JP4227768B2 - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP4227768B2
JP4227768B2 JP2002194880A JP2002194880A JP4227768B2 JP 4227768 B2 JP4227768 B2 JP 4227768B2 JP 2002194880 A JP2002194880 A JP 2002194880A JP 2002194880 A JP2002194880 A JP 2002194880A JP 4227768 B2 JP4227768 B2 JP 4227768B2
Authority
JP
Japan
Prior art keywords
mold
copper plate
long side
side copper
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002194880A
Other languages
Japanese (ja)
Other versions
JP2004034094A (en
Inventor
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2002194880A priority Critical patent/JP4227768B2/en
Publication of JP2004034094A publication Critical patent/JP2004034094A/en
Application granted granted Critical
Publication of JP4227768B2 publication Critical patent/JP4227768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鋳造中の鋳型の熱変形を考慮した連続鋳造用鋳型に関する。
【0002】
【従来の技術】
従来、連続鋳造設備で使用される連続鋳造用鋳型(以下、単に鋳型とも言う)70は、図5に示すように、一対の幅狭冷却部材である短辺部材71、72と、この短辺部材71、72を挟み込むように配置される一対の幅広冷却部材である長辺部材73、74とを備え、この向い合う長辺部材73、74の両端部にそれぞれボルト75を取付け、バネ(図示しない)を介してナット76で固定した構成となっている。
この短辺部材71、72は鏡面対称で同じ構成となっており、裏面側の上下方向に多数の導水溝が設けられた短辺銅板77と、短辺銅板77の裏面側にボルトによって固定されたバックプレート78(冷却箱とも言う)とを有している。そして、バックプレート78の上端部及び下端部にそれぞれ設けられた排水部及び給水部を介して導水溝に冷却水の一例である工業用水を流すことで、短辺銅板77の冷却を行っている。一方、長辺部材73、74も略同じ構成となっているが、長辺部材73、74の長辺銅板79の幅は、短辺部材71、72の短辺銅板77の幅より長く、この長辺銅板79の裏面側にそれぞれ固定されたバックプレート80の幅が、長辺銅板79の幅より長くなっている。
なお、この短辺部材71、72の短辺銅板77と、長辺部材73、74の長辺銅板79とで鋳型本体81が構成されている。また、この鋳型本体81の内側(冷却面側)の形状は、製造する鋳片の体積収縮に対応した形状となっており、長辺銅板79の内側対向面82の距離は、図6の二点鎖線に示すように、鋳型本体81の上端から下端にかけて狭くなっている。
【0003】
連続鋳造作業時においては、上記した鋳型70の上方(短辺部材71、72、長辺部材73、74の上側)から溶鋼を注ぎ、この鋳型70により製品となる鋳片の初期凝固を行い、凝固した鋳片を鋳型70下方より一定速度で連続して引抜いて製造している。このとき、鋳型70を鋳片に対して、上下方向へ例えば10mmの範囲で150回/min程度振動(モールドオシレーションとも言う)させているので、鋳型70は鋳片に対して相対運動をし、鋳型70が鋳片より下がったり上がったりしている。これにより、鋳型70が鋳片に対して下がった場合は、短辺銅板77の内側対向面83及び長辺銅板79の内側対向面82で構成される冷却面(鋳片との接触面)と鋳片の凝固殻(凝固シェル)との間に隙間が発生し、また上がった場合は、鋳型70が鋳片に対して押し付けられる。
なお、鋳型70に注がれる溶鋼温度及び鋳型70出口の鋳片の表面温度は操業条件により異なるが、通常、溶鋼温度は約1500℃程度であり、鋳型70出口の鋳片の表面温度は800〜1200℃である。ここでの鋳片の内部は未凝固状態、即ち液体状態となっている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した連続鋳造用鋳型70には、以下の問題がある。
鋳型本体81の冷却面は、例えば200〜300℃程度に冷却されているが、図7に示すように、鋳型本体81の上端部から下端部にかけて温度分布が生じ、特に鋳型本体81の上部の温度が他の部分の温度より高くなっている。このため、図6の実線に示すように、鋳型本体81が溶鋼及び鋳片の熱によって熱膨張(熱変形)し、特に鋳型本体81の内側上部が中央部及び下部の冷却面上より、鋳型本体81の内側へ大きく突出し変形することとなる。
このように、鋳型本体81の内側上部に突出部が発生することで、鋳型本体81の冷却面と鋳片の表面とが略平行にならない。このため、前記したように、鋳片に対して鋳型70を相対運動させた場合、突出部が鋳片の表層部に形成される凝固殻を押し付け変形させるので、製造する鋳片の品質を悪化させる問題がある。
また、突出部が凝固殻を押し付けた場合、凝固殻が破れ、再度鋳型70の冷却によって修復される場合もあるが、このとき鋳片の表面にラップ傷等が発生し、製品品質を悪くする問題もある。そして、これに起因した鋳片のブレークアウト等を招来する可能性もある。
更に、近年、連続鋳造作業の能率を向上させるため、鋳造速度が上昇しているが、特に、多くの連続鋳造設備で採用されている鋳片厚みの1/3〜1/2程度の鋳片厚みの鋳型を備えた連続鋳造機が出現するに至って、従来と比較して2倍、3倍の鋳造速度が採用される場合も見られるようになった。このように鋳造速度が速くなると、鋳型本体に抽出される熱量が比例的に増大するので、鋳型本体での熱変形がより顕著に現れてきた。
本発明はかかる事情に鑑みてなされたもので、熱間時における鋳型本体の冷却面の形状を所定の形状にすることで、良好な品質を備えた鋳片を製造可能な連続鋳造用鋳型を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記目的に沿う本発明に係る連続鋳造用鋳型は、囲まれた鋳型空間に投入された溶鋼を冷却して凝固させ鋳片を製造する連続鋳造用鋳型において、鋳型空間は、一対の幅狭冷却部材の短辺銅板と、一対の幅広冷却部材の長辺銅板とで構成される鋳型本体内に形成され、短辺銅板及び長辺銅板の上端から下端へかけて鋳片の体積収縮を考慮して連続的に傾斜した面を基準テーパとし、熱間時における熱変形した鋳型本体の銅板表面プロフィールの数値と基準テーパの数値の差分に相当する深さ分だけ、基準テーパの面より鋳型本体側へ削り込んだ冷却面形状を有する鋳型本体のメニスカス部より下位置にあって、溶鋼上部が接する内側部分に、製作時に、鋳型本体の膨張代に実質的に一致する拡幅部が設けられ、しかも拡幅部の上側に、更に拡幅部の内幅と同一又はより広い拡大拡幅部を設けている。このように、制作時において鋳型本体の内側部分に拡幅部を設けるので、熱間時に鋳型本体が熱によって膨張した場合でも、鋳型本体の内側部分の冷却面を所定の形状、例えば実質的に平面状態(1段テーパ)にできる。
