JP4261272B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4261272B2
JP4261272B2 JP2003196595A JP2003196595A JP4261272B2 JP 4261272 B2 JP4261272 B2 JP 4261272B2 JP 2003196595 A JP2003196595 A JP 2003196595A JP 2003196595 A JP2003196595 A JP 2003196595A JP 4261272 B2 JP4261272 B2 JP 4261272B2
Authority
JP
Japan
Prior art keywords
mold
water
meniscus
water guide
copper plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003196595A
Other languages
Japanese (ja)
Other versions
JP2005028406A (en
Inventor
修 筒江
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2003196595A priority Critical patent/JP4261272B2/en
Publication of JP2005028406A publication Critical patent/JP2005028406A/en
Application granted granted Critical
Publication of JP4261272B2 publication Critical patent/JP4261272B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、鋳型本体の裏面側に取付け手段によって支持部材が固定された連続鋳造用鋳型に関するものであり、特に鋳型本体のメニスカス(湯面)部の冷却効率を高めた高速鋳造に適応可能な連続鋳造用鋳型に関する。
【0002】
【従来の技術】
連続鋳造設備で使用される連続鋳造用鋳型(以下、単に鋳型とも言う)70は、図10に示すように、一対の幅狭冷却部材である短辺部材71、72と、この短辺部材71、72を挟み込むように配置される一対の幅広冷却部材である長辺部材73、74とを備え、この向い合う長辺部材73、74の両端部にそれぞれボルト75を取付け、バネを介してナット76で固定した構成となっている。
この長辺部材73、74は鏡面対称で同じ構成となっており、図10、図11(A)、(B)に示すように、それぞれ裏面側の上下方向に多数の導水溝77が設けられた長辺銅板78と、長辺銅板78の裏面側にボルト79によって固定されたバックプレート80(冷却箱、水箱とも言う)とを有している。そして、バックプレート80の上端部及び下端部にそれぞれ設けられた排水部81及び給水部82を介して導水溝77に冷却水の一例である工業用水を流すことで、長辺銅板78の冷却を行っている。一方、短辺部材71、72も略同じ構成となっているが、短辺部材71、72の短辺銅板83の幅は、長辺部材73、74の長辺銅板78の幅より短く、この短辺銅板83の裏面側にそれぞれ固定されたバックプレート84の幅が、短辺銅板83の幅と略同一になっている。
なお、この短辺部材71、72の短辺銅板83と、長辺部材73、74の長辺銅板78とで鋳型本体85が構成されている。
【0003】
連続鋳造作業時においては、上記した連続鋳造鋳型70の上方(短辺銅板83、長辺銅板78の上側)から溶鋼を注ぎ、この鋳型70により製品となる鋳片の初期凝固を行い、凝固した鋳片を鋳型70下方より連続して引抜いて製造している。なお、鋳型70に注がれる溶鋼温度及び鋳型70出口の鋳片の表面温度は操業条件により異なるが、通常、溶鋼温度は約1500℃程度であり、鋳型70出口の鋳片の表面温度は800〜1200℃である。ここでの鋳片の内部は未凝固状態、即ち液体状態となっている。
溶鋼は上述したように高温であり、短辺銅板83及び長辺銅板78を十分冷却しないとその温度が上昇するため、短辺銅板83及び長辺銅板78の温度を、銅の強度が低下しない程度の温度以下に保つ必要がある。
【0004】
そこで、短辺銅板83及び長辺銅板78の温度を十分に低く、且つ均一な温度分布になるようにするため、短辺銅板83及び長辺銅板78の裏面側に設けられている冷却水を通す多数の導水溝77の位置調整を行う色々な技術が提案されてきた。
例えば、特許文献1に記載のように、短辺銅板及び長辺銅板の特にメニスカス部近傍から100mm以内の範囲内におけるボルト間の導水溝を、その間隔が小さくなるようボルト側に所要寸法迂回させて通水し、冷却効率が低下するボルト近傍の冷却を行う方法が開示されている。
また、特許文献2に記載のように、短辺銅板及び長辺銅板の端部に位置する導水溝の断面形状を、短辺銅板及び長辺銅板の厚み方向に対して斜めに傾斜させた形状とし、冷却効率が低下する短辺銅板の幅方向端部の冷却効率を高める連続鋳造用鋳型も開示されている。
【0005】
【特許文献1】
特開平2−59144号公報(第1図)
【特許文献2】
実開昭61−36341号公報(第6図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記した連続鋳造用鋳型は、銅板の表面温度を均一に保つための提案であったため、近年、連続鋳造作業の能率を向上させるために必要となる鋳造速度の上昇には対応できなくなってきている。
このように鋳造速度が速くなると、銅板に抽出される熱量、及び銅板を冷却するため銅板から奪う熱量も比例的に増大するため、高速で鋳造を行う銅板の寿命は短くなる。
本発明はかかる事情に鑑みてなされたもので、高速度化した鋳造速度においても、鋳型本体の冷却を適切に行うことが可能な連続鋳造用鋳型を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的に沿う第1の発明に係る連続鋳造用鋳型は、熱伝導性が良好な金属からなり、裏面側に通水部が設けられた鋳型本体と、該鋳型本体の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記通水部に冷却水を流すことで前記鋳型本体の冷却を行う連続鋳造用鋳型において、
前記通水部は、前記鋳型本体のメニスカス部を中央として上下に配置されるメニスカス導水部と、該メニスカス導水部に連通し前記鋳型本体の他の部分に配置される鋳型導水部とを有して垂直に並列配置される多数の導水溝を備え、前記メニスカス導水部の溝底を前記鋳型導水部の溝底よりも前記鋳型本体の表面側に形成し、しかも前記メニスカス導水部の深さ方向の一部に、前記メニスカス導水部の断面積を小さくする閉塞部材を配置して、該メニスカス導水部を流れる前記冷却水の流速を前記鋳型導水部を流れる前記冷却水の流速より速く又は同等にし、
更に、隣り合う多数の前記導水溝の間隔を10〜30mmに設定し、しかも前記鋳型本体の幅方向に隣り合う前記取付け手段の中央部に設けられた隣り合う前記導水溝の間隔より、前記鋳型本体の前記取付け手段の近傍に設けられた隣り合う前記導水溝の間隔を狭くし、
かつ、前記鋳型本体の表面から前記メニスカス導水部の溝底までの距離dと、前記鋳型本体の表面から前記鋳型導水部の溝底までの距離Dとの比d/Dを、2/5〜4/5とし、しかも前記鋳型本体の表面から、該鋳型本体の幅方向に隣り合う前記取付け手段の中央部に設けられた前記メニスカス導水部の溝底までの距離より、前記鋳型本体の表面から、該鋳型本体の前記取付け手段の近傍に設けられた前記メニスカス導水部の溝底までの距離を短くする。
ここで、メニスカス部を中央として上下とは、鋳型本体の上端から、例えば50〜150mmの範囲に位置する鋳型本体の溶鋼の湯面、即ちメニスカス部を含んでその上下の範囲を示し、例えば、鋳型本体の上端から30mm下方位置から、上端から400mm下方位置までの範囲を示している。
【0008】
このように、メニスカス導水部が、鋳型導水部よりも鋳型本体の表面側に配置されるので、鋳型本体で最も高温となるメニスカス部の周辺部の冷却効率を高めることができる。また、鋳型導水部が配置される部分の鋳型本体は、冷却された溶鋼の周辺部に凝固シェル(凝固殻)が形成される部分に対応するため、メニスカス部から離れるほど冷却効率を高める必要性がないので、鋳型導水部の深さを、メニスカス導水部の深さよりも浅くしている。
そして、メニスカス導水部の裏側に閉塞部材を配置し、メニスカス導水部の冷却水の流速を鋳型導水部の冷却水の流速より速くするか又は同等にするので、例えば、冷却水の供給量を従来よりも増加させることなく、メニスカス導水部の鋳型本体の冷却効率を高めることができる。
【0009】
前記目的に沿う第の発明に係る連続鋳造用鋳型は、前記鋳型本体の表面から前記メニスカス導水部の溝底までの距離dと、前記鋳型本体の表面から前記鋳型導水部の溝底までの距離Dとの比d/D、2/5〜4/5である。
このように、メニスカス導水部の溝底と鋳型導水部の溝底との関係を設定することで、鋳型本体のメニスカス部の冷却効率を高めることが容易にできる。
ここで、鋳型本体の表面からメニスカス導水部の溝底までの距離dと、鋳型本体の表面から鋳型導水部の溝底までの距離Dとの比d/Dが2/5未満の場合、鋳型下部での表面温度が高くなり、鋳片の品質を悪化させる恐れがある。一方、比d/Dが4/5を超える場合、距離dと距離Dとの差が小さくなるため、例えば、メニスカス導水部の溝底の位置に対して、鋳型導水部の深さが同程度の深さとなり、鋳型本体の加工に要する手間がかかり作業性が悪くなる。
従って、鋳型本体のメニスカス部の冷却効率を高めることができる連続鋳造用鋳型を製作するためには、鋳型本体の表面からメニスカス導水部の溝底までの距離dと、鋳型本体の表面から鋳型導水部の溝底までの距離Dとの比d/Dを、1/2〜4/5とすることが好ましく、更には3/5〜4/5にすることが好ましい。
