JP5525925B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP5525925B2
JP5525925B2 JP2010136277A JP2010136277A JP5525925B2 JP 5525925 B2 JP5525925 B2 JP 5525925B2 JP 2010136277 A JP2010136277 A JP 2010136277A JP 2010136277 A JP2010136277 A JP 2010136277A JP 5525925 B2 JP5525925 B2 JP 5525925B2
Authority
JP
Japan
Prior art keywords
cooling member
continuous casting
water guide
molten steel
fastening means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010136277A
Other languages
Japanese (ja)
Other versions
JP2012000626A (en
Inventor
健也 末長
新一 平野
猛 岡崎
勇一 小川
新一 福永
武士 大川
和則 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Nippon Steel Corp
Original Assignee
Mishima Kosan Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd, Nippon Steel Corp filed Critical Mishima Kosan Co Ltd
Priority to JP2010136277A priority Critical patent/JP5525925B2/en
Publication of JP2012000626A publication Critical patent/JP2012000626A/en
Application granted granted Critical
Publication of JP5525925B2 publication Critical patent/JP5525925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、鋳片の製造において、上下方向に貫通する空間部が形成された冷却部材を有する連続鋳造用鋳型(以下、単に鋳型ともいう)を使用し、空間部に溶鋼を供給して冷却しながら凝固させている。ここで、溶鋼の凝固過程においては凝固収縮が発生するため、鋳片の引き抜き方向へ向けて、冷却部材内面と溶鋼の冷却部材接触面側に形成される凝固シェルとの間に隙間が生じ、鋳片のコーナー部の冷却効率が他の部分よりも低下して、凝固遅れが発生していた。そこで、特許文献1のように、冷却部材内面(溶鋼接触面側)の形状を、鋳片の凝固プロフィールに対応させた形状、即ちマルチテーパとした鋳型が提案されている。 Conventionally, in the manufacture of slabs, a continuous casting mold (hereinafter simply referred to as a mold) having a cooling member formed with a space portion penetrating in the vertical direction is used, and molten steel is supplied to the space portion while cooling. It is solidified. Here, since solidification shrinkage occurs in the solidification process of the molten steel, a gap is generated between the cooling member inner surface and the solidified shell formed on the cooling member contact surface side of the molten steel in the drawing direction of the slab, The cooling efficiency of the corner portion of the slab was lowered as compared with other portions, and solidification delay occurred. Therefore, as in Patent Document 1, a mold in which the shape of the cooling member inner surface (molten steel contact surface side) corresponds to the solidification profile of the slab, that is, a multi-taper mold has been proposed.

特開2008−49385号公報JP 2008-49385 A

しかしながら、冷却部材内面の形状を鋳片の凝固プロフィールに対応させたマルチテーパとするには、冷却部材内面を鋳造方向全体に渡って、少しずつ異なる寸法の形状加工を施す必要があった。このため、加工がしづらく、製造コストが上昇するという問題がある。また、冷却部材内面の形状を決定するには、複雑な計算を行って決定した数値に基づいて形状加工を行うため、加工が複雑となり、製造コストの上昇を招いている。更に、冷却部材の溶鋼接触面側の形状をマルチテーパとしても、冷却部材を均一に冷却することができないため、冷却部材の熱変形が均一に起こらず、鋳造を開始して時間が経過すると、冷却部材内面に形成したマルチテーパの形状が徐々に変化して、冷却部材内面の形状が鋳片の凝固プロフィールに対応しなくなる。その結果、冷却部材内面と凝固シェルとの間に隙間が生じ、鋳片のコーナー部で凝固遅れが発生するという問題が生じている。 However, in order to make the shape of the inner surface of the cooling member multi-tapered so as to correspond to the solidification profile of the slab, it is necessary to process the inner surface of the cooling member with slightly different dimensions over the entire casting direction. For this reason, there exists a problem that it is difficult to process and a manufacturing cost rises. Further, in order to determine the shape of the inner surface of the cooling member, since the shape processing is performed based on the numerical value determined by performing a complicated calculation, the processing becomes complicated and the manufacturing cost increases. Furthermore, even if the shape of the molten steel contact surface side of the cooling member is multi-tapered, the cooling member cannot be cooled uniformly, so the thermal deformation of the cooling member does not occur uniformly, and when the time has elapsed after starting casting, The shape of the multitaper formed on the inner surface of the cooling member gradually changes, and the shape of the inner surface of the cooling member does not correspond to the solidification profile of the slab. As a result, there is a problem that a gap is generated between the inner surface of the cooling member and the solidified shell, and a solidification delay occurs at the corner portion of the slab.

本発明はかかる事情に鑑みてなされたもので、加工が容易で製造コストが低く、しかも、鋳片のコーナー部での凝固遅れを抑制して良好な品質の鋳片の製造が可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a continuous casting that is easy to process, has a low manufacturing cost, and that can suppress the solidification delay at the corner of the slab and can produce a slab of good quality. An object is to provide a casting mold.

前記目的に沿う本発明に係る連続鋳造用鋳型は、上下方向に貫通した空間部を内側に形成し、外面側が冷却水により冷却される冷却部材と、該冷却部材の外面側にそれぞれ上下方向に並べて配置された複数の締結手段からなる締結手段群によって、該冷却部材を取付ける支持部材とを有し、前記空間部に溶鋼を供給して冷却しながら鋳片を製造する連続鋳造用鋳型において、
前記冷却部材の内面側に、溶鋼湯面位置を上位置とし、該上位置から下方へ300mm以上を下位置として前記空間部側へ張り出す膨出部を設け、該膨出部の縦断面の内側線を、前記上位置から前記下位置まで3つ以上8つ以下の連続する直線部で構成し、しかも、前記隣り合う直線部のなす角を、174度以上179.97度以下の範囲内とし、前記上位置と前記下位置を結ぶ直線を底辺とする前記膨出部の最大高さhを0.2mm以上5mm以下の範囲内とし、
前記冷却部材の外面側の上下方向に設けられ、冷却水が流れる多数の導水溝は、該冷却部材の外面側に設けられた溝と、該冷却部材の外面に当接する前記支持部材とで形成され、しかも上下方向に隣り合う前記締結手段間の前記導水溝は、その内幅Wが10mm以上80mm以下、深さDが3mm以上10mm以下であり、かつ、深さDと内幅Wの比D/Wが0.075以上1以下の関係を満足して幅広に形成されており、
前記導水溝のうち、少なくとも前記冷却部材の溶鋼湯面位置直下に位置する前記締結手段の側方部分の前記導水溝の内幅W1を、上下方向に隣り合う前記締結手段間の前記導水溝の内幅Wよりも狭くして3mm以上40mm以下とし、かつ前記側方部分の前記導水溝の深さD1を、上下方向に隣り合う前記締結手段間の前記導水溝の深さDよりも深くして3mmを超え20mm以下としている。
The continuous casting mold according to the present invention that meets the above-mentioned object is formed with a space portion penetrating in the vertical direction on the inside, a cooling member whose outer surface side is cooled by cooling water, and an outer surface side of the cooling member in the vertical direction, respectively. In a continuous casting mold for producing a slab while cooling by supplying molten steel to the space part by a fastening means group composed of a plurality of fastening means arranged side by side and having a support member for mounting the cooling member,
On the inner surface side of the cooling member, there is provided a bulging portion that projects from the upper position to the space portion side with the molten steel surface position as the upper position and 300 mm or more downward from the upper position. The inner line is composed of 3 or more and 8 or less continuous straight portions from the upper position to the lower position, and the angle formed by the adjacent straight portions is within a range of 174 degrees or more and 179.97 degrees or less. And the maximum height h of the bulging part having a straight line connecting the upper position and the lower position as a base is in a range of 0.2 mm or more and 5 mm or less,
A large number of water guide grooves provided in the vertical direction on the outer surface side of the cooling member and through which cooling water flows are formed by grooves provided on the outer surface side of the cooling member and the support member in contact with the outer surface of the cooling member. In addition, the water guide groove between the fastening means adjacent in the vertical direction has an inner width W of 10 mm to 80 mm, a depth D of 3 mm to 10 mm, and a ratio of the depth D to the inner width W. D / W is formed wide to satisfy the relationship of 0.075 or more and 1 or less,
Among the water guide grooves, at least the inner width W1 of the water guide groove at the side portion of the fastening means positioned immediately below the molten steel surface position of the cooling member is set to be the width of the water guide groove between the fastening means adjacent in the vertical direction. It is narrower than the inner width W to be 3 mm or more and 40 mm or less , and the depth D1 of the water guide groove in the side portion is made deeper than the depth D of the water guide groove between the fastening means adjacent in the vertical direction. And exceeding 3 mm and not exceeding 20 mm .

本発明に係る連続鋳造用鋳型において、前記冷却部材の前記上位置より上側の縦断面の内側線を、前記膨出部を構成する最上の前記直線部を延長して形成することが好ましい。 In the continuous casting mold according to the present invention, it is preferable that the inner line of the vertical cross section above the upper position of the cooling member is formed by extending the uppermost straight portion constituting the bulging portion.

本発明に係る連続鋳造用鋳型において、前記隣り合う直線部の連接箇所は、前記冷却部材の上下方向に均等な間隔で設けられ、前記隣り合う直線部のなす角は、同一角度であることが好ましい。 In the continuous casting mold according to the present invention, the connecting portions of the adjacent straight portions are provided at equal intervals in the vertical direction of the cooling member, and the angles formed by the adjacent straight portions are the same angle. preferable.

本発明に係る連続鋳造用鋳型において、前記冷却部材は、間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺とで構成され、前記一対の短辺及び前記一対の長辺のいずれか一方又は双方に、前記膨出部を設けることが好ましい。 In the continuous casting mold according to the present invention, the cooling member includes a pair of short sides arranged to face each other with a gap therebetween, and a pair of long sides arranged to face each other with the short sides sandwiched from both sides in the width direction. It is preferable that the bulging portion be provided on one or both of the pair of short sides and the pair of long sides.

本発明に係る連続鋳造用鋳型において、前記冷却部材はチューブ状であることが好ましい。 In the continuous casting mold according to the present invention, the cooling member is preferably tube-shaped.

本発明に係る連続鋳造用鋳型において、前記冷却部材の溶鋼接触面側には、コーティング層が形成されていることが好ましい。 In the continuous casting mold according to the present invention, a coating layer is preferably formed on the molten steel contact surface side of the cooling member.

本発明に係る連続鋳造用鋳型において、少なくとも前記冷却部材の前記溶鋼湯面位置の直下に位置する前記締結手段の側方部分の前記導水溝の底部に、冷却効率を増大させる水平突起からなるフィンを設けることが好ましい。 In the continuous casting mold according to the present invention, at least a fin formed of a horizontal protrusion that increases cooling efficiency at a bottom portion of the water guide groove at a side portion of the fastening means positioned immediately below the molten steel surface position of the cooling member. Is preferably provided.

本発明に係る連続鋳造用鋳型において、前記溶鋼湯面位置は、前記冷却部材の上端から下方へ50mm以上150mm以下の範囲内にあり、しかも前記フィンを、該溶鋼湯面位置の上方50mmの位置から、該溶鋼湯面位置の下方150mm位置までの範囲内に設けることが好ましい。 In the continuous casting mold according to the present invention, the molten steel surface position is within a range of 50 mm or more and 150 mm or less downward from the upper end of the cooling member, and the fin is positioned at a position 50 mm above the molten steel surface position. It is preferable to provide within the range to the position of 150 mm below the molten steel surface position.

本発明に係る連続鋳造用鋳型においては、冷却部材内面(溶鋼接触面)に、溶鋼の湯面位置を上位置とし、上位置から下方へ300mm以上を下位置とする範囲に膨出部を設けることで、冷却部材内面の形状を鋳片の凝固プロフィールに対応させた形状に近づけるので、冷却部材内面を簡単な形状にでき、加工が容易になって製造コストの低減が図れる。
また、導水溝を従来のものより幅広にすることで冷却部材の冷却効率を高めることができ、冷却部材を均一に冷却することができる。そして、冷却部材の溶鋼湯面位置直下に位置する締結手段の側方部分の導水溝の内幅を、上下方向に隣り合う締結手段間の導水溝の内幅よりも狭くし、かつ側方部分の導水溝の深さを、上下方向に隣り合う締結手段間の導水溝の深さよりも深くするので、従来温度が高くなり易かった部分の冷却効率を高めることができる。これらにより、冷却部材の下部から上部へかけて冷却水の流れを安定にでき、冷却部材に熱変形が均一に生じて、鋳造を開始して時間が経過しても冷却部材内面の形状を鋳片の凝固プロフィールに対応させた形状に維持することができる。その結果、鋳片のコーナー部での凝固遅れが抑制されて良好な品質の鋳片を製造できる。
In the casting mold for continuous casting according to the present invention, a bulging portion is provided on the cooling member inner surface (molten steel contact surface) in a range in which the molten steel surface level is the upper position and the lower position is 300 mm or more downward from the upper position. Thus, since the shape of the inner surface of the cooling member is brought close to the shape corresponding to the solidification profile of the slab, the inner surface of the cooling member can be made simple, and processing can be facilitated to reduce the manufacturing cost.
Moreover, the cooling efficiency of a cooling member can be improved by making a water guide groove wider than the conventional thing, and a cooling member can be cooled uniformly. And the inner width of the water guide groove of the side part of the fastening means located immediately below the molten steel surface position of the cooling member is made narrower than the inner width of the water guide groove between the fastening means adjacent in the vertical direction, and the side part Since the depth of the water guide groove is made deeper than the depth of the water guide groove between the fastening means adjacent in the vertical direction, it is possible to increase the cooling efficiency of the portion where the temperature has been easily increased . By these, over the bottom of the cooling member to the top can the flow of cooling water stable, cooling member thermally deformed uniformly occur, even time to start the casting has passed a cooling member inner surface shape Can be maintained in a shape corresponding to the solidification profile of the slab. As a result, solidification delay at the corner of the slab is suppressed, and a slab of good quality can be manufactured.

本発明に係る連続鋳造用鋳型において、冷却部材の上位置より上側の縦断面の内側線を、膨出部を構成する最上の直線部を延長して形成する場合、冷却部材の溶鋼接触面側の形状を簡単にでき、製造コストの更なる低減が図れる。 In the continuous casting mold according to the present invention, when the inner line of the vertical cross section above the upper position of the cooling member is formed by extending the uppermost straight portion constituting the bulging portion, the molten steel contact surface side of the cooling member Thus, the manufacturing cost can be further reduced.

本発明に係る連続鋳造用鋳型において、隣り合う直線部の連接箇所を、冷却部材の上下方向に均等な間隔で設け、隣り合う直線部のなす角を、同一角度とする場合、膨出部の形状を更に簡単にでき、鋳型の製造を更に容易にできる。 In the continuous casting mold according to the present invention, when connecting portions of adjacent straight portions are provided at equal intervals in the vertical direction of the cooling member, and the angles formed by the adjacent straight portions are the same angle, The shape can be further simplified, and the mold can be manufactured more easily.

本発明に係る連続鋳造用鋳型において、冷却部材が、間隔を有して対向配置された一対の短辺と、短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺とで構成され、一対の短辺及び一対の長辺のいずれか一方又は双方に、膨出部を設けた場合、上下方向に貫通した空間部を簡便に形成することができる。 In the continuous casting mold according to the present invention, the cooling member includes a pair of short sides arranged to face each other with a gap therebetween, and a pair of long sides arranged to face each other with the short sides sandwiched from both sides in the width direction. In the case where the bulging portion is provided on one or both of the pair of short sides and the pair of long sides, a space portion penetrating in the vertical direction can be easily formed.

本発明に係る連続鋳造用鋳型において、冷却部材がチューブ状である場合、鋳型の組立が容易になる。 In the continuous casting mold according to the present invention, when the cooling member has a tube shape, the assembly of the mold becomes easy.

本発明に係る連続鋳造用鋳型において、冷却部材の溶鋼接触面側に、コーティング層が形成されている場合、冷却部材接触面側に形成される凝固シェルとの接触で磨耗するのはコーティング層部分なので、残存するコーティング層を除去して再度コーティング層を形成することで、冷却部材の再生を容易に行うことができる。 In the continuous casting mold according to the present invention, when a coating layer is formed on the molten steel contact surface side of the cooling member, it is the coating layer portion that is worn by contact with the solidified shell formed on the cooling member contact surface side. Therefore, the cooling member can be easily regenerated by removing the remaining coating layer and forming the coating layer again.

本発明に係る連続鋳造用鋳型において、少なくとも冷却部材の溶鋼湯面位置直下に位置する締結手段の側方部分の導水溝の底部に、冷却効率を増大させる水平突起からなるフィンを設ける場合、熱負荷が大きい湯面近傍の冷却部材の温度の上昇を抑制でき、冷却部材でのクラックの発生を抑制でき、鋳型の長寿命化を図ることができる。
ここで、フィンを、溶鋼湯面位置の上方50mmの位置から、溶鋼湯面位置の下方150mm位置までの範囲内に設ける場合、冷却部材におけるクラックの発生を更に抑制できる。
In the continuous casting mold according to the present invention, when a fin made of a horizontal protrusion for increasing cooling efficiency is provided at the bottom of the water guide groove at the side portion of the fastening means positioned at least immediately below the molten steel surface position of the cooling member, An increase in the temperature of the cooling member in the vicinity of the hot water surface with a large load can be suppressed, cracks in the cooling member can be suppressed, and the life of the mold can be extended.
Here, in the case where the fin is provided within a range from a position 50 mm above the molten steel surface position to a position 150 mm below the molten steel surface position, generation of cracks in the cooling member can be further suppressed.

本発明の一実施の形態に係る連続鋳造用鋳型の長辺の縦断面図である。It is a longitudinal cross-sectional view of the long side of the casting mold for continuous casting which concerns on one embodiment of this invention. (A)は同連続鋳造用鋳型の溶鋼湯面位置の直下に位置する締結手段近傍の部分平断面図、(B)は同連続鋳造用鋳型の上下方向に隣り合う締結手段間の部分平断面図である。(A) is a partial plan sectional view in the vicinity of the fastening means located immediately below the molten steel surface position of the continuous casting mold, and (B) is a partial planar section between the fastening means adjacent in the vertical direction of the continuous casting mold. FIG. (A)は同連続鋳造用鋳型の長辺の裏面側の説明図、(B)は(A)のa−a矢視断面図、(C)は(A)のb−b矢視断面図である。(A) is explanatory drawing of the back side of the long side of the mold for continuous casting, (B) is a sectional view taken along the line aa of (A), and (C) is a sectional view taken along the line bb of (A). It is. (A)、(B)はそれぞれ第1、第2の変形例に係る連続鋳造用鋳型の長辺の縦断面図である。(A), (B) is a longitudinal cross-sectional view of the long side of the casting mold for continuous casting which concerns on the 1st, 2nd modification, respectively. (A)は第3の変形例に係る長辺の裏面側の部分拡大図、(B)は(A)のc−c矢視断面図である。(A) is the elements on larger scale of the back side of the long side concerning the 3rd modification, (B) is a cc arrow sectional view of (A).

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1〜図3に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)10は、上下方向に貫通した空間部11を内側に形成し、外面側(裏面側)が冷却水により冷却される冷却部材12と、冷却部材12が取付けられる支持部材の一例であるバックプレート(冷却箱又は水箱ともいう)13とを有している。ここで、冷却部材12は、間隔を有して対向配置された図示しない一対の短辺(短片ともいう)と、この短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺(長片ともいう)14とで構成されている。そして、短辺及び長辺14は、その裏面(溶鋼と接する面とは反対側の面)側にそれぞれ上下方向(鋳造方向)に並べて配置された複数の締結手段15、16からなる締結手段群によって、バックプレート13に取付けられている。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 3, a continuous casting mold (hereinafter, also simply referred to as a mold) 10 according to an embodiment of the present invention forms a space portion 11 penetrating in the vertical direction on the inner side, and the outer surface side. The (rear surface side) includes a cooling member 12 that is cooled by cooling water, and a back plate (also referred to as a cooling box or a water box) 13 that is an example of a support member to which the cooling member 12 is attached. Here, the cooling member 12 includes a pair of short sides (also referred to as short pieces) (not shown) arranged to face each other with a gap therebetween, and a pair of long sides arranged to face each other with the short sides sandwiched from both sides in the width direction. (Also referred to as a long piece) 14. And the short side and the long side 14 are the fastening means group which consists of the some fastening means 15 and 16 arrange | positioned along the up-down direction (casting direction), respectively on the back surface (surface on the opposite side to the surface which contact | connects molten steel) side. Is attached to the back plate 13.

これにより、バックプレート13の下部に設けられた給水部(図示せず)から、短辺と長辺14の裏面側に設けられた多数の導水溝17〜19を介して、バックプレート13の上部に設けられた排水部(図示せず)へ冷却水を流し、短辺及び長辺14で構成される冷却部材12の空間部11に供給した溶鋼20を冷却し凝固させながら下方へ引き抜き鋳片を製造するものである。 Thereby, from the water supply part (not shown) provided in the lower part of the back plate 13, the upper part of the back plate 13 is passed through many water guide grooves 17-19 provided in the back side of the short side and the long side 14. The cooling water is poured into a drainage part (not shown) provided in the slab, and the molten steel 20 supplied to the space part 11 of the cooling member 12 composed of the short side and the long side 14 is cooled and solidified while being drawn downward. Is to be manufactured.

短辺は、例えば、厚みが5mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、長辺14は、例えば、厚みが5mm以上100mm以下程度、対向配置される一対の短辺の間隔(鋳片と接触する幅)を、600mm以上3000mm以下の範囲で変更可能とすることのできる幅を有し、上下方向の長さは短辺と同程度である。なお、短辺と長辺14は、銅又は銅合金で構成されている。これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。なお、短辺と長辺14は、その幅のみが異なって他の構成は略同様であり、また一対の長辺14は鏡面対称であるため、以下、図1〜図3に示す長辺14の構成を主として、以下、詳細に説明する。 For example, the short side has a thickness of about 5 mm to 100 mm, a width of about 50 mm to about 300 mm, and a vertical length of about 600 mm to about 1200 mm. Further, the long side 14 has a thickness of about 5 mm or more and 100 mm or less, and the distance between a pair of short sides arranged opposite to each other (width contacting the cast piece) can be changed within a range of 600 mm or more and 3000 mm or less. It has a width that can be made, and the length in the vertical direction is about the same as the short side. The short side and the long side 14 are made of copper or a copper alloy. Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured. Since the short side and the long side 14 are different in only the width and the other configurations are substantially the same, and the pair of long sides 14 are mirror-symmetrical, the long side 14 shown in FIGS. The configuration will be mainly described in detail below.

冷却部材12を構成する一対の短辺及び一対の長辺14の双方の溶鋼接触面21側(すなわち、冷却部材12の内面側)に、その幅方向に渡って、溶鋼20の溶鋼湯面位置(メニスカス位置、単に湯面位置という場合もある)を上位置P1とし、上位置P1から下方へ300mm以上を下位置P2として空間部11側へ張り出す膨出部22が設けられている。この溶鋼湯面位置は、長辺14(短辺も同様)の上端位置を基点として、下方へ50mm以上150mm以下の範囲内(ここでは、100mm程度)にある。なお、膨出部22の空間部11側への張り出し量は僅かであるが、説明の便宜上、図1、図4(A)、(B)においては、誇張して示している。 The position of the molten steel surface of the molten steel 20 across the width direction on the molten steel contact surface 21 side of the pair of short sides and the pair of long sides 14 constituting the cooling member 12 (that is, the inner surface side of the cooling member 12). A bulging portion 22 that protrudes toward the space portion 11 is provided with a meniscus position (sometimes simply referred to as a hot water surface position) as an upper position P1 and 300 mm or more downward from the upper position P1 as a lower position P2. The molten steel surface position is within a range of 50 mm or more and 150 mm or less (here, about 100 mm) starting from the upper end position of the long side 14 (the same applies to the short side). Although the amount of protrusion of the bulging portion 22 toward the space portion 11 is slight, it is exaggerated in FIGS. 1, 4A, and 4B for convenience of explanation.

ここで、膨出部22の上位置P1を、湯面位置としたのは、溶鋼の冷却の起点位置だからである。また、膨出部22の下位置P2を、上位置P1から下方へ300mm以上の位置としたのは、溶鋼の鋳型接触面側に形成される凝固シェルと冷却部材12内面との間に隙間が生じる範囲が、この範囲内であることによる。以上のことから、膨出部22の形成位置を、溶鋼の湯面位置を上位置P1とし、上位置P1から下方へ300mm以上の下位置P2までとしたが、下位置P2を、上位置P1から下方へ500mm以上の位置、更には短辺及び長辺14の下端位置とすることが好ましい。なお、図4(A)に示す長辺23は、膨出部24の形成位置を、溶鋼の湯面位置を上位置P1とし、上位置P1から下方へ300mm以上の下位置P2までとし、図5(B)に示す長辺25は、膨出部26の形成位置を、溶鋼の湯面位置を上位置P1とし、下位置P2を長辺25の下端位置としている。 Here, the reason why the upper position P1 of the bulging portion 22 is set as the molten metal surface position is that it is the starting position for cooling the molten steel. In addition, the lower position P2 of the bulging portion 22 is set to a position of 300 mm or more downward from the upper position P1 because there is a gap between the solidified shell formed on the mold contact surface side of the molten steel and the inner surface of the cooling member 12. This is because the resulting range is within this range. From the above, the formation position of the bulging portion 22 is the molten steel surface position as the upper position P1 and downward from the upper position P1 to the lower position P2 of 300 mm or more, but the lower position P2 is the upper position P1. It is preferable to set it to the lower end position of the short side and the long side 14 at a position of 500 mm or more downward. In addition, the long side 23 shown in FIG. 4 (A) has the formation position of the bulging part 24 as the molten steel surface position as the upper position P1, and downward from the upper position P1 to the lower position P2 of 300 mm or more. In the long side 25 shown in FIG. 5 (B), the formation position of the bulging portion 26 is such that the molten steel surface level is the upper position P1 and the lower position P2 is the lower end position of the long side 25.

膨出部22の縦断面の溶鋼接触面21側の輪郭線(内側線)は、上位置P1から下位置P2まで3つ以上8つ以下(本実施の形態では、3つ)の連続する直線部L1〜L3で構成されており、長辺14の溶鋼接触面21が、傾斜角度の異なる3段以上8段以下の傾斜面で構成されている。ここで、膨出部を構成する直線部が3つ未満(2つ以下)の場合、直線部の数が少な過ぎて、膨出部の縦断面形状が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。一方、直線部の数が8つを超える(9つ以上)場合、直線部の数が多過ぎて、膨出部の加工が複雑となり、製造コストの増大を招く。以上のことから、膨出部22を、3つの直線部L1〜L3で構成したが、直線部の数の下限を4つとすることが好ましく、また上限を6つとすることが好ましい。なお、図4(A)に示す長辺23は、膨出部24を、3つの直線部M1〜M3で構成し、図5(B)に示す長辺25は、膨出部26を4つの直線部N1〜N4で構成している。 Contour lines (inner lines) on the molten steel contact surface 21 side of the longitudinal section of the bulging portion 22 are 3 or more and 8 or less (three in the present embodiment) continuous straight lines from the upper position P1 to the lower position P2. It is comprised by the parts L1-L3, and the molten steel contact surface 21 of the long side 14 is comprised by the inclined surface of 3 steps or more and 8 steps or less from which an inclination angle differs. Here, when the number of straight portions constituting the bulging portion is less than three (two or less), the number of straight portions is too small, and the vertical cross-sectional shape of the bulging portion becomes an extreme shape that partially protrudes. The contact resistance with the slab increases, and wear damage is likely to occur at the bulge portion. On the other hand, when the number of straight portions exceeds eight (9 or more), the number of straight portions is too large, the processing of the bulging portion becomes complicated, and the manufacturing cost increases. From the above, the bulging portion 22 is composed of the three straight portions L1 to L3. However, the lower limit of the number of straight portions is preferably four, and the upper limit is preferably six. The long side 23 shown in FIG. 4 (A) constitutes the bulging portion 24 with three straight portions M1 to M3, and the long side 25 shown in FIG. 5 (B) has four bulging portions 26. It comprises straight portions N1 to N4.

なお、長辺14(短辺も同様)の溶鋼接触面21側であって、長辺14の上位置P1より上側の縦断面の内側線は、膨出部22を構成する最上の直線部L1を延長して形成されている。この上位置P1より上側の縦断面は、図4(A)に示すように、長辺23(短辺も同様)の溶鋼接触面側であって、長辺23の上位置P1より上側の縦断面の内側線を、膨出部24を構成する最上の直線部M1を延長して形成することなく、長辺23の裏面側と平行な垂直状態(傾斜角度0度)にしてもよい。 In addition, the inner side line of the longitudinal section on the molten steel contact surface 21 side of the long side 14 (the same applies to the short side) and above the upper position P1 of the long side 14 is the uppermost straight line portion L1 constituting the bulging portion 22. It is formed by extending. As shown in FIG. 4A, the longitudinal section above the upper position P1 is the molten steel contact surface side of the long side 23 (the same applies to the short side), and is a longitudinal section above the upper position P1 of the long side 23. The inner line of the surface may be in a vertical state (inclination angle 0 degree) parallel to the back surface side of the long side 23 without forming the uppermost straight line portion M1 constituting the bulging portion 24.

直線部L1〜L3については、最上の直線部L1と、この直線部L1に隣接する上から2番目の直線部L2のなす角θ1、この直線部L2と上から3番目の直線部L3のなす角θ2を、それぞれ174度以上179.97度以下の範囲内としている。なお、各角θ1、θ2は、同一角度であるが、異なる角度にしてもよい。ここで、隣り合う直線部のなす角θが174度未満の場合、膨出部の側断面の形状が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。一方、隣り合う直線部のなす角θが179.97度を超える場合、直線部の数が多くなって膨出部の加工が複雑となり、製造コストの増大を招く。以上のことから、隣り合う直線部L1〜L3のなす角θ1、θ2を、それぞれ174度以上179.97度以下の範囲内としたが、下限を178.0度、更には179.0度とすることが好ましく、上限を179.90度とすることが好ましい。 For the straight line portions L1 to L3, the uppermost straight line portion L1, the angle θ1 formed by the second straight line portion L2 adjacent to the straight line portion L1, and the straight line portion L2 and the third straight line portion L3 from the top are formed. The angle θ2 is in the range of 174 degrees or more and 179.97 degrees or less, respectively. Note that the angles θ1 and θ2 are the same angle, but may be different angles. Here, when the angle θ formed by the adjacent straight portions is less than 174 degrees, the shape of the side cross section of the bulging portion becomes an extreme shape that partially protrudes, the contact resistance with the slab increases, and the swelling increases. Wear damage is likely to occur at the protruding portion. On the other hand, when the angle θ formed by the adjacent straight portions exceeds 179.97 degrees, the number of straight portions increases and the processing of the bulging portion becomes complicated, resulting in an increase in manufacturing cost. From the above, the angles θ1 and θ2 formed by the adjacent straight line portions L1 to L3 are set in the range of 174 degrees or more and 179.97 degrees or less, respectively, but the lower limit is 178.0 degrees, and further 179.0 degrees. It is preferable to set the upper limit to 179.90 degrees.

上記した最上の直線部L1と次の直線部L2の連接箇所X1と、直線部L2と次の直線部L3の連接箇所X2と、下位置P2は、長辺14(短辺も同様)の上端位置から、長辺14の上下方向に異なる間隔U1〜U3で設けられている。また、図4(B)に示す長辺25も、直線部N1と直線部N2の連接箇所Y1と、直線部N2と直線部N3の連接箇所Y2と、直線部N3と直線部N4の連接箇所Y3と、下位置P2とを、長辺24の上下方向で異なる間隔R1〜R4で設けている。なお、各連接箇所X1、X2と下位置P2は、長辺14(短辺も同様)の上下方向の一部又は全部について、均等な間隔Uで設けてもよい。ここで、均等な間隔Uとは、各間隔の平均値に対して、±20%(好ましくは±5%)の範囲内で、各間隔が異なる場合も含む。 The uppermost straight line portion L1 and the next straight line portion L2 are connected at the connection point X1, the straight line portion L2 and the next straight line portion L3 are connected at the connection point X2, and the lower position P2 is the upper end of the long side 14 (the short side is the same). The distances U1 to U3 are different from each other in the vertical direction of the long side 14. Also, the long side 25 shown in FIG. 4B is also connected to the connecting portion Y1 between the straight portion N1 and the straight portion N2, the connecting portion Y2 between the straight portion N2 and the straight portion N3, and the connecting portion between the straight portion N3 and the straight portion N4. Y3 and the lower position P2 are provided at different intervals R1 to R4 in the vertical direction of the long side 24. In addition, you may provide each connection location X1, X2 and the lower position P2 by the equal space | interval U about a part or all of the up-down direction of the long side 14 (a short side is also the same). Here, the uniform interval U includes a case where each interval is different within a range of ± 20% (preferably ± 5%) with respect to an average value of each interval.

図1に示すように、上位置P1と下位置P2を結ぶ直線L4を底辺とする膨出部22の最大高さh(ここでは、上から1番目の直線部L1と2番目の直線部L2との連接箇所X1の高さ)を、0.2mm以上5mm以下の範囲内としている。ここで、最大高さhが0.2mm未満の場合、膨出部の空間部側への張り出し量が小さ過ぎて、膨出部の表面形状がスラブの凝固収縮に追従できず、膨出部の表面と溶鋼の鋳型接触面側に形成される凝固シェルとの間に隙間が生じる。一方、最大高さhが5mmを超える場合、膨出部の縦断面が、部分的に突出する極端な形状となり、鋳片との接触抵抗が大きくなって、膨出部に摩耗損傷が発生し易くなる。以上のことから、膨出部22の最大高さhを0.2mm以上5mm以下の範囲内としたが、下限を0.5mm、更には0.55mmとすることが好ましく、上限を2.5mm、更には2.2mmとすることが好ましい。 As shown in FIG. 1, the maximum height h of the bulging portion 22 whose bottom is a straight line L4 connecting the upper position P1 and the lower position P2 (here, the first straight portion L1 and the second straight portion L2 from the top) The height of the connecting portion X1) is within the range of 0.2 mm to 5 mm. Here, when the maximum height h is less than 0.2 mm, the amount of protrusion of the bulging portion toward the space is too small, and the surface shape of the bulging portion cannot follow the solidification shrinkage of the slab, and the bulging portion A gap is formed between the surface of the steel and the solidified shell formed on the mold contact surface side of the molten steel. On the other hand, when the maximum height h exceeds 5 mm, the longitudinal section of the bulge part becomes an extreme shape that partially protrudes, the contact resistance with the slab increases, and wear damage occurs in the bulge part. It becomes easy. From the above, the maximum height h of the bulging portion 22 is set in the range of 0.2 mm to 5 mm, but the lower limit is preferably 0.5 mm, more preferably 0.55 mm, and the upper limit is 2.5 mm. Furthermore, it is preferable to set it as 2.2 mm.

以上に示した膨出部の形成位置、膨出部を構成する直線部の数、隣り合う直線部のなす角、及び膨出部の最大高さhは、以下に示す条件を考慮したり、また実際に測定した結果を基にして、3次元のスラブの凝固収縮及び鋳型の熱変形を考慮したFEM解析(有限要素法を用いた解析)により、前記した範囲内で決定するのがよい。
1)スラブの形状、スラブのサイズ、又は鋳込み条件(例えば、鋳込み温度、引き抜き速度、鋳型冷却条件等)。
2)鋳込み鋼種の成分に由来する物理量(例えば、液相温度、固相温度、変態温度、線膨張率、剛性値等)。
3)鋳型とスラブ間の接触熱移動量(スラブの収縮量は、この量に大きく影響される)。
この接触熱移動量については、特開2008−49385号公報に開示されているため、その詳細内容については省略する。
The formation position of the bulging portion shown above, the number of straight portions constituting the bulging portion, the angle formed by the adjacent straight portions, and the maximum height h of the bulging portion are considered in the following conditions, Further, based on the actual measurement results, it is preferable to make the determination within the above-mentioned range by FEM analysis (analysis using a finite element method) considering solidification shrinkage of the three-dimensional slab and thermal deformation of the mold.
1) Slab shape, slab size, or casting conditions (for example, casting temperature, drawing speed, mold cooling conditions, etc.).
2) Physical quantities derived from components of cast steel (for example, liquid phase temperature, solid phase temperature, transformation temperature, linear expansion coefficient, rigidity value, etc.).
3) Amount of contact heat transfer between the mold and the slab (the amount of shrinkage of the slab is greatly affected by this amount).
Since this contact heat transfer amount is disclosed in Japanese Patent Application Laid-Open No. 2008-49385, the detailed contents thereof are omitted.

短辺及び長辺14の溶鋼接触面21側には、例えば、溶射によりコーティング層が形成されている。溶射を行うコーティング層は、同一種類の成分を、短辺及び長辺14に使用する銅板(又は銅合金板、以下同様)の表面全体に亘って形成してもよく、また、複数種類の成分を、銅板の上下方向の異なる領域に、各成分の機能に応じてそれぞれ形成してもよい。以上に示した短辺及び長辺14は、銅板を、前記した形状に従来公知の機械加工を行って加工した後、その表面にコーティング層を形成し、必要に応じて更に仕上げ加工を行う。このコーティング層としては、機械加工した短辺及び長辺14の表面に溶射を行った後に、熱処理して使用するヒュージングタイプのものと、熱処理することなく使用するヒュージングレスタイプのものがある。 On the molten steel contact surface 21 side of the short side and the long side 14, for example, a coating layer is formed by thermal spraying. The coating layer for thermal spraying may be formed over the entire surface of a copper plate (or copper alloy plate, the same shall apply hereinafter) using the same type of components on the short side and the long side 14, and a plurality of types of components May be formed in different regions in the vertical direction of the copper plate according to the function of each component. For the short side and the long side 14 shown above, the copper plate is processed into the above-described shape by performing a conventionally known machining process, and then a coating layer is formed on the surface, and further finishing is performed as necessary. As the coating layer, there are a fusing type that is used by heat treatment after spraying the surfaces of the machined short side and long side 14, and a fusingless type that is used without heat treatment. .

ヒュージングタイプの材料には、Ni又はCoをベースとしたCr−Si−B系の合金を使用でき、必要に応じてこれにサーメットを添加したものを使用できる。また、ヒュージングレスタイプの材料には、Co、Ni、又はこれらの合金に、WC(タングステンカーバイト)等の炭化物系、TiN等の窒化物系、及びCrB等の硼化物系のいずれか1又は2以上を添加したものを使用できる。なお、短辺と長辺には、上記したいずれのタイプの材料を適用することもできるが、熱処理が終了した後の銅板の形状変化を考慮すれば、短辺にヒュージングタイプの材料を、長辺にヒュージングレスタイプの材料を、それぞれ適用することが好ましい。なお、コーティング層はめっきでもよい。このめっきの材料としては、例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、又はNiを使用できる。 As the fusing type material, a Cr—Si—B based alloy based on Ni or Co can be used, and a cermet added to it can be used as necessary. The fusingless type material includes any one of Co, Ni, or alloys thereof, carbides such as WC (tungsten carbide), nitrides such as TiN, and borides such as CrB. Or what added 2 or more can be used. Note that any of the types of materials described above can be applied to the short side and the long side, but considering the shape change of the copper plate after the heat treatment is finished, a fusing type material is used on the short side, It is preferable to apply a fusingless type material to each of the long sides. The coating layer may be plated. As a material for the plating, for example, a Co alloy such as Co—Ni, a Ni alloy such as Ni—Fe, or Ni can be used.

図2(A)、(B)、図3(A)〜(C)に示すように、長辺14の裏面側に上下方向に設けられた導水溝17〜19は、長辺14の裏面側に設けられた溝27〜29と、長辺14の裏面に当接するバックプレート13とで形成されている。この溝27〜29は、長辺14の溶鋼冷却面から溝27〜29の底位置(最も深さが深い溝の底位置)までの厚みT1を、3mm以上30mm以下とするようにして形成する。ここで、長辺の厚みT1が3mm未満の場合、長辺の繰り返し使用時における研削代が減少して鋳型使用回数の低下が生じる。一方、厚みT1が30mmを超える場合、厚みが厚くなり過ぎ、鋳型温度の上昇と締結の拘束による発生応力の増加により、塑性ひずみの発生量が増大する。以上のことから、長辺の厚みT1を、3mm以上30mm以下としたが、上限を20mm、更には12mmとすることが好ましく、下限を5mm、更には7mmとすることが好ましい。 2A, 2B, and 3A to 3C, the water guide grooves 17 to 19 provided in the vertical direction on the back side of the long side 14 are on the back side of the long side 14. And the back plate 13 in contact with the back surface of the long side 14. The grooves 27 to 29 are formed such that the thickness T1 from the molten steel cooling surface of the long side 14 to the bottom position of the grooves 27 to 29 (the bottom position of the deepest groove) is 3 mm or more and 30 mm or less. . Here, when the long side thickness T1 is less than 3 mm, the grinding allowance at the time of repeated use of the long side is reduced, and the number of times the mold is used is reduced. On the other hand, if the thickness T1 exceeds 30 mm, the thickness becomes too thick, and the amount of plastic strain increases due to an increase in the mold temperature and an increase in the generated stress due to fastening constraints. From the above, the thickness T1 of the long side is set to 3 mm or more and 30 mm or less, but the upper limit is preferably 20 mm, more preferably 12 mm, and the lower limit is preferably 5 mm, more preferably 7 mm.

このように、各導水溝17〜19を構成する溝27〜29を形成することにより、隣り合う溝27、28間と、隣り合う溝28、29間と、締結手段群の上下に隣り合う締結手段15、16を連結する領域に、それぞれ仕切り部(障壁ともいう)30〜32が、長辺14の上下方向に渡って形成される。なお、幅方向に隣り合う締結手段群の間隔Sは、例えば、50mm以上200mm以下程度である。また、締結手段群を構成する締結手段15、16は、形状のみが異なるものである。これにより、長辺14の裏面側にバックプレート13を取付けることで、仕切り部30〜32の表面が、バックプレート13に当接して、隣り合う締結手段群間に、それぞれ複数(ここでは、3本)の各導水溝17〜19が形成される。 In this way, by forming the grooves 27 to 29 constituting the respective water guide grooves 17 to 19, the fastening between the adjacent grooves 27 and 28, the adjacent grooves 28 and 29, and the fastening means group adjacent to each other in the vertical direction. Partition portions (also referred to as barriers) 30 to 32 are formed in the region where the means 15 and 16 are connected, extending in the vertical direction of the long side 14. In addition, the space | interval S of the fastening means group adjacent to the width direction is about 50 mm or more and 200 mm or less, for example. Moreover, the fastening means 15 and 16 which comprise a fastening means group differ only in a shape. Thereby, by attaching the back plate 13 to the back side of the long side 14, the surfaces of the partition portions 30 to 32 abut against the back plate 13, and a plurality of (here, 3) The water guide grooves 17 to 19 are formed.

形成された導水溝17〜19のうち、上下方向に隣り合う締結手段15間の導水溝17〜19の内幅Wが10mm以上80mm以下(好ましくは、下限を15mm、上限を50mm)、深さDが3mm以上10mm以下(好ましくは、下限を5mm、上限を7mm)であり、かつ、深さDと内幅Wの比D/Wが0.075以上1以下の関係を満足して幅広に形成されている。なお、仕切り部30、31の幅W´は、例えば、導水溝17〜19の内幅Wの1/4倍以上1/2倍以下程度である。この導水溝17〜19のうち、締結手段群に隣接する導水溝17、19は、長辺14の上下方向に渡ってその断面形状が、締結手段15の側方に位置する部分と、他の部分(仕切り部32の側方に位置する部分)とで異なっている。なお、導水溝17、19の間に位置する導水溝18は、長辺14の上下方向に渡ってその断面形状が同一である。 Of the formed water guide grooves 17 to 19, the inner width W of the water guide grooves 17 to 19 between the fastening means 15 adjacent in the vertical direction is 10 mm to 80 mm (preferably lower limit is 15 mm, upper limit is 50 mm), depth D is 3 mm or more and 10 mm or less (preferably lower limit is 5 mm, upper limit is 7 mm), and the ratio D / W of depth D to inner width W satisfies the relationship of 0.075 or more and 1 or less and wide. Is formed. In addition, width W 'of the partition parts 30 and 31 is about 1/4 times or more and 1/2 times or less of the inner width W of the water guide grooves 17-19, for example. Of these water guide grooves 17 to 19, the water guide grooves 17, 19 adjacent to the fastening means group have portions whose cross-sectional shape is located on the side of the fastening means 15 in the vertical direction of the long side 14 and other parts. It differs in the part (part located in the side of the partition part 32). In addition, the cross-sectional shape of the water guide groove 18 positioned between the water guide grooves 17 and 19 is the same in the vertical direction of the long side 14.

図2(A)に示す締結手段15の側方部分の導水溝17(導水溝19も同様)の内幅W1は、図2(B)に示す上下方向に隣り合う締結手段15間の導水溝17の内幅Wよりも狭く、かつ図2(A)に示す側方部分の導水溝17の深さD1は、図2(B)に示す上下方向に隣り合う締結手段15間の導水溝17の深さDよりも深くなっている。具体的には、W1が3mm以上40mm以下、D1が3mmを超え20mm以下であり、しかもこのとき、D1/W1が、0.075を超え5以下の関係を満足している。これにより、締結手段15近傍の冷却効率を高めることができる。また、導水溝17の締結手段15の側方部分の領域Aと、上下方向に隣り合う締結手段15間の領域Bとの接続部は、領域Bから領域Aへ向け、その内幅を連続的(曲面的)に徐々に幅狭にしている。また、接続部は、領域Bから領域Aへ向け、その深さを徐々に深くしている。 The inner width W1 of the water guide groove 17 (also the water guide groove 19) in the side portion of the fastening means 15 shown in FIG. 2 (A) is the water guide groove between the fastening means 15 adjacent in the vertical direction shown in FIG. 2 (B). The depth D1 of the lateral water guide groove 17 that is narrower than the inner width W of FIG. 17 and shown in FIG. 2 (A) is the water guide groove 17 between the fastening means 15 adjacent in the vertical direction shown in FIG. 2 (B). It is deeper than the depth D. Specifically, W1 is not less than 3 mm and not more than 40 mm, D1 is more than 3 mm and not more than 20 mm, and at this time, D1 / W1 exceeds 0.075 and satisfies the relationship of 5 or less. Thereby, the cooling efficiency of the fastening means 15 vicinity can be improved. Further, the connecting portion between the region A of the side portion of the fastening means 15 of the water guiding groove 17 and the region B between the fastening means 15 adjacent in the vertical direction is directed from the region B to the region A, and the inner width thereof is continuous. The width is gradually reduced (curved). Further, the connection portion gradually increases in depth from region B to region A.

ここで、締結手段15の側方部分の導水溝17(領域A)の平断面積は、上下方向に隣り合う締結手段15間の導水溝17(領域B)の平断面積と同じ、又は−20%以上+20%以下(好ましくは、上限を+5%、下限を−5%)の範囲内である。なお、本実施の形態においては、締結手段15の側方部分に位置する仕切り部30、31を、他の部分よりも幅狭にして、導水溝17の平断面積の変化量を小さくしているが、各仕切り部30、31の断面形状を同一にしてもよい。このとき、締結手段15の側方部分の導水溝17の内幅W1、及び側方部分の導水溝17の深さD1は、前記した条件を満足している。これにより、導水溝17を流れる冷却水の流速を、長辺14の下部から上部まで略均一にできるが、締結手段の側方部分の導水溝の平断面積を、上下方向に隣り合う締結手段間の導水溝の平断面積より小さくして、導水溝における冷却効率を高めることもできる。 Here, the plane cross-sectional area of the water guide groove 17 (region A) in the side portion of the fastening means 15 is the same as the plane cross-sectional area of the water guide groove 17 (region B) between the fastening means 15 adjacent in the vertical direction, or − It is within the range of 20% or more and + 20% or less (preferably, the upper limit is + 5% and the lower limit is −5%). In the present embodiment, the partition portions 30 and 31 located at the side portions of the fastening means 15 are made narrower than the other portions, so that the amount of change in the plane cross-sectional area of the water guide groove 17 is reduced. However, the sectional shapes of the partition portions 30 and 31 may be the same. At this time, the inner width W1 of the water guide groove 17 in the side portion of the fastening means 15 and the depth D1 of the water guide groove 17 in the side portion satisfy the above-described conditions. Thereby, although the flow rate of the cooling water flowing through the water guide groove 17 can be made substantially uniform from the lower part to the upper part of the long side 14, the plane cross-sectional area of the water guide groove in the side portion of the fastening means is the fastening means adjacent in the vertical direction. The cooling efficiency in the water guide groove can also be increased by making it smaller than the plane cross-sectional area of the water guide groove.

更に、図5(A)、(B)に示すように、長辺33の溝27〜29と、バックプレート13によって形成された導水溝34〜36のうち、締結手段群に隣接する導水溝34、36のメニスカス直下に位置する締結手段15の側方部分の底部に、冷却効率を増大させる水平突起からなるフィン37、38を設けてもよい。なお、長辺33は、フィン37、38が設けられたこと以外は、前記した長辺14と同一構成である。このフィン37、38は、導水溝34、36を構成する溝27、29の底面に対して、長辺33の幅方向に、例えば、ボールエンドミル(図示しない)を動かすことで形成できる。このフィン37、38は、側断面視して波状に形成されており、長辺33の上下方向のピッチPが1mm以上5mm以下程度、深さD2が、フィン37、38を形成する前の底面に対して、0.5mm以上2mm以下程度である。なお、フィンは、導水溝34、36の全体に渡って又は部分的に設けてもよく、また、メニスカスの上方50mmの位置から、メニスカスの下方150mm位置までの範囲内に渡って全体的に、又は部分的に設けてもよい。また、フィンを、溝に沿って上下方向に設けた突起によって構成することもできる。なお、メニスカスは、長辺33の上端から下方へ50mm以上150mm以下の範囲内にある。 Further, as shown in FIGS. 5A and 5B, the water guide groove 34 adjacent to the fastening means group among the grooves 27 to 29 of the long side 33 and the water guide grooves 34 to 36 formed by the back plate 13. , 36 may be provided with fins 37 and 38 made of horizontal protrusions that increase the cooling efficiency at the bottom of the side portion of the fastening means 15 located directly below the meniscus. The long side 33 has the same configuration as the long side 14 except that the fins 37 and 38 are provided. The fins 37 and 38 can be formed by moving, for example, a ball end mill (not shown) in the width direction of the long side 33 with respect to the bottom surfaces of the grooves 27 and 29 constituting the water guiding grooves 34 and 36. The fins 37 and 38 are formed in a wave shape when viewed from the side, and the vertical pitch P of the long side 33 is about 1 mm or more and 5 mm or less, and the depth D2 is a bottom surface before the fins 37 and 38 are formed. On the other hand, it is about 0.5 mm or more and 2 mm or less. In addition, the fin may be provided over the entire water guide grooves 34, 36 or partially, and over the entire range from the position 50 mm above the meniscus to the position 150 mm below the meniscus, Or you may provide partially. Moreover, a fin can also be comprised by the protrusion provided in the up-down direction along the groove | channel. The meniscus is in the range of 50 mm or more and 150 mm or less downward from the upper end of the long side 33.

以上に示した長辺14の裏面側(冷却面とは反対側)には、複数の締結手段15、16を使用して、例えば、ステンレス製のバックプレート13(例えば、厚みが50mm以上500mm以下程度)が取付けられる。この取付けに際しては、バックプレート13の周辺部に、バックプレート13の給水部、排水部、及び長辺14の導水溝17〜19を囲むように溝(図示しない)が形成され、ここにOリングを配置することで、長辺14とバックプレート13の密着性を向上させ、導水溝17〜19からの冷却水の漏れを防止している。
この締結手段15、16は、長辺14に形成されている雌ねじ部39と、雌ねじ部39に螺合してバックプレート13を締着する雄ねじ(図示しない)を有している。また、雄ねじを取付けるため、バックプレート13に形成された孔40には、予め防水可能なシール座金が配置されており、雄ねじを取付けた部分からの冷却水の漏れを防止している。この雌ねじ部39は、バックプレート13側へ突出しており、この先端面がバックプレート13の孔40を形成する凹んだ部分に当接している。
On the back side of the long side 14 shown above (the side opposite to the cooling surface), a plurality of fastening means 15 and 16 are used, for example, a stainless steel back plate 13 (for example, a thickness of 50 mm or more and 500 mm or less). Degree) is attached. At the time of this attachment, grooves (not shown) are formed in the peripheral portion of the back plate 13 so as to surround the water supply portion, the drainage portion of the back plate 13 and the water guide grooves 17 to 19 of the long side 14. By arranging this, the adhesion between the long side 14 and the back plate 13 is improved, and the leakage of cooling water from the water guide grooves 17 to 19 is prevented.
The fastening means 15, 16 has a female screw portion 39 formed on the long side 14 and a male screw (not shown) that is screwed into the female screw portion 39 to fasten the back plate 13. Further, in order to attach the male screw, a seal washer that can be waterproofed is disposed in advance in the hole 40 formed in the back plate 13 to prevent leakage of cooling water from the portion to which the male screw is attached. The female screw portion 39 protrudes toward the back plate 13, and the tip end surface thereof is in contact with a recessed portion that forms the hole 40 of the back plate 13.

続いて、発明の一実施の形態に係る連続鋳造用鋳型10の作用について説明する。
連続鋳造用鋳型10においては、バックプレート13に取付けられている冷却部材12の内面(溶鋼接触面側)に、溶鋼湯面位置を上位置とし、上位置から下方へ300mm以上を下位置とする範囲に膨出部22を設けている。これにより、冷却部材12の内面の形状を、容易かつ安価に鋳片の凝固プロフィールに対応させた形状に近づけることができる。
Next, the operation of the continuous casting mold 10 according to the embodiment of the invention will be described.
In the continuous casting mold 10, on the inner surface (molten steel contact surface side) of the cooling member 12 attached to the back plate 13, the molten steel surface position is the upper position, and the lower position is 300 mm or more downward from the upper position. The bulging part 22 is provided in the range. Thereby, the shape of the inner surface of the cooling member 12 can be brought close to the shape corresponding to the solidification profile of the slab easily and inexpensively.

そして、上下方向に隣り合う締結手段15、16間の導水溝17、18、19を、従来のものより幅広にしている。これにより、冷却部材の冷却効率を高めることができ、冷却部材12を均一に冷却することができる。
また、少なくとも冷却部材12の溶鋼湯面位置直下に位置する締結手段15、16の側方部分の導水溝17、19の内幅を、上下方向に隣り合う締結手段15、16間の導水溝17、18、19の内幅よりも狭くし、かつ側方部分の導水溝17、19の深さを、上下方向に隣り合う締結手段15、16間の導水溝17、18、19の深さよりも深くしている。これにより、従来温度が高くなり易かった部分の冷却効率を高めることができる。
更に、溶鋼湯面位置直下に位置する締結手段15、16の側方部分の導水溝17、19の平断面積を、上下方向に隣り合う締結手段15、16間の導水溝17、18、19の平断面積の−20%以上+20%以下の範囲内にしている。これにより、導水溝17、18、19内を通過する冷却水の圧力損失の上昇を抑制できる。
And the water guide grooves 17, 18, and 19 between the fastening means 15 and 16 adjacent to an up-down direction are made wider than the conventional thing. Thereby, the cooling efficiency of a cooling member can be improved and the cooling member 12 can be cooled uniformly.
Further, at least the inner width of the water guide grooves 17 and 19 at the side portions of the fastening means 15 and 16 positioned immediately below the molten steel surface position of the cooling member 12 is set to the water guide groove 17 between the fastening means 15 and 16 adjacent in the vertical direction. , 18 and 19 are narrower than the inner width, and the depth of the lateral water guide grooves 17 and 19 is greater than the depth of the water guide grooves 17, 18 and 19 between the fastening means 15 and 16 adjacent in the vertical direction. It ’s deep. Thereby, the cooling efficiency of the part which was easy to become high temperature conventionally can be improved.
Furthermore, the horizontal cross-sectional area of the water guide grooves 17 and 19 at the side portions of the fastening means 15 and 16 located immediately below the molten steel surface position is set to the water guide grooves 17, 18 and 19 between the fastening means 15 and 16 adjacent in the vertical direction. The flat cross-sectional area is in the range of −20% to + 20%. Thereby, the raise of the pressure loss of the cooling water which passes the inside of the water guide grooves 17, 18, and 19 can be suppressed.

したがって、冷却部材12の下部から上部へかけての冷却水の流れが安定化し、冷却部材12の熱変形が均一になって鋳造を開始して時間が経過しても冷却部材12内面の形状を鋳片の凝固プロフィールに対応させた形状に維持することができる。その結果、鋳片のコーナー部での凝固遅れが抑制されて良好な品質の鋳片を製造でき、冷却部材12の熱変形も小さいため、冷却部材12の寿命を延ばすことができる。 Therefore, the flow of the cooling water from the lower part to the upper part of the cooling member 12 is stabilized, the thermal deformation of the cooling member 12 becomes uniform, and the shape of the inner surface of the cooling member 12 is changed even after the casting starts. The shape corresponding to the solidification profile of the slab can be maintained. As a result, it is possible to manufacture a slab of good quality by suppressing the solidification delay at the corner of the slab, and the thermal deformation of the cooling member 12 is small, so that the life of the cooling member 12 can be extended.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載した構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
例えば、膨出部を、一対の短辺及び一対の長辺のいずれか一方に設けてもよい。
また、冷却部材を、チューブ状とすることもできる。
そして、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ブルームを製造する鋳型に、本願発明を適用することも勿論可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above-described embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included.
For example, you may provide a bulging part in any one of a pair of short side and a pair of long side.
Further, the cooling member can be formed in a tube shape.
In the above embodiment, the structure of a mold for producing a slab, which is an example of a slab, has been described. However, the present invention is applied to another slab having a different shape and size, for example, a mold for producing a bloom. Of course, it is also possible.

10:連続鋳造用鋳型、11:空間部、12:冷却部材、13:バックプレート、14:長辺、15、16:締結手段、17、18、19:導水溝、20:溶鋼、21:溶鋼接触面、22:膨出部、23:長辺、24:膨出部、25:長辺、26:膨出部、27、28、29:溝、30、31、32:仕切り部、33:長辺、34、35、36:導水溝、37、38:フィン、39:雌ねじ部、40:孔 10: mold for continuous casting, 11: space portion, 12: cooling member, 13: back plate, 14: long side, 15, 16: fastening means, 17, 18, 19: water guide groove, 20: molten steel, 21: molten steel Contact surface, 22: bulging part, 23: long side, 24: bulging part, 25: long side, 26: bulging part, 27, 28, 29: groove, 30, 31, 32: partition part, 33: Long side, 34, 35, 36: water guide groove, 37, 38: fin, 39: female screw part, 40: hole

Claims (8)

上下方向に貫通した空間部を内側に形成し、外面側が冷却水により冷却される冷却部材と、該冷却部材の外面側にそれぞれ上下方向に並べて配置された複数の締結手段からなる締結手段群によって、該冷却部材を取付ける支持部材とを有し、前記空間部に溶鋼を供給して冷却しながら鋳片を製造する連続鋳造用鋳型において、
前記冷却部材の内面側に、溶鋼湯面位置を上位置とし、該上位置から下方へ300mm以上を下位置として前記空間部側へ張り出す膨出部を設け、該膨出部の縦断面の内側線を、前記上位置から前記下位置まで3つ以上8つ以下の連続する直線部で構成し、しかも、前記隣り合う直線部のなす角を、174度以上179.97度以下の範囲内とし、前記上位置と前記下位置を結ぶ直線を底辺とする前記膨出部の最大高さhを0.2mm以上5mm以下の範囲内とし、
前記冷却部材の外面側の上下方向に設けられ、冷却水が流れる多数の導水溝は、該冷却部材の外面側に設けられた溝と、該冷却部材の外面に当接する前記支持部材とで形成され、しかも上下方向に隣り合う前記締結手段間の前記導水溝は、その内幅Wが10mm以上80mm以下、深さDが3mm以上10mm以下であり、かつ、深さDと内幅Wの比D/Wが0.075以上1以下の関係を満足して幅広に形成されており、
前記導水溝のうち、少なくとも前記冷却部材の溶鋼湯面位置直下に位置する前記締結手段の側方部分の前記導水溝の内幅W1を、上下方向に隣り合う前記締結手段間の前記導水溝の内幅Wよりも狭くして3mm以上40mm以下とし、かつ前記側方部分の前記導水溝の深さD1を、上下方向に隣り合う前記締結手段間の前記導水溝の深さDよりも深くして3mmを超え20mm以下としたことを特徴とする連続鋳造用鋳型。
By means of a fastening means group comprising a cooling member formed on the inner side with a space portion penetrating in the vertical direction, the outer surface side being cooled by cooling water, and a plurality of fastening means arranged in the vertical direction on the outer surface side of the cooling member. A continuous casting mold having a supporting member for mounting the cooling member, and producing a slab while supplying molten steel to the space and cooling it,
On the inner surface side of the cooling member, there is provided a bulging portion that projects from the upper position to the space portion side with the molten steel surface position as the upper position and 300 mm or more downward from the upper position. The inner line is composed of 3 or more and 8 or less continuous straight portions from the upper position to the lower position, and the angle formed by the adjacent straight portions is within a range of 174 degrees or more and 179.97 degrees or less. And the maximum height h of the bulging part having a straight line connecting the upper position and the lower position as a base is in a range of 0.2 mm or more and 5 mm or less,
A large number of water guide grooves provided in the vertical direction on the outer surface side of the cooling member and through which cooling water flows are formed by grooves provided on the outer surface side of the cooling member and the support member in contact with the outer surface of the cooling member. In addition, the water guide groove between the fastening means adjacent in the vertical direction has an inner width W of 10 mm to 80 mm, a depth D of 3 mm to 10 mm, and a ratio of the depth D to the inner width W. D / W is formed wide to satisfy the relationship of 0.075 or more and 1 or less,
Among the water guide grooves, at least the inner width W1 of the water guide groove at the side portion of the fastening means positioned immediately below the molten steel surface position of the cooling member is set to be the width of the water guide groove between the fastening means adjacent in the vertical direction. It is narrower than the inner width W to be 3 mm or more and 40 mm or less , and the depth D1 of the water guide groove in the side portion is made deeper than the depth D of the water guide groove between the fastening means adjacent in the vertical direction. A continuous casting mold characterized by having a thickness of more than 3 mm and not more than 20 mm .
請求項1記載の連続鋳造用鋳型において、前記冷却部材の前記上位置より上側の縦断面の内側線を、前記膨出部を構成する最上の前記直線部を延長して形成することを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein an inner line of a longitudinal section above the upper position of the cooling member is formed by extending the uppermost straight portion constituting the bulging portion. Continuous casting mold. 請求項1又は2記載の連続鋳造用鋳型において、前記隣り合う直線部の連接箇所は、前記冷却部材の上下方向に均等な間隔で設けられ、前記隣り合う直線部のなす角は、同一角度であることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to claim 1 or 2, wherein the connecting portions of the adjacent straight portions are provided at equal intervals in the vertical direction of the cooling member, and the angles formed by the adjacent straight portions are the same angle. A mold for continuous casting, characterized in that there is. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部材は、間隔を有して対向配置された一対の短辺と、該短辺を幅方向両側から挟み込んだ状態で対向配置された一対の長辺とで構成され、前記一対の短辺及び前記一対の長辺のいずれか一方又は双方に、前記膨出部を設けたことを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3, wherein the cooling member includes a pair of short sides opposed to each other with a gap therebetween and the short sides sandwiched from both sides in the width direction. And a pair of long sides opposed to each other, wherein the bulging portion is provided on one or both of the pair of short sides and the pair of long sides. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部材はチューブ状であることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3, wherein the cooling member has a tube shape. 請求項1〜5のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部材の溶鋼接触面側には、コーティング層が形成されていることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 5, wherein a coating layer is formed on the molten steel contact surface side of the cooling member. 請求項1〜6のいずれか1項に記載の連続鋳造用鋳型において、少なくとも前記冷却部材の前記溶鋼湯面位置直下に位置する前記締結手段の側方部分の前記導水溝の底部に、冷却効率を増大させる水平突起からなるフィンを設けることを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 6, wherein at least a cooling efficiency is provided at a bottom portion of the water guide groove at a side portion of the fastening means positioned immediately below the molten steel surface position of the cooling member. A mold for continuous casting, characterized in that fins comprising horizontal protrusions for increasing the thickness are provided. 請求項7記載の連続鋳造用鋳型において、前記溶鋼湯面位置は、前記冷却部材の上端から下方へ50mm以上150mm以下の範囲内にあり、しかも前記フィンを、該溶鋼湯面位置の上方50mmの位置から、該溶鋼湯面位置の下方150mm位置までの範囲内に設けることを特徴とする連続鋳造用鋳型。 The mold for continuous casting according to claim 7, wherein the molten steel surface position is within a range of 50 mm or more and 150 mm or less downward from the upper end of the cooling member, and the fins are 50 mm above the molten steel surface position. A continuous casting mold characterized by being provided within a range from a position to a position 150 mm below the molten steel surface position.
JP2010136277A 2010-06-15 2010-06-15 Continuous casting mold Active JP5525925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010136277A JP5525925B2 (en) 2010-06-15 2010-06-15 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010136277A JP5525925B2 (en) 2010-06-15 2010-06-15 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2012000626A JP2012000626A (en) 2012-01-05
JP5525925B2 true JP5525925B2 (en) 2014-06-18

Family

ID=45533242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010136277A Active JP5525925B2 (en) 2010-06-15 2010-06-15 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP5525925B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH617608A5 (en) * 1977-04-06 1980-06-13 Concast Ag
JPS5653849A (en) * 1979-10-08 1981-05-13 Kawasaki Steel Corp Continuous casting method of steel slab of less surface defects
JPS5779047A (en) * 1980-11-05 1982-05-18 Nippon Kokan Kk <Nkk> Mold for continuous casting
JPH02284747A (en) * 1989-04-24 1990-11-22 Sumitomo Metal Ind Ltd Mold for continuous casting
JP4057831B2 (en) * 2002-04-09 2008-03-05 新日本製鐵株式会社 Steel continuous casting method
JP4611350B2 (en) * 2007-06-28 2011-01-12 三島光産株式会社 Continuous casting mold
JP4659796B2 (en) * 2007-08-31 2011-03-30 三島光産株式会社 Method for repairing continuous casting mold and repaired continuous casting mold

Also Published As

Publication number Publication date
JP2012000626A (en) 2012-01-05

Similar Documents

Publication Publication Date Title
JP4659706B2 (en) Continuous casting mold
JP5732382B2 (en) Continuous casting mold
JP4808196B2 (en) Continuous casting mold
JP2006341312A (en) Liquid-cooled casting mold for continuously casting metal
JP5180876B2 (en) Continuous casting mold
TWI268821B (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JP6085571B2 (en) Continuous casting mold
JP5525966B2 (en) Continuous casting mold
JP4659796B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP5525925B2 (en) Continuous casting mold
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP4611349B2 (en) Continuous casting mold
JP4611350B2 (en) Continuous casting mold
JP5525896B2 (en) Continuous casting mold
JP2003311377A (en) Tube-type mold for continuous casting
JP5180868B2 (en) Continuous casting mold
JP6817498B1 (en) Mold for continuous casting
JP2007160346A (en) Casting mold for continuous casting
JP5566972B2 (en) Continuous casting mold
JP5639960B2 (en) Continuous casting mold
JP5453329B2 (en) Continuous casting mold
JP4261272B2 (en) Continuous casting mold
JP4008018B1 (en) Continuous casting mold
JP4227768B2 (en) Continuous casting mold
JP5689434B2 (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140414

R150 Certificate of patent or registration of utility model

Ref document number: 5525925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250