JP2009056489A - Method for repairing continuous casting mold, and repaired continuous casting mold - Google Patents

Method for repairing continuous casting mold, and repaired continuous casting mold Download PDF

Info

Publication number
JP2009056489A
JP2009056489A JP2007226309A JP2007226309A JP2009056489A JP 2009056489 A JP2009056489 A JP 2009056489A JP 2007226309 A JP2007226309 A JP 2007226309A JP 2007226309 A JP2007226309 A JP 2007226309A JP 2009056489 A JP2009056489 A JP 2009056489A
Authority
JP
Japan
Prior art keywords
continuous casting
casting mold
repairing
cooling member
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007226309A
Other languages
Japanese (ja)
Other versions
JP4659796B2 (en
Inventor
Hiroaki Fujimoto
博章 藤本
Takeshi Okazaki
猛 岡崎
Yuichi Ogawa
勇一 小川
Yoshiteru Narimatsu
義輝 成松
Osamu Tsutsue
修 筒江
Shinichi Fukunaga
新一 福永
Kazuhisa Tanaka
和久 田中
Kimihisa Kishigami
公久 岸上
Junya Iwasaki
潤哉 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP2007226309A priority Critical patent/JP4659796B2/en
Publication of JP2009056489A publication Critical patent/JP2009056489A/en
Application granted granted Critical
Publication of JP4659796B2 publication Critical patent/JP4659796B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for repairing a continuous casting mold, which method can suppress the increase of the cooling efficiency of the casting mold caused by the repairing, and can stably manufacture a cast ingot having excellent quality while suppressing break-out of the cast ingot due to the super-cooling, and further to provide a repaired continuous casting mold. <P>SOLUTION: The continuous casting mold has a pair of short sides arranged so as to be opposed to each other at an interval, a pair of long sides 10, 11 arranged so as to be opposed to each other in such a state that the short sides are sandwiched from both sides in the axial direction, and supporting members 13, 14 fixed to the back sides of the short sides and the long sides 10, 11 by means of a plurality of fastening means 12 respectively. In the method for repairing the continuous casting mold, when the front surface side of the cooling members composing the short sides and the long sides 10, 11 have been damaged by being used, a thermal resistance layer 21 composed of the metal having a thermal conductivity lower than that of the cooling member is formed on the back side surface of the damaged cooling member or both of the front side surface and the back side surface. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型の補修方法及び補修された連続鋳造用鋳型に関する。 The present invention relates to a method for repairing a continuous casting mold used for producing a slab and a repaired continuous casting mold.

従来、図5、図6(A)〜(C)に示す連続鋳造用鋳型(以下、単に鋳型ともいう)80に溶鋼を供給して鋳片を鋳造している。この鋳型80は、間隔を有して対向配置された銅板で構成される一対の短辺(短片ともいう)81、82と、この各短辺81、82を幅方向両側から挟み込んだ状態で対向配置された銅板で構成される一対の長辺(長片ともいう)83、84とを備えている。
この短辺81、82は、鏡面対称で同じ構成となっており、裏面側の上下方向に多数の導水溝85〜87が設けられ、この短辺81、82の裏面側に、ボルト88によってバックプレート(支持部材、冷却箱、又は水箱ともいう)89、90が固定されている。また、長辺83、84も、裏面側の上下方向に多数の導水溝85〜87が設けられ、この長辺83、84の裏面側に、ボルト88によってバックプレート91、92が固定されている(例えば、特許文献1参照)。
Conventionally, molten steel is supplied to a continuous casting mold (hereinafter, also simply referred to as a mold) 80 shown in FIGS. 5 and 6A to 6C to cast a slab. The mold 80 is opposed to a pair of short sides (also referred to as short pieces) 81 and 82 made of copper plates opposed to each other with a gap therebetween, with the short sides 81 and 82 being sandwiched from both sides in the width direction. And a pair of long sides (also referred to as long pieces) 83 and 84 formed of copper plates arranged.
The short sides 81 and 82 are mirror-symmetrical and have the same configuration, and a large number of water guide grooves 85 to 87 are provided in the vertical direction on the back side. The back side of the short sides 81 and 82 is backed by bolts 88. Plates 89 and 90 (also called support members, cooling boxes, or water boxes) are fixed. The long sides 83 and 84 are also provided with a large number of water guide grooves 85 to 87 in the vertical direction on the back side, and the back plates 91 and 92 are fixed to the back side of the long sides 83 and 84 by bolts 88. (For example, refer to Patent Document 1).

鋳型80は、短辺81、82、長辺83、84、及びそれぞれのバックプレート89〜92を有して構成され、対向配置される長辺83、84に固定されたバックプレート91、92の両端部には、それぞれボルト93が取付けられ、ばね(図示しない)を介してナット94で固定されている。
連続鋳造作業時においては、バックプレート89〜92の下部に設けられた給水部(図示しない)から、短辺81、82及び長辺83、84に設けられた多数の導水溝85〜87を介して、バックプレート89〜92の上部に設けられた排水部(図示しない)へ冷却水を流している。これにより、各短辺81、82と各長辺83、84を冷却しながら、鋳型80の上方から溶鋼を注いで溶鋼の初期凝固を行い、凝固シェルが形成された鋳片を鋳型下方よりほぼ一定速度で連続して引き抜き、鋳片を製造する。
このように、鋳片を製造することで、各短辺81、82と各長辺83、84の表面側(溶鋼接触面側)に損傷が発生した場合には、表面側を改削(研削ともいう)して除去する補修作業を行う。この補修作業を複数回行うことで、同一の鋳型を繰り返し使用できる。
The mold 80 is configured to include short sides 81 and 82, long sides 83 and 84, and respective back plates 89 to 92, and the back plates 91 and 92 fixed to the long sides 83 and 84 that are opposed to each other. Bolts 93 are attached to both ends, and are fixed with nuts 94 via springs (not shown).
At the time of continuous casting work, from the water supply part (not shown) provided in the lower part of the back plates 89 to 92, the short sides 81 and 82 and the long sides 83 and 84 are provided via a large number of water guide grooves 85 to 87. Then, cooling water is allowed to flow to a drainage section (not shown) provided on the upper portions of the back plates 89 to 92. As a result, while cooling the short sides 81 and 82 and the long sides 83 and 84, the molten steel is poured from above the mold 80 to perform the initial solidification of the molten steel, and the slab formed with the solidified shell is almost removed from below the mold. Drawing continuously at a constant speed to produce a slab.
In this way, when the slab is manufactured, if damage occurs on the surface side (molten steel contact surface side) of each of the short sides 81 and 82 and each of the long sides 83 and 84, the surface side is modified (ground). (Also called) and repair work to be removed. By performing this repair work a plurality of times, the same mold can be used repeatedly.