【0010】
前記目的に沿う第の発明に係る連続鋳造用鋳型は、第の発明に係る連続鋳造用鋳型において、前記多数の前記メニスカス導水部が形成された前記鋳型本体の裏面側一面には、隣り合う前記各メニスカス導水部を連通する凹部が形成され、該凹部に、耐食性を備えた金属板からなる前記閉塞部材が配置されている。
【0011】
前記目的に沿う第の発明に係る連続鋳造用鋳型は、隣り合う多数の前記導水溝の間隔を10〜30mmに設定する。
ここで、例えば、鋳型本体の厚みを45mm程度、冷却水流量を鋳型幅100mm当たり200L/min程度に設定した場合、隣り合う多数の導水溝の間隔が10mm未満では、鋳型本体の冷却効率の更なる顕著な向上は望めず、しかも鋳型本体の形状が複雑になり、加工時における作業性が悪くなる。一方、導水溝の間隔が30mmを超えるとき、導水溝の間隔が開き過ぎ、鋳型本体の幅方向の冷却を均一に行うことができず、冷却にむらが生じ製造した鋳片品質の低下を招く恐れがある。
従って、例えば、鋳型本体の厚みを45mm程度、冷却水流量を鋳型幅100mm当たり200L/min程度に設定した場合、鋳型本体の加工作業を容易に行うと共に、鋳片品質を向上させるためには、隣り合う多数の導水溝の間隔を、10〜25mmに設定することが好ましい。
【0012】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る連続鋳造用鋳型の鋳型本体の長辺銅板の背面図、図2は同長辺銅板の部分拡大図、図3(A)〜(C)はそれぞれ図2のa−a矢視断面図、b−b矢視断面図、図1のc−c矢視断面図、図4は図2のd−d矢視断面図、図5(A)は数値解析に使用した長辺銅板の水路モデルの背面図、(B)は(A)のe−e矢視断面図、図6(A)は図5(A)のf−f矢視断面図、(B)は従来例に係る長辺銅板の水路モデルの説明図、図7(A)、(B)はそれぞれ数値解析結果に基づく長辺銅板の表面側の温度分布の説明図、裏面側の温度分布の説明図、図8は従来例に係る長辺銅板の表面側の温度分布の説明図、図9(A)、(B)はそれぞれ数値解析結果に基づく長辺銅板のメニスカス部の温度分布の説明図、従来例に係る長辺銅板のメニスカス部の数値解析結果に基づく温度分布の説明図である。
【0013】
図1〜図4に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型とも言う)は、一対の幅広冷却部材である長辺部材10、11と、一対の幅狭冷却部材である短辺部材(図示しない)とを組合せることで製造されるものである(図10参照)。
【0014】
この連続鋳造用鋳型の長辺部材10、11は、それぞれ熱伝導性が良好な金属の一例である銅からなり、裏面側に通水部12が設けられた長辺銅板(以下、単に銅板とも言う)13と、長辺銅板13の裏面側に取付け手段14によって固定された支持部材の一例であるバックプレート(冷却箱、水箱とも言う)15とを有し、バックプレート15の幅方向に渡って設けられた給水部16及び排水部17を介して通水部12に冷却水の一例である工業用水を流すことで長辺銅板13の冷却を行うものである。この長辺銅板13の表面(冷却面)には、例えばNi、Ni−Co合金等の被覆材が、めっき又は溶射されている。なお、連続鋳造用鋳型の短辺部材も、上記した長辺部材10、11と略同様の構成であり、長辺部材10、11の長辺銅板13と短辺部材の短辺銅板とで鋳型本体が構成され、しかも鋳型本体の内側には、鋳型空間が形成されている。
このように、短辺銅板は長辺銅板13と幅が異なるのみであるため説明を省略し、以下、長辺銅板13についてのみ詳しく説明する。
【0015】
図1〜図4に示すように、銅板13(厚みが例えば、10〜100mm程度)は、銅板13に形成されている雌ねじ部18(ここでは、銅板13の幅方向に等間隔に10箇所、銅板13の上下方向に8箇所、合計80箇所)と、雌ねじ部18に螺合してバックプレート15を締着する雄ねじ(図示しない)とからなる取付け手段14により、例えばステンレスからなるバックプレート15(例えば、厚み50〜500mm程度)に固定されている。なお、バックプレート15の給水部16、排水部17、及び銅板13の通水部12を囲むバックプレート15の周辺部には溝が形成され、ここにOリング19を配置することで、銅板13とバックプレート15との密着性を向上させ、通水部12からの工業用水の漏れを防止している。また、雄ねじを取付けるため、バックプレート15に形成された孔(ここでは80箇所)には、予め防水可能なシール座金が配置されており、雄ねじを取付けた部分からの工業用水の漏れを防止している。
【0016】
これにより、バックプレート15の下側の給水部16に設けられた給水口(図示しない)から工業用水を供給し、給水部16によって通水部12を幅方向に均一に、しかも銅板13の下側から上側にかけて通水部12を流れた工業用水を、バックプレート15の上側の排水部17に設けられた排水口(図示しない)から排出し、銅板13の冷却を行っている。
【0017】
図1〜図3に示すように、通水部12は銅板13の裏面側に垂直に並列配置される多数の導水溝20〜22を備えている。これらの導水溝20〜22は、それぞれ通水部12の流水方向に向けて(即ち、垂直に)実質的に直線状となっており、その溝幅が例えば3〜15mmである。この導水溝20は、銅板13の幅方向に隣り合う雌ねじ部18の中央部に複数本(本実施の形態では、隣り合う雌ねじ部18間に3本、合計27本)設けられている。また、導水溝21は、銅板13の幅方向両端部の導水溝22を除いた雌ねじ部18近傍に複数本(本実施の形態では、雌ねじ部18の一方側に2本、合計36本)設けられている。そして、導水溝22は、銅板13の幅方向両端部にそれぞれ設けられている。
ここで、隣り合う導水溝20の間隔W1が10〜30mmに設定され、更には隣り合う導水溝21の間隔W2が10〜30mmに設定されている。なお、銅板13の厚み及び工業用水の流量に応じて、隣り合う導水溝20の間隔W1、及び隣り合う導水溝21の間隔W2を、5〜30mmに設定することも可能である。
なお、この実施の形態では、隣り合う導水溝21の間隔W2は、隣り合う導水溝20の間隔W1よりも狭くなっており、導水溝を形成できない雌ねじ部18近傍の冷却効率の低下を抑制している。
【0018】
また、図1、図2、図3(A)、図4に示すように、導水溝20は、銅板13のメニスカス部(銅板13の上端から、例えば50〜150mm)を含み、それを中央として上下に所定の範囲(銅板14の上端から、例えば30〜400mmの範囲)に配置されるメニスカス導水部23と、このメニスカス導水部23に連通し、銅板13の他の部分、即ちメニスカス部の下方に配置される鋳型導水部24を有している。
また、図1、図2、図3(B)、図4に示すように、導水溝21も、銅板13のメニスカス部(銅板13の上端から、例えば50〜150mm)を含み、それを中央として上下に所定の範囲(銅板13の上端から、例えば30〜400mmの範囲)に配置されるメニスカス導水部25と、このメニスカス導水部25に連通し、メニスカス部の下方に配置される鋳型導水部26を有している。
【0019】
この各導水溝20、21のメニスカス導水部23、25の溝底は、例えば銅板13の表面から銅板13の厚みの1/3〜1/2程度の位置に形成され、しかも鋳型導水部24、26の溝底よりも銅板13の表面側に形成されている。ここで、銅板13の表面から各メニスカス導水部23、25の溝底までの距離d1、d2と、銅板13の表面から鋳型導水部24、26の溝底までの距離D1、D2との比d1/D1、d2/D2は、2/5〜4/5にそれぞれ設定されている。なお、距離d2は距離d1より短く、また距離D2は距離D1より短くなっており、導水溝を形成できない雌ねじ部18近傍の冷却効率の低下を抑制している。
そして、図1、図2、図3(C)に示すように、導水溝22は、その下端部から上端部まで実質的に同一の断面形状となっている。
【0020】
このように、銅板13に上記した形状の各導水溝20、21が形成されているので、銅板13のメニスカス部近傍の冷却効率を高めることができる。
また、導水溝20のメニスカス導水部23と鋳型導水部24との連続部分、導水溝21のメニスカス導水部25と鋳型導水部26との連続部分は、それぞれなだらかな曲面で構成され、また、各導水溝20〜22の上端部及び下端部もそれぞれなだらかな曲面で構成されているので、長辺部材10、11を下方から上方へかけて流れる工業用水の流れに対する抵抗を小さくできる。
【0021】
図1、図2、図3(A)、(B)、図4に示すように、多数のメニスカス導水部23、25が形成された銅板13の裏面側一面には、隣り合う各メニスカス導水部23、25を連通する凹部27が形成されている。この凹部27は、背面視して矩形状となっており、銅板13とバックプレート15との接合面から凹部27の底までの距離が、各メニスカス導水部23、25の配置位置や、そこを流れる工業用水の流速に応じて、銅板13の厚みの例えば1/10〜1/3に設定されている。
【0022】
この凹部27には、この凹部27の形状に対応した耐食性を備えた金属板である例えば、銅板、ステンレス板等からなる閉塞部材28が配置されている。これにより、各メニスカス導水部23、25の深さ方向の一部(例えば、メニスカス導水部23、25の深さの1/5〜1/2)に、閉塞部材28を配置できる。この閉塞部材28の下端部及び上端部は、それぞれ各導水溝20、21を流れる工業用水の流れに対する抵抗を小さくするため、なだらかに傾斜した状態に加工されている。また、この閉塞部材28は、銅板13に対して、固定手段の一例であるボルト29により取付けられ、銅板13に固定されている。
【0023】
このように、各メニスカス導水部23、25が各鋳型導水部24、26よりも銅板13の表面側に配置され、しかも各メニスカス導水部23、25の断面積を、各鋳型導水部24、26の断面積以下に小さくする閉塞部材28を凹部27に配置して、各メニスカス導水部23、25を流れる工業用水の流速を、鋳型導水部24、26を流れる工業用水の流速より速く又は同等にするので、メニスカス部近傍の銅板13の冷却効率を高めることが可能になる。
