JP3246404B2 - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JP3246404B2
JP3246404B2 JP21311497A JP21311497A JP3246404B2 JP 3246404 B2 JP3246404 B2 JP 3246404B2 JP 21311497 A JP21311497 A JP 21311497A JP 21311497 A JP21311497 A JP 21311497A JP 3246404 B2 JP3246404 B2 JP 3246404B2
Authority
JP
Japan
Prior art keywords
mold
cooling water
continuous casting
meniscus
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21311497A
Other languages
Japanese (ja)
Other versions
JPH1157950A (en
Inventor
誠治 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21311497A priority Critical patent/JP3246404B2/en
Publication of JPH1157950A publication Critical patent/JPH1157950A/en
Application granted granted Critical
Publication of JP3246404B2 publication Critical patent/JP3246404B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融金属の連続鋳
造に用いる鋳型に係わり、特にメニスカス近傍の抜熱能
力が高く、高速鋳造に適した連続鋳造用鋳型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a casting mold used for continuous casting of molten metal, and more particularly to a casting mold having a high heat removal capability near a meniscus and suitable for high-speed casting.

【0002】[0002]

【従来の技術】連続鋳造においては、銅または銅合金か
らなる鋳型に連続的に溶湯を注入し、この溶湯を鋳型に
より冷却凝固させ、さらに下方に引き抜きつつ冷却して
完全凝固させて、連続的に鋳片を得ている。
2. Description of the Related Art In continuous casting, a molten metal is continuously poured into a mold made of copper or a copper alloy, the molten metal is cooled and solidified by the mold, and further cooled while being drawn down to be completely solidified. Has obtained slabs.

【0003】一般に、連続鋳造に用いる鋳型は、鋳型内
部に鋳造方向と平行に冷却水路を設け、鋳型の下部から
冷却水を供給し、鋳型の上部から排出することで、鋳型
の上部から下部まで一定の条件で抜熱をおこなう構造と
なっている。
[0003] In general, a mold used for continuous casting is provided with a cooling water passage parallel to the casting direction inside the mold, supplying cooling water from the lower part of the mold, and discharging the cooling water from the upper part of the mold, so that the upper part of the mold is lower. It is designed to extract heat under certain conditions.

【0004】最近、連続鋳造の生産性を高めるために高
速鋳造(例えば5m/分以上)が指向されているが、高
速鋳造では、鋳型の熱負荷が問題になる。特に、溶鋼が
接するメニスカス近傍の鋳型銅板温度が著しく上昇し、
ブレークアウトの発生等、操業トラブルを招く危険があ
る。そこで、メニスカス近傍の抜熱強化を図るべく種々
の鋳型が提案されている。
Recently, high-speed casting (for example, 5 m / min or more) has been pursued in order to increase the productivity of continuous casting. However, in high-speed casting, the heat load of a mold becomes a problem. In particular, the temperature of the mold copper plate near the meniscus where molten steel comes into contact increases significantly,
There is a risk of operating trouble such as breakout. Therefore, various molds have been proposed to enhance heat removal near the meniscus.

【0005】例えば、特開昭62−292241号公報
では、メニスカス近傍に別の冷却水給水口を設け、メニ
スカス近傍の抜熱能力を高めた鋳型が提示されている。
For example, Japanese Patent Application Laid-Open No. 62-292241 discloses a mold in which another cooling water supply port is provided in the vicinity of the meniscus to increase the heat removal ability in the vicinity of the meniscus.

【0006】また、実開昭59−180838号公報で
は、メニスカス近傍の冷却水路の断面積を他の部分の冷
却水路の断面積の80%以下に縮減した鋳型が提示され
ている。
Japanese Utility Model Laid-Open Publication No. Sho 59-180838 discloses a mold in which the cross-sectional area of a cooling channel near the meniscus is reduced to 80% or less of the cross-sectional area of the cooling channel in other portions.

【0007】[0007]

【発明が解決しようとする課題】連続鋳造の高速化を達
成するためには、メニスカス近傍での抜熱能力が高い鋳
型が必要となる。
In order to increase the speed of continuous casting, a mold having a high heat removal capability near the meniscus is required.

【0008】しかし、特開昭62−292241号公報
提示の手段では、冷却水ポンプ等の設備増強が必須であ
るとともに鋳型銅板およびバックフレームの構造が複雑
となりコストの増大を招く。
However, in the means disclosed in Japanese Patent Application Laid-Open No. 62-292241, it is necessary to enhance the equipment such as a cooling water pump, and the structure of the mold copper plate and the back frame becomes complicated, resulting in an increase in cost.

【0009】また、実開昭59−180838号公報提
示の手段では、縮減した部分の冷却水の流速増加によ
り、抜熱能力が向上するが、鋳造速度が5m/分を越す
高速鋳造にはまだ不充分であり、問題が残っている。
In the means disclosed in Japanese Utility Model Laid-Open Publication No. 59-180838, the heat removal capability is improved by increasing the flow rate of the cooling water in the reduced portion, but it is still not suitable for high-speed casting in which the casting speed exceeds 5 m / min. Insufficient and problems remain.

【0010】本発明の目的は、上記従来技術の問題点を
解消し、高速鋳造に適した連続鋳造用鋳型を提供するこ
とにある。
An object of the present invention is to provide a continuous casting mold suitable for high-speed casting by solving the above-mentioned problems of the prior art.

【0011】[0011]

【課題を解決するための手段】本発明者らは、メニスカ
ス近傍での抜熱能力を高める連続鋳造用鋳型の研究を重
ね、以下の知見を得た。
Means for Solving the Problems The present inventors have repeatedly studied a continuous casting mold for improving the heat removal ability near the meniscus, and have obtained the following knowledge.

【0012】(a) メニスカス近傍で鋳型を上部と下部に
分けたときの上部に、鋳型下端からの冷却水路を分岐し
て複数の冷却水路を形成すると、引き抜き方向における
鋳型の単位長さ当たりの水路の表面積が増加し、メニス
カス近傍の抜熱能力が大幅に向上すること。
(A) When a mold is divided into an upper part and a lower part in the vicinity of the meniscus, a plurality of cooling water paths are formed by branching a cooling water path from a lower end of the mold in an upper part. The surface area of the water channel increases, and the heat removal capacity near the meniscus is greatly improved.

【0013】(b) 分岐した複数の冷却水路の断面積の合
計を下部の冷却水路の断面積より少なくすると、分岐し
た冷却水路の通水速度が大きくなり、上記の部分の抜熱
能力が一層向上すること。
(B) If the sum of the cross-sectional areas of the plurality of branched cooling water passages is smaller than the cross-sectional area of the lower cooling water passage, the flow speed of the branched cooling water passages increases, and the heat removal capability of the above-mentioned portion is further improved. To improve.

【0014】本発明は上記の知見に基づくもので、その
要旨は以下の(1)および(2)に示す鋳型にある
The present invention is based on the above findings, and its gist lies in the following molds (1) and (2) .

【0015】[0015]

【0016】[0016]

【0017】(内部に冷却水路を有する鋳型におい
て、メニスカス相当位置の近傍で鋳型を上部と下部に分
けたとき、下部の冷却水路の延長上の上部に、それぞれ
の冷却水路から複数に分岐した冷却水路を形成した鋳型
であって、分岐する位置がメニスカス相当位置より下方
に50mm以上150mm以下の範囲であり、複数に分
岐した冷却水路の断面積の合計が、これに対応する下部
の冷却水路の断面積より小さい連続鋳造用鋳型。
( 1 ) In a mold having a cooling water channel inside
And separate the mold into upper and lower parts near the meniscus equivalent position.
When radiated, the upper part of the extension of the lower cooling water channel
Mold forming the branched cooling water path from the cooling water passage into a plurality of
And the branching position is below the meniscus equivalent position.
The range is 50 mm or more and 150 mm or less.
Toki the sum of the cross sectional area of the cooling water channel, which the corresponding lower part of the cooling channel small not continuous casting mold than the cross-sectional area of the.

【0018】()複数に分岐した前記冷却水路の分岐
本数が2本または3本で、下部の冷却水路の直径が10
mm以上30mm以下、上部の分岐した冷却水路の直径
が3mm以上5mm以下である上記(1)に記載の連続
鋳造用鋳型。
( 2 ) The number of branches of the cooling water passage branched into a plurality is two or three, and the diameter of the lower cooling water passage is 10
The continuous casting mold according to the above (1 ), wherein the diameter of the upper cooling water passage is 3 mm or more and 5 mm or less.

【0019】[0019]

【発明の実施の形態】以下に、本発明に係る連続鋳造用
冷却水路の構造について、添付図面を参照して詳細に説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of a cooling channel for continuous casting according to the present invention will be described below in detail with reference to the accompanying drawings.

【0020】図1は、本発明の連続鋳造用鋳型の要部を
示す模式的説明図で、同図(a)は、鋳型の縦断面図、
同図(b)は、同図(a)のA−A線矢視の断面図であ
る。
FIG. 1 is a schematic explanatory view showing a main part of a continuous casting mold according to the present invention. FIG. 1 (a) is a longitudinal sectional view of the mold.
FIG. 2B is a cross-sectional view taken along line AA of FIG.

【0021】図1(a)および図1(b)に示すよう
に、鋳型銅板1の下端から鋳型銅板1の上部方向に伸び
た冷却水路7は、メニスカス10の近傍で複数本の冷却
水路すなわち分岐水路8に分岐される(図1では、2本
の分岐水路を例示)。冷却水路への通水による抜熱は、
冷却水路の表面積が大きいほど、また通水速度が速いほ
ど増大する。
As shown in FIGS. 1 (a) and 1 (b), a cooling water passage 7 extending from the lower end of the mold copper plate 1 to the upper direction of the mold copper plate 1 has a plurality of cooling water passages near the meniscus 10. It is branched into a branch waterway 8 (in FIG. 1, two branch waterways are illustrated). Heat removal by passing water through the cooling water channel
It increases as the surface area of the cooling water channel increases and as the water flow speed increases.

【0022】したがって、同図に示すように鋳型内で冷
却水路を分岐することにより、引き抜き方向における鋳
型の単位長さ当たりの水路表面積が増加し、その結果、
分岐した部分の抜熱量が大きくなる。例えば、分岐水路
の合計の断面積を一定としたとき、分岐本数をNとする
と、分岐しない場合と比較し、分岐水路の表面積の合計
はN1/2 倍に増加する。すなわち、N=2で1.4倍、
N=4で2倍となる。
Therefore, by branching the cooling water passage in the mold as shown in the figure, the surface area of the water passage per unit length of the mold in the drawing direction is increased, and as a result,
The amount of heat removed from the branched part increases. For example, assuming that the total cross-sectional area of the branch waterway is constant and the number of branches is N, the total surface area of the branch waterway increases by N1 / 2 times as compared with the case where no branch is made. That is, N = 2, 1.4 times,
N = 4 is doubled.

【0023】 したがって、メニスカス近傍で水路を分岐
することにより、メニスカス近傍の抜熱量を大きくする
ことができる。なお、分岐する位置は、鋳型の熱負荷が
高いメニスカス相当位置から下方に50mmから150
mmの範囲とするのが望ましい。分岐位置が50mmよ
り上方では、分岐による抜熱効果が不充分であり、15
0mmより下方では、水路断面積の減少による圧損増加
によりポンプ能力の増強が必要になる。
[0023] Therefore, the waterway branches off near the meniscus
To increase the heat removal near the meniscus
be able to. The branch position is where the heat load of the mold is
50mm to 150 downward from high meniscus equivalent position
mm. The branch position is 50mm
Above this point, the heat removal effect due to branching is insufficient,
Below 0 mm, pressure drop increases due to decrease in cross section of water channel
This requires an increase in pump capacity.

【0024】次に、本発明の好適態様として、分岐水路
の断面積の合計がこれに対応する下部の冷却水路の断面
積より小さいとした理由を説明する。図1(a)に示す
ように、冷却水は下部ヘッダー5から給水口14より供
給され、冷却水路7から分岐水路8を通り排水口9より
上部ヘッダー6に排出される。冷却水路7から分岐水路
8に冷却水が通るとき断面積が小さくなることから、冷
却水の流速が上がり、水路表面の熱移動が促進されるた
め、分岐による抜熱能力の向上効果が一層大きくなる。
Next, as a preferred embodiment of the present invention, the reason why the total cross-sectional area of the branch water channel is smaller than the corresponding cross-sectional area of the lower cooling water channel will be described. As shown in FIG. 1A, the cooling water is supplied from a lower header 5 through a water supply port 14 and is discharged from a cooling water channel 7 through a branch water channel 8 to a drain port 9 to the upper header 6. When the cooling water passes from the cooling water channel 7 to the branch water channel 8, the cross-sectional area becomes small, so that the flow rate of the cooling water increases, and the heat transfer on the water channel surface is promoted. Become.

【0025】ここで、より好ましくは、分岐水路の断面
積の合計が、下部の冷却水路に対する断面積比で30%
以上である。断面積比が30%未満では、分岐水路の周
長が極端に短くなり、分岐水路の伝熱表面積が著しく減
少して充分な抜熱効果が得られない。
Here, more preferably, the total cross-sectional area of the branch channel is 30% in terms of a cross-sectional area ratio with respect to the lower cooling channel.
That is all. If the cross-sectional area ratio is less than 30%, the circumferential length of the branch channel becomes extremely short, and the heat transfer surface area of the branch channel is significantly reduced, so that a sufficient heat removal effect cannot be obtained.

【0026】次に、具体的な分岐水路の形状、寸法およ
び分岐本数を説明する。鋳型銅板1は、通常50mm程
度の厚さであり、両方の水路は、鋳型内面12から鋳型
肉厚方向に15mm以上30mm以下の範囲の位置に設
け、下部の冷却水路は、直径10mm以上30mm以下
の円形断面、上部の分岐水路は直径3mm以上5mm以
下の円形断面とし、分岐水路の断面寸法は同じとするの
が望ましい。なお、通常、分岐本数(N)は、2本また
は3本で充分に効果を発揮する。4本以上では、水路表
面積の増加の点では有利であるが、構造が複雑になる。
Next, the specific shape, dimensions and number of branches of the branch waterway will be described. The mold copper plate 1 is usually about 50 mm thick, and both water passages are provided in a range of 15 mm or more and 30 mm or less in the mold thickness direction from the mold inner surface 12, and the lower cooling water passage has a diameter of 10 mm or more and 30 mm or less. It is desirable that the circular cross section of the above and the upper branch water channel have a circular cross section having a diameter of 3 mm or more and 5 mm or less, and the cross sectional dimensions of the branch water channels be the same. Normally, the number of branches (N) is sufficient if two or three. Four or more are advantageous in terms of increasing the surface area of the water channel, but complicate the structure.

【0027】なお、図1に示した例では、分岐水路8は
鋳型銅板の下端面に対し垂直方向に、すなわち冷却水路
7の延長上に設けられているが、冷却水路7に対して多
少の角度を持たせても良い。
In the example shown in FIG. 1, the branch water channel 8 is provided in a direction perpendicular to the lower end face of the copper mold plate, that is, on the extension of the cooling water channel 7. An angle may be provided.

【0028】ところで、鋳型内部に設ける冷却水路の基
本形式には、貫通孔式とスリット式がある。貫通孔式
は、鋳型銅板の内部に冷却水路を形成したもの、一方、
スリット式は、鋳型銅板の表面に加工したスリットとバ
ックフレームと呼ばれる裏打ち板とで冷却水路を形成す
るものである。本発明は、図1に示したように、貫通孔
式冷却水路を備えた鋳型について説明したが、スリット
式冷却水路の鋳型にも適用することができる。
By the way, there are a through hole type and a slit type as a basic type of the cooling water channel provided inside the mold. In the through-hole type, a cooling water channel is formed inside a mold copper plate,
In the slit type, a cooling channel is formed by a slit formed on the surface of a mold copper plate and a backing plate called a back frame. Although the present invention has been described with reference to the mold having the through-hole type cooling water channel as shown in FIG. 1, the present invention can also be applied to a slit type cooling water channel mold.

【0029】[0029]

【実施例】湾曲半径3.5mで2ストランド垂直曲げ型
スラブ連続鋳造機において、一方のストランドでは、図
1に示す基本構成を有し、表1に示す仕様の本発明例の
鋳型を使用し、他方のストランドでは表1の分岐水路を
設けない比較例の鋳型を使用して、表2に示す条件で同
時に鋳造し、鋳型銅板の抜熱状況を比較した。なお、両
方の鋳型とも冷却水路の形式は貫通孔式とした。
EXAMPLE In a two-strand vertical bending slab continuous casting machine with a radius of curvature of 3.5 m, one of the strands has the basic structure shown in FIG. The other strand was cast at the same time under the conditions shown in Table 2 using the mold of the comparative example having no branch channel shown in Table 1, and the heat removal status of the mold copper plate was compared. In addition, in both molds, the type of the cooling water channel was a through-hole type.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】鋳型の抜熱特性は、図1(a)に示すメニ
スカス10の相当位置より40mm下方で、鋳型内面1
2から鋳型厚さ方向に13mmの深さで、鋳型幅方向の
中央部の位置に熱電対を挿入し、鋳型内部の温度を測定
することにより調査した。表3にその測定結果を示す。
The heat removal characteristic of the mold is 40 mm below the corresponding position of the meniscus 10 shown in FIG.
2 to 13 mm deep in the thickness direction of the mold, a thermocouple was inserted at the center of the mold in the width direction, and the temperature inside the mold was measured. Table 3 shows the measurement results.

【0033】[0033]

【表3】 [Table 3]

【0034】比較例1〜3では、測定点の温度はいづれ
も200℃を超えており、この温度より溶鋼と接触する
メニスカス近傍の鋳型銅板の表面温度を推定すると約3
50℃となる。この温度は銅板の軟化点400℃に近い
ためブレイクアウトが発生しやすい条件であり、操業上
および安全上で危険な状態であった。本発明例1〜3で
は、測定点の温度はすべて185℃以下であり、溶鋼と
接触するメニスカス近傍の鋳型銅板の表面温度を推定す
ると約300℃であり、安定した操業ができた。
In Comparative Examples 1 to 3, the temperature at each of the measurement points exceeded 200 ° C., and from this temperature the surface temperature of the mold copper plate near the meniscus in contact with the molten steel was estimated to be about 3 ° C.
It will be 50 ° C. Since this temperature is close to the softening point of the copper plate of 400 ° C., it is a condition under which breakout is likely to occur, which is dangerous for operation and safety. In Examples 1 to 3 of the present invention, the temperatures at the measurement points were all 185 ° C or lower, and the estimated surface temperature of the mold copper plate near the meniscus in contact with the molten steel was about 300 ° C, and stable operation was possible.

【0035】本発明例の鋳型の銅板温度は、比較例に比
べ、低温でかつその温度変動も少なくなっており、本発
明の鋳型の抜熱能力が大幅に向上していることが判っ
た。
The temperature of the copper plate of the mold of the present invention was lower than that of the comparative example, and the temperature fluctuation was smaller, indicating that the heat removal ability of the mold of the present invention was greatly improved.

【0036】本発明の鋳型により、5m/分以上の安定
した高速鋳造が可能となり、生産性が大幅に向上した。
With the mold of the present invention, stable high-speed casting of 5 m / min or more was made possible, and productivity was greatly improved.

【0037】[0037]

【発明の効果】本発明の連続鋳造用鋳型は、鋳型熱負荷
の高いメニスカス近傍の抜熱能力が大きいので、ブレイ
クアウトが起こりにくく高速鋳造が可能となる。
The continuous casting mold of the present invention has a large heat removal capability near the meniscus where the mold heat load is high, so that breakout hardly occurs and high-speed casting can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の連続鋳造用鋳型の要部を示す模式的説
明図であり、同図(a)は、鋳型の縦断面図、同図
(b)は、同図(a)のA−A線矢視の断面図である。
FIG. 1 is a schematic explanatory view showing a main part of a continuous casting mold of the present invention, wherein FIG. 1 (a) is a longitudinal sectional view of the mold, and FIG. It is sectional drawing of the -A line arrow.

【符号の説明】[Explanation of symbols]

1 鋳型銅板 3 バックフレーム 4 ボルト 5 下部ヘッダー 6 上部ヘッダー 7 冷却水路 8 分岐水路 9 排水口 10 メニスカス 12 鋳型内面 13 プラグ 14 給水口 DESCRIPTION OF SYMBOLS 1 Mold copper plate 3 Back frame 4 Bolt 5 Lower header 6 Upper header 7 Cooling channel 8 Branch channel 9 Drain port 10 Meniscus 12 Mold inner surface 13 Plug 14 Water supply port

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−292241(JP,A) 特開 平3−42144(JP,A) 特開 平7−124712(JP,A) 特開 平5−154613(JP,A) 特開 平3−47654(JP,A) 特開 昭59−35856(JP,A) 実開 昭57−49049(JP,U) 実開 平1−118846(JP,U) 実開 昭49−49113(JP,U) 実開 昭59−180838(JP,U) 実開 昭63−85357(JP,U) 実開 平3−91143(JP,U) 実公 昭46−23714(JP,Y1) 特表2000−510049(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22D 11/055 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-292241 (JP, A) JP-A-3-42144 (JP, A) JP-A-7-124712 (JP, A) JP-A 5- 154613 (JP, A) JP-A-3-47654 (JP, A) JP-A-59-35856 (JP, A) JP-A-57-49049 (JP, U) JP-A-1-118846 (JP, U) Japanese Utility Model Showa 49-49113 (JP, U) Japanese Utility Model Showa 59-180838 (JP, U) Japanese Utility Model Showa 63-85357 (JP, U) Japanese Utility Model Utility Model Hei 3-91143 (JP, U) Japanese Utility Model Showa 46-2714 (JP, Y1) Table 2000-510049 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) B22D 11/055

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内部に冷却水路を有する鋳型において、
メニスカス相当位置の近傍で鋳型を上部と下部に分けた
とき、下部の冷却水路の延長上の上部に、それぞれの冷
却水路から複数に分岐した冷却水路を形成した鋳型であ
って、分岐する位置がメニスカス相当位置より下方に5
0mm以上150mm以下の範囲であり、複数に分岐し
た冷却水路の断面積の合計が、これに対応する下部の冷
却水路の断面積より小さいことを特徴とする連続鋳造用
鋳型。
1. A mold having a cooling water passage therein,
When the mold is divided into an upper part and a lower part in the vicinity of the meniscus equivalent position, a mold formed with a plurality of cooling water passages branched from the respective cooling water passages in the upper part on the extension of the lower cooling water passage, and the branching position is 5 below the meniscus equivalent position
A continuous casting mold having a range of 0 mm or more and 150 mm or less, wherein a total cross-sectional area of a plurality of branched cooling water channels is smaller than a corresponding cross-sectional area of a lower cooling water channel.
【請求項2】 複数に分岐した前記冷却水路の分岐本数
が2本または3本で、下部の冷却水路の直径が10mm
以上30mm以下、上部の分岐した冷却水路の直径が3
mm以上5mm以下であることを特徴とする請求項1に
記載の連続鋳造用鋳型。
2. The cooling water passage branched into a plurality of cooling water passages having two or three branches, and a lower cooling water passage having a diameter of 10 mm.
Not less than 30 mm and the diameter of the upper cooling water channel is 3
The casting mold for continuous casting according to claim 1, wherein the length is not less than 5 mm and not more than 5 mm.
JP21311497A 1997-08-07 1997-08-07 Continuous casting mold Expired - Fee Related JP3246404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21311497A JP3246404B2 (en) 1997-08-07 1997-08-07 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21311497A JP3246404B2 (en) 1997-08-07 1997-08-07 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPH1157950A JPH1157950A (en) 1999-03-02
JP3246404B2 true JP3246404B2 (en) 2002-01-15

Family

ID=16633822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21311497A Expired - Fee Related JP3246404B2 (en) 1997-08-07 1997-08-07 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP3246404B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568013B2 (en) * 2004-04-19 2010-10-27 新日本製鐵株式会社 Continuous casting mold
JP4681516B2 (en) * 2006-07-28 2011-05-11 株式会社戸畑製作所 Stave cooler
JP6947192B2 (en) * 2019-01-31 2021-10-13 Jfeスチール株式会社 Mold for continuous casting of steel and continuous casting method of steel

Also Published As

Publication number Publication date
JPH1157950A (en) 1999-03-02

Similar Documents

Publication Publication Date Title
US4635702A (en) Mold for continuous casting of steel strip
US5887644A (en) Roll cooling structure for twin roll continuous caster
JP7284403B2 (en) Twin roll continuous casting apparatus and twin roll continuous casting method
JP2809186B2 (en) Continuous casting method
JP3229326B2 (en) Continuous casting of austenitic stainless steel
US4688624A (en) Apparatus for horizontal continuous casting of metal
JP3246404B2 (en) Continuous casting mold
EP1140392B1 (en) High speed continuous casting device and relative method
JPH11267794A (en) Casting mold cooled by liquid
JP6044614B2 (en) Steel continuous casting method
US20100000704A1 (en) Extrusion die for liquid metals, in particular for liquid
US6474401B1 (en) Continuous casting mold
US4036281A (en) Method for continuously casting a slab
US11045867B2 (en) Continuous casting mold, continuous casting device, and continuous casting method
JP3380412B2 (en) Mold for continuous casting of molten steel
JP2020121329A (en) Mold and method for steel continuous casting
JP2950152B2 (en) Continuous casting mold for slab
JPH0686849U (en) Induction heating tundish
JP3336224B2 (en) Mold for continuous casting of molten steel
JP2020082120A (en) Rectification member, molten metal pouring nozzle, twin roll type continuous casting device, and method for producing thin slab
CN114364471B (en) Crystallizer for continuous casting of metal products and corresponding casting method
JP3465578B2 (en) Method of manufacturing rectangular slab by continuous casting
RU2800555C1 (en) Mould for continuous casting of a metal product and corresponding casting method
KR100490985B1 (en) Funnel Type Copper Plate For Continuous Casting Mold
JP7151665B2 (en) Water-cooled mold for continuous casting and continuous casting method for steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

LAPS Cancellation because of no payment of annual fees