特開2003−136204号公報JP 2003-136204 A

しかしながら、補修の際に行う各短辺81、82又は各長辺83、84の表面側の改削に伴い、その厚みが使用開始時の厚みより薄くなって熱抵抗が低下するため、以下の問題が発生していた。
各短辺81、82と各長辺83、84の熱抵抗が、使用開始時よりも低下することで、その表面温度が低下(例えば、300℃から240℃へ低下)し、凝固シェルが形成された鋳片の冷却効率が高められてその収縮量が大きくなる。このため、各短辺81、82及び各長辺83、84の表面と鋳片表面との間に発生するギャップ(隙間)が大きくなり、このギャップが溶鋼静圧により鋳型のコーナー部に集約され、コーナー部における鋳片の凝固遅れが拡大する。
この結果、改削を行うたびに、鋳型のコーナー部における鋳片の品質が低下し易くなり、また鋳型のコーナー部に位置する鋳片の凝固シェルが薄くなり、熱応力等で割れ易くなるため、鋳型下端で凝固シェルが破断し溶鋼が外部に噴出するブレークアウトが発生する恐れがあった。
However, as the surface side of each of the short sides 81 and 82 or the long sides 83 and 84 is repaired, the thickness becomes thinner than the thickness at the start of use and the thermal resistance is lowered. There was a problem.
The thermal resistance of each of the short sides 81 and 82 and each of the long sides 83 and 84 is lower than that at the start of use, thereby lowering the surface temperature (for example, from 300 ° C. to 240 ° C.) and forming a solidified shell. The cooling efficiency of the cast slab is increased and the amount of shrinkage is increased. For this reason, the gap (gap) generated between the surface of each short side 81, 82 and each long side 83, 84 and the slab surface becomes large, and this gap is concentrated at the corner of the mold by the molten steel static pressure. The solidification delay of the slab at the corner increases.
As a result, the quality of the slab at the corner of the mold tends to deteriorate each time refurbishment, and the solidified shell of the slab located at the corner of the mold becomes thin and is easily broken by thermal stress. There was a possibility that a breakout occurred in which the solidified shell was broken at the lower end of the mold and the molten steel was ejected to the outside.

本発明はかかる事情に鑑みてなされたもので、補修に伴う鋳型の冷却効率の上昇を抑制でき、過冷却による鋳片のブレークアウトを抑制しながら、良好な品質を備える鋳片を安定に製造可能な連続鋳造用鋳型の補修方法及び補修された連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and it is possible to suppress an increase in cooling efficiency of a mold accompanying repair, and stably manufacture a slab having good quality while suppressing breakout of the slab due to overcooling. It is an object of the present invention to provide a method for repairing a continuous casting mold and a repaired continuous casting mold.

前記目的に沿う第1の発明に係る連続鋳造用鋳型の補修方法は、間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺と、前記短辺及び前記長辺の裏面側に複数の締結手段によってそれぞれ固定された支持部材とを有し、使用によって前記短辺又は前記長辺を構成する冷却部材の表面側が損傷した連続鋳造用鋳型の補修方法において、
損傷した前記冷却部材の裏面側の面、又は表面側と裏面側の双方の面に、該冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成する。
In the repair method for a continuous casting mold according to the first invention that meets the above-described object, a pair of short sides that are opposed to each other with a gap therebetween, and the short sides that are sandwiched from both sides in the width direction are arranged to face each other. It has a pair of long sides and a supporting member fixed by a plurality of fastening means on the short side and the back side of the long side, respectively, and the surface side of the cooling member constituting the short side or the long side by use is In repairing damaged molds for continuous casting,
A heat resistance layer made of a metal having a thermal conductivity smaller than that of the cooling member is formed on the back surface side of the damaged cooling member or on both the front surface side and the back surface side.

前記目的に沿う第2の発明に係る連続鋳造用鋳型の補修方法は、間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺と、前記短辺及び前記長辺の裏面側に複数の締結手段によってそれぞれ固定された支持部材とを有し、使用によって前記短辺又は前記長辺を構成する冷却部材の表面側が損傷した連続鋳造用鋳型の補修方法において、
損傷した前記冷却部材の表面側の面に、該冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成し、該熱抵抗層の厚みを、損傷した前記冷却部材を補修する際に行う該冷却部材の研削厚みに応じて設定する。
In the repair method for a continuous casting mold according to the second aspect of the present invention, the pair of short sides arranged to face each other with a gap therebetween, and the short sides are arranged to face each other with the short sides sandwiched from both sides in the width direction. It has a pair of long sides and a supporting member fixed by a plurality of fastening means on the short side and the back side of the long side, respectively, and the surface side of the cooling member constituting the short side or the long side by use is In repairing damaged molds for continuous casting,
When a damaged surface of the cooling member is formed with a heat resistance layer made of a metal having a lower thermal conductivity than the cooling member, and the thickness of the heat resistance layer is repaired Is set according to the grinding thickness of the cooling member.

第1の発明に係る連続鋳造用鋳型の補修方法において、前記熱抵抗層の厚みは、損傷した前記冷却部材を補修する際に行う該冷却部材の研削厚みに応じて設定されることが好ましい。
第1の発明に係る連続鋳造用鋳型の補修方法において、前記熱抵抗層は損傷した前記冷却部材の裏面側の面に形成され、該冷却部材に設けられた導水溝は、その内幅Wが8mm以上300mm以下、深さDが3mm以上20mm以下であり、かつ、深さDと内幅Wの比D/Wが0.01以上2.5以下の関係を満足して幅広に形成されていることが好ましい。
In the method for repairing a continuous casting mold according to the first invention, it is preferable that the thickness of the thermal resistance layer is set in accordance with a grinding thickness of the cooling member to be performed when repairing the damaged cooling member.
In the method for repairing a continuous casting mold according to the first invention, the thermal resistance layer is formed on a surface on the back side of the damaged cooling member, and the water guide groove provided in the cooling member has an inner width W. 8 mm or more and 300 mm or less, depth D is 3 mm or more and 20 mm or less, and the ratio D / W of depth D to inner width W satisfies the relationship of 0.01 or more and 2.5 or less, and is formed wide. Preferably it is.

第1の発明に係る連続鋳造用鋳型の補修方法において、前記熱抵抗層は損傷した前記冷却部材の裏面側の面に形成され、該冷却部材に設けられた導水溝は、該冷却部材の裏面側に形成された空間部と、該冷却部材の裏面側に向けて突出して、その先端面が該冷却部材の前記空間部を形成する底面に当接する仕切り部が設けられたスペーサーとで形成されていることが好ましい。
第1、第2の発明に係る連続鋳造用鋳型の補修方法において、前記熱抵抗層はめっき又は溶射により形成されることが好ましい。
第1、第2の発明に係る連続鋳造用鋳型の補修方法において、前記熱抵抗層を構成する前記金属はNi又はNiを含む合金であることが好ましい。
In the method for repairing a continuous casting mold according to the first invention, the thermal resistance layer is formed on a surface on the back side of the damaged cooling member, and the water guide groove provided on the cooling member is a back surface of the cooling member. And a spacer provided with a partition portion that protrudes toward the back surface side of the cooling member and that has a front end surface that abuts against a bottom surface that forms the space portion of the cooling member. It is preferable.
In the method for repairing a continuous casting mold according to the first and second inventions, the thermal resistance layer is preferably formed by plating or thermal spraying.
In the method for repairing a continuous casting mold according to the first and second inventions, the metal constituting the thermal resistance layer is preferably Ni or an alloy containing Ni.

前記目的に沿う第3の発明に係る補修された連続鋳造用鋳型は、第1、第2の発明に係る連続鋳造用鋳型の補修方法を用いて補修されている。 The repaired continuous casting mold according to the third aspect of the invention that meets the above object is repaired by using the method for repairing the continuous casting mold according to the first and second aspects of the invention.

請求項1及びこれに従属する請求項3〜7記載の連続鋳造用鋳型の補修方法、及び請求項8記載の補修された連続鋳造用鋳型は、損傷した冷却部材の裏面側の面、又は表面側と裏面側の双方の面に、冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成するので、補修のため冷却部材の研削を行い、その厚みが薄くなった場合でも、補修を行う前と同様の冷却条件で溶鋼の冷却を実施できる。これにより、過冷却による鋳片のブレークアウトを抑制しながら、良好な品質を備える鋳片を安定に製造できる。 The method for repairing a continuous casting mold according to claim 1 and claims 3 to 7 dependent thereon, and the repaired continuous casting mold according to claim 8 include a back surface or a surface of a damaged cooling member. Since a heat resistance layer composed of a metal having a lower thermal conductivity than the cooling member is formed on both the side and the back surface, grinding the cooling member for repair, even when its thickness is reduced, The molten steel can be cooled under the same cooling conditions as before the repair. Thereby, the slab provided with good quality can be stably manufactured while suppressing breakout of the slab due to overcooling.

請求項2及びこれに従属する請求項6、7記載の連続鋳造用鋳型の補修方法、及び請求項8記載の補修された連続鋳造用鋳型は、損傷した冷却部材の表面側の面に、冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成するので、補修のため冷却部材の研削を行い、その厚みが薄くなった場合でも、補修を行う前と同様の冷却条件で溶鋼の冷却を実施できる。そして、熱抵抗層の厚みが、補修する際の冷却部材の研削厚みに応じて設定されているので、補修を行うごとに、冷却部材の熱抵抗を未使用の状態まで復元できる。
これにより、過冷却による鋳片のブレークアウトを抑制しながら、良好な品質を備える鋳片を安定に製造できる。
The method for repairing a continuous casting mold according to claim 2 and claims 6 and 7 dependent thereon, and the repaired continuous casting mold according to claim 8 are cooled on the surface of the damaged cooling member on the surface side. Since a heat resistance layer made of a metal with lower thermal conductivity than the member is formed, even if the cooling member is ground for repair and its thickness is reduced, the molten steel is used under the same cooling conditions as before repair. Can be cooled. And since the thickness of a thermal resistance layer is set according to the grinding thickness of the cooling member at the time of repair, whenever it repairs, the thermal resistance of a cooling member can be restored to an unused state.
Thereby, the slab provided with good quality can be stably manufactured while suppressing breakout of the slab due to overcooling.

特に、請求項3記載の連続鋳造用鋳型の補修方法は、熱抵抗層の厚みが、補修する際の冷却部材の研削厚みに応じて設定されているので、補修を行うごとに、冷却部材の熱抵抗を未使用の状態まで復元できる。
請求項4記載の連続鋳造用鋳型の補修方法は、熱抵抗層を、冷却部材の表面側よりも温度が低い裏面側の面に形成するので、例えば、熱応力に起因する熱抵抗層へのクラックによる被害を避けることができる。また、導水溝の幅を所定範囲内の幅広に形成するので、例えば、めっき又は溶射の施工性及び作業性を良好にできる。
In particular, in the method for repairing a continuous casting mold according to claim 3, since the thickness of the heat resistance layer is set according to the grinding thickness of the cooling member at the time of repairing, each time repair is performed, The thermal resistance can be restored to an unused state.
The method for repairing a continuous casting mold according to claim 4, wherein the heat resistance layer is formed on the surface on the back surface side having a temperature lower than that on the surface side of the cooling member. Damage caused by cracks can be avoided. Moreover, since the width of the water guide groove is formed wide within a predetermined range, for example, the workability and workability of plating or thermal spraying can be improved.

請求項5記載の連続鋳造用鋳型の補修方法は、導水溝を、冷却部材の裏面側に形成された空間部と、空間部を形成する底面に当接する仕切り部が設けられたスペーサーとで形成するので、支持部材に加工を施す必要がなく、改造加工に伴うコストの低減が図れる。
請求項6記載の連続鋳造用鋳型の補修方法は、熱抵抗層がめっき又は溶射により形成されるので、熱抵抗層と冷却部材との密着性を高めることができる。
請求項7記載の連続鋳造用鋳型の補修方法は、熱抵抗層を構成する金属が、Ni又はNiを含む合金であるので、熱抵抗層と冷却部材との密着性を更に高めることができる。
6. The method for repairing a continuous casting mold according to claim 5, wherein the water guide groove is formed by a space portion formed on the back surface side of the cooling member and a spacer provided with a partition portion contacting the bottom surface forming the space portion. Therefore, it is not necessary to process the support member, and the cost associated with the remodeling process can be reduced.
In the method for repairing the continuous casting mold according to claim 6, since the heat resistance layer is formed by plating or thermal spraying, the adhesion between the heat resistance layer and the cooling member can be improved.
In the method for repairing a continuous casting mold according to claim 7, since the metal constituting the heat resistance layer is Ni or an alloy containing Ni, the adhesion between the heat resistance layer and the cooling member can be further improved.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る連続鋳造用鋳型の補修方法によって補修された連続鋳造用鋳型の長辺の裏面側の説明図、図2(A)は図1のa−a矢視断面図、(B)は図1のb−b矢視断面図、(C)は図1のc−c矢視断面図、図3は図1のd−d矢視断面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is an explanatory view of the back side of the long side of a continuous casting mold repaired by the method for repairing a continuous casting mold according to one embodiment of the present invention, and FIG. 2 (A) is a in FIG. -A arrow sectional view, (B) is a bb arrow sectional view of FIG. 1, (C) is a cc arrow sectional view of FIG. 1, and FIG. 3 is a dd arrow sectional view of FIG. It is.

図1〜図3に示すように、本発明の一実施の形態に係る連続鋳造用鋳型の補修方法によって補修された連続鋳造用鋳型(以下、単に鋳型ともいう)は、間隔を有して対向配置された図示しない一対の短辺(短片ともいう)と、短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺(長片ともいう)10、11と、短辺と長辺10、11の裏面(溶鋼と接する面とは反対側の面)側にそれぞれ上下方向(鋳造方向)に並べて配置された複数の締結手段12を備えた締結手段群によってそれぞれ固定された支持部材の一例であるバックプレート(冷却箱又は水箱ともいう)13、14とを有する鋳型が、使用により損傷したため補修したものである。鋳型は、バックプレート13、14の下部に設けられた給水部(図示しない)から、短辺と長辺10、11の裏面側に設けられた多数の導水溝15、16を介して、バックプレート13、14の上部に設けられた排水部17へ冷却水を流し、短辺と長辺10、11とで形成される鋳型本体内に供給された溶鋼を冷却部材となる短辺と長辺10、11で冷却し凝固させながら下方へ引き抜きスラブ(鋳片の一例)を製造できる。なお、短辺と長辺10、11は、その幅のみが異なって他の構成は略同様であり、また長辺10、11は鏡面対称であるため、以下、図1〜図3に示す長辺10の構成を主として、詳しく説明する。 As shown in FIGS. 1 to 3, continuous casting molds repaired by the continuous casting mold repair method according to one embodiment of the present invention (hereinafter also simply referred to as molds) are opposed to each other with a gap therebetween. A pair of unillustrated short sides (also referred to as short pieces), a pair of long sides (also referred to as long pieces) 10 and 11, which are opposed to each other with the short sides sandwiched from both sides in the width direction, short sides and long sides Support members fixed by fastening means groups each having a plurality of fastening means 12 arranged side by side in the vertical direction (casting direction) on the back surfaces (surfaces opposite to the surface in contact with the molten steel) of sides 10 and 11. A mold having back plates (also referred to as cooling boxes or water boxes) 13 and 14 as an example is repaired because it has been damaged by use. The mold is supplied from a water supply section (not shown) provided below the back plates 13 and 14 through a plurality of water guide grooves 15 and 16 provided on the back sides of the short sides and the long sides 10 and 11. Cooling water is supplied to the drainage part 17 provided in the upper part of 13 and 14, and the short side and long side 10 used as the cooling member are the molten steel supplied in the mold main body formed by the short side and long sides 10 and 11. The slab (an example of a cast slab) can be manufactured while being cooled and solidified at 11. The short side and the long sides 10 and 11 are different in only the width, and the other configurations are substantially the same. Further, since the long sides 10 and 11 are mirror-symmetrical, the long sides shown in FIGS. The configuration of the side 10 will be mainly described in detail.

損傷前の鋳型において、各短辺は、銅(Cu)又は銅合金(Cu合金)で構成され、例えば、厚みが5mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、各長辺10、11は、銅又は銅合金で構成され、例えば、厚みが5mm以上100mm以下程度、幅(鋳片と接触する幅)が600mm以上3000mm以下程度、上下方向の長さが短辺と同程度である。
従って、対向配置される一対の短辺の間隔は、600mm以上3000mm以下程度であり、一対の長片10、11の間隔は、50mm以上300mm以下程度であり、また鋳型の上下方向の長さは、600mm以上1200mm以下程度である。なお、対向配置される短辺は、上記した範囲内でその間隔を変えることができる。
これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。
In the mold before damage, each short side is made of copper (Cu) or a copper alloy (Cu alloy). For example, the thickness is about 5 mm to 100 mm, the width is about 50 mm to 300 mm, and the length in the vertical direction. Is about 600 mm or more and 1200 mm or less. Each of the long sides 10 and 11 is made of copper or a copper alloy. For example, the thickness is about 5 mm to 100 mm, the width (the width in contact with the slab) is about 600 mm to 3000 mm, and the length in the vertical direction is The same as the short side.
Therefore, the distance between the pair of short sides arranged opposite to each other is about 600 mm to 3000 mm, the distance between the pair of long pieces 10 and 11 is about 50 mm to 300 mm, and the length in the vertical direction of the mold is , 600 mm or more and 1200 mm or less. In addition, the short side opposingly arranged can change the space | interval within the above-mentioned range.
Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

長辺10の裏面側に設けられた導水溝15、16は、長辺10の裏面側に形成された空間部18と、バックプレート13とで形成されている。
長辺10に形成された空間部18は、長辺10を平板化して、この部分の長辺10の厚みTを、5mm以上60mm以下とするようにして形成する。
一方、バックプレート13には、長辺10の裏面側に向けて長辺10の上下方向に渡って突出して、その先端面が長辺10の空間部18を形成する底面に当接する仕切り部19、20が設けられている。なお、幅方向に隣り合う締結手段群の列の間にそれぞれ複数本(本実施の形態では、2本)の仕切り部19、20が設けられている。この幅方向に隣り合う締結手段群の間隔Sは、例えば、50mm以上200mm以下程度である。
これにより、隣り合う仕切り部19、20間に導水溝16が、また締結手段群を中心として隣り合う仕切り部20、19間に導水溝15が、それぞれ形成される。
The water guiding grooves 15 and 16 provided on the back side of the long side 10 are formed by the space 18 formed on the back side of the long side 10 and the back plate 13.
The space 18 formed in the long side 10 is formed by flattening the long side 10 so that the thickness T of the long side 10 in this portion is 5 mm or more and 60 mm or less.
On the other hand, the back plate 13 protrudes in the vertical direction of the long side 10 toward the back surface side of the long side 10, and a partition portion 19 whose front end surface abuts against a bottom surface forming the space portion 18 of the long side 10. , 20 are provided. A plurality of (two in the present embodiment) partition portions 19 and 20 are provided between the rows of fastening means groups adjacent in the width direction. The interval S between the fastening means groups adjacent in the width direction is, for example, about 50 mm to 200 mm.
Thereby, the water guide groove 16 is formed between the adjacent partition parts 19 and 20, and the water guide groove 15 is formed between the adjacent partition parts 20 and 19 around the fastening means group.

この仕切り部19、20のうち、締結手段12の側方部分に位置する仕切り部19、20を、他の部分よりも幅狭にして、締結手段12を間に有する導水溝15の平断面積の変化量を小さくしているが、各仕切り部の断面形状を同一にしてもよい。なお、導水溝16は、長辺10の上下方向に渡ってその断面形状が同一である。
また、仕切り部をバックプレートに設けず、仕切り部が設けられたスペーサーを介して、バックプレートを長辺に固定することもできる。この場合、長辺の裏面側であって、締結手段群の上下に隣り合う締結手段を連結する領域に、長辺の上下方向に渡って長辺の裏面側から突出する固定部を残して空間部を形成する。そして、スペーサーを固定部にねじで固定した後、その裏面側にバックプレートを取付ける。なお、スペーサーは、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄、又は耐食性を備えるステンレスで構成し、長辺の幅方向に、締結手段群を境として複数配置するとよい。
Of these partitions 19, 20, the partitions 19, 20 located at the side portions of the fastening means 12 are made narrower than the other parts, and the plane cross-sectional area of the water guide groove 15 having the fastening means 12 therebetween. However, the sectional shape of each partition may be the same. The water guide groove 16 has the same cross-sectional shape in the vertical direction of the long side 10.
Further, the partition plate is not provided on the back plate, and the back plate can be fixed to the long side via a spacer provided with the partition portion. In this case, on the back side of the long side, in the region connecting the fastening means adjacent to the top and bottom of the fastening means group, leaving a fixing portion protruding from the back side of the long side in the vertical direction of the long side. Forming part. And after fixing a spacer to a fixing | fixed part with a screw, a back plate is attached to the back surface side. The spacer may be made of, for example, copper, copper alloy, aluminum, aluminum alloy, iron, or stainless steel having corrosion resistance, and a plurality of spacers may be arranged in the width direction of the long side with the fastening means group as a boundary.

なお、各導水溝15、16は、その内幅W1、W2が8mm以上300mm以下、深さD1、D2が3mm以上20mm以下であり、かつ、深さD1と内幅W1の比D1/W1と深さD2と内幅W2の比D2/W2が、それぞれ0.01以上2.5以下の関係を満足している。
このため、各導水溝15、16は、従来例である図6(A)〜(C)に示した導水溝の内幅(5mm程度)と比較して、幅広に形成されている。
Each of the water guide grooves 15 and 16 has an inner width W1 and W2 of 8 mm to 300 mm, depths D1 and D2 of 3 mm to 20 mm, and a ratio D1 / W1 between the depth D1 and the inner width W1. The ratio D2 / W2 between the depth D2 and the inner width W2 satisfies the relationship of 0.01 or more and 2.5 or less.
For this reason, each of the water guide grooves 15 and 16 is formed wider than the inner width (about 5 mm) of the water guide groove shown in FIGS.

長辺10の表面側が損傷して、補修を行った鋳型においては、長辺10の裏面側の面であって、空間部18が形成される領域に、熱抵抗層21が形成されている。この熱抵抗層21の厚みT1は、長辺10を補修する際に行う長辺10の切削厚み(研削厚みともいう)に応じて設定する。
具体的には、図2(A)〜(C)に示すように、熱抵抗層21を構成する金属の熱伝導率をλ1、厚みをT1とし、長辺10を構成する金属の熱伝導率をλ2、切削した厚みをT2とした場合、以下の関係が成り立つようにする。
T1/λ1=(T2/λ2)×α
ここで、αは、0.9以上1.1以下である。このαの数値範囲であれば、使用上問題ない。
In the mold in which the surface side of the long side 10 is damaged and repaired, the heat resistance layer 21 is formed in the region on the back side of the long side 10 where the space 18 is formed. The thickness T1 of the heat resistance layer 21 is set according to the cutting thickness (also referred to as grinding thickness) of the long side 10 performed when repairing the long side 10.
Specifically, as shown in FIGS. 2A to 2C, the thermal conductivity of the metal constituting the thermal resistance layer 21 is λ1, the thickness is T1, and the thermal conductivity of the metal constituting the long side 10 is set. Is λ2 and the cut thickness is T2, the following relationship is established.
T1 / λ1 = (T2 / λ2) × α
Here, α is 0.9 or more and 1.1 or less. If it is in this numerical value range, there is no problem in use.

なお、上記した熱抵抗層21の厚みT1は、例えば、0.1mm以上4mm以下の範囲内で行う。
本実施の形態では、形成する熱抵抗層21の厚みT1と同じだけ、空間部18が形成された長辺10の裏面側(空間部18の底面)を彫り込み加工した後、熱抵抗層21を形成した場合について示した。この場合は、彫り込み加工した深さも、上記した切削した厚みT2に算入する。
しかし、熱抵抗層の厚みが、冷却水の流れに影響を与えない程度であれば、長辺の裏面側を彫り込み加工することなく、空間部18の底面に熱抵抗層を形成してもよい。
In addition, thickness T1 of the above-mentioned heat resistance layer 21 is performed within the range of 0.1 mm or more and 4 mm or less, for example.
In the present embodiment, the back surface side of the long side 10 in which the space 18 is formed (the bottom surface of the space 18) is engraved and processed by the same amount as the thickness T1 of the heat resistance layer 21 to be formed. The case of forming was shown. In this case, the engraved depth is also included in the cut thickness T2.
However, as long as the thickness of the heat resistance layer does not affect the flow of the cooling water, the heat resistance layer may be formed on the bottom surface of the space portion 18 without engraving the back side of the long side. .

この熱抵抗層21は、メニスカスの上方50mmの位置から、メニスカスの下方300mm位置までの範囲内に渡って全体的に設けているが、この範囲内に部分的に設けてもよく、また長辺の全体に渡って又は部分的に設けてもよい。なお、メニスカス位置は、長辺10の上端から下方へ50mm以上150mm以下の範囲内にある。
熱抵抗層21は、長辺10を構成する銅(熱伝導率:0.941cal/cm/sec/℃)又は銅合金より熱伝導率が小さく(例えば、0.3cal/cm/sec/℃以下、好ましくは、0.1cal/cm/sec/℃以下)て、熱抵抗が大きい金属で構成されている。この金属としては、例えば、Ni(熱伝導率:0.16cal/cm/sec/℃)又はNiを含む合金を使用することが好ましい。なお、Niを含む合金とは、例えば、Ni−Cu合金、Ni−Co合金、Ni−Co系合金、Ni−Si−Cu合金、Ni−Mn合金、Ni−Fe合金、Ni−Cr合金、Ni−Cr系合金、Ni−Cr−Fe合金、Ni−Mo−Cr系合金、及びNi−Cr−Fe−Mo合金である。
The thermal resistance layer 21 is provided over the entire range from the position 50 mm above the meniscus to the position 300 mm below the meniscus. It may be provided entirely or partially. The meniscus position is in the range of 50 mm or more and 150 mm or less downward from the upper end of the long side 10.
The thermal resistance layer 21 has a thermal conductivity smaller than that of copper (thermal conductivity: 0.941 cal / cm / sec / ° C.) or a copper alloy constituting the long side 10 (for example, 0.3 cal / cm / sec / ° C. or less). , Preferably 0.1 cal / cm / sec / ° C. or less) and is made of a metal having a high thermal resistance. As this metal, it is preferable to use, for example, Ni (thermal conductivity: 0.16 cal / cm / sec / ° C.) or an alloy containing Ni. The alloy containing Ni is, for example, a Ni-Cu alloy, a Ni-Co alloy, a Ni-Co alloy, a Ni-Si-Cu alloy, a Ni-Mn alloy, a Ni-Fe alloy, a Ni-Cr alloy, Ni -Cr alloy, Ni-Cr-Fe alloy, Ni-Mo-Cr alloy, and Ni-Cr-Fe-Mo alloy.

以上に示した長辺10の裏面側(冷却面とは反対側)には、複数の締結手段12を使用して、例えば、ステンレス製のバックプレート13(例えば、厚みが50mm以上500mm以下程度)が取付けられる。この取付けに際しては、バックプレート13の周辺部に、バックプレート13の給水部、排水部17、及び長辺10の導水溝15、16を囲むように溝(図示しない)が形成され、ここにOリングを配置することで、長辺10とバックプレート13の密着性を向上させ、導水溝15、16からの冷却水の漏れを防止している。このとき、バックプレート13に設けられた仕切り部19、20の先端面が、空間部18を形成する底面、即ち熱抵抗層21の表面に当接する。
この締結手段12は、長辺10に形成されている雌ねじ部22と、雌ねじ部22に螺合してバックプレート13を締着する雄ねじ(図示しない)を有している。また、雄ねじを取付けるため、バックプレート13に形成された孔(図示しない)には、予め防水可能なシール座金が配置されており、雄ねじを取付けた部分からの冷却水の漏れを防止している。
On the back side of the long side 10 shown above (the side opposite to the cooling surface), a plurality of fastening means 12 are used, for example, a stainless steel back plate 13 (for example, a thickness of about 50 mm to about 500 mm) Is installed. At the time of this attachment, grooves (not shown) are formed in the periphery of the back plate 13 so as to surround the water supply portion of the back plate 13, the drainage portion 17, and the water guide grooves 15, 16 of the long side 10. By arranging the ring, the adhesion between the long side 10 and the back plate 13 is improved, and the leakage of the cooling water from the water guide grooves 15 and 16 is prevented. At this time, the front end surfaces of the partition portions 19 and 20 provided on the back plate 13 come into contact with the bottom surface forming the space portion 18, that is, the surface of the heat resistance layer 21.
The fastening means 12 has a female screw portion 22 formed on the long side 10 and a male screw (not shown) that is screwed into the female screw portion 22 to fasten the back plate 13. Further, in order to attach the male screw, a hole (not shown) formed in the back plate 13 is provided with a seal washer that can be waterproofed in advance, thereby preventing leakage of cooling water from the portion where the male screw is attached. .

また、長辺10の表面である溶鋼接触面(鋳型本体の内側面)には、損傷部位を除去した後、コーティング層を形成してもよい。
コーティング層は、例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、又はNiのめっきを使用できるが、溶射(例えば、NiベースのCr−Si−B系合金)も使用できる。このコーティング層は、同一種類の成分を、長辺に使用する銅板の表面全面に渡って形成してもよく、また、複数種類の成分を、銅板の上下方向の異なる領域に、各成分の機能に応じてそれぞれ形成してもよい。
以上に示した長辺は、それぞれ銅板表面にコーティング層を形成した後、所定の形状を、従来公知の機械加工を行って製造する。
この長辺の形状は、一対の長辺の間隔を、スラブの引き抜き方向へ向けて同一としてもよいが、スラブの凝固収縮形状に応じて狭くすることが好ましい。
In addition, a coating layer may be formed on the molten steel contact surface (the inner surface of the mold body) that is the surface of the long side 10 after removing the damaged portion.
For example, a Co alloy such as Co—Ni, a Ni alloy such as Ni—Fe, or Ni plating can be used for the coating layer, but thermal spraying (eg, Ni-based Cr—Si—B alloy) is also used. it can. This coating layer may be formed over the entire surface of the copper plate used for the long sides of the same type of component, and multiple types of components may be formed in different areas in the vertical direction of the copper plate. It may be formed according to each.
Each of the long sides shown above is manufactured by forming a coating layer on the surface of the copper plate and then performing a conventionally known machining process on a predetermined shape.
As for the shape of the long side, the distance between the pair of long sides may be the same in the drawing direction of the slab, but it is preferable that the long side is narrowed according to the solidification shrinkage shape of the slab.

続いて、本発明の一実施の形態に係る連続鋳造用鋳型の補修方法について説明する。
未使用状態の連続鋳造用鋳型は、各短辺と各長辺の表面に損傷がない状態であるが、鋳片を製造することで、例えば、長辺の表面側(溶鋼接触面側)に損傷が発生する。
そこで、長辺の表面側を改削(研削ともいう)して、損傷部位を除去する補修作業を行う。
まず、図2(A)〜(C)に示すように、長辺10の表面側を、損傷の深さに応じて所定厚みT2(例えば、1回当たり1〜3mm程度)改削する。
次に、長辺10の改削厚みT2と、長辺10を構成する銅の熱伝導率から、熱抵抗層21を形成する金属とその厚みT1を決定する。このとき、形成する熱抵抗層21の厚みに応じて、長辺10の裏面側(空間部18の底面)を彫り込むため、この彫り込み深さも、前記した改削厚みT2に算入する。
Then, the repair method of the casting mold for continuous casting which concerns on one embodiment of this invention is demonstrated.
The continuous casting mold in an unused state is in a state in which the surface of each short side and each long side is not damaged, but by producing a cast piece, for example, on the surface side of the long side (molten steel contact surface side) Damage will occur.
Therefore, repair work for removing the damaged portion is performed by reworking (also called grinding) the surface side of the long side.
First, as shown in FIGS. 2A to 2C, the surface side of the long side 10 is cut by a predetermined thickness T2 (for example, about 1 to 3 mm per time) according to the depth of damage.
Next, the metal that forms the thermal resistance layer 21 and its thickness T1 are determined from the cut thickness T2 of the long side 10 and the thermal conductivity of copper constituting the long side 10. At this time, since the back side (the bottom surface of the space 18) of the long side 10 is engraved according to the thickness of the heat resistance layer 21 to be formed, this engraving depth is also included in the above-described cutting thickness T2.

そして、熱抵抗層21を構成する金属であるNi又はNiを含む合金を、彫り込まれた底面に対してめっき又は溶射して付着させ、機械加工によりその表面(空間部18の底面となる面)を平滑にする。なお、雌ねじ部22の表面(バックプレート13との接触面)に、予め被覆材料(即ち、レジスト)からなるレジスト膜を形成し、雌ねじ部22表面へ熱抵抗層が形成されることを防止する。
このように、熱抵抗層21を形成した後、レジスト膜を除去し、バックプレート13を取付け、熱抵抗層21の表面に仕切り部19、20の先端面を当接させて、鋳型形状に組み立て、再び鋳造作業を開始する。
補修作業を行うことにより、同一の鋳型を繰り返し使用できる。
Then, Ni or an alloy containing Ni, which is a metal constituting the heat resistance layer 21, is attached to the engraved bottom surface by plating or spraying, and the surface thereof (surface that becomes the bottom surface of the space portion 18) by machining. To smooth. In addition, a resist film made of a coating material (that is, a resist) is formed in advance on the surface of the female screw portion 22 (contact surface with the back plate 13) to prevent a heat resistance layer from being formed on the surface of the female screw portion 22. .
Thus, after forming the thermal resistance layer 21, the resist film is removed, the back plate 13 is attached, and the tip surfaces of the partition portions 19 and 20 are brought into contact with the surface of the thermal resistance layer 21 to be assembled into a mold shape. Then start casting work again.
By performing repair work, the same mold can be used repeatedly.

次に、本発明の作用効果を確認するため、FEM解析(有限要素法を用いた解析)を行った結果について説明する。
ここで、従来例の長辺は、図6に示した形状であり、鋳片を製造することで、長辺の表面側(溶鋼接触面側)に損傷が発生したため、表面側を改削(研削ともいう)して除去する補修作業を行ったものである。このように、長辺の表面側の改削を行うことで、その厚みが使用開始時の厚みより薄くなっている(使用開始時の銅板厚み:25mm、改削後の厚み:19mm)。なお、銅板に形成した導水溝は、その深さが13mm、幅が5mmである。
一方、実施例の長辺は、図1、図2(A)〜(C)、及び図3に示した形状であり、上記した改削後の長辺を構成する銅板の裏面側に、Ni(熱伝導率:0.16cal/cm/sec/℃)からなる熱抵抗層を形成したものである。なお、熱抵抗層の厚みT1は、1.4mmであり、各導水溝は、その内幅W1が60mm、深さD1が5mmであり、内幅W2が20mm、深さD2が5mmであり、更に深さD1と内幅W1の比D1/W1、及び深さD2と内幅W2の比D2/W2が、それぞれ0.08、0.25である。
Next, the results of FEM analysis (analysis using the finite element method) for confirming the effects of the present invention will be described.
Here, the long side of the conventional example has the shape shown in FIG. 6, and by manufacturing the slab, damage has occurred on the surface side (molten steel contact surface side) of the long side. Repair work to be removed by grinding). Thus, the thickness of the surface side of the long side is reduced, so that the thickness is smaller than the thickness at the start of use (copper plate thickness at the start of use: 25 mm, thickness after the cut: 19 mm). In addition, the water guide groove formed in the copper plate has a depth of 13 mm and a width of 5 mm.
On the other hand, the long side of an Example is the shape shown in FIG.1, FIG.2 (A)-(C) and FIG. 3, and it is Ni on the back surface side of the copper plate which comprises the long side after an above-described cutting. A thermal resistance layer made of (thermal conductivity: 0.16 cal / cm / sec / ° C.) is formed. The heat resistance layer has a thickness T1 of 1.4 mm, and each water guide groove has an inner width W1 of 60 mm, a depth D1 of 5 mm, an inner width W2 of 20 mm, and a depth D2 of 5 mm. Furthermore, the ratio D1 / W1 between the depth D1 and the inner width W1 and the ratio D2 / W2 between the depth D2 and the inner width W2 are 0.08 and 0.25, respectively.

上記した実施例と比較例の長辺を使用した場合のブレークアウトの発生率指数を、図4に示す。なお、図4では、従来例の長辺を使用した場合のブレークアウトの発生率指数である0.5を基準として、実施例のブレークアウトの発生率指数を求めている。
図4に示すように、実施例の長辺を使用することで、比較例の長辺を使用した場合と比較して、ブレークアウトの発生率指数を大幅に低減できることを確認できた。これは、比較例の長辺が、改削後にその裏面側に熱抵抗層を形成していないため、長辺の熱抵抗が使用開始時よりも低下することで、その表面温度が低下し、凝固シェルが形成された鋳片の冷却効率が高められてその収縮量が大きくなったことによるコーナーエアギャップの発生と増加に伴う凝固遅れに起因する。
以上のことから、本願発明の連続鋳造用鋳型の補修方法で補修された連続鋳造用鋳型を使用することで、補修に伴う鋳型の冷却効率の上昇を抑制でき、過冷却による鋳片のブレークアウトを抑制しながら、良好な品質を備える鋳片を安定に製造できることを確認できた。
FIG. 4 shows a breakout occurrence rate index when the long sides of the above-described examples and comparative examples are used. In FIG. 4, the breakout occurrence rate index of the example is obtained with reference to 0.5, which is the breakout occurrence rate index when the long side of the conventional example is used.
As shown in FIG. 4, it was confirmed that by using the long side of the example, the occurrence index of breakout can be greatly reduced as compared with the case of using the long side of the comparative example. This is because the long side of the comparative example does not form a thermal resistance layer on the back side after refurbishing, so the thermal resistance of the long side is lower than at the start of use, and the surface temperature is reduced, This is due to the solidification delay caused by the generation and increase of the corner air gap due to the increased cooling efficiency of the slab formed with the solidified shell and the increased shrinkage.
From the above, by using the continuous casting mold repaired by the method for repairing the continuous casting mold of the present invention, it is possible to suppress an increase in the cooling efficiency of the mold accompanying the repair, and the slab breakout due to the overcooling It was confirmed that a slab having good quality could be stably produced while suppressing the above.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型の補修方法及び補修された連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長辺及び短辺を冷却部材としたが、短辺のみ、又は長辺のみを冷却部材としてもよい。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, a case where a repair method for a continuous casting mold of the present invention and a repaired continuous casting mold are configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the present invention. It is.
Moreover, in the said embodiment, although the long side and the short side were used as the cooling member, it is good also considering only a short side or only a long side as a cooling member.

そして、本実施の形態においては、長辺の裏面側のみに熱抵抗層を形成した場合について説明したが、長辺の表面側のみに形成してもよく、更には長辺の裏面側と表面側の両面に形成してもよい。なお、長辺の表面側に熱抵抗層を形成する場合は、補修のため長辺の表面側の切削作業を行った後、その表面に熱抵抗層を形成して機械加工を行い、更に熱抵抗層の表面に前記したコーティング層を形成する。
更に、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ブルームを製造する鋳型に、本願発明を適用することも勿論可能である。
In the present embodiment, the case where the thermal resistance layer is formed only on the back side of the long side has been described. However, it may be formed only on the front side of the long side, and further, the back side and the surface of the long side. It may be formed on both sides. When forming the thermal resistance layer on the surface side of the long side, after performing cutting work on the surface side of the long side for repair, forming a thermal resistance layer on the surface and performing machining, further heat The aforementioned coating layer is formed on the surface of the resistance layer.
Furthermore, in the above embodiment, the configuration of the mold for producing a slab, which is an example of a slab, has been described. However, the present invention is applied to other slabs having different shapes and dimensions, for example, a mold for producing a bloom. Of course, it is also possible.

本発明の一実施の形態に係る連続鋳造用鋳型の補修方法によって補修された連続鋳造用鋳型の長辺の裏面側の説明図である。It is explanatory drawing of the back side of the long side of the casting mold for continuous casting repaired with the repair method of the casting mold for continuous casting which concerns on one embodiment of this invention. (A)は図1のa−a矢視断面図、(B)は図1のb−b矢視断面図、(C)は図1のc−c矢視断面図である。1A is a cross-sectional view taken along the line aa in FIG. 1, FIG. 1B is a cross-sectional view taken along the line bb in FIG. 1, and FIG. 図1のd−d矢視断面図である。FIG. 2 is a cross-sectional view taken along the line dd in FIG. 1. ブレークアウトの発生率を示す説明図である。It is explanatory drawing which shows the incidence rate of a breakout. 従来例に係る連続鋳造用鋳型の平面図である。It is a top view of the casting mold for continuous casting which concerns on a prior art example. (A)は同連続鋳造用鋳型の長辺の裏面側の説明図、(B)は(A)のe−e矢視断面図、(C)は(A)のf−f矢視断面図である。(A) is explanatory drawing of the back side of the long side of the casting mold for continuous casting, (B) is a sectional view taken along arrow ee of (A), and (C) is a sectional view taken along arrow ff of (A). It is.

符号の説明Explanation of symbols

10、11:長辺、12:締結手段、13、14:バックプレート(支持部材)、15、16:導水溝、17:排水部、18:空間部、19、20:仕切り部、21:熱抵抗層、22:雌ねじ部 10, 11: Long side, 12: Fastening means, 13, 14: Back plate (support member), 15, 16: Water guide groove, 17: Drain part, 18: Space part, 19, 20: Partition part, 21: Heat Resistance layer, 22: female thread

Claims (8)

間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺と、前記短辺及び前記長辺の裏面側に複数の締結手段によってそれぞれ固定された支持部材とを有し、使用によって前記短辺又は前記長辺を構成する冷却部材の表面側が損傷した連続鋳造用鋳型の補修方法において、
損傷した前記冷却部材の裏面側の面、又は表面側と裏面側の双方の面に、該冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成することを特徴とする連続鋳造用鋳型の補修方法。
A pair of short sides arranged opposite to each other with a gap, a pair of long sides arranged opposite to each other with the short sides sandwiched from both sides in the width direction, and a plurality of short sides and a plurality of back sides of the long sides In a method for repairing a continuous casting mold having a support member fixed by a fastening means, and the surface side of the cooling member constituting the short side or the long side is damaged by use,
Continuous casting characterized by forming a heat resistance layer made of a metal having a lower thermal conductivity than that of the cooling member on the back side surface of the damaged cooling member, or both the front side and the back side. Mold repair method.
間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺と、前記短辺及び前記長辺の裏面側に複数の締結手段によってそれぞれ固定された支持部材とを有し、使用によって前記短辺又は前記長辺を構成する冷却部材の表面側が損傷した連続鋳造用鋳型の補修方法において、
損傷した前記冷却部材の表面側の面に、該冷却部材より熱伝導率が小さい金属で構成される熱抵抗層を形成し、該熱抵抗層の厚みを、損傷した前記冷却部材を補修する際に行う該冷却部材の研削厚みに応じて設定することを特徴とする連続鋳造用鋳型の補修方法。
A pair of short sides arranged opposite to each other with a gap, a pair of long sides arranged opposite to each other with the short sides sandwiched from both sides in the width direction, and a plurality of short sides and a plurality of back sides of the long sides In a method for repairing a continuous casting mold having a support member fixed by a fastening means, and the surface side of the cooling member constituting the short side or the long side is damaged by use,
When a damaged surface of the cooling member is formed with a heat resistance layer made of a metal having a lower thermal conductivity than the cooling member, and the thickness of the heat resistance layer is repaired A method for repairing a casting mold for continuous casting, which is set according to the grinding thickness of the cooling member.
請求項1記載の連続鋳造用鋳型の補修方法において、前記熱抵抗層の厚みは、損傷した前記冷却部材を補修する際に行う該冷却部材の研削厚みに応じて設定されることを特徴とする連続鋳造用鋳型の補修方法。 2. The method of repairing a continuous casting mold according to claim 1, wherein the thickness of the thermal resistance layer is set according to a grinding thickness of the cooling member that is performed when repairing the damaged cooling member. Repair method for continuous casting mold. 請求項1及び3のいずれか1項に記載の連続鋳造用鋳型の補修方法において、前記熱抵抗層は損傷した前記冷却部材の裏面側の面に形成され、該冷却部材に設けられた導水溝は、その内幅Wが8mm以上300mm以下、深さDが3mm以上20mm以下であり、かつ、深さDと内幅Wの比D/Wが0.01以上2.5以下の関係を満足して幅広に形成されていることを特徴とする連続鋳造用鋳型の補修方法。 4. The method for repairing a continuous casting mold according to claim 1, wherein the heat resistance layer is formed on a surface on the back side of the damaged cooling member, and is provided on the cooling member. 5. Satisfies the relationship that the inner width W is 8 mm or more and 300 mm or less, the depth D is 3 mm or more and 20 mm or less, and the ratio D / W between the depth D and the inner width W is 0.01 or more and 2.5 or less. A method for repairing a casting mold for continuous casting, characterized in that it is formed wide. 請求項1及び3のいずれか1項に記載の連続鋳造用鋳型の補修方法において、前記熱抵抗層は損傷した前記冷却部材の裏面側の面に形成され、該冷却部材に設けられた導水溝は、該冷却部材の裏面側に形成された空間部と、該冷却部材の裏面側に向けて突出して、その先端面が該冷却部材の前記空間部を形成する底面に当接する仕切り部が設けられたスペーサーとで形成されていることを特徴とする連続鋳造用鋳型の補修方法。 4. The method for repairing a continuous casting mold according to claim 1, wherein the heat resistance layer is formed on a surface on the back side of the damaged cooling member, and is provided on the cooling member. 5. Are provided with a space portion formed on the back surface side of the cooling member, and a partition portion projecting toward the back surface side of the cooling member, the tip surface of which contacts the bottom surface forming the space portion of the cooling member. A method for repairing a casting mold for continuous casting, characterized in that the casting mold is formed with a spacer. 請求項1〜5のいずれか1項に記載の連続鋳造用鋳型の補修方法において、前記熱抵抗層はめっき又は溶射により形成されることを特徴とする連続鋳造用鋳型の補修方法。 The method for repairing a continuous casting mold according to any one of claims 1 to 5, wherein the thermal resistance layer is formed by plating or spraying. 請求項1〜6のいずれか1項に記載の連続鋳造用鋳型の補修方法において、前記熱抵抗層を構成する前記金属はNi又はNiを含む合金であることを特徴とする連続鋳造用鋳型の補修方法。 The method for repairing a continuous casting mold according to any one of claims 1 to 6, wherein the metal constituting the thermal resistance layer is Ni or an alloy containing Ni. Repair method. 請求項1〜7のいずれか1項に記載の連続鋳造用鋳型の補修方法を用いて補修されたことを特徴とする連続鋳造用鋳型。 A casting mold for continuous casting, which is repaired by using the method for repairing a casting mold for continuous casting according to any one of claims 1 to 7.
JP2007226309A 2007-08-31 2007-08-31 Method for repairing continuous casting mold and repaired continuous casting mold Active JP4659796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226309A JP4659796B2 (en) 2007-08-31 2007-08-31 Method for repairing continuous casting mold and repaired continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226309A JP4659796B2 (en) 2007-08-31 2007-08-31 Method for repairing continuous casting mold and repaired continuous casting mold

Publications (2)

Publication Number Publication Date
JP2009056489A true JP2009056489A (en) 2009-03-19
JP4659796B2 JP4659796B2 (en) 2011-03-30

Family

ID=40552721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226309A Active JP4659796B2 (en) 2007-08-31 2007-08-31 Method for repairing continuous casting mold and repaired continuous casting mold

Country Status (1)

Country Link
JP (1) JP4659796B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218401A (en) * 2010-04-08 2011-11-04 Mishima Kosan Co Ltd Method for repairing mold for continuous casting, and repaired mold for continuous casting
JP2012000626A (en) * 2010-06-15 2012-01-05 Mishima Kosan Co Ltd Mold for continuous casting
JP2012045591A (en) * 2010-08-27 2012-03-08 Mishima Kosan Co Ltd Continuous casting mold
JP2016112589A (en) * 2014-12-16 2016-06-23 Jfeスチール株式会社 Continuous casting method of steel and casting mold for continuous casting

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109550910B (en) * 2017-09-25 2021-12-28 上海宝钢工业技术服务有限公司 Repair method for narrow-face copper plate of chamfering crystallizer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JPH11156490A (en) * 1997-11-29 1999-06-15 Mishima Kosan Co Ltd Method for repairing mold piece used for continuous casting
JPH11197800A (en) * 1997-10-25 1999-07-27 Km Europ Metal Ag Mold for continuous casting
JP2003136204A (en) * 2001-10-30 2003-05-14 Mishima Kosan Co Ltd Continuous casting mold dealing with high heat flux

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305351A (en) * 1997-05-08 1998-11-17 Nkk Corp Mending method of continuous casting mold
JPH11197800A (en) * 1997-10-25 1999-07-27 Km Europ Metal Ag Mold for continuous casting
JPH11156490A (en) * 1997-11-29 1999-06-15 Mishima Kosan Co Ltd Method for repairing mold piece used for continuous casting
JP2003136204A (en) * 2001-10-30 2003-05-14 Mishima Kosan Co Ltd Continuous casting mold dealing with high heat flux

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218401A (en) * 2010-04-08 2011-11-04 Mishima Kosan Co Ltd Method for repairing mold for continuous casting, and repaired mold for continuous casting
JP2012000626A (en) * 2010-06-15 2012-01-05 Mishima Kosan Co Ltd Mold for continuous casting
JP2012045591A (en) * 2010-08-27 2012-03-08 Mishima Kosan Co Ltd Continuous casting mold
JP2016112589A (en) * 2014-12-16 2016-06-23 Jfeスチール株式会社 Continuous casting method of steel and casting mold for continuous casting

Also Published As

Publication number Publication date
JP4659796B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4659796B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP4676509B2 (en) Mold for tire
JP4659706B2 (en) Continuous casting mold
JP4808196B2 (en) Continuous casting mold
JP6085571B2 (en) Continuous casting mold
JP6229650B2 (en) Steel continuous casting method and continuous casting mold
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP4611350B2 (en) Continuous casting mold
JP6206106B2 (en) Continuous casting roll and continuous casting method
JP2009006348A (en) Continuous casting mold
JP2019171435A (en) Method of continuous casting
JP5525966B2 (en) Continuous casting mold
JP2006263980A (en) Forming mold for tire vulcanizing mold, manufacturing method of tire vulcanizing mold using the forming mold and tire manufactured using tire vulcanizing mold
JP4227768B2 (en) Continuous casting mold
JP2018149602A (en) Method for continuously casting steel
JP2008105068A (en) Continuous casting mold
JP6817498B1 (en) Mold for continuous casting
KR20100004316A (en) A twin roll of strip casting apparatus
JP5525896B2 (en) Continuous casting mold
JP2010188399A (en) Mold for continuous casting
JP5525925B2 (en) Continuous casting mold
JP2013198915A (en) Mold for continuous casting
JPH0999345A (en) Mold for casting beam blank
JP2016168610A (en) Steel continuous casting method
JP3125257U (en) Die casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4659796

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250