従って、従来と同様の流量の工業用水を利用して、より良い冷却効率が得られ経済的である。
【0024】
【実施例】
(数値解析)
続いて、前記した連続鋳造用鋳型の長辺銅板13を使用し、熱伝導解析(FEM解析)を行った結果について説明する。
熱伝導解析に使用した長辺銅板13の各寸法は、図5(A)、(B)、図6(A)に示すように、長辺銅板13の厚みが46mm、銅板13の幅方向に隣り合う雌ねじ部18の中心間距離が152mm、導水溝21、22の幅がそれぞれ5mm、隣り合う導水溝20の間隔W1が17mm、隣り合う導水溝21の間隔W2が9mm、導水溝20の距離d1が23mm、導水溝21の距離d2が21mmである。
また、従来例として、図6(B)に示すように、長辺銅板13とは導水溝の形状及び配置位置のみが異なる長辺銅板30を熱伝導解析に使用した。なお、導水溝31は、隣り合う雌ねじ部32の間に5本形成され、銅板30の表面から導水溝31の溝底までの距離d3が、長辺銅板13の導水溝21の距離d2と同一で、その深さが25mmのものである。
【0025】
上記した構成となった銅板13を使用して解析を行った結果、図7(A)、(B)に示すように、銅板13の表面側のメニスカス部近傍が最も高温となっていることが分かる。また、従来例の長辺銅板30を使用して解析した結果についても、図8に示すように、長辺銅板30の表面側のメニスカス部近傍が最も高温となっていることが分かる。
【0026】
ここで、最も高温となる部分(各長辺銅板13、30の上端から160mm程度の部分)の各長辺銅板13、30の断面の温度分布を、図9(A)、(B)にそれぞれ示す。なお、各長辺銅板13、30の断面において、長辺銅板13、30の表面であって、隣り合う雌ねじ部18、32間の中心位置をa点、雌ねじ部18、32の位置をb点、また導水溝(スリット)20、21、31の溝底であって、隣り合う雌ねじ部18、32間の中心位置をc点、雌ねじ部18、32の側部の位置をd点に、それぞれ設定した。ここで、鋳造速度を1.0、1.5、及び2.0(m/min)の3段階に変化させた場合の各点a〜dの温度を表1に示す。
【0027】
【表1】

Figure 0004261272
【0028】
表1から明らかなように、鋳造速度を1.0(m/min)に設定した場合、長辺銅板13を使用することにより、溝底(c点、d点)の温度で8℃、表面(a点、b点)の温度で19〜21℃、従来例の長辺銅板30よりも低下できることを確認できた。なお、この温度低下は、鋳造速度を高めた場合においても同様であり、鋳造速度を高速の2.0(m/min)に設定した場合、長辺銅板13を使用することにより、溝底(c点、d点)の温度で10〜11℃、表面(a点、b点)の温度で22〜26℃、従来例の長辺銅板30よりも低下できた。
【0029】
また、鋳造速度を2.0(m/min)に設定した場合、長辺銅板13の溝底の温度が126〜132℃となり、例えば冷却水背圧を0.2(MPa)としたときの水の沸点温度133℃を下回るので、スケール付着の促進を抑えることが可能となる。
一方、鋳造速度を2.0(m/min)に設定した場合、従来の長辺銅板30の溝底の温度は136〜143℃となり、冷却水背圧を0.2(MPa)としたときの水の沸点温度133℃を上回るので、スケールの付着が促進される。
以上のことから、長辺銅板13を備えた連続鋳造用鋳型を使用することで、高速鋳造にも対応可能で、しかも良好な品質を備えた鋳片を製造できる。
【0030】
以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、熱伝導性が良好な金属として銅を使用した場合について説明したが、熱伝導性が良好であれば、例えば他の金属や銅合金等を使用することも可能である。
そして、前記実施の形態においては、多数のメニスカス導水部が形成された鋳型本体の裏面側一面に、隣り合う各メニスカス導水部を連通する凹部を形成し、この凹部に閉塞部材を配置した場合について説明したが、各メニスカス導水部の深さ方向の一部に、メニスカス導水部の断面形状に対応した閉塞部材を、それぞれ配置することも可能である。
【0031】
【発明の効果】
請求項1、2記載の連続鋳造用鋳型においては、鋳型本体で最も高温となるメニスカス部の周辺部の冷却効率を高めることができるので、鋳型本体に対する熱負荷が増大する高速度化した鋳造速度においても、鋳型本体の冷却を適切に行うことができ、安定した品質の鋳片を製造できる。
また、鋳型導水部の深さを、メニスカス導水部の深さよりも浅くすることで、鋳型の製作コストを低減できる。
そして、例えば、冷却水の供給量を従来よりも増加させることなく、メニスカス導水部の鋳型本体の冷却効率を高めることができるので、従来使用されている連続鋳造設備の各装置を変更することなく使用可能な連続鋳造用鋳型を提供できる。
【0032】
特に、請求項記載の連続鋳造用鋳型においては、鋳型本体のメニスカス部の冷却効率を高めることができるので、高品質の鋳片を製造でき、安定して鋳造作業を実施できる。
請求項記載の連続鋳造用鋳型においては、閉塞部材の形状を単純化できるので、例えば閉塞部材の形状加工のコストを低減できて経済的であると共に、製造時における作業性が良好になる。
請求項記載の連続鋳造用鋳型においては、隣り合う多数の導水溝の間隔を設定するので、導水溝を従来よりも冷却効率が高まるように配置することができ、鋳型本体の冷却効率を更に高めることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る連続鋳造用鋳型の鋳型本体の長辺銅板の背面図である。
【図2】同長辺銅板の部分拡大図である。
【図3】(A)〜(C)はそれぞれ図2のa−a矢視断面図、b−b矢視断面図、図1のc−c矢視断面図である。
【図4】図2のd−d矢視断面図である。
【図5】(A)は数値解析に使用した長辺銅板の水路モデルの背面図、(B)は(A)のe−e矢視断面図である。
【図6】(A)は図5(A)のf−f矢視断面図、(B)は従来例に係る長辺銅板の水路モデルの説明図である。
【図7】(A)、(B)はそれぞれ数値解析結果に基づく長辺銅板の表面側の温度分布の説明図、裏面側の温度分布の説明図である。
【図8】従来例に係る長辺銅板の表面側の温度分布の説明図である。
【図9】(A)、(B)はそれぞれ数値解析結果に基づく長辺銅板のメニスカス部の温度分布の説明図、従来例に係る長辺銅板のメニスカス部の数値解析結果に基づく温度分布の説明図である。
【図10】連続鋳造用鋳型の平面図である。
【図11】(A)は連続鋳造用鋳型の長辺銅板の説明図、(B)は(A)のg−g矢視断面図である。
【符号の説明】
10、11:長辺部材、12:通水部、13:長辺銅板、14:取付け手段、15:バックプレート(支持部材)、16:給水部、17:排水部、18:雌ねじ部、19:Oリング、20〜22:導水溝、23:メニスカス導水部、24:鋳型導水部、25:メニスカス導水部、26:鋳型導水部、27:凹部、28:閉塞部材、29:ボルト、30:長辺銅板、31:導水溝、32:雌ねじ部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold in which a support member is fixed to the back side of the mold body by an attaching means, and is particularly applicable to high-speed casting with improved cooling efficiency of a meniscus (molten surface) portion of the mold body. The present invention relates to a continuous casting mold.
[0002]
[Prior art]
As shown in FIG. 10, a continuous casting mold (hereinafter also simply referred to as a mold) 70 used in a continuous casting facility includes a pair of narrow cooling members 71 and 72 and a short side member 71. , 72 and a pair of wide-side members 73 and 74, which are wide cooling members, and bolts 75 are attached to both ends of the facing long-side members 73 and 74, and nuts are provided via springs. The configuration is fixed at 76.
The long side members 73 and 74 are mirror-symmetrical and have the same configuration. As shown in FIGS. 10, 11A, and 11B, a large number of water guide grooves 77 are provided in the vertical direction on the back side. A long side copper plate 78 and a back plate 80 (also referred to as a cooling box or water box) fixed to the back side of the long side copper plate 78 by a bolt 79. And the industrial water which is an example of a cooling water is poured into the water guide groove 77 through the drainage part 81 and the water supply part 82 which were each provided in the upper end part and lower end part of the backplate 80, and cooling of the long side copper plate 78 is carried out. Is going. On the other hand, the short side members 71 and 72 have substantially the same configuration, but the width of the short side copper plate 83 of the short side members 71 and 72 is shorter than the width of the long side copper plate 78 of the long side members 73 and 74. The width of the back plate 84 fixed to the back side of the short side copper plate 83 is substantially the same as the width of the short side copper plate 83.
A mold body 85 is constituted by the short side copper plate 83 of the short side members 71 and 72 and the long side copper plate 78 of the long side members 73 and 74.
[0003]
During the continuous casting operation, molten steel is poured from above the continuous casting mold 70 (above the short-side copper plate 83 and the long-side copper plate 78), and the cast as a product is initially solidified by the mold 70 and solidified. The slab is manufactured by continuously drawing from below the mold 70. Although the molten steel temperature poured into the mold 70 and the surface temperature of the slab at the outlet of the mold 70 differ depending on the operating conditions, the molten steel temperature is usually about 1500 ° C., and the surface temperature of the slab at the outlet of the mold 70 is 800 ˜1200 ° C. The inside of the slab here is in an unsolidified state, that is, in a liquid state.
As described above, the molten steel is at a high temperature, and if the short side copper plate 83 and the long side copper plate 78 are not sufficiently cooled, the temperature rises. Therefore, the strength of the copper does not decrease the temperature of the short side copper plate 83 and the long side copper plate 78. It is necessary to keep the temperature below a certain level.
[0004]
Therefore, in order to make the temperature of the short side copper plate 83 and the long side copper plate 78 sufficiently low and to have a uniform temperature distribution, the cooling water provided on the back side of the short side copper plate 83 and the long side copper plate 78 is used. Various techniques have been proposed for adjusting the position of a number of water guide grooves 77 that pass therethrough.
For example, as described in Patent Document 1, the water guide groove between the bolts within the range of 100 mm or less from the vicinity of the meniscus portion of the short side copper plate and the long side copper plate is diverted to the bolt side so as to reduce the distance between them. In this way, a method for cooling the vicinity of the bolt, in which the cooling efficiency is lowered, is disclosed.
Moreover, as described in Patent Document 2, the cross-sectional shape of the water guide groove located at the end of the short side copper plate and the long side copper plate is inclined with respect to the thickness direction of the short side copper plate and the long side copper plate. In addition, a continuous casting mold is also disclosed in which the cooling efficiency of the end portion in the width direction of the short-side copper plate that decreases the cooling efficiency is increased.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2-59144 (FIG. 1)
[Patent Document 2]
Japanese Utility Model Publication No. 61-36341 (FIG. 6)
[0006]
[Problems to be solved by the invention]
However, the above-mentioned continuous casting mold is a proposal for keeping the surface temperature of the copper plate uniform, and in recent years, it has become impossible to cope with the increase in casting speed necessary for improving the efficiency of continuous casting work. ing.
When the casting speed is increased in this way, the amount of heat extracted to the copper plate and the amount of heat taken from the copper plate for cooling the copper plate also increase proportionally, so the life of the copper plate for casting at high speed is shortened.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a continuous casting mold capable of appropriately cooling the mold body even at a higher casting speed.
[0007]
[Means for Solving the Problems]
The casting mold for continuous casting according to the first invention meeting the above object is made of a metal having good thermal conductivity, and has a mold body provided with a water flow portion on the back surface side, and attachment means on the back surface side of the mold body. A continuous casting mold that cools the mold body by flowing cooling water through the water supply section and the drainage section provided in the support member, and a fixed support member.
The water flow portion has a meniscus water conveyance portion disposed vertically with the meniscus portion of the mold body as a center, and a mold water conveyance portion disposed in another part of the mold body in communication with the meniscus water conveyance portion. A plurality of water guide grooves arranged in parallel vertically, the groove bottom of the meniscus water guide section is formed on the surface side of the mold body with respect to the groove bottom of the mold water guide section, and the depth direction of the meniscus water guide section A blocking member for reducing the cross-sectional area of the meniscus water guide portion is disposed at a part of the cooling water, and the flow rate of the cooling water flowing through the meniscus water guide portion is faster or equal to the flow rate of the cooling water flowing through the mold water guide portion. And
Further, the interval between the plurality of adjacent water guide grooves is set to 10 to 30 mm, and the mold is determined by the distance between the adjacent water guide grooves provided in the central portion of the mounting means adjacent in the width direction of the mold body. Narrow the interval between adjacent water guide grooves provided in the vicinity of the attachment means of the main body,
The ratio d / D between the distance d from the surface of the mold body to the groove bottom of the meniscus water guiding portion and the distance D from the surface of the mold body to the groove bottom of the mold water guiding portion is 2/5. 4/5, and from the surface of the mold main body from the distance from the surface of the mold main body to the groove bottom of the meniscus water guide portion provided at the center of the mounting means adjacent in the width direction of the mold main body. The distance to the groove bottom of the meniscus water guide portion provided in the vicinity of the attachment means of the mold body is shortened .
Here, the upper and lower sides with the meniscus portion in the center indicate the upper and lower ranges including the molten steel surface of the mold body located in the range of 50 to 150 mm, for example, the meniscus portion, from the upper end of the mold body. A range from a position 30 mm below the upper end of the mold body to a position 400 mm below the upper end is shown.
[0008]
Thus, since the meniscus water conveyance part is arrange | positioned rather than the mold water conveyance part at the surface side of a mold main body, the cooling efficiency of the peripheral part of the meniscus part which becomes the highest temperature in a mold main body can be improved. In addition, the mold body where the mold water conveyance part is arranged corresponds to the part where the solidified shell (solidified shell) is formed in the peripheral part of the cooled molten steel, so it is necessary to increase the cooling efficiency the further away from the meniscus part Since there is no, the depth of the mold water conveyance part is made shallower than the depth of the meniscus water conveyance part.
Then, a blocking member is disposed on the back side of the meniscus water conveyance section, and the flow rate of the cooling water in the meniscus water conveyance section is made faster than or equal to the flow rate of the cooling water in the mold water conveyance section. It is possible to increase the cooling efficiency of the mold body of the meniscus water guiding portion without increasing the amount.
[0009]
Continuous casting mold according to the first invention along the object, the distance d from the surface before Symbol mold body to the groove bottom of the meniscus water conduit, the surface of the mold body to the groove bottom of the mold water conduit The ratio d / D to the distance D is 2/5 to 4/5.
Thus, by setting the relationship between the groove bottom of the meniscus water guiding portion and the groove bottom of the mold water guiding portion, the cooling efficiency of the meniscus portion of the mold body can be easily increased.
Here, when the ratio d / D between the distance d from the surface of the mold body to the groove bottom of the meniscus water guiding portion and the distance D from the surface of the mold body to the groove bottom of the mold water guiding portion is less than 2/5, There is a risk that the surface temperature at the lower part becomes high and the quality of the slab is deteriorated. On the other hand, when the ratio d / D exceeds 4/5, the difference between the distance d and the distance D becomes small. For example, the depth of the mold water guide portion is comparable to the position of the groove bottom of the meniscus water guide portion. Therefore, it takes time and effort to process the mold body, resulting in poor workability.
Therefore, in order to manufacture a continuous casting mold capable of increasing the cooling efficiency of the meniscus portion of the mold body, the distance d from the surface of the mold body to the groove bottom of the meniscus water guide portion and the surface of the mold body from the mold water guide The ratio d / D to the distance D to the groove bottom of the part is preferably 1/2 to 4/5, and more preferably 3/5 to 4/5.
[0010]
The continuous casting mold according to the second invention that meets the above object is the continuous casting mold according to the first invention, wherein the continuous casting mold according to the first invention is adjacent to the back surface side surface of the mold body on which the plurality of meniscus water guide portions are formed. A concave portion communicating with each of the matching meniscus water guiding portions is formed, and the blocking member made of a metal plate having corrosion resistance is disposed in the concave portion.
[0011]
Continuous casting mold according to the first invention along the object, to set the interval of said number of said water guide groove that fits Ri next to 10 to 30 mm.
Here, for example, when the thickness of the mold main body is set to about 45 mm and the cooling water flow rate is set to about 200 L / min per 100 mm of the mold width, the cooling efficiency of the mold main body can be further improved if the interval between the many adjacent water guide grooves is less than 10 mm. Such a remarkable improvement cannot be expected, and the shape of the mold body becomes complicated, resulting in poor workability during processing. On the other hand, when the distance between the water guide grooves exceeds 30 mm, the distance between the water guide grooves is excessively widened, and the cooling of the mold body in the width direction cannot be performed uniformly, resulting in uneven cooling and resulting in deterioration of the quality of the produced slab. There is a fear.
Therefore, for example, when the thickness of the mold main body is set to about 45 mm and the cooling water flow rate is set to about 200 L / min per 100 mm of the mold width, in order to easily perform the work of the mold main body and improve the slab quality, It is preferable to set the interval between many adjacent water guide grooves to 10 to 25 mm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a rear view of the long side copper plate of the mold body of the continuous casting mold according to one embodiment of the present invention, FIG. 2 is a partially enlarged view of the long side copper plate, and FIGS. ) Are cross-sectional views taken along arrows aa and bb in FIG. 2, cross-sectional views taken along arrows cc in FIG. 1, and FIG. 4 is a cross-sectional view taken along arrows dd in FIG. (A) is a rear view of a water channel model of a long side copper plate used for numerical analysis, (B) is a cross-sectional view taken along line ee of (A), and FIG. 6 (A) is an ff arrow of FIG. 5 (A). Cross-sectional view, (B) is an explanatory diagram of a water channel model of a long-side copper plate according to a conventional example, and FIGS. 7 (A) and (B) are explanatory diagrams of temperature distribution on the surface side of the long-side copper plate based on numerical analysis results, respectively. 8 is an explanatory diagram of the temperature distribution on the back side, FIG. 8 is an explanatory diagram of the temperature distribution on the front side of the long side copper plate according to the conventional example, and FIGS. 9A and 9B are diagrams of the long side copper plate based on the numerical analysis results, respectively. Meniscus temperature Illustration, an illustration of the temperature distribution based on the numerical analysis results of the meniscus portion of the long side copper plate according to a conventional example.
[0013]
As shown in FIGS. 1 to 4, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention includes a pair of wide cooling members 10 and 11 and a pair of wide cooling members. It is manufactured by combining a short side member (not shown) which is a narrow cooling member (see FIG. 10).
[0014]
The long side members 10 and 11 of the continuous casting mold are each made of copper, which is an example of a metal having good thermal conductivity, and a long side copper plate (hereinafter simply referred to as a copper plate) provided with a water passage portion 12 on the back side. 13) and a back plate (also referred to as a cooling box or a water box) 15 which is an example of a support member fixed to the back side of the long side copper plate 13 by the attachment means 14, and extends in the width direction of the back plate 15. The long-side copper plate 13 is cooled by flowing industrial water, which is an example of cooling water, through the water supply unit 12 through the water supply unit 16 and the drainage unit 17 provided. On the surface (cooling surface) of the long side copper plate 13, for example, a coating material such as Ni or Ni—Co alloy is plated or sprayed. In addition, the short side member of the continuous casting mold has substantially the same configuration as the long side members 10 and 11, and the long side copper plate 13 of the long side members 10 and 11 and the short side copper plate of the short side member are molds. A main body is configured, and a mold space is formed inside the mold main body.
Thus, since the short side copper plate differs only in the width from the long side copper plate 13, description is abbreviate | omitted and only the long side copper plate 13 is demonstrated in detail hereafter.
[0015]
As shown in FIGS. 1 to 4, the copper plate 13 (thickness is, for example, about 10 to 100 mm) is formed by female screw portions 18 formed in the copper plate 13 (here, 10 locations at equal intervals in the width direction of the copper plate 13, A back plate 15 made of, for example, stainless steel is provided by attachment means 14 comprising eight vertical positions on the copper plate 13 (a total of 80 places) and male screws (not shown) that are screwed into the female screw portion 18 to fasten the back plate 15. (For example, thickness is about 50-500 mm). In addition, a groove is formed in the periphery of the back plate 15 surrounding the water supply unit 16, the drainage unit 17 of the back plate 15, and the water flow unit 12 of the copper plate 13. And the back plate 15 are improved, and industrial water leakage from the water passage 12 is prevented. In addition, a seal washer that can be waterproofed is disposed in advance in the holes (80 in this case) formed in the back plate 15 in order to attach the male screw, thereby preventing leakage of industrial water from the part to which the male screw is attached. ing.
[0016]
As a result, industrial water is supplied from a water supply port (not shown) provided in the water supply section 16 below the back plate 15, and the water supply section 16 makes the water flow section 12 uniform in the width direction by the water supply section 16 and below the copper plate 13. The industrial water that has flowed from the side to the upper side through the water passing portion 12 is discharged from a drain port (not shown) provided in the drain portion 17 on the upper side of the back plate 15 to cool the copper plate 13.
[0017]
As shown in FIGS. 1 to 3, the water flow portion 12 includes a large number of water guide grooves 20 to 22 that are arranged vertically in parallel on the back surface side of the copper plate 13. These water guide grooves 20 to 22 are substantially linear in the direction of water flow of the water flow portion 12 (that is, vertically), and the groove width is, for example, 3 to 15 mm. A plurality of the water guide grooves 20 are provided in the central portion of the female screw portions 18 adjacent to each other in the width direction of the copper plate 13 (in the present embodiment, three between the adjacent female screw portions 18, a total of 27). Further, a plurality of water guide grooves 21 are provided in the vicinity of the female screw portion 18 excluding the water guide grooves 22 at both ends in the width direction of the copper plate 13 (in this embodiment, two on one side of the female screw portion 18, a total of 36). It has been. And the water guide groove | channel 22 is provided in the width direction both ends of the copper plate 13, respectively.
Here, the interval W1 between adjacent water guide grooves 20 is set to 10 to 30 mm, and the interval W2 between adjacent water guide grooves 21 is set to 10 to 30 mm. In addition, according to the thickness of the copper plate 13, and the flow volume of industrial water, it is also possible to set the space | interval W1 of the adjacent water guide groove 20, and the space | interval W2 of the adjacent water guide groove 21 to 5-30 mm.
In this embodiment, the interval W2 between the adjacent water guide grooves 21 is narrower than the interval W1 between the adjacent water guide grooves 20, and suppresses a decrease in cooling efficiency in the vicinity of the female screw portion 18 where the water guide grooves cannot be formed. ing.
[0018]
Moreover, as shown in FIG.1, FIG.2, FIG.3 (A), FIG. 4, the water conveyance groove | channel 20 contains the meniscus part (for example, 50-150 mm from the upper end of the copper plate 13) of the copper plate 13, and makes it a center. A meniscus water guide portion 23 arranged in a predetermined range (a range of, for example, 30 to 400 mm from the upper end of the copper plate 14) and the meniscus water guide portion 23, and another portion of the copper plate 13, that is, a lower portion of the meniscus portion. The mold water guide section 24 is disposed at the bottom.
Moreover, as shown in FIG.1, FIG.2, FIG.3 (B), FIG. 4, the water guide groove 21 also contains the meniscus part (for example, 50-150 mm from the upper end of the copper plate 13) of the copper plate 13, and makes it the center. A meniscus water guide portion 25 disposed in a predetermined range (a range of, for example, 30 to 400 mm from the upper end of the copper plate 13) and a mold water guide portion 26 that communicates with the meniscus water guide portion 25 and is disposed below the meniscus portion. have.
[0019]
The groove bottoms of the meniscus water guide portions 23 and 25 of the water guide grooves 20 and 21 are formed, for example, at a position about 1/3 to 1/2 of the thickness of the copper plate 13 from the surface of the copper plate 13, and the mold water guide portion 24, 26 is formed on the surface side of the copper plate 13 with respect to the groove bottom. Here, the ratio d1 between the distances d1 and d2 from the surface of the copper plate 13 to the groove bottoms of the meniscus water guiding portions 23 and 25 and the distances D1 and D2 from the surface of the copper plate 13 to the groove bottoms of the mold water guiding portions 24 and 26. / D1 and d2 / D2 are set to 2/5 to 4/5, respectively. Note that the distance d2 is shorter than the distance d1 and the distance D2 is shorter than the distance D1, thereby suppressing a decrease in cooling efficiency in the vicinity of the female screw portion 18 where a water guide groove cannot be formed.
As shown in FIGS. 1, 2, and 3 (C), the water guide groove 22 has substantially the same cross-sectional shape from the lower end portion to the upper end portion.
[0020]
Thus, since each water guide groove 20 and 21 of the shape mentioned above is formed in the copper plate 13, the cooling efficiency of the copper plate 13 vicinity of the meniscus part can be improved.
Further, the continuous portion of the meniscus water guide portion 23 and the mold water guide portion 24 of the water guide groove 20 and the continuous portion of the meniscus water guide portion 25 and the mold water guide portion 26 of the water guide groove 21 are each configured with a gentle curved surface, Since the upper end part and the lower end part of the water guide grooves 20 to 22 are each formed of a gentle curved surface, the resistance to the flow of industrial water flowing from the lower side member 10 to the upper side can be reduced.
[0021]
As shown in FIGS. 1, 2, 3 (A), 3 (B), and 4, each meniscus water guide section adjacent to one side of the back surface of the copper plate 13 on which a large number of meniscus water guide sections 23, 25 are formed. A recess 27 that communicates with the passages 23 and 25 is formed. The concave portion 27 has a rectangular shape when viewed from the back, and the distance from the joint surface between the copper plate 13 and the back plate 15 to the bottom of the concave portion 27 determines the arrangement position of each meniscus water guiding portion 23, 25, and It is set to, for example, 1/10 to 1/3 of the thickness of the copper plate 13 according to the flow rate of the flowing industrial water.
[0022]
The recess 27 is provided with a closing member 28 made of, for example, a copper plate, a stainless steel plate or the like, which is a metal plate having corrosion resistance corresponding to the shape of the recess 27. Thereby, the closure member 28 can be arrange | positioned to a part (for example, 1/5-1/2 of the depth of the meniscus water conveyance parts 23 and 25) of the depth direction of each meniscus water conveyance part 23 and 25. FIG. The lower end portion and the upper end portion of the closing member 28 are processed into a gently inclined state in order to reduce resistance to the flow of industrial water flowing through the water guide grooves 20 and 21, respectively. The closing member 28 is attached to the copper plate 13 by a bolt 29 which is an example of a fixing means, and is fixed to the copper plate 13.
[0023]
As described above, the meniscus water guiding portions 23 and 25 are arranged on the surface side of the copper plate 13 with respect to the mold water guiding portions 24 and 26, and the cross-sectional areas of the meniscus water guiding portions 23 and 25 are set as the mold water guiding portions 24 and 26. Is disposed in the recess 27 so that the flow rate of the industrial water flowing through the meniscus water conveyance portions 23, 25 is faster or equal to the flow rate of the industrial water flowing through the mold water conveyance portions 24, 26. Therefore, the cooling efficiency of the copper plate 13 in the vicinity of the meniscus portion can be increased.
Therefore, better cooling efficiency can be obtained by using industrial water having the same flow rate as before, which is economical.
[0024]
【Example】
(Numerical analysis)
Then, the result of having conducted the heat conduction analysis (FEM analysis) using the long side copper plate 13 of the above-mentioned continuous casting mold will be described.
As shown in FIGS. 5A, 5B, and 6A, the dimensions of the long-side copper plate 13 used for the heat conduction analysis are as follows. The distance between the centers of the adjacent female screw portions 18 is 152 mm, the width of the water guide grooves 21 and 22 is 5 mm, the distance W1 between the adjacent water guide grooves 20 is 17 mm, the distance W2 between the adjacent water guide grooves 21 is 9 mm, and the distance between the water guide grooves 20 d1 is 23 mm, and the distance d2 of the water guide groove 21 is 21 mm.
Further, as a conventional example, as shown in FIG. 6B, a long side copper plate 30 which is different from the long side copper plate 13 only in the shape and arrangement position of the water guide groove is used for the heat conduction analysis. Five water guide grooves 31 are formed between the adjacent female screw portions 32, and the distance d3 from the surface of the copper plate 30 to the groove bottom of the water guide groove 31 is the same as the distance d2 of the water guide groove 21 of the long side copper plate 13. The depth is 25 mm.
[0025]
As a result of analysis using the copper plate 13 having the above-described configuration, as shown in FIGS. 7A and 7B, the vicinity of the meniscus portion on the surface side of the copper plate 13 has the highest temperature. I understand. Moreover, also about the result analyzed using the long side copper plate 30 of a prior art example, as shown in FIG. 8, it turns out that the meniscus part vicinity of the surface side of the long side copper plate 30 is the highest temperature.
[0026]
Here, the temperature distribution of the cross-section of each long-side copper plate 13, 30 at the highest temperature portion (portion of about 160 mm from the upper end of each long-side copper plate 13, 30) is shown in FIGS. Show. In addition, in the cross section of each long side copper plate 13,30, it is the surface of long side copper plate 13,30, Comprising: The center position between adjacent female screw parts 18 and 32 is point a, and the position of female screw parts 18 and 32 is b point. In addition, the groove bottoms of the water guide grooves (slits) 20, 21, and 31 are c points at the center position between the adjacent female screw portions 18 and 32, and d points are the positions of the side portions of the female screw portions 18 and 32, respectively. Set. Here, Table 1 shows the temperatures at the points a to d when the casting speed is changed in three stages of 1.0, 1.5, and 2.0 (m / min).
[0027]
[Table 1]
Figure 0004261272
[0028]
As is apparent from Table 1, when the casting speed is set to 1.0 (m / min), by using the long side copper plate 13, the temperature at the groove bottom (point c, point d) is 8 ° C. It was confirmed that the temperature could be lowered from 19 to 21 ° C. at a temperature of (point a, point b), compared to the conventional long-side copper plate 30. This temperature decrease is the same even when the casting speed is increased. When the casting speed is set to a high speed of 2.0 (m / min), by using the long side copper plate 13, the groove bottom ( 10 to 11 ° C. at the temperature of the c point and d point), 22 to 26 ° C. at the temperature of the surface (points a and b), and lower than the long side copper plate 30 of the conventional example.
[0029]
Further, when the casting speed is set to 2.0 (m / min), the temperature of the groove bottom of the long side copper plate 13 is 126 to 132 ° C., for example, when the cooling water back pressure is 0.2 (MPa). Since the boiling point of water is lower than 133 ° C., it is possible to suppress the promotion of scale adhesion.
On the other hand, when the casting speed is set to 2.0 (m / min), the temperature of the groove bottom of the conventional long side copper plate 30 is 136 to 143 ° C., and the cooling water back pressure is 0.2 (MPa). Since the boiling point of water exceeds 133 ° C., the adhesion of scale is promoted.
From the above, by using the continuous casting mold provided with the long side copper plate 13, it is possible to cope with high speed casting and to manufacture a slab having good quality.
[0030]
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the case where copper was used as a metal with favorable heat conductivity was demonstrated, if heat conductivity is favorable, other metals, copper alloys, etc. can also be used, for example. It is.
And in the said embodiment, about the case where the recessed part which connects each adjacent meniscus water guide part is formed in the back surface side surface of the casting_mold | template main body in which many meniscus water guide parts were formed, and the obstruction | occlusion member is arrange | positioned in this recessed part As described above, it is also possible to dispose a blocking member corresponding to the cross-sectional shape of the meniscus water guide portion in part of the depth direction of each meniscus water guide portion.
[0031]
【The invention's effect】
In the casting mold for continuous casting according to claims 1 and 2, since the cooling efficiency of the peripheral portion of the meniscus portion that is the highest temperature in the mold body can be increased, the casting speed is increased to increase the thermal load on the mold body. In this case, the mold body can be properly cooled, and a slab of stable quality can be manufactured.
Moreover, the manufacturing cost of a casting_mold | template can be reduced by making the depth of a casting_mold | template water conveyance part shallower than the depth of a meniscus water conveyance part.
And, for example, it is possible to increase the cooling efficiency of the mold body of the meniscus water guide section without increasing the supply amount of cooling water than before, so without changing each device of the conventionally used continuous casting equipment A continuous casting mold that can be used can be provided.
[0032]
In particular, in a continuous casting mold according to claim 1, it is possible to enhance the cooling efficiency of the meniscus portion of the mold body, can produce a slab of high quality, it is possible to carry out the casting operation stably.
In continuous casting mold according to claim 2, it is possible to simplify the shape of the closure member, for example, it can reduce the cost of shaping of the closing member with an economical, workability at the time of manufacturing is improved.
In the continuous casting mold according to claim 1, since the interval between a large number of adjacent water guide grooves is set, the water guide grooves can be arranged so that the cooling efficiency is higher than the conventional one, and the cooling efficiency of the mold body is further increased. Can be increased.
[Brief description of the drawings]
FIG. 1 is a rear view of a long side copper plate of a mold body of a continuous casting mold according to an embodiment of the present invention.
FIG. 2 is a partially enlarged view of the same long side copper plate.
3A to 3C are respectively a cross-sectional view taken along the line aa, a cross-sectional view taken along the line bb in FIG. 2, and a cross-sectional view taken along the line cc in FIG.
4 is a cross-sectional view taken along the line dd in FIG.
5A is a rear view of a long-side copper plate water channel model used for numerical analysis, and FIG. 5B is a cross-sectional view taken along the line ee of FIG.
6A is a cross-sectional view taken along the line ff in FIG. 5A, and FIG. 6B is an explanatory diagram of a water channel model of a long-side copper plate according to a conventional example.
7A and 7B are explanatory diagrams of the temperature distribution on the front side and the temperature distribution on the back side of the long-side copper plate based on the numerical analysis results, respectively.
FIG. 8 is an explanatory diagram of a temperature distribution on the surface side of a long-side copper plate according to a conventional example.
9A and 9B are explanatory diagrams of the temperature distribution of the meniscus portion of the long side copper plate based on the numerical analysis results, respectively, and the temperature distribution based on the numerical analysis result of the meniscus portion of the long side copper plate according to the conventional example. It is explanatory drawing.
FIG. 10 is a plan view of a continuous casting mold.
11A is an explanatory view of a long side copper plate of a continuous casting mold, and FIG. 11B is a cross-sectional view taken along the line gg in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10, 11: Long side member, 12: Water flow part, 13: Long side copper plate, 14: Mounting means, 15: Back plate (support member), 16: Water supply part, 17: Drain part, 18: Female screw part, 19 : O-ring, 20-22: Water guide groove, 23: Meniscus water guide, 24: Mold water guide, 25: Meniscus water guide, 26: Mold water guide, 27: Recess, 28: Closure member, 29: Bolt, 30: Long side copper plate, 31: water guide groove, 32: female thread

Claims (2)

熱伝導性が良好な金属からなり、裏面側に通水部が設けられた鋳型本体と、該鋳型本体の裏面側に取付け手段によって固定された支持部材とを有し、該支持部材に設けられた給水部及び排水部を介して前記通水部に冷却水を流すことで前記鋳型本体の冷却を行う連続鋳造用鋳型において、
前記通水部は、前記鋳型本体のメニスカス部を中央として上下に配置されるメニスカス導水部と、該メニスカス導水部に連通し前記鋳型本体の他の部分に配置される鋳型導水部とを有して垂直に並列配置される多数の導水溝を備え、前記メニスカス導水部の溝底を前記鋳型導水部の溝底よりも前記鋳型本体の表面側に形成し、しかも前記メニスカス導水部の深さ方向の一部に、前記メニスカス導水部の断面積を小さくする閉塞部材を配置して、該メニスカス導水部を流れる前記冷却水の流速を前記鋳型導水部を流れる前記冷却水の流速より速く又は同等にし、
更に、隣り合う多数の前記導水溝の間隔を10〜30mmに設定し、しかも前記鋳型本体の幅方向に隣り合う前記取付け手段の中央部に設けられた隣り合う前記導水溝の間隔より、前記鋳型本体の前記取付け手段の近傍に設けられた隣り合う前記導水溝の間隔を狭くし、
かつ、前記鋳型本体の表面から前記メニスカス導水部の溝底までの距離dと、前記鋳型本体の表面から前記鋳型導水部の溝底までの距離Dとの比d/Dを、2/5〜4/5とし、しかも前記鋳型本体の表面から、該鋳型本体の幅方向に隣り合う前記取付け手段の中央部に設けられた前記メニスカス導水部の溝底までの距離より、前記鋳型本体の表面から、該鋳型本体の前記取付け手段の近傍に設けられた前記メニスカス導水部の溝底までの距離を短くすることを特徴とする連続鋳造用鋳型。
The mold body is made of a metal having good thermal conductivity and has a water passage on the back surface side, and a support member fixed to the back surface side of the mold body by attachment means. In the continuous casting mold for cooling the mold body by flowing cooling water through the water supply section and the drainage section to the water flow section,
The water flow portion has a meniscus water conveyance portion disposed vertically with the meniscus portion of the mold body as a center, and a mold water conveyance portion disposed in another part of the mold body in communication with the meniscus water conveyance portion. A plurality of water guide grooves arranged in parallel vertically, the groove bottom of the meniscus water guide section is formed on the surface side of the mold body with respect to the groove bottom of the mold water guide section, and the depth direction of the meniscus water guide section A blocking member for reducing the cross-sectional area of the meniscus water guide portion is disposed at a part of the cooling water, and the flow rate of the cooling water flowing through the meniscus water guide portion is faster or equal to the flow rate of the cooling water flowing through the mold water guide portion. And
Further, the interval between the plurality of adjacent water guide grooves is set to 10 to 30 mm, and the mold is determined by the distance between the adjacent water guide grooves provided in the central portion of the mounting means adjacent in the width direction of the mold body. Narrow the interval between adjacent water guide grooves provided in the vicinity of the attachment means of the main body,
The ratio d / D between the distance d from the surface of the mold body to the groove bottom of the meniscus water guiding portion and the distance D from the surface of the mold body to the groove bottom of the mold water guiding portion is 2/5. 4/5, and from the surface of the mold main body from the distance from the surface of the mold main body to the groove bottom of the meniscus water guide portion provided at the center of the mounting means adjacent in the width direction of the mold main body. A casting mold for continuous casting, characterized in that a distance to the groove bottom of the meniscus water guide portion provided in the vicinity of the attaching means of the mold body is shortened .
請求項記載の連続鋳造用鋳型において、前記多数の前記メニスカス導水部が形成された前記鋳型本体の裏面側一面には、隣り合う前記各メニスカス導水部を連通する凹部が形成され、該凹部に、耐食性を備えた金属板からなる前記閉塞部材が配置されていることを特徴とする連続鋳造用鋳型。2. The continuous casting mold according to claim 1 , wherein a concave portion that communicates each adjacent meniscus water guiding portion is formed on one surface of the mold body on which the plurality of meniscus water guiding portions are formed. A casting mold for continuous casting, wherein the closing member made of a metal plate having corrosion resistance is disposed.
JP2003196595A 2003-07-14 2003-07-14 Continuous casting mold Expired - Fee Related JP4261272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003196595A JP4261272B2 (en) 2003-07-14 2003-07-14 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003196595A JP4261272B2 (en) 2003-07-14 2003-07-14 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2005028406A JP2005028406A (en) 2005-02-03
JP4261272B2 true JP4261272B2 (en) 2009-04-30

Family

ID=34207033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003196595A Expired - Fee Related JP4261272B2 (en) 2003-07-14 2003-07-14 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4261272B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026329A1 (en) * 2005-06-07 2006-12-14 Km Europa Metal Ag Liquid-cooled mold for continuous casting of metals
WO2010015399A1 (en) * 2008-08-06 2010-02-11 Sms Siemag Ag Strand casting mold for liquid metal, particularly for liquid steel
JP5180868B2 (en) * 2009-02-19 2013-04-10 三島光産株式会社 Continuous casting mold
JP6439762B2 (en) * 2015-08-18 2018-12-19 Jfeスチール株式会社 Steel continuous casting method
IT201900001035A1 (en) * 2019-01-24 2020-07-24 Danieli Off Mecc INGOT MILL FOR CONTINUOUS CASTING

Also Published As

Publication number Publication date
JP2005028406A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP4610548B2 (en) Tubular mold for continuous casting
CA2570085C (en) Permanent chill mold for the continuous casting of metals
CN102151808B (en) Water cooling channel for large beam blank continuous casting crystallizer
CN101137454B (en) Steel continuous casting plant for billet and cogged ingot formats
JP3443109B2 (en) Assembly mold for continuous casting
CA2549685C (en) Liquid-cooled permanent mold for the continuous casting of metals
JP4261272B2 (en) Continuous casting mold
TWI268821B (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JPH11267794A (en) Casting mold cooled by liquid
JP5180876B2 (en) Continuous casting mold
KR101824500B1 (en) Chill Vent for Die Casting
JP3865615B2 (en) Continuous casting mold for high heat flux
JP4181904B2 (en) Continuous casting mold
CN1309510C (en) Pressure casting flow system
JP4611349B2 (en) Continuous casting mold
KR20030087721A (en) A cooling water circulation system in die casting metallic pattern
JP4219123B2 (en) Continuous casting mold
RU194551U1 (en) WALL OF CONTINUOUS CASTING MACHINE CRYSTALLIZER
CN215356077U (en) High-pulling-speed sheet billet continuous casting crystallizer and copper plate thereof
KR100490985B1 (en) Funnel Type Copper Plate For Continuous Casting Mold
JP3246404B2 (en) Continuous casting mold
JP5525966B2 (en) Continuous casting mold
CN109909482B (en) Semi-open type pouring process for sand-lined metal mold
CN101628307A (en) Double-metal straightening roller and manufacturing process thereof
JP5525896B2 (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees