射時角速度差変動量算出部24は、仮メモリに記憶された各気筒のサンプル数(学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kの個数)がそれぞれ予め設定された個数Nになったかどうかを判定する。この判定がNOであって、記憶された各気筒のサンプル数がN個以下の場合は、ステップS21に戻る。一方、ステップS27での判定がYESであって、記憶されたサンプル数がN個となると、無噴射時角速度差変動量算出部24は、ステップS28に進み、各気筒について、これらN個のDTNEOF2_kの標準偏差σをそれぞれ算出する。   In step S27, which proceeds after step 26, the non-injection angular velocity difference variation calculation unit 24 calculates the number of samples of each cylinder stored in the temporary memory (the inter-cylinder variation amount DTNEOF2_k of the angular velocity difference during non-injection at the learning rotational speed). It is determined whether or not (number) has reached a preset number N. If this determination is NO and the number of stored samples of each cylinder is N or less, the process returns to step S21. On the other hand, if the determination in step S27 is YES and the number of stored samples is N, the non-injection angular velocity difference variation calculation unit 24 proceeds to step S28, and for each of these N DTNEOF2_k for each cylinder. The standard deviation σ of each is calculated.

ステップS28の後に進むステップS29では、無噴射時角速度差変動量算出部24は、ステップS24で算出してステップS26で仮メモリに記憶した各気筒のN個の学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが、それぞれ、ステップS28で算出した同気筒についての標準偏差σを基に算出した限界値を超えていないかどうかを判定する。この限界値は、例えば、標準偏差σの所定倍の値に算出される。この判定がYESであって、学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが限界値を超えていない場合は、ステップS32に進む。ステップS32では、無噴射時角速度差変動量算出部24は、各気筒について、前記限界値を超えていないと判定された複数の学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kの平均値DTNEOFave_kを算出する。一方、ステップS29での判定がNOであって学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kが限界値を超えている場合は、無噴射時角速度差変動量算出部24は、この限界値を超えた値を、ステップS32での平均値演算に用いず(ステップS31)、ステップS32において、この限界値を超えた値以外の値の平均値を、各気筒の学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kの平均値DTNEOFave1_kとして算出する。   In step S29, which proceeds after step S28, the non-injection angular velocity difference variation calculation unit 24 calculates the angular velocity at non-injection at the N learning rotation speeds of each cylinder calculated in step S24 and stored in the temporary memory in step S26. It is determined whether the inter-cylinder fluctuation amount DTNEOF2_k of the difference does not exceed the limit value calculated based on the standard deviation σ for the same cylinder calculated in step S28. This limit value is calculated to a value that is a predetermined multiple of the standard deviation σ, for example. When this determination is YES and the inter-cylinder fluctuation amount DTNEOF2_k of the angular velocity difference at the time of no injection at the learning rotational speed does not exceed the limit value, the process proceeds to step S32. In step S32, the non-injection angular velocity difference variation calculation unit 24 calculates the non-injection angular velocity difference inter-cylinder variation DTNEOF2_k of the non-injection angular velocity at a plurality of learning rotational speeds determined not to exceed the limit value for each cylinder. The average value DTNEOFave_k is calculated. On the other hand, when the determination in step S29 is NO and the inter-cylinder fluctuation amount DTNEOF2_k of the angular speed difference during non-injection at the learning rotational speed exceeds the limit value, the non-injection angular speed difference fluctuation calculating unit 24 A value exceeding this limit value is not used in the average value calculation in step S32 (step S31). In step S32, an average value other than the value exceeding this limit value is used as the learning rotational speed of each cylinder. It is calculated as an average value DTNEOFave1_k of the inter-cylinder fluctuation amount DTNEOF2_k of the angular velocity difference at the time of no injection.

ステップS32の後は、ステップS33に進み、無噴射時角速度差変動量算出部24は、ステップS32で算出した各気筒の学習回転数における無噴射時の角速度差の気筒間変動量DTNEOF2_kの平均値DTNEOFave1_kを、不揮発性メモリ(EEP−ROM)に記憶して、サブルーチンS20を終了する。このようにして、不揮発性メモリには、図5に示すように、学習回転数における無噴射時の角速度差の気筒間変動量の平均値DTNEOFave1_kが気筒毎に記憶される。   After step S32, the process proceeds to step S33, and the non-injection angular velocity difference variation calculation unit 24 calculates the average value of the inter-cylinder variation DTNEOF2_k of the angular velocity difference during non-injection at the learning rotational speed of each cylinder calculated in step S32. DTNEOFave1_k is stored in the nonvolatile memory (EEP-ROM), and the subroutine S20 is terminated. In this manner, as shown in FIG. 5, the average value DTNEOFave1_k of the cylinder-to-cylinder variation amount of the angular velocity difference at the time of no injection at the learning rotational speed is stored in the nonvolatile memory for each cylinder.

サブルーチンS20の次に実施されるサブルーチンS40では、まず、ステップS41において、基本目標噴射量算出部21が、前述のように運転状態に応じた基本目標噴射量を算出する。ステップS41の後に進むステップS42では、噴射時角速度差変動量算出部23が、前記無噴射時の角速度差の算出手順と同様の手順で、噴射時の角速度差DTNEinj_kを各気筒について算出する。このとき、ステップS22で用いたのと同じ角度について各気筒の噴射時角速度差DTNEinj_kを算出する。すなわち、ステップS42では、各気筒2(k=1〜4)について、角速度が最も遅くなる圧縮上死点付近(第3クランク角=第1クランク角)における所定角度変化に要する時間TNEinjmax_k(k=1〜4)と、圧縮上死点後であって角速度が最も早くなる角度付近(第4クランク角=第2クランク角)における所定角度変化に要する時間TNEinjmin_k(k=1〜4)とを算出するとともに、これらの差をとって各気筒の噴射時の角速度差に相当する時間差DTNEinj_kを算出する。   In the subroutine S40 executed after the subroutine S20, first, in step S41, the basic target injection amount calculation unit 21 calculates the basic target injection amount according to the operating state as described above. In step S42, which proceeds after step S41, the injection angular velocity difference variation calculation unit 23 calculates the angular velocity difference DTNEinj_k during injection for each cylinder in the same procedure as the angular velocity difference calculation procedure during non-injection. At this time, the injection angular velocity difference DTNEinj_k is calculated for each cylinder at the same angle as that used in step S22. That is, in step S42, for each cylinder 2 (k = 1 to 4), a time TNEinjmax_k (k = k) required for a predetermined angle change near the compression top dead center (third crank angle = first crank angle) at which the angular velocity is the slowest. 1-4) and a time TNEinjmin_k (k = 1 to 4) required for a predetermined angle change in the vicinity of the angle at which the angular velocity is the fastest after the compression top dead center (fourth crank angle = second crank angle). At the same time, taking these differences, a time difference DTNEinj_k corresponding to the angular velocity difference at the time of injection of each cylinder is calculated.

次に、噴射時角速度差変動量算出部23は、ステップS43において、不揮発性メモリに記憶されている各気筒の学習回転数における無噴射時の角速度差の気筒間変動量の平均値(無噴射時角速度平均偏差)DTNEOFave1_k(k=1〜4(気筒))を読みだす。   Next, in step S43, the injection angular velocity difference variation calculation unit 23 calculates the average value of the inter-cylinder variation of the angular velocity difference during non-injection at the learning rotational speed of each cylinder stored in the nonvolatile memory (non-injection). Read hourly angular velocity average deviation) DTNEOFave1_k (k = 1 to 4 (cylinder)).

ステップS43の後は、無噴射時角速度差変動量算出部24が、ステップS44において、読みだした学習回転数における無噴射時の角速度差の気筒間変動量の平均値DTNEOFave1_kを以下の換算式により、ステップS42において噴射時角速度差DTNEinj_kを算出した際のエンジン回転数(噴射時回転数)Neでの値に換算する。具体的には、エンジン回転数Neにおける無噴射時の角速度差の気筒間変動量の値DTNEOFave_kを、DTNEOFave_k=DTNEOFave1_k×Ne/N1で算出する。   After step S43, the non-injection angular velocity difference variation calculation unit 24 calculates, in step S44, the average value DTNEOFave1_k of the inter-cylinder variation of the angular velocity difference during non-injection at the learning rotational speed read in step S44 by the following conversion formula. In step S42, the angular speed difference during injection DTNEinj_k is converted to a value at the engine speed (rotation speed during injection) Ne. Specifically, a value DTNEOFave_k of the variation amount between cylinders of the angular velocity difference at the time of no injection at the engine speed Ne is calculated as DTNEOFave_k = DTNEOFave1_k × Ne / N1.

ステップS44の後は、最終噴射量変動量算出部25が、ステップS45にて、ステップS42で求めた噴射時角速度差DTNEinj_kを、ステップS44にて求めたエンジン回転数Neにおける無噴射時の角速度差の気筒間変動量の値DTNEOFave_kによりオフセット補正する(DTNEinj_kにDTNEOFave_kを加減算する)。これにより、最終噴射量変動量算出部25は、噴射時角速度差DTNEinj_kに含まれる、エンジン機差など噴射量以外の要因による角速度差変動量を排除して、噴射量の気筒間変動量のみに基づく角速度差の気筒間変動量を算出する。   After step S44, the final injection amount fluctuation amount calculation unit 25 obtains the angular speed difference DTNEinj_k at the time of injection obtained at step S42 at step S45, and the angular speed difference at the time of no injection at the engine speed Ne obtained at step S44. Is corrected by the value DTNEOFave_k of the inter-cylinder fluctuation amount (DTNEOFave_k is added to or subtracted from DTNEinj_k). As a result, the final injection amount fluctuation amount calculation unit 25 eliminates the angular velocity difference fluctuation amount caused by factors other than the injection amount, such as the engine difference, included in the injection angular velocity difference DTNEinj_k, so that only the inter-cylinder fluctuation amount of the injection amount is obtained. A variation amount between cylinders based on the angular velocity difference is calculated.

ステップS45の後に進むステップS46では、最終噴射量変動量算出部25は、ステップS45でオフセット補正した各気筒の噴射時角速度差DTNEinj_kの全気筒の平均値(気筒間平均値)DTNEinjaveを、例えば、DTNEinjave=(DTNEinj_1+DTNEinj_2+・・・・+DTNEinj_4)/4の式で算出する。   In step S46, which proceeds after step S45, the final injection amount fluctuation amount calculation unit 25 calculates the average value (inter-cylinder average value) DTNEinjave of all cylinders of the angular velocity difference DTNEinj_k at the time of injection corrected for each cylinder in step S45. DTNEinjave = (DTNEinj_1 + DTNEinj_2 +... + DTNEinj_4) / 4.

次に、ステップS47にて、最終噴射量変動量算出部25は、ステップS46にて求めた噴射時角速度差の気筒間平均値DTNEinjaveからの各気筒の角速度差のズレ量すなわち角速度差の気筒間変動量を求める。   Next, in step S47, the final injection amount fluctuation amount calculation unit 25 determines the amount of deviation of the angular velocity difference of each cylinder from the average value DTNEinjave of the angular velocity difference during injection obtained in step S46, that is, between the cylinders of the angular velocity difference. Find the amount of variation.

そして、最終噴射量変動量算出部25は、ステップS48にて、各気筒の角速度差変動量がこれら角速度差変動量の全気筒の平均値に一致するように、ステップS47で算出した角速度差の気筒間変動量(各ズレ量)に応じて各気筒の噴射量補正量を算出する。   Then, in step S48, the final injection amount fluctuation amount calculation unit 25 calculates the angular velocity difference calculated in step S47 so that the angular velocity difference fluctuation amount of each cylinder matches the average value of all the angular velocity difference fluctuation amounts. An injection amount correction amount for each cylinder is calculated in accordance with the inter-cylinder fluctuation amount (each deviation amount).

その後、燃料噴射制御部20は、ステップS41で求めた基本目標噴射量をステップS47で算出した各気筒の噴射量補正量で補正し(基本目標噴射量に噴射量補正量を加減し)、各気筒について、最終噴射量を算出する。   Thereafter, the fuel injection control unit 20 corrects the basic target injection amount obtained in step S41 with the injection amount correction amount of each cylinder calculated in step S47 (adds or subtracts the injection amount correction amount to the basic target injection amount), and The final injection amount is calculated for the cylinder.

ここで、前記ステップS42〜S49について、図10、図11、図12を用いて、さらに説明する。   Here, the steps S42 to S49 will be further described with reference to FIG. 10, FIG. 11, and FIG.

図10の破線は、ステップS42で算出した各気筒の噴射時角速度差DTNEinj_kである。この各気筒の噴射時角速度差DTNEinj_kは、クランクシャフトのねじりやクランク角センサの取り付け誤差によるばらつきも含めて検出される。一方、図8の棒状グラフおよび図10の網掛け部で示される、ステップS43にて不揮発性メモリから読み出される無噴射時の角速度差の気筒間変動量の平均値DTNEOFave1_kは、クランクシャフトのねじりやクランク角センサの取り付け誤差によるばらつきによるものである。これら図に示す例では、の第2、第3気筒では無噴射時の角速度差の気筒間変動量の平均値DTNEOFave1_kは、全気筒平均値からプラス側の値(角速度変動が拡大する方向)であり、第1、第4気筒ではこの平均値DTNEOFave1_kは、マイナス側の値(角速度変動が縮小する方向)である。   The broken line in FIG. 10 is the injection angular velocity difference DTNEinj_k calculated in step S42. The angular velocity difference DTNEinj_k at the time of injection of each cylinder is detected including variations due to crankshaft torsion and crank angle sensor mounting errors. On the other hand, the average value DTNEOFave1_k of the cylinder-to-cylinder fluctuation amount of the angular velocity difference at the time of non-injection read from the nonvolatile memory in step S43, which is indicated by the bar graph of FIG. 8 and the shaded portion of FIG. This is due to variations due to the installation error of the crank angle sensor. In the examples shown in these drawings, the average value DTNEOFave1_k of the variation amount between the cylinders in the angular velocity difference at the time of non-injection in the second and third cylinders is a value on the plus side (the direction in which the angular velocity variation increases) from the average value of all the cylinders. In the first and fourth cylinders, the average value DTNEOFave1_k is a negative value (the direction in which the angular velocity fluctuation is reduced).

このため、ステップS45において、不揮発性メモリから読み出された無噴射時の角速度差の気筒間変動量の平均値DTNEOFave1_kを加減算するオフセット補正をおこなうことで、エンジン機差などによる角速度差の要因が排除されて、噴射量の気筒間変動量によって生じる角速度差の気筒間変動量が算出される。図10に示す例では、第1気筒については、噴射時角速度差DTNEinj_1から無噴射時の角速度差の気筒間変動量の平均値DTNEOFave_1を図中下方向矢印で示すように減算するオフセット補正が実施されて、太線にて示す補正後の噴射時角速度差DTNEinj_1が算出される。同様に、他気筒についても、オフセット補正が実施されて、太線にて示す補正後の噴射時角速度差DTNEinj_2、DTNEinj_3、DTNEinj_4が算出される。   For this reason, in step S45, by performing an offset correction for adding / subtracting the average value DTNEOFave1_k of the inter-cylinder fluctuation amount of the angular velocity difference at the time of non-injection read from the nonvolatile memory, the cause of the angular velocity difference due to the engine machine difference or the like is obtained. Excluded, the inter-cylinder fluctuation amount of the angular velocity difference caused by the inter-cylinder fluctuation amount of the injection amount is calculated. In the example shown in FIG. 10, for the first cylinder, offset correction is performed by subtracting the average value DTNEOFave_1 of the cylinder-to-cylinder fluctuation amount of the angular velocity difference at the time of non-injection from the angular velocity difference DTNEinj_1 at the time of injection as shown by the downward arrow in the drawing. Thus, the corrected angular velocity difference at injection DTNEinj_1 indicated by the bold line is calculated. Similarly, offset correction is also performed for the other cylinders, and corrected angular velocity differences DTNEinj_2, DTNEinj_3, and DTNEinj_4 after correction indicated by bold lines are calculated.

こうして算出された図10の太線で示す補正後の噴射時角速度差DTNEinj_kは、エンジン機差などによる角速度差の要因が排除された、真にインジェクタのばらつきなどによる噴射量変動によるもののみである。そこで、本実施形態では、前述のようにステップS46、S47において補正後の噴射時角速度差DTNEinj_kの全気筒の平均値DTNEinjave(図10の横実線)を求めるとともにこの平均値DTNEinjaveと各気筒の補正後の噴射時角速度差DTNEinj_kの差すなわちズレ量を求め、ステップS48において、各気筒の角速度差が平均値に一致するようにこのズレ量に応じて噴射量補正量を算出する。図10に示す例では、平均値DTNEinjaveと各気筒の補正後の噴射時角速度差DTNEinj_kの差すなわちズレ量は、図11に示すように算出される。そして、噴射量補正量は、図12の網掛け部で示されるように算出される。そして、図12の破線で示す目標基本噴射量(図中の補正前)に対して網掛け部の補正噴射量が加減されて、最終噴射量が、図12の太線で示すように算出される。具体的には、図10〜図12に示す例では、図10に示すように、第1、4気筒では、真の噴射時角速度差は、全気筒平均値より小さいため、図11に示すようなプラス側の補正を加えて、平均値と一致させるように図12に示すように噴射量を増加補正する。一方、第2、3気筒では、真の噴射時角速度差は、全気筒平均値より大きいため、図11に示すようなマイナス側の補正を加えて、平均値と一致させるように図12に示すように噴射量を減少補正する。   The post-correction angular velocity difference DTNEinj_k after injection, which is calculated by the thick line in FIG. 10, is only due to variations in the injection amount due to injector variations and the like, in which factors of angular velocity differences due to engine machine differences and the like are eliminated. Therefore, in the present embodiment, as described above, the average value DTNEinjave (horizontal solid line in FIG. 10) of all the cylinders of the injection angular velocity difference DTNEinj_k after correction in steps S46 and S47 is obtained, and this average value DTNEinjave and the correction of each cylinder are obtained. The difference in angular velocity difference DTNEinj_k after injection, that is, a deviation amount is obtained, and in step S48, an injection amount correction amount is calculated according to this deviation amount so that the angular velocity difference of each cylinder matches the average value. In the example shown in FIG. 10, the difference between the average value DTNEinjave and the corrected angular velocity difference at injection DTNEinj_k, that is, the deviation amount is calculated as shown in FIG. The injection amount correction amount is calculated as indicated by the shaded portion in FIG. Then, the corrected injection amount in the shaded portion is adjusted with respect to the target basic injection amount (before correction in the drawing) indicated by the broken line in FIG. 12, and the final injection amount is calculated as indicated by the thick line in FIG. . Specifically, in the example shown in FIGS. 10 to 12, as shown in FIG. 10, the true angular velocity difference at the time of injection is smaller than the average value of all the cylinders in the first and fourth cylinders. As shown in FIG. 12, the injection amount is increased and corrected so as to match the average value with a positive correction. On the other hand, in the second and third cylinders, the true angular velocity difference at the time of injection is larger than the average value of all the cylinders. Therefore, the negative side correction as shown in FIG. In this way, the injection amount is corrected to decrease.

なお、前記実施形態では、演算を容易にするために、角速度に代えて、クランク角が所定角度変化する時間を用いて各種演算を行ったが、角速度を用いても良い。例えば、圧縮上死点付近の所定クランク角度間の変化に要する時間に代えて、圧縮上死点付近の所定時間に変化するクランク角度を用いるとともに、圧縮上死点後で最も角速度が速くなる所定クランク角度間の変化に要する時間に代えて、圧縮上死点後で最も角速度が速くなるクランク角度の所定時間に変化するクランク角度を用いてもよい。   In the embodiment, in order to facilitate the calculation, various calculations are performed using a time during which the crank angle changes by a predetermined angle instead of the angular speed. However, the angular speed may be used. For example, instead of the time required for the change between the predetermined crank angles near the compression top dead center, a crank angle that changes during the predetermined time near the compression top dead center is used, and the predetermined angular velocity becomes the fastest after the compression top dead center. Instead of the time required for the change between the crank angles, a crank angle that changes during a predetermined time of the crank angle at which the angular velocity becomes fastest after compression top dead center may be used.

また、燃圧センサ5で検出された噴射圧が特定の噴射圧となる場合においてのみ、噴射時角速度差の検出、及び噴射時角速度差から無噴射時角速度差を加減算するようにしても良い。   Also, only when the injection pressure detected by the fuel pressure sensor 5 becomes a specific injection pressure, the angular velocity difference during injection may be detected, and the angular velocity difference during non-injection may be added or subtracted from the angular velocity difference during injection.

さらに、前記実施形態では、車両組み立て後の検査時であってシャシーローラ走行中、または、ディーラーでの点検時等でコントローラ10に外部から所定の信号が入力された場合であって、エンジンが回転しており、気筒2内に噴射が行われていない場合に、無噴射時の角速度差の変動量を算出する場合について説明したが、通常の車両走行中においてアクセルペダルが踏み込まれておらず、かつ、気筒2内に噴射が行われていない場合に、無噴射時変動量算出条件が成立したと判定して、無噴射時の角速度差の変動量を算出するように構成してもよい。   Further, in the above embodiment, the engine is rotated when a predetermined signal is input to the controller 10 from the outside at the time of inspection after assembling the vehicle, during running of the chassis roller, or at the time of inspection by a dealer, etc. In the case where the amount of change in the angular velocity difference at the time of non-injection is calculated when injection is not performed in the cylinder 2, the accelerator pedal is not depressed during normal vehicle travel, In addition, when no injection is performed in the cylinder 2, it may be determined that the non-injection fluctuation amount calculation condition is satisfied, and the fluctuation amount of the angular velocity difference at the time of no injection may be calculated.

また、学習回転数の設定基準は、前記に限らない。   Moreover, the setting reference | standard of learning rotation speed is not restricted above.

以上のように、本実施形態に係るエンジンシステム100では、噴射時の角速度差の気筒間の変動量から無噴射時の角速度差の気筒間の変動量を除外して、噴射量の気筒間変動量に起因する角速度差の気筒間変動量のみを抽出して、この変動量から噴射量の気筒間変動量を算出しており、噴射量の気筒間変動量を精度よく算出することができ、噴射量を精度よく補正して噴射量変動量に伴う振動等を小さく抑えることができる。   As described above, in the engine system 100 according to the present embodiment, the fluctuation amount between the cylinders of the angular velocity difference at the time of injection is excluded from the fluctuation amount between the cylinders of the angular velocity difference at the time of non-injection, thereby changing the injection amount between the cylinders. Only the fluctuation amount between cylinders of the angular velocity difference caused by the amount is extracted, the fluctuation amount between cylinders of the injection amount is calculated from this fluctuation amount, and the fluctuation amount between cylinders of the injection amount can be accurately calculated, It is possible to correct the injection amount with high accuracy and suppress vibrations and the like accompanying the injection amount fluctuation amount.

特に、本実施形態では、無噴射時と噴射時とにおいて同一のクランク角度に対する角速度差を算出しており、噴射量の気筒間変動量に起因する角速度差の気筒間変動量を精度よく算出することができる。   In particular, in this embodiment, the angular velocity difference with respect to the same crank angle is calculated during non-injection and during injection, and the inter-cylinder variation amount of the angular velocity difference caused by the inter-cylinder variation amount of the injection amount is accurately calculated. be able to.

また、無噴射時の角度差変動量を、学習回転数以外のエンジン回転数においても算出し、この算出した値を学習回転数での値に換算するという手順をとっており、無噴射時の角速度差変動量の算出機会を確保することができ、この無噴射時の角速度差変動量の算出精度を高めることができる。   In addition, the amount of change in the angle difference at the time of non-injection is also calculated at an engine speed other than the learning speed, and the calculated value is converted to a value at the learning speed, An opportunity to calculate the angular velocity difference variation amount can be secured, and the calculation accuracy of the angular velocity difference variation amount at the time of no injection can be increased.

また、無噴射時の角速度差変動量を複数検出、算出し、これらを学習回転数での値に換算した後平均し、この平均した学習回転数における無噴射時の角速度差変動量を用いて、噴射量の気筒間変動量ひいては噴射量の補正量を算出しているため、噴射量の補正量を精度よく算出することができる。特に、無噴射時の角速度差変動量のうち、標準偏差に基づいて設定された限界値を超えない値、および予め設定された正常範囲内の値のみを平均して、この平均値を噴射量の気筒間変動量ひいては噴射量の補正量を算出しているため、噴射量の補正量をより精度よく算出することができる。   Further, a plurality of angular velocity difference fluctuation amounts at the time of non-injection are detected and calculated, these are converted into values at the learning rotational speed, and then averaged, and the angular speed difference fluctuation amount at the time of non-injection at the average learning rotational speed is used. Since the variation amount of the injection amount between the cylinders and hence the correction amount of the injection amount is calculated, the correction amount of the injection amount can be calculated with high accuracy. In particular, of the angular velocity difference fluctuation amount at the time of no injection, only the value that does not exceed the limit value set based on the standard deviation and the value within the preset normal range are averaged, and this average value is calculated as the injection amount. Since the inter-cylinder variation amount and thus the injection amount correction amount are calculated, the injection amount correction amount can be calculated more accurately.

1 エンジン
2 気筒
3 インジェクタ(燃料噴射装置)
10 コントローラ
20 燃料噴射制御部(燃料噴射制御装置)
1 engine 2 cylinder 3 injector (fuel injection device)
10 controller 20 fuel injection control unit (fuel injection control device)

Claims (8)

複数の気筒および当該各気筒に対してそれぞれ燃料を噴射可能な複数の燃料噴射装置を有するエンジンに設けられて、前記各気筒に前記燃料噴射装置からそれぞれ噴射される噴射量をクランクシャフトの角速度を基に補正可能な燃料噴射制御装置であって、
前記各燃料噴射装置が燃料噴射を停止している無噴射状態において、各気筒について、特定の第1クランク角度における角速度と特定の第2クランク角度における角速度との差である角速度差を算出するとともに、これら角速度差の気筒間での偏差を無噴射時の角速度差の気筒間変動量として算出する無噴射時角速度差変動量算出部と、
前記各燃料噴射装置が燃料を噴射している状態において、各気筒について、膨張行程の特定の第3クランク角度における角速度と膨張行程の特定の第4クランク角度における角速度との差である角速度差を算出するとともに、これら角速度差の気筒間での偏差を噴射時の角速度差の気筒間変動量として算出する噴射時角速度差変動量算出部と、
前記噴射時角速度差変動量算出部で算出された噴射時の角速度差の気筒間変動量と、前記無噴射時角速度差変動量算出部で算出された無噴射時の角速度差の気筒間変動量とに基づいて、前記噴射量の気筒間での偏差である噴射量気筒間変動量を算出する最終噴射量変動量算出部とを有し、
前記最終噴射量変動量算出部で算出された噴射量気筒間変動量に基づいて、各気筒に噴射される噴射量を補正することを特徴とする燃料噴射制御装置。
Provided in an engine having a plurality of cylinders and a plurality of fuel injection devices capable of injecting fuel to the respective cylinders, the amount of injection injected from each of the fuel injection devices into each of the cylinders is determined according to the angular velocity of the crankshaft. A fuel injection control device that can be corrected based on:
In the non-injection state where each fuel injection device stops fuel injection, for each cylinder, an angular velocity difference that is a difference between an angular velocity at a specific first crank angle and an angular velocity at a specific second crank angle is calculated. A non-injection angular velocity difference variation calculating unit that calculates the difference between the angular velocity differences between the cylinders as a non-injection angular velocity difference variation between the cylinders;
In a state where each fuel injection device is injecting fuel, an angular velocity difference that is a difference between an angular velocity at a specific third crank angle of the expansion stroke and an angular velocity at a specific fourth crank angle of the expansion stroke is set for each cylinder. An angular velocity difference variation calculation unit for injection that calculates a difference between the cylinders of the angular velocity difference as a variation amount between cylinders of the angular velocity difference at the time of injection,
The inter-cylinder fluctuation amount of the angular velocity difference during injection calculated by the injection angular velocity difference fluctuation amount calculation unit and the inter-cylinder fluctuation amount of the angular velocity difference during non-injection calculated by the non-injection angular velocity difference fluctuation calculation unit. And a final injection amount fluctuation amount calculation unit that calculates an injection amount fluctuation amount between cylinders, which is a deviation between the cylinders of the injection amount,
A fuel injection control device that corrects the injection amount injected into each cylinder based on the injection amount variation amount between cylinders calculated by the final injection amount variation amount calculation unit.
請求項1に記載の燃料噴射制御装置において、
前記最終噴射量変動量算出部は、エンジン回転数が特定の学習回転数の場合における前記無噴射時の角速度差の気筒間変動量に基づいて、前記噴射量気筒間変動量を算出し、
前記無噴射時角速度差変動量算出部は、エンジン回転数が前記学習回転数以外の回転数において前記角速度差の気筒間変動量を算出した場合は、この算出された角速度差の気筒間変動量を、算出時のエンジン回転数と前記学習回転数とに基づいて前記最終噴射量変動量算出部で用いられる前記学習回転数における角速度差の気筒間変動量に換算することを特徴とする燃料噴射制御装置。
The fuel injection control device according to claim 1,
The final injection amount fluctuation amount calculation unit calculates the injection amount inter-cylinder fluctuation amount based on the inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection when the engine speed is a specific learning rotation speed,
When the non-injection angular velocity difference fluctuation amount calculation unit calculates the inter-cylinder fluctuation amount of the angular speed difference at an engine speed other than the learning rotational speed, the calculated inter-cylinder fluctuation amount of the angular speed difference is calculated. Is converted into an inter-cylinder fluctuation amount of the angular speed difference at the learning rotation speed used in the final injection amount fluctuation amount calculation unit based on the engine speed at the time of calculation and the learning rotation speed. Control device.
請求項2に記載の燃料噴射制御装置において、
前記無噴射時角速度差変動量算出部は、前記学習回転数における無噴射時の角速度差の気筒間変動量を複数算出した後、これら複数の気筒間変動量の平均値を気筒毎に算出し、当該平均値を前記最終噴射量変動量算出部で用いられる前記無噴射時の角速度差の気筒間変動量として算出することを特徴とする燃料噴射制御装置。
The fuel injection control device according to claim 2,
The non-injection angular velocity difference variation calculating unit calculates a plurality of inter-cylinder variation amounts of the angular velocity difference during non-injection at the learning rotational speed, and then calculates an average value of the plurality of inter-cylinder variation amounts for each cylinder. The fuel injection control device is characterized in that the average value is calculated as an inter-cylinder fluctuation amount of the angular velocity difference at the time of no injection used in the final injection quantity fluctuation amount calculation unit.
請求項3に記載の燃料噴射制御装置において、
前記無噴射時角速度差変動量算出部は、算出した前記学習回転数における無噴射時の角速度差の気筒間変動量が予め設定された正常範囲を超える場合は、この越えた値を前記気筒間変動量の平均値の算出に用いないことを特徴とする燃料噴射制御装置。
The fuel injection control device according to claim 3, wherein
The non-injection angular velocity difference variation calculation unit calculates a value between the cylinders when the inter-cylinder variation of the angular velocity difference during non-injection at the calculated learning rotational speed exceeds a preset normal range. A fuel injection control device that is not used for calculating an average value of fluctuation amounts.
請求項3または4に記載の燃料噴射制御装置において、
前記無噴射時角速度差変動量算出部は、算出した複数の前記学習回転数における無噴射時の角速度差の気筒間変動量の標準偏差を気筒毎に算出するとともに、気筒毎に、当該標準偏差に基づいて設定された限界値と前記各学習回転数における無噴射時の角速度差の気筒間変動量とを比較し、この学習回転数における無噴射時の角速度差の気筒間変動量が前記限界値を超える場合は、この越えた値を前記気筒間変動量の平均値の算出に用いないことを特徴とする燃料噴射制御装置。
The fuel injection control device according to claim 3 or 4,
The non-injection angular velocity difference fluctuation amount calculation unit calculates, for each cylinder, a standard deviation of an inter-cylinder fluctuation amount of an angular velocity difference at the time of no injection at the calculated plurality of learning rotation speeds, and for each cylinder, the standard deviation Is compared with the fluctuation amount between cylinders of the angular velocity difference during non-injection at each learning rotational speed, and the variation amount between cylinders of the angular speed difference during non-injection at the learning rotational speed is compared with the limit. When the value exceeds the value, the value exceeding the value is not used for calculating the average value of the inter-cylinder variation.
請求項1〜5のいずれかに記載の燃料噴射制御装置において、
前記第3クランク角度が、前記第1クランク角度と同一の角度であるとともに、前記第4クランク角度が、前記第2クランク角度と同一の角度であることを特徴とする燃料噴射制御装置。
In the fuel-injection control apparatus in any one of Claims 1-5,
The fuel injection control device, wherein the third crank angle is the same angle as the first crank angle, and the fourth crank angle is the same angle as the second crank angle.
請求項1〜6のいずれかに記載の燃料噴射制御装置において、
外部からの信号を入力可能な外部入力部を有し、
前記無噴射時角速度差変動量算出部は、前記外部入力部から特定の信号が入力されると、前記角速度差の気筒間変動量の算出を開始することを特徴とする燃料噴射制御装置。
In the fuel-injection control apparatus in any one of Claims 1-6,
It has an external input unit that can input external signals,
The fuel injection control device, wherein the non-injection angular velocity difference variation calculation unit starts calculation of the variation amount between cylinders of the angular velocity difference when a specific signal is input from the external input unit.
請求項1〜7のいずれかに記載の燃料噴射制御装置において、
前記エンジンは車両に搭載されており、
前記無噴射時角速度差変動量算出部は、前記車両の走行中において前記各燃料噴射装置が燃料噴射を停止する燃料カット時に、前記角速度差の気筒間変動量を算出することを特徴とする燃料噴射制御装置。
In the fuel-injection control apparatus in any one of Claims 1-7,
The engine is mounted on a vehicle;
The non-injection angular velocity difference variation calculation unit calculates an inter-cylinder variation amount of the angular velocity difference when the fuel injection is stopped when each fuel injection device stops fuel injection while the vehicle is running. Injection control device.
JP2014012233A 2014-01-27 2014-01-27 Fuel injection controller Pending JP2015140664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014012233A JP2015140664A (en) 2014-01-27 2014-01-27 Fuel injection controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014012233A JP2015140664A (en) 2014-01-27 2014-01-27 Fuel injection controller

Publications (1)

Publication Number Publication Date
JP2015140664A true JP2015140664A (en) 2015-08-03

Family

ID=53771205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014012233A Pending JP2015140664A (en) 2014-01-27 2014-01-27 Fuel injection controller

Country Status (1)

Country Link
JP (1) JP2015140664A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003847A (en) * 2016-07-08 2018-01-11 マン・ディーゼル・アンド・ターボ・エスイー Method for inspecting function of gas regulating valve and control device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270490A (en) * 1995-02-02 1996-10-15 Nippondenso Co Ltd Misfire detecting device for internal combustion engine
JPH109040A (en) * 1996-06-21 1998-01-13 Unisia Jecs Corp Misfire diagnostic device of internal combustion engine
JP2003254139A (en) * 2002-03-01 2003-09-10 Denso Corp Injection quantity control device for internal combustion engine
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine
JP2005133678A (en) * 2003-10-31 2005-05-26 Denso Corp Injection quantity controller of diesel engine
JP2005140046A (en) * 2003-11-07 2005-06-02 Denso Corp Injection amount controller for diesel engine
JP2005226631A (en) * 2004-01-16 2005-08-25 Denso Corp Fuel injection control device for internal combustion engine
JP2008069665A (en) * 2006-09-12 2008-03-27 Hitachi Ltd Fuel injection control device of engine
JP2009057899A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel injection control device of internal combustion engine
JP2009057898A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel injection control device of internal combustion engine
JP2009264333A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Fuel injection device
JP2011038449A (en) * 2009-08-07 2011-02-24 Bosch Corp Fuel injection control device
JP2011140921A (en) * 2010-01-08 2011-07-21 Bosch Corp Accumulator fuel injection device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08270490A (en) * 1995-02-02 1996-10-15 Nippondenso Co Ltd Misfire detecting device for internal combustion engine
JPH109040A (en) * 1996-06-21 1998-01-13 Unisia Jecs Corp Misfire diagnostic device of internal combustion engine
JP2003254139A (en) * 2002-03-01 2003-09-10 Denso Corp Injection quantity control device for internal combustion engine
JP2005036788A (en) * 2003-06-27 2005-02-10 Denso Corp Injection-quantity control unit of diesel engine
JP2005133678A (en) * 2003-10-31 2005-05-26 Denso Corp Injection quantity controller of diesel engine
JP2005140046A (en) * 2003-11-07 2005-06-02 Denso Corp Injection amount controller for diesel engine
JP2005226631A (en) * 2004-01-16 2005-08-25 Denso Corp Fuel injection control device for internal combustion engine
JP2008069665A (en) * 2006-09-12 2008-03-27 Hitachi Ltd Fuel injection control device of engine
JP2009057899A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel injection control device of internal combustion engine
JP2009057898A (en) * 2007-08-31 2009-03-19 Denso Corp Fuel injection control device of internal combustion engine
JP2009264333A (en) * 2008-04-28 2009-11-12 Toyota Motor Corp Fuel injection device
JP2011038449A (en) * 2009-08-07 2011-02-24 Bosch Corp Fuel injection control device
JP2011140921A (en) * 2010-01-08 2011-07-21 Bosch Corp Accumulator fuel injection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003847A (en) * 2016-07-08 2018-01-11 マン・ディーゼル・アンド・ターボ・エスイー Method for inspecting function of gas regulating valve and control device

Similar Documents

Publication Publication Date Title
JP4552899B2 (en) Fuel injection control device
JP4215281B2 (en) Method and apparatus for compensation of sensor wheel tolerance
US8024107B2 (en) Ignition timing control system for internal combustion engine
JP5912984B2 (en) Fuel injection amount learning method for internal combustion engine
JP2010275989A (en) Fuel injection control apparatus for internal combustion engine
JP2018127969A (en) Misfire detection device of internal combustion engine
JP6149828B2 (en) Control device for internal combustion engine
JP6213085B2 (en) Cylinder-by-cylinder air-fuel ratio control apparatus for internal combustion engine
US9771885B2 (en) Engine control apparatus
JP2015140664A (en) Fuel injection controller
JP4317842B2 (en) Abnormality judgment device for pressure state detection device
JP6213368B2 (en) Electronic control unit
JP6330616B2 (en) Control device
JP6414462B2 (en) Failure detection device for internal combustion engine
JP5297509B2 (en) Air-fuel ratio control device for internal combustion engine
JP2008297933A (en) Fuel injection quantity control device and fuel injection quantity control system
US10830165B2 (en) Identification and suppression system of a torque delivery imbalance of an internal combustion engine equipped with two or more cylinders
JP2006307671A (en) Fuel injector of internal combustion engine
JP6686793B2 (en) Internal combustion engine controller
JP2008128161A (en) Control device of internal combustion engine
JP5297508B2 (en) Air-fuel ratio control device for internal combustion engine
US9664097B2 (en) Control apparatus for internal combustion engine
JP6036519B2 (en) Fuel injection control device
WO2023181209A1 (en) Excess air ratio calculation device
JP6379683B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031