また、拡幅部の上側に、更に拡幅部の内幅と同一又はより広い拡大拡幅部を設けるので、鋳型本体の冷却面の全てを、鋳型本体の熱変形を考慮した形状に加工する必要がなくなる。
【0006】
本発明に係る連続鋳造用鋳型において、膨張代は予測計算値を用いて求めることが好ましい。このようにして、熱間時における鋳型本体の膨張代を求めるので、拡幅部の形状を容易に把握できる。
【0007】
【発明の実施の形態】
続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここに、図1は本発明の一実施の形態に係る連続鋳造用鋳型の説明図、図2は同連続鋳造用鋳型の拡幅部の形状を求めるための予測計算値を示すグラフ、図3は同予測計算値を加工した説明図、図4(A)、(B)はそれぞれ変形例に係る鋳型本体の説明図である。
【0008】
図1に示すように、本発明の一実施の形態に係る連続鋳造用鋳型10は、数値解析を行うための形状を示したものであり、囲まれた鋳型空間11に投入された溶鋼12を冷却して凝固させ鋳片(図示しない)を製造するものである。この連続鋳造用鋳型10は、メニスカス部13より下位置にあって、溶鋼12上部が接する鋳型本体14の内側部分に、製作時に鋳型本体14の膨張代に実質的に一致する拡幅部15が設けられている。なお、拡幅部15とは、鋳型本体14によって形成される鋳型空間11の拡幅部分を意味するもので、鋳型本体14に対しては、制作時において、鋳型本体14の冷却面から例えば、0.1〜0.5mm程度の深さを有する窪み形状となったものである。以下、詳しく説明する。
【0009】
連続鋳造用鋳型10は、前記したように、一対の幅狭冷却部材である短辺部材と、一対の幅広冷却部材である長辺部材とを組合せることで製造されるものである(図5参照)。また、連続鋳造用鋳型10の長辺部材は、熱伝導性が良好な金属の一例である銅からなり、裏面側に通水部が設けられた長辺銅板16と、長辺銅板16の裏面側に取付け手段の一例であるボルトによって固定された支持部材の一例であるバックプレート(冷却箱、水箱とも言う)とを有し、バックプレートに設けられた給水部及び排水部を介して通水部に冷却水の一例である工業用水を流すことで長辺銅板16の冷却を行うものである。なお、連続鋳造用鋳型10の短辺部材も、上記した長辺部材と略同様の構成であり、長辺部材の長辺銅板16と短辺部材の短辺銅板とで鋳型本体14が構成されている。これにより、平面視した鋳型本体14の中央部に鋳型空間11が形成されることとなる。
【0010】
鋳型本体14を構成する長辺銅板16及び短辺銅板の上端から下端までの垂直長さLは、例えば700〜1000mm程度であり、その厚みが例えば10〜50mm程度である。また、長辺銅板16の幅(短辺銅板の幅も同様)は、上端部から下端部へかけて短くなっているため、一対の長辺部材の長辺銅板16の内側対向面17、及び一対の短辺部材の短辺銅板の内側対向面とで構成される内周長は、鋳型本体14の上端部より下端部の方が短くなっている。これは、例えば、凝固収縮、固体収縮等の鋳片の体積収縮を考慮して決定されるもので、その数値は、過去の実績データや、鋳片の線膨張量及び温度を基に決定することが好ましい。
【0011】
鋳型本体14の長辺銅板16の上部には、長辺銅板16の幅方向に渡って溝状となった拡幅部15が設けられている。この拡幅部15は、長辺銅板16の上部(上部領域)の下側から中央部へかけて徐々に拡幅し、また中央部から上側へかけて、徐々に縮幅するものである。なお、短辺銅板についても同様である。
ここで、鋳型本体14の内側に設けた拡幅部15の形状の求め方について、長辺銅板16を用いて説明する。
まず、制作時における鋳型本体の長辺銅板の内側を平面(1段テーパとも言う)状と仮定した(基準テーパ)場合、熱間時(溶鋼12投入中)においては、長辺銅板の内側の形状が、例えば図6の二点鎖線の状態から実線の状態まで熱変形する(膨張代を示す)。なお、このときの長辺銅板の内側形状の予測計算値は、例えば、鋳片の引き抜き速度、鋳型本体(長辺銅板)の厚み、冷却速度等を用い、従来公知の有限要素法(FEM)によって求めることができる。この予測計算した結果を図2に示す。なお、長辺銅板上端からの距離が100mmの位置が、溶鋼の湯面(液面)の位置に相当する。
この基準テーパは、長辺銅板上端からの距離と、高さ方向の各位置の変位量とが比例関係を示すことから分かるように、長辺銅板の上端から下端へかけ、鋳片の体積収縮を考慮して連続的に傾斜している。しかし、熱間時における長辺銅板の形状(銅板表面プロフィール)は、溶鋼の湯面近傍の変位量が大幅に増加していることから、湯面近傍で大幅な熱変形が起こることが予測できる。
【0012】
また、図2のデータを基に、長辺銅板の高さ方向の各部分における傾きを求めた結果を図3に示す。なお、傾きは、長辺銅板を高さ方向に10mm毎に区分した場合の各区間部分での長辺銅板間距離に対する変化の割合を1m当りの値に換算したもので、以下の式によって示される。
傾き[%/m]=(W1−W2)/W3×100×(1000/10)
ここで、W1は各部分の上端の位置で対向する長辺銅板間の距離、W2は各部分の下端の位置で対向する長辺銅板間の距離、W3は長辺銅板の下端の位置で対向する長辺銅板間の距離をそれぞれ意味する(図6参照)。
【0013】
基準テーパは、長辺銅板の上端から下端へかけ、鋳片の体積収縮を考慮して連続的に傾斜しているので、図3に示すように、長辺銅板の上端から下端へかけての各部分の傾きは略一定値(0.4%/m程度)となっている。しかし、熱間時における長辺銅板(銅板表面プロフィール)は、溶鋼の湯面(液面)近傍の傾きが大きく増減していることから、湯面近傍で大幅な熱変形が起こることが予測できる。なお、長辺銅板上端からの距離が450mmの位置では、傾きが基準テーパと略近い数値となっている。従って、長辺銅板上端からの距離が450mm以上の位置では、長辺銅板の熱変形をほとんど考慮することなく、鋳片の体積収縮の影響を主として考慮することが好ましい。
【0014】
前記したことから、溶鋼12の熱影響を最も受け易い鋳型本体14の内側上部に拡幅部15を設け、中央部及び下部の形状を従来の形状とすることで、鋳型の熱変形を考慮した連続鋳造用鋳型10を製造できる。
従って、拡幅部15の形状は、長辺銅板上端からの各距離において、銅板表面プロフィールの数値から基準テーパの数値の差分に相当する深さ分だけ、基準テーパの面より鋳型本体14側へ例えば削り込むことで、長辺銅板16の内側に拡幅部15を設けることができる。即ち、図2において、銅板表面プロフィールの線を、基準テーパの実線を中心として線対称とした線が、求める拡幅部15の形状となる(図1の実線)。
このデータに基づき、長辺銅板をNC工作機械を用いて加工することで、拡幅部15を設けた長辺銅板16を製造する。なお、この加工は、長辺銅板16に対して連続的、又は所定間隔(例えば、1〜10mm程度)毎に断続的に行うことも可能である。
【0015】
これにより、連続鋳造作業の熱間時においては、連続鋳造用鋳型10が溶鋼12の熱で膨張することで、長辺銅板16の形状が、図1の実線から二点鎖線へと熱変形する。従って、熱間時においては、溶鋼12の熱影響による膨張代分だけ長辺銅板16の拡幅部15が膨張するので、鋳型本体14の内側の形状が、実質的に目的とする所定形状(1段テーパ)となる。これにより、鋳型本体14の冷却面と鋳片の表面とを略平行にできる。
なお、長辺銅板16上端からの各距離において、銅板表面プロフィールの数値から基準テーパの数値の差分に相当する深さの拡幅部15を設ける場合、拡幅部15を設ける部分の長辺銅板16の厚みが変化する。これにより、鋳型本体14の膨張代も変化する。従って、この厚みを考慮して前記した有限要素法を用いて予測計算し、長辺銅板16の内側形状を決定することで、より熱変形に対応した拡幅部15を長辺銅板16に設けることができる。
【0016】
次に、連続鋳造用鋳型10の変形例について、鋳型本体の長辺銅板を用いて説明するが、短辺銅板も同様であり、また鋳型本体の大きさや素材等は、前記した連続鋳造用鋳型10と同じであるため、詳しい説明を省略する。
図4(A)に示すように、鋳型本体20は、製作時に、長辺銅板21の上部に設けた拡幅部22の上側に、更に拡幅部22の内幅と同一の拡大拡幅部23を設けたものである。従って、長辺銅板21に設けた拡幅部22の内幅が最も広い位置Xから、長辺銅板21の上端24へかけては、同じ内幅となっている。なお、拡幅部22は、拡幅部15の上側の形状が異なること以外、拡幅部15と実質的に同一のものである。
【0017】
また、位置Xから長辺銅板21の下端25へかけての長辺銅板21の形状は、連続鋳造用鋳型10と同じ形状である。これにより、長辺銅板21の中で最も熱の影響を受け易い湯面近傍の部分を鋳片側へ突出することを確実に防止できると共に、長辺銅板21の冷却面の全てを、長辺銅板21の熱変形を考慮した形状に加工する必要がなくなる。
なお、拡幅部22の上側には、長辺銅板21の上端24へかけて、拡幅部22の内幅より徐々に広くなる拡大拡幅部26を設けることも可能である(図4(A)中の二点鎖線)。これにより、長辺銅板21に対する拡幅部22の加工が容易となり、作業性が更に良好となる。
【0018】
図4(B)に示すように、鋳型本体30は、製作時に、長辺銅板31のメニスカス部32の上側に、更に拡幅部33の湯面位置Yの内幅と同一の拡大拡幅部34を設けたものである。従って、長辺銅板31の湯面位置Yから、長辺銅板31の上端35へかけては、同じ内幅となっている。なお、拡幅部33は、拡幅部15の上側の形状が異なること以外、拡幅部15と実質的に同一のものである。
また、湯面位置Yから長辺銅板31の下端36へかけての長辺銅板31の形状は、連続鋳造用鋳型10と同じ形状である。これにより、溶鋼と接触しない部分の冷却面の形状を単純にできるので、長辺銅板31の加工を容易にできる。
なお、メニスカス部32の上側には、長辺銅板31の上端35へかけて、湯面位置Yの内幅より徐々に広くなる拡大拡幅部37を設けることも可能である(図4(B)中の二点鎖線)。
【0019】
以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記した実施の形態や変形例の一部又は全部を組合せて本発明の連続鋳造用鋳型を構成する場合にも本発明は適用される。
また、前記実施の形態においては、平断面視して矩形の開口部を備えた鋳型本体を有する連続鋳造用鋳型を使用した場合について説明したが、平断面視した開口部の形状を、製造する鋳片の断面形状に対応させて、例えば多角形(例えば、凸形、凹形、6角形、8角形等)等とすることも勿論可能である。
【0020】
そして、前記実施の形態においては、鋳型本体の内側の冷却面の形状を1段テーパとした場合について説明したが、他の形状でもよく、例えば従来公知の2段テーパ、マルチテーパ等とすることも可能である。
【0021】
【発明の効果】
請求項1、2記載の連続鋳造用鋳型においては、制作時において鋳型本体の内側部分に拡幅部を設けるので、熱間時に鋳型本体が熱によって膨張した場合でも、鋳型本体の内側部分の冷却面を所定の形状、例えば実質的に平面状態にできる。これにより、溶鋼の熱によって冷却面の一部に生じる溶鋼側への突出部の発生を防止できるので、従来のような突出部と鋳片の凝固殻との接触を防止できる。従って、製造する鋳片の表面状態を良好とし、製品品質を向上できると共に、鋳片のブレークアウト等の発生の可能性を低減できる。また、鋳造速度が上昇した場合においても、鋳型本体が熱変形した場合の形状を予め求めることで、鋳型本体の膨張代に応じて拡幅部を設けることができるので、高速鋳造にも対応可能な連続鋳造用鋳型を提供できる。
また、拡幅部の上側に、更に拡幅部の内幅と同一又はより広い拡大拡幅部を設けるので、鋳型本体の冷却面の全てを、鋳型本体の熱変形を考慮した形状に加工する必要がなくなり、鋳型本体の製作時における作業性が良好となる。
【0022】
請求項記載の連続鋳造用鋳型においては、膨張代を予測計算値を用いて求めるので、拡幅部の形状を容易に把握できる。従って、連続鋳造用鋳型の制作時においては、鋳型本体の熱変形を考慮した鋳型本体の拡幅部の加工を容易にできるので、作業性が良好である。
【図面の簡単な説明】
【図1】本発明の一実施の形態に係る連続鋳造用鋳型の説明図である。
【図2】同連続鋳造用鋳型の拡幅部の形状を求めるための予測計算値を示すグラフである。
【図3】同予測計算値を加工した説明図である。
【図4】(A)、(B)はそれぞれ変形例に係る鋳型本体の説明図である。
【図5】従来例に係る連続鋳造用鋳型の平面図である。
【図6】同連続鋳造用鋳型の鋳型本体の制作時及び熱間時の形状の説明図である。
【図7】同連続鋳造用鋳型の鋳型本体を構成する長辺銅板の温度分布の説明図である。
【符号の説明】
10:連続鋳造用鋳型、11:鋳型空間、12:溶鋼、13:メニスカス部、14:鋳型本体、15:拡幅部、16:長辺銅板、17:内側対向面、20:鋳型本体、21:長辺銅板、22:拡幅部、23:拡大拡幅部、24:上端、25:下端、26:拡大拡幅部、30:鋳型本体、31:長辺銅板、32:メニスカス部、33:拡幅部、34:拡大拡幅部、35:上端、36:下端、37:拡大拡幅部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a continuous casting mold in consideration of thermal deformation of a mold during casting.
[0002]
[Prior art]
Conventionally, a continuous casting mold (hereinafter, also simply referred to as a mold) 70 used in a continuous casting facility includes a pair of narrow cooling members 71 and 72 as shown in FIG. Long side members 73 and 74 which are a pair of wide cooling members disposed so as to sandwich the members 71 and 72, bolts 75 are attached to both ends of the long side members 73 and 74 facing each other, and springs (illustrated) No) is fixed by the nut 76.
The short side members 71 and 72 are mirror-symmetrical and have the same configuration, and are fixed to the short side copper plate 77 provided with a number of water guide grooves in the vertical direction on the back side and bolts on the back side of the short side copper plate 77. And a back plate 78 (also referred to as a cooling box). And the short side copper plate 77 is cooled by flowing the industrial water which is an example of a cooling water to a water guide groove through the drainage part and water supply part which were each provided in the upper end part and lower end part of the backplate 78. . On the other hand, the long side members 73 and 74 have substantially the same configuration, but the width of the long side copper plate 79 of the long side members 73 and 74 is longer than the width of the short side copper plate 77 of the short side members 71 and 72. The width of the back plate 80 fixed to the back side of the long side copper plate 79 is longer than the width of the long side copper plate 79.
The mold body 81 is constituted by the short side copper plate 77 of the short side members 71 and 72 and the long side copper plate 79 of the long side members 73 and 74. Further, the inner shape (cooling surface side) of the mold body 81 is a shape corresponding to the volume shrinkage of the cast slab to be manufactured, and the distance between the inner facing surface 82 of the long side copper plate 79 is as shown in FIG. As shown by the dotted line, the mold body 81 is narrowed from the upper end to the lower end.
[0003]
During the continuous casting operation, molten steel is poured from above the mold 70 (above the short side members 71 and 72 and the long side members 73 and 74), and initial casting of the slab as a product is performed by the mold 70, The solidified slab is continuously drawn from the lower part of the mold 70 at a constant speed. At this time, since the mold 70 is vibrated about 150 times / min in the vertical direction with respect to the slab, for example, in the range of 10 mm (also referred to as mold oscillation), the mold 70 moves relative to the slab. The mold 70 is lowered or raised from the slab. Thereby, when the mold 70 is lowered with respect to the slab, a cooling surface (a contact surface with the slab) constituted by the inner facing surface 83 of the short side copper plate 77 and the inner facing surface 82 of the long side copper plate 79, When a gap is generated between the slab and the solidified shell (solidified shell), and when it rises, the mold 70 is pressed against the slab.
Although the molten steel temperature poured into the mold 70 and the surface temperature of the slab at the outlet of the mold 70 differ depending on the operating conditions, the molten steel temperature is usually about 1500 ° C., and the surface temperature of the slab at the outlet of the mold 70 is 800 ˜1200 ° C. The inside of the slab here is in an unsolidified state, that is, in a liquid state.
[0004]
[Problems to be solved by the invention]
However, the above-described continuous casting mold 70 has the following problems.
The cooling surface of the mold body 81 is cooled to about 200 to 300 ° C., for example, but as shown in FIG. 7, a temperature distribution is generated from the upper end portion to the lower end portion of the mold body 81, The temperature is higher than the temperature of other parts. Therefore, as shown by the solid line in FIG. 6, the mold main body 81 is thermally expanded (thermally deformed) by the heat of the molten steel and the cast slab, and in particular, the inner upper part of the mold main body 81 is located on the cooling surface of the central part and the lower part. The main body 81 protrudes greatly inside and deforms.
As described above, the protrusion is generated at the upper part on the inner side of the mold body 81, so that the cooling surface of the mold body 81 and the surface of the slab are not substantially parallel. For this reason, as described above, when the mold 70 is moved relative to the slab, the protruding portion presses and deforms the solidified shell formed on the surface layer portion of the slab, so that the quality of the slab to be manufactured is deteriorated. There is a problem to make.
In addition, when the protruding portion presses the solidified shell, the solidified shell may be broken and repaired by cooling the mold 70 again, but at this time, a lap scratch or the like is generated on the surface of the slab, which deteriorates the product quality. There is also a problem. Further, there is a possibility that a slab breakout or the like resulting from this will be caused.
Furthermore, in recent years, the casting speed has been increased in order to improve the efficiency of the continuous casting operation. In particular, the slab is about 1/3 to 1/2 of the slab thickness employed in many continuous casting facilities. With the advent of continuous casting machines equipped with thick molds, it has become possible to see casting speeds that are twice or three times higher than conventional casting machines. As the casting speed increases in this way, the amount of heat extracted into the mold body increases proportionally, and thermal deformation in the mold body has become more prominent.
The present invention has been made in view of such circumstances, and a continuous casting mold capable of producing a slab of good quality by making the shape of the cooling surface of the mold main body a predetermined shape when hot. The purpose is to provide.
[0005]
[Means for Solving the Problems]
The continuous casting mold according to the present invention that meets the above-mentioned object is a continuous casting mold in which molten steel put in an enclosed mold space is cooled and solidified to produce a slab. The mold space has a pair of narrow cooling. It is formed in the mold body consisting of the short side copper plate of the member and the long side copper plate of a pair of wide cooling members, considering the volume shrinkage of the slab from the upper end to the lower end of the short side copper plate and the long side copper plate The reference taper is a continuously inclined surface, and the mold body side is closer to the mold taper than the reference taper surface by a depth corresponding to the difference between the numerical value of the copper plate surface profile of the mold body that is thermally deformed and the value of the reference taper. in the lower position than the meniscus of the mold body having an elaborate's cooling surface shape cutting into, the inner portion of molten steel top is in contact, at the time of manufacture, the widening section is provided that substantially matches the expansion margin of the mold body, yet Further expand above the widened section The inner width and the same or wider expansion widened portion parts are provided. Thus, since the widened portion is provided in the inner part of the mold body during production, even if the mold body expands due to heat during hot, the cooling surface of the inner part of the mold body has a predetermined shape, for example, a substantially flat surface. It can be in a state (one step taper).
Further, on the upper side of the widened portion, further since providing internal width identical to or wider expansion widening section of the widening section, all of the cooling surface of the mold body, there is no need to process to a shape in consideration of the thermal deformation of the mold body .
[0006]
In the continuous casting mold according to the present invention, the expansion allowance is preferably obtained using a predicted calculation value. In this way, since the expansion allowance of the mold body during the hot state is obtained, the shape of the widened portion can be easily grasped.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
FIG. 1 is an explanatory diagram of a continuous casting mold according to an embodiment of the present invention, FIG. 2 is a graph showing predicted calculation values for obtaining the shape of the widened portion of the continuous casting mold, and FIG. FIG. 4A and FIG. 4B are explanatory diagrams of the mold main body according to the modified example.
[0008]
As shown in FIG. 1, a continuous casting mold 10 according to an embodiment of the present invention shows a shape for performing numerical analysis, and a molten steel 12 put into an enclosed mold space 11 is shown. It cools and solidifies and manufactures a slab (not shown). The continuous casting mold 10 is provided with a widened portion 15 which is located below the meniscus portion 13 and which is substantially coincident with the expansion allowance of the mold body 14 at the time of manufacture, at the inner portion of the mold body 14 where the upper part of the molten steel 12 contacts. It has been. Note that the widened portion 15 means a widened portion of the mold space 11 formed by the mold body 14. For the mold body 14, for example, 0. It is a hollow shape having a depth of about 1 to 0.5 mm. This will be described in detail below.
[0009]
As described above, the continuous casting mold 10 is manufactured by combining a short side member that is a pair of narrow cooling members and a long side member that is a pair of wide cooling members (FIG. 5). reference). Further, the long side member of the continuous casting mold 10 is made of copper which is an example of a metal having good thermal conductivity, and the long side copper plate 16 having a water flow portion provided on the back side, and the back side of the long side copper plate 16. A back plate (also referred to as a cooling box or a water box) that is an example of a support member fixed by a bolt that is an example of an attachment means is provided on the side, and water is passed through a water supply part and a drain part provided on the back plate. The long side copper plate 16 is cooled by flowing industrial water, which is an example of cooling water, to the part. Note that the short side member of the continuous casting mold 10 has substantially the same configuration as the long side member described above, and the mold main body 14 is configured by the long side copper plate 16 of the long side member and the short side copper plate of the short side member. ing. As a result, the mold space 11 is formed at the center of the mold body 14 in plan view.
[0010]
The vertical length L from the upper end to the lower end of the long side copper plate 16 and the short side copper plate constituting the mold body 14 is, for example, about 700 to 1000 mm, and the thickness thereof is, for example, about 10 to 50 mm. Moreover, since the width | variety of the long side copper plate 16 (the width of a short side copper plate is also the same) is short from an upper end part to a lower end part, the inner side opposing surface 17 of the long side copper plate 16 of a pair of long side members, and The inner peripheral length formed by the inner facing surfaces of the short-side copper plates of the pair of short-side members is shorter at the lower end than at the upper end of the mold body 14. This is determined in consideration of the volume shrinkage of the slab such as solidification shrinkage and solid shrinkage, for example, and the numerical value is determined based on past performance data, the linear expansion amount and temperature of the slab. It is preferable.
[0011]
On the upper part of the long side copper plate 16 of the mold body 14, a widened portion 15 having a groove shape in the width direction of the long side copper plate 16 is provided. The widened portion 15 gradually widens from the lower side to the central portion of the upper side (upper region) of the long side copper plate 16 and gradually decreases from the central portion to the upper side. The same applies to the short side copper plate.
Here, how to obtain the shape of the widened portion 15 provided inside the mold body 14 will be described using the long-side copper plate 16.
First, when the inner side of the long side copper plate of the mold body at the time of production is assumed to be flat (also referred to as a one-step taper) (reference taper), the inner side of the long side copper plate is hot (when molten steel 12 is being charged). The shape is thermally deformed, for example, from the state of the two-dot chain line in FIG. 6 to the state of the solid line (shows expansion allowance). In addition, the predicted calculation value of the inner shape of the long side copper plate at this time is, for example, a conventionally known finite element method (FEM) using a drawing speed of a slab, a thickness of a mold body (long side copper plate), a cooling rate, and the like. Can be obtained. The result of this prediction calculation is shown in FIG. In addition, the position where the distance from the upper edge of the long side copper plate is 100 mm corresponds to the position of the molten steel surface (liquid surface).
As can be seen from the fact that the distance from the upper edge of the long side copper plate and the amount of displacement at each position in the height direction show a proportional relationship, this reference taper is applied from the upper end to the lower end of the long side copper plate and the volume shrinkage of the slab. In consideration of the continuous slope. However, the shape of the copper plate on the long side (copper plate surface profile) during the hot state has greatly increased the amount of displacement in the vicinity of the molten steel surface, so it can be predicted that significant thermal deformation will occur in the vicinity of the molten metal surface. .
[0012]
Moreover, the result of having calculated | required the inclination in each part of the height direction of a long side copper plate based on the data of FIG. 2 is shown in FIG. The inclination is the ratio of the change to the distance between the long side copper plates in each section when the long side copper plate is divided every 10 mm in the height direction, converted into a value per 1 m, and is shown by the following formula. It is.
Inclination [% / m] = (W1-W2) / W3 × 100 × (1000/10)
Here, W1 is the distance between the long side copper plates facing each other at the upper end position of each portion, W2 is the distance between the long side copper plates facing each other at the lower end position of each portion, and W3 is facing at the lower end position of the long side copper plate. This means the distance between the long side copper plates (see FIG. 6).
[0013]
Since the reference taper is continuously inclined in consideration of the volume shrinkage of the slab from the upper end to the lower end of the long side copper plate, as shown in FIG. 3, it extends from the upper end to the lower end of the long side copper plate. The inclination of each part is a substantially constant value (about 0.4% / m). However, since the long-side copper plate (copper plate surface profile) during hot time has greatly increased or decreased the inclination in the vicinity of the molten steel surface (liquid surface), it can be predicted that significant thermal deformation will occur in the vicinity of the molten metal surface. . In addition, in the position where the distance from a long side copper plate upper end is 450 mm, the inclination becomes a numerical value substantially near a reference | standard taper. Therefore, at the position where the distance from the upper end of the long side copper plate is 450 mm or more, it is preferable to mainly consider the influence of the volume shrinkage of the slab without considering the thermal deformation of the long side copper plate.
[0014]
As described above, the widened portion 15 is provided on the inner upper portion of the mold main body 14 that is most susceptible to the thermal influence of the molten steel 12, and the central portion and the lower portion are formed in a conventional shape, thereby taking into account the thermal deformation of the mold. The casting mold 10 can be manufactured.
Therefore, the shape of the widened portion 15 is, for example, from the surface of the reference taper to the mold body 14 side by a depth corresponding to the difference between the value of the copper plate surface profile and the value of the reference taper at each distance from the upper end of the long side copper plate. The widened portion 15 can be provided inside the long side copper plate 16 by cutting. That is, in FIG. 2, the line of the copper plate surface profile that is symmetrical with respect to the solid line of the reference taper is the shape of the widened portion 15 to be obtained (solid line in FIG. 1).
Based on this data, the long side copper plate 16 provided with the widened portion 15 is manufactured by processing the long side copper plate using an NC machine tool. In addition, this process can also be performed with respect to the long side copper plate 16 continuously or intermittently at predetermined intervals (for example, about 1 to 10 mm).
[0015]
Thereby, when the continuous casting operation is hot, the continuous casting mold 10 is expanded by the heat of the molten steel 12, so that the shape of the long side copper plate 16 is thermally deformed from the solid line in FIG. 1 to the two-dot chain line. . Accordingly, during the hot state, the widened portion 15 of the long side copper plate 16 expands by the expansion allowance due to the thermal effect of the molten steel 12, so that the inner shape of the mold body 14 is substantially the predetermined shape (1 Step taper). Thereby, the cooling surface of the mold main body 14 and the surface of the slab can be made substantially parallel.
In addition, in each distance from the upper end of the long side copper plate 16, when providing the widened portion 15 having a depth corresponding to the difference between the numerical value of the copper plate surface profile and the numerical value of the reference taper, the portion of the long side copper plate 16 where the widened portion 15 is provided. The thickness changes. Thereby, the expansion allowance of the mold body 14 also changes. Therefore, the long side copper plate 16 is provided with the widened portion 15 corresponding to thermal deformation by predicting and calculating using the finite element method in consideration of this thickness and determining the inner shape of the long side copper plate 16. Can do.
[0016]
Next, a modified example of the continuous casting mold 10 will be described using the long side copper plate of the mold body. The same applies to the short side copper plate, and the size and material of the mold main body are the same as those of the continuous casting mold described above. Since it is the same as 10, detailed description is omitted.
As shown in FIG. 4A, the mold body 20 is provided with an enlarged widened portion 23 that is the same as the inner width of the widened portion 22 on the upper side of the widened portion 22 provided on the upper part of the long side copper plate 21 at the time of manufacture. It is a thing. Therefore, from the position X where the inner width of the widened portion 22 provided on the long side copper plate 21 is the widest to the upper end 24 of the long side copper plate 21, the same inner width is obtained. The widened portion 22 is substantially the same as the widened portion 15 except that the shape on the upper side of the widened portion 15 is different.
[0017]
Moreover, the shape of the long side copper plate 21 from the position X to the lower end 25 of the long side copper plate 21 is the same shape as the continuous casting mold 10. Accordingly, it is possible to reliably prevent the portion of the long side copper plate 21 that is most susceptible to heat from protruding near the molten metal surface, and to prevent all the cooling surfaces of the long side copper plate 21 from being moved to the long side copper plate 21. It is not necessary to process into a shape that takes into account the thermal deformation of 21.
It is also possible to provide an enlarged widened portion 26 that gradually becomes wider than the inner width of the widened portion 22 on the upper side of the widened portion 22 toward the upper end 24 of the long side copper plate 21 (in FIG. 4A). Two-dot chain line). Thereby, the process of the wide part 22 with respect to the long side copper plate 21 becomes easy, and workability | operativity becomes still more favorable.
[0018]
As shown in FIG. 4 (B), the mold body 30 is provided with an enlarged widened portion 34 that is the same as the inner width of the molten metal surface position Y of the widened portion 33 on the upper side of the meniscus portion 32 of the long side copper plate 31 at the time of manufacture. It is provided. Therefore, the inner width is the same from the surface Y of the long side copper plate 31 to the upper end 35 of the long side copper plate 31. The widened portion 33 is substantially the same as the widened portion 15 except that the shape on the upper side of the widened portion 15 is different.
Moreover, the shape of the long side copper plate 31 from the molten metal surface position Y to the lower end 36 of the long side copper plate 31 is the same shape as the continuous casting mold 10. Thereby, since the shape of the cooling surface of the part which does not contact molten steel can be simplified, the process of the long side copper plate 31 can be made easy.
In addition, it is also possible to provide the enlarged widening part 37 which becomes gradually wider than the inner width of the molten metal surface position Y toward the upper end 35 of the long side copper plate 31 on the upper side of the meniscus part 32 (FIG. 4B). Middle two-dot chain line).
[0019]
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the present invention is also applied to the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications.
In the above embodiment, the case of using a continuous casting mold having a mold body having a rectangular opening in a plan view is described. However, the shape of the opening in a plan view is manufactured. Of course, it may be polygonal (for example, convex, concave, hexagonal, octagonal, etc.) corresponding to the cross-sectional shape of the slab.
[0020]
In the above-described embodiment, the case where the shape of the cooling surface inside the mold body is a one-step taper has been described. However, other shapes may be used, for example, a conventionally known two-step taper, multi-taper, or the like. Is also possible.
[0021]
【The invention's effect】
The continuous casting mold according to claim 1 or 2 , wherein the widened portion is provided in the inner portion of the mold body at the time of production, so that the cooling surface of the inner portion of the mold body is expanded even when the mold body is expanded by heat during the hot process. Can be in a predetermined shape, eg, substantially planar. Thereby, since generation | occurrence | production of the protrusion part to the molten steel side which arises in a part of cooling surface with the heat | fever of molten steel can be prevented, the contact with the conventional protrusion part and the solidification shell of a slab can be prevented. Therefore, it is possible to improve the surface condition of the slab to be manufactured, improve the product quality, and reduce the possibility of occurrence of breakout of the slab. In addition, even when the casting speed is increased, by obtaining the shape when the mold body is thermally deformed in advance, a widened portion can be provided according to the expansion allowance of the mold body. A continuous casting mold can be provided.
In addition , since an enlarged widened portion that is the same as or wider than the inner width of the widened portion is provided above the widened portion, it is not necessary to process all of the cooling surface of the mold body into a shape that takes into account the thermal deformation of the mold body. The workability during the production of the mold body is improved.
[0022]
In the continuous casting mold according to claim 2 , since the expansion allowance is obtained using the predicted calculation value, the shape of the widened portion can be easily grasped. Therefore, at the time of production of a continuous casting mold, the work of the widened portion of the mold main body considering the thermal deformation of the mold main body can be easily performed, so that the workability is good.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a continuous casting mold according to an embodiment of the present invention.
FIG. 2 is a graph showing predicted calculation values for obtaining the shape of the widened portion of the continuous casting mold.
FIG. 3 is an explanatory diagram obtained by processing the predicted calculation value.
4A and 4B are explanatory views of a mold body according to a modification.
FIG. 5 is a plan view of a continuous casting mold according to a conventional example.
FIG. 6 is an explanatory view of the shape during production and hot production of the mold body of the continuous casting mold.
FIG. 7 is an explanatory view of a temperature distribution of a long-side copper plate constituting a mold body of the continuous casting mold.
[Explanation of symbols]
10: mold for continuous casting, 11: mold space, 12: molten steel, 13: meniscus part, 14: mold body, 15: widened part, 16: long side copper plate, 17: inner facing surface, 20: mold body, 21: Long side copper plate, 22: widened portion, 23: enlarged widened portion, 24: upper end, 25: lower end, 26: enlarged widened portion, 30: mold body, 31: long side copper plate, 32: meniscus portion, 33: widened portion, 34: enlarged widened portion, 35: upper end, 36: lower end, 37: enlarged widened portion

Claims (2)

囲まれた鋳型空間に投入された溶鋼を冷却して凝固させ鋳片を製造する連続鋳造用鋳型において、
前記鋳型空間は、一対の幅狭冷却部材の短辺銅板と、一対の幅広冷却部材の長辺銅板とで構成される鋳型本体内に形成され、
前記短辺銅板及び前記長辺銅板の上端から下端へかけて前記鋳片の体積収縮を考慮して連続的に傾斜した面を基準テーパとし、熱間時における熱変形した前記鋳型本体の銅板表面プロフィールの数値と前記基準テーパの数値の差分に相当する深さ分だけ、前記基準テーパの面より前記鋳型本体側へ削り込んだ冷却面形状を有する前記鋳型本体のメニスカス部より下位置にあって、溶鋼上部が接する内側部分に、製作時に、前記鋳型本体の膨張代に実質的に一致する拡幅部が設けられ、しかも該拡幅部の上側に、更に該拡幅部の内幅と同一又はより広い拡大拡幅部を設けていることを特徴とする連続鋳造用鋳型。
In a continuous casting mold for producing a slab by cooling and solidifying molten steel put in an enclosed mold space,
The mold space is formed in a mold body constituted by a short side copper plate of a pair of narrow cooling members and a long side copper plate of a pair of wide cooling members,
The copper plate surface of the mold main body that is thermally deformed when hot is used as a reference taper with a continuously inclined surface taking into account volume shrinkage of the slab from the upper end to the lower end of the short side copper plate and the long side copper plate A depth corresponding to the difference between the numerical value of the profile and the numerical value of the reference taper is lower than the meniscus portion of the mold body having a cooling surface shape cut from the surface of the reference taper to the mold body side. In addition, a widened portion that substantially coincides with the expansion allowance of the mold main body is provided at the inner portion where the molten steel upper portion is in contact, and the upper portion of the widened portion is further equal to or wider than the inner width of the widened portion. A continuous casting mold characterized in that an enlarged widened portion is provided .
請求項1記載の連続鋳造用鋳型において、前記膨張代は予測計算値を用いて求めたことを特徴とする連続鋳造用鋳型。  The continuous casting mold according to claim 1, wherein the expansion allowance is obtained by using a predicted calculation value.
JP2002194880A 2002-07-03 2002-07-03 Continuous casting mold Expired - Fee Related JP4227768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194880A JP4227768B2 (en) 2002-07-03 2002-07-03 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194880A JP4227768B2 (en) 2002-07-03 2002-07-03 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP2004034094A JP2004034094A (en) 2004-02-05
JP4227768B2 true JP4227768B2 (en) 2009-02-18

Family

ID=31703463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194880A Expired - Fee Related JP4227768B2 (en) 2002-07-03 2002-07-03 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4227768B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4299717B2 (en) 2004-04-14 2009-07-22 Nec液晶テクノロジー株式会社 Thin film transistor and manufacturing method thereof
JP5383462B2 (en) * 2009-12-07 2014-01-08 三島光産株式会社 Displacement measurement method for water-cooled copper plate
JP5383461B2 (en) * 2009-12-07 2014-01-08 三島光産株式会社 Manufacturing method of continuous casting mold

Also Published As

Publication number Publication date
JP2004034094A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4659706B2 (en) Continuous casting mold
JP7234347B2 (en) Light Reduction Method by Combining Flat Rolls and Convex Rolls for Continuous Bloom Casting
JP2683725B2 (en) Liquid cooled surface plate mold for continuous casting of continuous cast material from molten steel in slab shape
JP4808196B2 (en) Continuous casting mold
JP4227768B2 (en) Continuous casting mold
JPH02284747A (en) Mold for continuous casting
JP2007160346A (en) Casting mold for continuous casting
JP4611349B2 (en) Continuous casting mold
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP5525966B2 (en) Continuous casting mold
JP3886774B2 (en) Continuous casting mold considering slab casting radius change due to shrinkage and continuous casting equipment using the same
KR20090008826A (en) Mold of continuous casting facility
JPS59133940A (en) Mold for continuous casting
KR100399233B1 (en) Casting Monitoring Method of Billet Continuous Casting Machine
JPS5927672B2 (en) Variable width mold device
JP5525925B2 (en) Continuous casting mold
JP2010188399A (en) Mold for continuous casting
JP6033766B2 (en) Continuous casting mold
JPH04178246A (en) Builtup casting mold
JP5525896B2 (en) Continuous casting mold
JP2004042080A (en) Mold for continuous casting
KR20040097142A (en) Adjustment of heat transfer in continuous casting moulds in particular in the region of the meniscus
JPH08206786A (en) Mold for continuous casting
JPH01284463A (en) Short wall side plate for continuous casting machine for cast strip
JP2024035081A (en) Continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4227768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees