JP2008105068A - Continuous casting mold - Google Patents

Continuous casting mold Download PDF

Info

Publication number
JP2008105068A
JP2008105068A JP2006291536A JP2006291536A JP2008105068A JP 2008105068 A JP2008105068 A JP 2008105068A JP 2006291536 A JP2006291536 A JP 2006291536A JP 2006291536 A JP2006291536 A JP 2006291536A JP 2008105068 A JP2008105068 A JP 2008105068A
Authority
JP
Japan
Prior art keywords
cooling
long piece
continuous casting
piece member
casting mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006291536A
Other languages
Japanese (ja)
Other versions
JP4008018B1 (en
Inventor
Osamu Tsutsue
修 筒江
Keisuke Yamamoto
圭祐 山本
Yuichi Ogawa
勇一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mishima Kosan Co Ltd
Original Assignee
Mishima Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mishima Kosan Co Ltd filed Critical Mishima Kosan Co Ltd
Priority to JP2006291536A priority Critical patent/JP4008018B1/en
Application granted granted Critical
Publication of JP4008018B1 publication Critical patent/JP4008018B1/en
Publication of JP2008105068A publication Critical patent/JP2008105068A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting mold having a long life by suppressing and preventing a crack from being caused by thermal stress induced by a cyclic load. <P>SOLUTION: This continuous casting mold comprises a pair of short-piece members disposed opposite to each other with a space therebetween, a pair of long-piece members 10, 11 disposed opposite to each other in such a state that the short-piece member is held from both sides in the widthwise direction, and support members 13, 14 fixed to the backside thereof by fastening means 12, 12a. Cooling water is allowed to flow from a water supply part 15 in the lower part of the support members 13, 14 through a water passage part 16 on the backside of the short-piece members and the long-piece members 10, 11 into a water discharge part 17 on the upper part of the support members 13, 14. While cooling and solidifying a molten steel supplied into a region defined by the short-piece members and long-piece members 10, 11, the molten steel is drawn out downward to produce a cast strip. A thin flat plate is adopted in at least the upper side of the cooling member formed of one or both of the short-piece members and long-piece members 10, 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、図10、図11(A)〜(D)に示す連続鋳造用鋳型(以下、単に鋳型ともいう)80に溶鋼を供給して鋳片を鋳造している。この鋳型80は、間隔を有して対向配置された銅板で構成される一対の短片部材(短辺部材ともいう)81、82と、この各短片部材81、82を幅方向両側から挟み込んだ状態で対向配置された銅板で構成される一対の長片部材(長辺部材ともいう)83、84とを備えている。
この短片部材81、82は、鏡面対称で同じ構成となっており、裏面側の上下方向に多数の導水溝85、86が設けられ、この短片部材81、82の裏面側に、ボルト87によってバックプレート(支持部材、冷却箱、または水箱ともいう)88、89が固定されている。また、長片部材83、84も、裏面側の上下方向に多数の導水溝85、86が設けられ、この長片部材83、84の裏面側に、ボルト87によってバックプレート90、91が固定されている(例えば、特許文献1参照)。
Conventionally, molten steel is supplied to a continuous casting mold (hereinafter, also simply referred to as a mold) 80 shown in FIGS. 10 and 11A to 11D to cast a slab. The mold 80 is a state in which a pair of short piece members (also referred to as short side members) 81 and 82 composed of copper plates opposed to each other with a gap therebetween, and the short piece members 81 and 82 sandwiched from both sides in the width direction. And a pair of long piece members (also referred to as long side members) 83 and 84 formed of copper plates opposed to each other.
The short piece members 81 and 82 are mirror-symmetrical and have the same configuration, and a large number of water guide grooves 85 and 86 are provided in the vertical direction on the back surface side. The short piece members 81 and 82 are backed by bolts 87 on the back surface side. Plates (also called support members, cooling boxes, or water boxes) 88 and 89 are fixed. The long piece members 83 and 84 are also provided with a large number of water guide grooves 85 and 86 in the vertical direction on the back surface side, and the back plates 90 and 91 are fixed to the back surface side of the long piece members 83 and 84 by bolts 87. (For example, refer to Patent Document 1).

鋳型80は、短片部材81、82、長片部材83、84、およびそれぞれのバックプレート88〜91を有して構成され、対向配置される長片部材83、84に固定されたバックプレート90、91の両端部には、それぞれボルト92が取付けられ、ばね(図示しない)を介してナット93で固定されている。
連続鋳造作業時においては、図11(B)に示すように、バックプレート88〜91の下部に設けられた給水部94から、短片部材81、82および長片部材83、84に設けられた多数の導水溝85、86を介して、バックプレート88〜91の上部に設けられた排水部95へ冷却水を流している。これにより、各短片部材81、82と各長片部材83、84を冷却しながら、鋳型80の上方から溶鋼を注いで溶鋼の初期凝固を行い、凝固した鋳片を鋳型下方よりほぼ一定速度で連続して引き抜き、鋳片を製造する。
The mold 80 is configured to include short piece members 81 and 82, long piece members 83 and 84, and respective back plates 88 to 91, and a back plate 90 fixed to the long piece members 83 and 84 disposed to face each other. Bolts 92 are attached to both ends of 91 and fixed with nuts 93 via springs (not shown).
At the time of continuous casting work, as shown in FIG. 11 (B), from the water supply part 94 provided in the lower part of the back plates 88 to 91, a large number of short pieces 81 and 82 and long pieces 83 and 84 are provided. The cooling water is supplied to the drainage part 95 provided in the upper part of the back plates 88 to 91 through the water guide grooves 85 and 86. Thereby, while cooling the short piece members 81 and 82 and the long piece members 83 and 84, the molten steel is poured from above the mold 80 to perform the initial solidification of the molten steel, and the solidified slab is made at a substantially constant speed from below the mold. Drawing continuously to produce slabs.

特開2003−136204号公報JP 2003-136204 A

しかしながら、前記した鋳型で連続鋳造を行った場合、例えば、短片部材と長片部材にメニスカスクラック(メニスカスレベル付近に発生するヒートクラック:以下、単にクラックともいう)が発生していた。このメニスカスクラックは、例えば、熱間(鋳造中)と冷間(鋳造後)の繰り返しによる鋳型への熱影響と、鋳型での湯面レベルの変動(バルジングやノズル吐出流、または電磁撹拌の影響などによる)とに起因した温度振幅により生じる応力(塑性ひずみ)振幅、即ち繰り返し荷重(熱応力)により発生する疲労破壊(低サイクル疲労)であると考えられる。
このメニスカスクラックは、単に力学的疲労破壊により発生し進展するもののほか、例えば、低融点金属との反応(Znアタック等)により発生した粒界亀裂、または反応により形成された合金層(非常に脆い)の脱落部を起点として進展するものもある。
However, when continuous casting is performed with the above-described mold, for example, meniscus cracks (heat cracks generated near the meniscus level: hereinafter also referred to simply as cracks) have occurred in the short piece member and the long piece member. This meniscus crack is caused by, for example, the thermal effects on the mold due to repeated hot (during casting) and cold (after casting), and fluctuations in the mold surface level in the mold (the effects of bulging, nozzle discharge flow, or electromagnetic stirring). It is considered that the stress (plastic strain) amplitude caused by the temperature amplitude due to the above-mentioned fatigue failure (low cycle fatigue) caused by repeated load (thermal stress).
This meniscus crack is not only generated and propagated by mechanical fatigue fracture, but also, for example, a grain boundary crack generated by reaction with a low melting point metal (Zn attack, etc.) or an alloy layer formed by reaction (very brittle) Some of them start from the drop-off part.

また、ここで、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、熱間と冷間の繰り返しによる繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(A)に、現在使用している長片部材を構成する銅板の熱間時(鋳造中)におけるひずみ分布を示す。なお、この解析条件は、銅板をバックプレートに固定するボルトの取付け間隔:120mm、鋳造速度:2.8(m/分)、メニスカスレベル:銅板上端より100mm、冷却水流量:銅板1枚当たり4000(リットル/分)、冷却水温度:40(℃)、冷却水圧力:4(kg/cm)、銅板材質:高強度材(CCM−B)、めっき仕様:Co−Ni、銅板熱伝導率:305(kcal/m/hr)、Co−Niめっき熱伝導率:58(kcal/m/hr/℃)、銅板締結条件:ボルトM20(SUS)、初期締付力1600kg、銅板締結面摩擦係数:0.15である。
Here, a description will be given of a fracture site in a case where a repeated load due to repeated hot and cold is dominant among stress amplitudes caused by temperature amplitudes causing meniscus cracks.
FIG. 12A shows the strain distribution during hot (during casting) of the copper plate constituting the long piece member currently used. The analysis conditions were as follows: bolt mounting interval for fixing the copper plate to the back plate: 120 mm, casting speed: 2.8 (m / min), meniscus level: 100 mm from the upper end of the copper plate, cooling water flow rate: 4000 per copper plate (Liter / minute), cooling water temperature: 40 (° C.), cooling water pressure: 4 (kg / cm 2 ), copper plate material: high strength material (CCM-B), plating specification: Co—Ni, copper plate thermal conductivity : 305 (kcal / m 2 / hr), Co—Ni plating thermal conductivity: 58 (kcal / m / hr / ° C.), copper plate fastening condition: bolt M20 (SUS), initial fastening force 1600 kg, copper plate fastening surface friction Coefficient: 0.15.

図12(A)から明らかなように、ボルトで固定されている部位と、隣り合うボルト間の部位とでは、ボルト締結による拘束力の影響で、ボルトで固定されている部位のひずみ発生量が大きくなっている。
また、塑性ひずみが最大となる箇所は、銅板温度が最大となる銅板上端から130mm付近ではなく、銅板の縦方向2段目のボルト締結位置となる銅板上端より下方に170mm付近(拘束力の強い部位)である。
なお、塑性ひずみ振幅(=1/2塑性ひずみ幅)が最大となる箇所は、塑性ひずみが最大となる箇所に対応するため、上記した箇所の疲労寿命が最も短くなる(クラック大)。
しかし、クラック発生箇所の多くは、上記した位置よりも上方のメニスカスレベルに近い範囲にシフトしているため、他の振幅荷重がこのクラックの支配的要因になると考えられる。
As is clear from FIG. 12A, the amount of strain generated in the portion fixed by the bolt is affected by the restraining force due to the bolt fastening between the portion fixed by the bolt and the portion between the adjacent bolts. It is getting bigger.
Also, the place where the plastic strain is maximum is not about 130 mm from the upper end of the copper plate where the copper plate temperature is maximum, but is about 170 mm below the upper end of the copper plate that becomes the bolt fastening position in the second stage of the copper plate (strong binding force) Part).
In addition, since the location where the plastic strain amplitude (= 1/2 plastic strain width) is maximum corresponds to the location where the plastic strain is maximum, the fatigue life of the above-described location is the shortest (large crack).
However, since many of the crack occurrence locations are shifted to a range close to the meniscus level above the above-described position, it is considered that other amplitude loads are dominant factors of this crack.

続いて、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、鋳型での湯面レベルの変動による繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(B)に、湯面レベルの変動が銅板上端より下方へ100mm±20mm(80mm以上120mm以下)の範囲で発生していると仮定した場合のボルト部位のひずみ分布を示す。
図12(B)に示す湯面変動が±20mm時の(塑性)ひずみ幅の曲線の値が、湯面の最大レベルと最小レベルの間で発生する塑性ひずみ幅となり、塑性ひずみ振幅もこの塑性ひずみ幅に応じて発生する。
また、湯面レベルの変動により最大ひずみ振幅が発生する箇所は、湯面レベルの変動が100mm±20mmの範囲で発生する条件において、鋳型上端より下方へ110mm付近であり、現状のクラック発生レベル(今回の検討実例では、115mmレベル位置)に、ほぼ対応している。
Next, a description will be given of a fracture site in a case where the repeated load due to the fluctuation of the molten metal surface level in the mold is dominant among the stress amplitude generated by the temperature amplitude causing the meniscus crack.
FIG. 12 (B) shows the strain distribution of the bolt part when it is assumed that the fluctuation of the molten metal surface level occurs in the range of 100 mm ± 20 mm (80 mm or more and 120 mm or less) downward from the upper end of the copper plate.
The value of the (plastic) strain width curve when the fluctuation of the molten metal surface shown in FIG. 12 (B) is ± 20 mm is the plastic strain width generated between the maximum level and the minimum level of the molten metal surface, and the plastic strain amplitude is also plastic. It occurs according to the strain width.
Further, the location where the maximum strain amplitude is generated due to the fluctuation of the molten metal surface level is around 110 mm below the upper end of the mold under the condition that the fluctuation of the molten metal surface level is in the range of 100 mm ± 20 mm. In the examination example this time, it corresponds almost to the 115 mm level position).

なお、以上に示した検討結果は、コンピュータを用いたFEM解析(有限要素法を用いた解析)によるシミュレーションを使用し、湯面レベルの変動により生ずる塑性ひずみ振幅から推定される疲労(クラック)寿命の相対比較により行っている。また、疲労寿命は、マンソンの共通勾配法(εpa=εf0.6・Nf−0.6/2)により求めた。
以上のことから、メニスカスクラックの発生には、湯面レベルの変動による塑性ひずみ振幅が大きく影響を及ぼしており、これに、熱間と冷間とが繰り返されることによって生じる繰り返し荷重が複合的に重なって影響しているものと推測される。
In addition, the examination result shown above uses the simulation by the FEM analysis (analysis using the finite element method) using a computer, and the fatigue (crack) life estimated from the plastic strain amplitude caused by the fluctuation of the molten metal surface level This is done by relative comparison. The fatigue life was determined by Manson's common gradient method (ε pa = ε f 0.6 · Nf −0.6 / 2).
From the above, the occurrence of meniscus cracks is greatly influenced by the plastic strain amplitude due to the fluctuation of the molten metal surface level, and the repeated load generated by repeated hot and cold is combined with this. It is presumed that they are overlapping.

本発明はかかる事情に鑑みてなされたもので、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることが可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a continuous casting mold capable of suppressing and further preventing the occurrence of cracks due to thermal stress caused by repeated loads and extending the service life. With the goal.

前記目的に沿う本発明に係る連続鋳造用鋳型は、間隔を有して対向配置された一対の短片部材と、該短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材と、前記短片部材と前記長片部材の裏面側に締結手段によってそれぞれ固定された支持部材とを有し、該支持部材の下部に設けられた給水部から、前記短片部材と前記長片部材の裏面側に設けられた通水部を介して、前記支持部材の上部に設けられた排水部へ冷却水を流し、前記短片部材と前記長片部材とで形成される領域内に供給された溶鋼を該短片部材と該長片部材で冷却し凝固させながら下方へ引き抜き鋳片を製造する鋳型において、
前記短片部材および前記長片部材のいずれか一方または双方からなる冷却部材の少なくとも上側を薄肉平板化した。
The continuous casting mold according to the present invention that meets the above-mentioned object is a pair of short piece members that are arranged to face each other with a gap therebetween, and a pair of long piece members that are arranged to face each other while sandwiching the short piece members from both sides in the width direction. And a supporting member fixed to the back side of the short piece member and the long piece member by fastening means, and from the water supply portion provided at the lower part of the supporting member, the short piece member and the long piece member Molten steel supplied to the region formed by the short piece member and the long piece member by flowing cooling water to the drainage portion provided at the upper part of the support member through the water passage portion provided on the back side. In a mold for producing a drawn slab downward while cooling and solidifying the short piece member and the long piece member,
At least the upper side of the cooling member composed of one or both of the short piece member and the long piece member was thinned and flattened.

本発明に係る連続鋳造用鋳型において、前記冷却部材の薄肉平板化された部分は、前記冷却部材の上端から50mm以上600mm以下の範囲であることが好ましい。
本発明に係る連続鋳造用鋳型において、薄肉平板化した前記冷却部材の厚みは、5mm以上30mm以下であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記通水部は、薄肉平板化した前記冷却部材の裏面側に形成される冷却部と、更該冷却部と前記給水部を連通する多数の導水溝を有することが好ましい。
In the continuous casting mold according to the present invention, it is preferable that the thinned flat portion of the cooling member is in a range of 50 mm or more and 600 mm or less from the upper end of the cooling member.
In the continuous casting mold according to the present invention, the thickness of the thinned cooling member is preferably 5 mm or more and 30 mm or less.
In the continuous casting mold according to the present invention, the water flow portion includes a cooling portion formed on a back surface side of the cooling member having a thin flat plate, and a plurality of water guide grooves communicating the cooling portion and the water supply portion. It is preferable to have.

本発明に係る連続鋳造用鋳型において、前記冷却部は、前記薄肉平板化した冷却部材の裏面側に設けられた空間部内に薄板部材を配置することにより形成される隙間であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部の平断面積は、該冷却部に連通する前記導水溝の平断面積の合計と同じ、または該導水溝の平断面積の合計の−50%以上+50%以下の範囲内であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部に連通する前記導水溝の接続部は、該冷却部へ向け、その内幅を前記導水溝の他の部分の内幅よりも徐々に拡幅したことが好ましい。
In the continuous casting mold according to the present invention, it is preferable that the cooling portion is a gap formed by disposing a thin plate member in a space portion provided on the back surface side of the thin flat cooling member.
In the continuous casting mold according to the present invention, the cooling section has a flat cross-sectional area equal to the sum of the cross-sectional areas of the water guide grooves communicating with the cooling section or a sum of the cross-sectional areas of the water guide grooves of −50. It is preferable to be within the range of not less than% and not more than 50%.
In the casting mold for continuous casting according to the present invention, the connection portion of the water guide groove communicating with the cooling portion is gradually widened toward the cooling portion with the inner width thereof being larger than the inner width of other portions of the water guide groove. It is preferable.

本発明に係る連続鋳造用鋳型において、前記締結手段の取付け位置は、前記冷却部材のメニスカス位置から該メニスカス位置の下方へ50mmまでの範囲を除く部分であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部材のメニスカス位置近傍に位置する前記締結手段には、前記支持部材に対する前記冷却部材の締結力を調整する緩衝部材が設けられていることが好ましい。
In the continuous casting mold according to the present invention, it is preferable that the attachment position of the fastening means is a portion excluding a range from the meniscus position of the cooling member to 50 mm below the meniscus position.
In the continuous casting mold according to the present invention, it is preferable that the fastening means located in the vicinity of the meniscus position of the cooling member is provided with a buffer member for adjusting the fastening force of the cooling member with respect to the support member.

請求項1〜9記載の連続鋳造用鋳型は、冷却部材の少なくとも上側を薄肉平板化しているので、冷却部材の上側構造を、従来の鋳型に設けていた導水溝(スリット)が設けられていない薄肉平板構造にできる。これにより、従来の導水溝構造と比較して、冷却部材自体の拘束ひずみを緩和することができ、また冷却効率も高めることができるので、冷却部材でのクラックの発生を抑制(発生ひずみを低減)でき、鋳型の長寿命化を図ることができる。
なお、従来の導水溝構造の場合、その構造そのものが、冷却部材の変形防止のリブの役目をしていたため、冷却部材の自由変形を拘束していた。このため、熱負荷が大きい湯面近傍では、冷却部材の拘束ひずみが増して応力状態が悪化、すなわち塑性ひずみの発生が増大していた。
特に、請求項2記載の連続鋳造用鋳型は、冷却部材の薄肉平板化する位置を規定しているので、熱応力の低減を確実にでき、クラックの発生頻度を更に低減できる。
請求項3記載の連続鋳造用鋳型は、薄肉平板化した冷却部材の厚みを規定するので、薄肉平板化した部分の熱応力の低減効果を更に高めることができる。
In the continuous casting mold according to claims 1 to 9, since at least the upper side of the cooling member is flattened, the upper structure of the cooling member is not provided with the water guide groove (slit) provided in the conventional mold. A thin plate structure can be formed. As a result, the restraining strain of the cooling member itself can be relaxed and the cooling efficiency can be increased as compared with the conventional water guide groove structure, so that the generation of cracks in the cooling member is suppressed (the generated strain is reduced). ) And the life of the mold can be extended.
In the case of the conventional water guide groove structure, the structure itself acts as a rib for preventing deformation of the cooling member, and thus restricts free deformation of the cooling member. For this reason, in the vicinity of the molten metal surface where the heat load is large, the restraint strain of the cooling member increases and the stress state deteriorates, that is, the occurrence of plastic strain increases.
In particular, since the continuous casting mold according to claim 2 defines the position where the cooling member is flattened, the thermal stress can be reliably reduced, and the occurrence frequency of cracks can be further reduced.
Since the continuous casting mold according to claim 3 defines the thickness of the thinned and flattened cooling member, the effect of reducing the thermal stress of the thinned and flattened portion can be further enhanced.

請求項4記載の連続鋳造用鋳型は、通水部を、冷却部材の裏面側一面に形成される冷却部と、これに連通する導水溝により形成するので、簡単な構造で応力を緩和することができ、また、冷却効率も向上でき、熱応力を大幅に緩和させることができ、塑性ひずみの発生量を低減できる。
請求項5記載の連続鋳造用鋳型は、冷却部となる隙間を、空間部内に配置する薄板部材により形成するので、冷却部の構成を簡単にでき、製造時における作業性も良好である。
請求項6記載の連続鋳造用鋳型は、冷却部の平断面積と、導水溝の平断面積の合計との関係を規定するので、冷却部材の下部から上部へかけて、通水部における冷却水の流れを安定にできる。
In the continuous casting mold according to claim 4, since the water passing portion is formed by the cooling portion formed on the entire back surface side of the cooling member and the water guide groove communicating therewith, the stress can be relieved with a simple structure. In addition, the cooling efficiency can be improved, the thermal stress can be greatly relieved, and the amount of plastic strain generated can be reduced.
In the continuous casting mold according to the fifth aspect, since the gap serving as the cooling part is formed by a thin plate member disposed in the space part, the structure of the cooling part can be simplified, and the workability at the time of manufacture is also good.
The casting mold for continuous casting according to claim 6 defines the relationship between the flat cross-sectional area of the cooling part and the sum of the flat cross-sectional areas of the water guide grooves, so that the cooling in the water flow part is performed from the lower part to the upper part of the cooling member. The water flow can be stabilized.

請求項7記載の連続鋳造用鋳型は、冷却部に連通する導水溝の接続部の形状を規定することで、導水溝から冷却部への冷却水の流れを淀みなく安定にできる。
請求項8記載の連続鋳造用鋳型は、締結手段の取付け位置を規定しているので、熱応力が発生し易い部分での締結手段による拘束力を低減でき、発生する熱応力を更に緩和することができる。
請求項9記載の連続鋳造用鋳型は、熱応力が発生し易いメニスカス位置近傍に位置する締結手段に緩衝部材が設けられているので、締結手段による拘束力を更に低減できる。
The casting mold for continuous casting according to claim 7 can stabilize the flow of the cooling water from the water guiding groove to the cooling part without stagnation by defining the shape of the connecting part of the water guiding groove communicating with the cooling part.
The continuous casting mold according to claim 8 stipulates the attachment position of the fastening means, so that the restraining force by the fastening means at a portion where thermal stress is likely to be generated can be reduced, and the generated thermal stress can be further relaxed. Can do.
In the continuous casting mold according to the ninth aspect, since the buffer member is provided in the fastening means located in the vicinity of the meniscus position where thermal stress is likely to occur, the restraining force by the fastening means can be further reduced.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1〜図6に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、間隔を有して対向配置された図示しない一対の短片部材(短辺部材ともいう)と、短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材(長辺部材ともいう)10、11と、短片部材と長片部材10、11の裏面側に締結手段12、12aによってそれぞれ固定された支持部材の一例であるバックプレート(冷却箱または水箱ともいう)13、14とを有するものである。これにより、バックプレート13、14の下部に設けられた給水部15から、短片部材と長片部材10、11の裏面側に設けられた通水部16を介して、バックプレート13、14の上部に設けられた排水部17へ冷却水を流し、短片部材と長片部材10、11とで形成される領域内に供給された溶鋼を短片部材と長片部材10、11で冷却し凝固させながら下方へ引き抜きスラブ(鋳片の一例)を製造できる。なお、短片部材と長片部材10、11は、その幅のみが異なって他の構成は略同様であり、また長片部材10、11は鏡面対称であるため、以下、図1〜図6に示す長片部材10を冷却部材としその構成を主として、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 6, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention has a pair of short pieces (not shown) that are arranged to face each other at intervals. Side members), a pair of long piece members (also referred to as long side members) 10 and 11, which are opposed to each other while sandwiching the short piece members from both sides in the width direction, and the back surfaces of the short piece members and the long piece members 10 and 11 It has back plates (also referred to as cooling boxes or water boxes) 13 and 14 which are examples of support members fixed to the side by fastening means 12 and 12a, respectively. Thereby, from the water supply part 15 provided in the lower part of the back plates 13 and 14, the upper part of the back plates 13 and 14 through the water passing part 16 provided in the back surface side of the short piece member and the long piece members 10 and 11 While flowing cooling water to the drainage part 17 provided in the molten steel, the molten steel supplied in the region formed by the short piece members and the long piece members 10 and 11 is cooled and solidified by the short piece members and the long piece members 10 and 11. A downwardly drawn slab (an example of a cast piece) can be manufactured. In addition, since the short piece member and the long piece members 10 and 11 differ only in the width | variety and the other structure is substantially the same, and the long piece members 10 and 11 are mirror-symmetrical, below, FIGS. The long piece member 10 to be shown is a cooling member, and its configuration will be mainly described in detail.

各短片部材は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、各長片部材10、11は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅(鋳片と接触する幅)が600mm以上3000mm以下程度、上下方向の長さが短片部材と同程度である。
従って、対向配置される一対の短片部材の間隔は、600mm以上3000mm以下程度であり、一対の長片部材10、11の間隔は、50mm以上300mm以下程度であり、また鋳型の上下方向の長さは、600mm以上1200mm以下程度である。なお、対向配置される短片部材は、上記した範囲内でその間隔を変えることができる。
これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。
Each short piece member is made of copper or a copper alloy, and has a thickness of about 10 mm to 100 mm, a width of about 50 mm to 300 mm, and a vertical length of about 600 mm to 1200 mm. Each of the long piece members 10 and 11 is made of copper or a copper alloy. For example, the thickness is about 10 mm or more and 100 mm or less, and the width (the width in contact with the cast piece) is about 600 mm or more and 3000 mm or less, and the length in the vertical direction. Is about the same as the short piece member.
Accordingly, the distance between the pair of short piece members arranged to face each other is about 600 mm to 3000 mm, the distance between the pair of long piece members 10 and 11 is about 50 mm to 300 mm, and the length of the mold in the vertical direction. Is about 600 mm or more and 1200 mm or less. In addition, the space | interval of the short piece member arrange | positioned facing can be changed within the above-mentioned range.
Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

図1(A)〜(C)、図2、図3(A)〜(C)に示すように、長片部材10の裏面側に設けられた通水部16は、長片部材10の少なくとも上側に冷却部18と、この冷却部18と給水部15を連通する多数の導水溝19、20を有する。なお、長片部材10の上側とは、長片部材10の上端から50mm以上600mm以下(好ましくは、上限を500mm、更には400mm、下限を80mm、更には100mm)の範囲である。これは、長片部材10の上端から80mm以上150mm以下の範囲で従来発生していたヒートクラックを抑制、更には防止することによる。
この冷却部18は、長片部材10の上側の裏面側一面に設けられた空間部21内に、薄板部材22、22a、22bを配置することにより形成される隙間Gである。なお、薄板部材22、22a、22bは、締結手段12、12aによって幅方向両端部または一端部の形状が異なっているものである。また、空間部21は、長片部材10の幅方向に渡って形成されており、側断面形状が船形となっている。
As shown in FIGS. 1A to 1C, FIG. 2, and FIGS. 3A to 3C, the water flow portion 16 provided on the back surface side of the long piece member 10 is at least of the long piece member 10. On the upper side, a cooling unit 18 and a plurality of water guiding grooves 19 and 20 that communicate with the cooling unit 18 and the water supply unit 15 are provided. The upper side of the long piece member 10 is a range of 50 mm to 600 mm from the upper end of the long piece member 10 (preferably, the upper limit is 500 mm, further 400 mm, the lower limit is 80 mm, and further 100 mm). This is because heat cracks that have conventionally occurred in the range of 80 mm or more and 150 mm or less from the upper end of the long piece member 10 are suppressed and further prevented.
The cooling portion 18 is a gap G formed by disposing the thin plate members 22, 22 a, and 22 b in the space portion 21 provided on the entire upper surface of the long piece member 10. The thin plate members 22, 22 a, 22 b have different shapes at both ends or one end in the width direction depending on the fastening means 12, 12 a. Moreover, the space part 21 is formed over the width direction of the long piece member 10, and the side cross-sectional shape is a ship shape.

この空間部21の形成は、長片部材10の厚みT1を、5mm以上30mm以下とするように行っており、その結果、この部分の長片部材10を薄肉平板化できる。
ここで、薄肉平板化した部分の長片部材の厚みが5mm未満の場合、長片部材の繰り返し使用時における研削代が減少して鋳型使用回数の低下が生じる。一方、厚みが30mmを超える場合、厚みが厚くなり過ぎ、鋳型温度の上昇と締結の拘束による発生応力の増加により、塑性ひずみの発生量が増大する。
以上のことから、薄肉平板化した長片部材の厚みT1を、5mm以上30mm以下としたが、上限を20mm、更には15mmとすることが好ましく、下限を8mm、更には10mmとすることが好ましい。
この空間部21内の上部位置には、薄板部材22の上部を取付けるためのねじ23の固定部24が、間隔を有して複数(ここでは2個)設けられている。
The space portion 21 is formed so that the thickness T1 of the long piece member 10 is 5 mm or more and 30 mm or less. As a result, the long piece member 10 in this portion can be flattened.
Here, when the thickness of the long piece member of the thinned flat portion is less than 5 mm, the grinding allowance at the time of repeated use of the long piece member is reduced and the number of times the mold is used is reduced. On the other hand, when the thickness exceeds 30 mm, the thickness becomes too thick, and the amount of plastic strain increases due to an increase in generated temperature due to an increase in mold temperature and fastening constraints.
From the above, the thickness T1 of the thin flat member is 5 mm or more and 30 mm or less, but the upper limit is preferably 20 mm, more preferably 15 mm, and the lower limit is preferably 8 mm, more preferably 10 mm. .
A plurality (two in this case) of fixing parts 24 of screws 23 for attaching the upper part of the thin plate member 22 are provided at an upper position in the space part 21.

図4(A)、(B)に示すように、冷却部18に連通する多数の導水溝19、20は、その底位置から長片部材10の溶鋼冷却面までの厚みT2、T3が、薄肉平板化した長片部材10の厚みT1よりも、例えば、5mm以上20mm以下程度厚くなるように形成されている。なお、導水溝19と導水溝20の構成は、その深さが異なる(導水溝20の方が導水溝19よりもその深さが深い)こと以外は、同じである。この導水溝19、20は、長片部材10の縦方向へ沿って直線状で、しかも長片部材10の幅方向に渡って所定ピッチ(例えば、6mm以上30mm以下程度)で形成されている。
従って、隣り合う導水溝19、19、導水溝19、20の間が、薄板部材22、22a、22bの下部を取付けるためのねじ25の固定部26となる。
これにより、空間部21内に薄板部材22、22a、22bを配置した後、その上部と下部をねじ23、25によって長片部材10に固定できる。このように固定したとき、薄板部材22、22a、22bの裏面は、長片部材10の上端部および導水溝19、20が形成されている部分の裏面と、同一平面上に配置されるようになっている。
As shown in FIGS. 4 (A) and 4 (B), the large number of water guide grooves 19 and 20 communicating with the cooling unit 18 are thin in thickness T2 and T3 from the bottom position to the molten steel cooling surface of the long piece member 10. For example, it is formed so as to be thicker by about 5 mm or more and 20 mm or less than the thickness T1 of the flattened long piece member 10. In addition, the structure of the water guide groove 19 and the water guide groove 20 is the same except that the depth differs (the water guide groove 20 is deeper than the water guide groove 19). The water guide grooves 19 and 20 are linear along the longitudinal direction of the long piece member 10, and are formed at a predetermined pitch (for example, about 6 mm or more and 30 mm or less) in the width direction of the long piece member 10.
Therefore, between the adjacent water guide grooves 19 and 19 and the water guide grooves 19 and 20 becomes a fixing portion 26 of the screw 25 for attaching the lower part of the thin plate members 22, 22 a and 22 b.
Thereby, after arranging the thin plate members 22, 22 a, 22 b in the space portion 21, the upper and lower portions can be fixed to the long piece member 10 by the screws 23, 25. When fixed in this manner, the back surfaces of the thin plate members 22, 22 a, 22 b are arranged on the same plane as the back surface of the portion where the upper end portion of the long piece member 10 and the water guide grooves 19, 20 are formed. It has become.

この薄板部材22、22a、22bは、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄、または耐食性を備えるステンレスで構成され、長片部材10の幅方向に複数(本実施の形態では、15個)に分割されたものである。この各薄板部材22、22a、22bは、側断面形状が船形となっており、薄板部材22、22a、22bに取付けられ長片部材10の裏面側へ所定長さ突出する複数の止めねじ27の先端が、薄肉平板化された長片部材10の裏面28に当接して、一定の隙間Gを形成できる構成となっている。
この隙間Gは、例えば、2mm以上7mm以下程度であり、この部分を冷却水が流れる。
なお、図5(A)〜(D)には、冷却水が流れる通水部16の部分を示しているが、冷却部18に連通する導水溝19、20の接続部29は、冷却部18へ向け、その内幅を導水溝19、20の他の部分の内幅(例えば、1mm以上5mm以下程度)よりも連続的(曲面的)に徐々に拡幅している。また、接続部29は、冷却部18へ向け、その深さを導水溝19、20の他の部分の深さよりも徐々に浅くしている。
The thin plate members 22, 22 a, 22 b are made of, for example, copper, copper alloy, aluminum, aluminum alloy, iron, or stainless steel having corrosion resistance, and a plurality (in the present embodiment, 15 in the width direction). ). Each of the thin plate members 22, 22 a, and 22 b has a ship-like cross-sectional shape, and is attached to the thin plate members 22, 22 a, 22 b and includes a plurality of set screws 27 that protrude a predetermined length toward the back side of the long piece member 10. The tip is in contact with the back surface 28 of the long flat member 10 which is thin and flat, and a certain gap G can be formed.
The gap G is, for example, about 2 mm to 7 mm, and cooling water flows through this portion.
5A to 5D show the portion of the water flow portion 16 through which the cooling water flows, but the connection portion 29 of the water guide grooves 19 and 20 communicating with the cooling portion 18 is the cooling portion 18. The inner width is gradually widened more continuously (curved surface) than the inner width (for example, about 1 mm or more and about 5 mm or less) of other portions of the water guide grooves 19 and 20. Moreover, the connection part 29 is gradually made shallower than the depth of the other part of the water guide grooves 19 and 20 toward the cooling part 18.

上記した冷却部18の平断面積は、冷却部18に連通する導水溝19、20の平断面積の合計と同じ、または導水溝19、20の平断面積の合計の−50%以上+50%以下(好ましくは、上限を+40%、下限を−30%)の範囲内である。
これにより、通水部16を流れる冷却水の流速を、長片部材10の下部から上部まで略均一にできるが、冷却部18の平断面積を、冷却部18に連通する導水溝19、20の平断面積の合計より小さくして、冷却部18における冷却効率を高めることもできる。
また、接続部29の平断面積も、上記のように規定した導水溝19、20の平断面積の範囲内で設定するとよい。
なお、長片部材10の幅方向両端部には、冷却水が流れる直線状導水溝30、31が形成されているが、これは冷却部18に連通しないため、この平断面積は、前記した導水溝19、20の平断面積に算入していない。
The flat cross-sectional area of the cooling unit 18 described above is the same as the total of the cross-sectional areas of the water guide grooves 19 and 20 communicating with the cooling unit 18, or −50% or more + 50% of the total of the cross-sectional areas of the water guide grooves 19 and 20. It is within the following range (preferably, the upper limit is + 40% and the lower limit is −30%).
Thereby, although the flow rate of the cooling water flowing through the water flow part 16 can be made substantially uniform from the lower part to the upper part of the long piece member 10, the water guide grooves 19, 20 communicating the plane cross-sectional area of the cooling part 18 with the cooling part 18. It is possible to increase the cooling efficiency in the cooling section 18 by making it smaller than the total of the cross sectional areas of the above.
Further, the plane cross-sectional area of the connecting portion 29 may be set within the range of the cross-sectional area of the water guide grooves 19 and 20 defined as described above.
Note that linear water guide grooves 30 and 31 through which cooling water flows are formed at both ends in the width direction of the long piece member 10, but since this does not communicate with the cooling unit 18, this plane cross-sectional area is as described above. It is not included in the cross-sectional area of the water guide grooves 19 and 20.

以上に示した長片部材10の裏面側(冷却面とは反対側)には、複数の締結手段12、12aを使用して、例えば、ステンレス製のバックプレート13(例えば、厚みが50mm以上500mm以下程度)が取付けられる。この取付けに際しては、バックプレート13の周辺部に、バックプレート13の給水部15、排水部17、および長片部材10の通水部(長片部材10の幅方向両側に配置される直線状導水溝30、31も含む)16を囲むように溝(図示しない)が形成され、ここにOリング(図示しない)を配置することで、長片部材10とバックプレート13の密着性を向上させ、通水部16からの冷却水の漏れを防止している。
図6に示すように、締結手段12、12aは、長片部材10に形成されている雌ねじ部32と、雌ねじ部32に螺合してバックプレート13を締着する雄ねじ33を有している。また、雄ねじ33を取付けるため、バックプレート13に形成された孔34には、予め防水可能なシール座金35が配置されており、雄ねじ33を取付けた部分からの冷却水の漏れを防止している。
On the back side of the long piece member 10 shown above (the side opposite to the cooling surface), a plurality of fastening means 12, 12a are used, for example, a stainless steel back plate 13 (for example, a thickness of 50 mm or more and 500 mm or more). The following is attached). At the time of this attachment, the water supply portion 15, the drainage portion 17 of the back plate 13, and the water passage portions of the long piece member 10 (straight water guides disposed on both sides in the width direction of the long piece member 10) Grooves (not shown) are formed so as to surround 16 (including grooves 30 and 31), and by arranging an O-ring (not shown) here, the adhesion between the long piece member 10 and the back plate 13 is improved, The leakage of the cooling water from the water flow part 16 is prevented.
As shown in FIG. 6, the fastening means 12, 12 a has a female screw portion 32 formed on the long piece member 10 and a male screw 33 that is screwed into the female screw portion 32 and fastens the back plate 13. . Further, in order to attach the male screw 33, a seal washer 35 that can be waterproofed is disposed in advance in the hole 34 formed in the back plate 13, thereby preventing leakage of cooling water from the portion to which the male screw 33 is attached. .

また、バックプレート13への雄ねじ33の取付けは、1または複数のばね(緩衝部材の一例)36を介して行われており、バックプレート13に対する長片部材10の締結力を調整し、その動きに自由度を与えている。
なお、締結手段12、12aは、長片部材10の縦方向に等ピッチで複数(ここでは、8箇所)設けられているが、長片部材10のメニスカス位置からメニスカス位置の下方へ50mmまでの範囲を除くのが好ましい。このとき、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲にある雄ねじ33を単に取り外すのみの構造でもよいが、長片部材に雌ねじ部を形成することなく、またバックプレートに孔を形成しないことが好ましい。また、メニスカス位置近傍(例えば、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲)に位置する締結手段のみばねを設けたものを使用し、他の部分については、ばねを設けないものを使用することもできる。
これにより、バックプレートによる長片部材の拘束力を更に弱めることができる。
The male screw 33 is attached to the back plate 13 via one or a plurality of springs (an example of a buffer member) 36. The fastening force of the long piece member 10 with respect to the back plate 13 is adjusted, and its movement Is given a degree of freedom.
A plurality of fastening means 12 and 12a are provided at equal pitches in the longitudinal direction of the long piece member 10 (here, 8 locations), but the length of the long piece member 10 from the meniscus position to the lower part of the meniscus position is 50 mm. It is preferred to exclude the range. At this time, the male screw 33 in the range from the meniscus position to 50 mm below the meniscus position may be simply removed. However, the female screw portion is not formed in the long piece member, and the hole is not formed in the back plate. Is preferred. In addition, only the fastening means located near the meniscus position (for example, a range from the meniscus position to 50 mm below the meniscus position) is provided with a spring, and other parts are provided with no spring. You can also
Thereby, the restraining force of the long piece member by the back plate can be further weakened.

また、長片部材の表面(溶鋼面)には、コーティング層を形成してもよい。
コーティング層は、例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、またはNiのめっきを使用できるが、溶射(例えば、NiベースのCr−Si−B系合金)も使用できる。このコーティング層は、同一種類の成分を、長片部材に使用する銅板の表面全面に渡って形成してもよく、また、複数種類の成分を、銅板の上下方向の異なる領域に、各成分の機能に応じてそれぞれ形成してもよい。
以上に示した長片部材は、それぞれ銅板表面にコーティング層を形成した後、所定の形状を、従来公知の機械加工を行って製造する。
この長片部材の形状は、一対の長片部材の間隔を、スラブの引き抜き方向へ向けて同一としてもよいが、スラブの凝固収縮形状に応じて狭くすることが好ましい。
Moreover, you may form a coating layer in the surface (molten steel surface) of a long piece member.
For example, a Co alloy such as Co—Ni, a Ni alloy such as Ni—Fe, or Ni plating can be used for the coating layer, but thermal spraying (eg, Ni-based Cr—Si—B alloy) is also used. it can. This coating layer may be formed of the same type of component over the entire surface of the copper plate used for the long piece member, and plural types of components may be formed in different regions in the vertical direction of the copper plate. You may form each according to a function.
Each of the long piece members shown above is manufactured by forming a coating layer on the surface of the copper plate and then performing a conventionally known machining process on a predetermined shape.
As for the shape of the long piece member, the distance between the pair of long piece members may be the same in the drawing direction of the slab, but it is preferable that the long piece member be narrowed according to the solidification shrinkage shape of the slab.

次に、本発明の作用効果を確認するため、従来例、比較例1、2、および実施例1、2に示す冷却部材(長片部材)の構造を使用して、FEM解析(有限要素法を用いた解析)を行った結果について説明する。なお、従来例の冷却部材は、銅板の裏面側一面に導水溝が形成され、導水溝の底から溶鋼冷却面までの厚みが厚いもの(19mm)であり、比較例1の冷却部材は、従来例よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(15mm)であり、比較例2の冷却部材は、比較例1よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(13mm)である。一方、実施例1の冷却部材は、銅板の裏面側に冷却部と導水溝を有する通水部が形成され、銅板の縦方向二段目にボルト(雄ねじ)を付けたものと付けないものであり、実施例2の冷却部材は、実施例1の銅板の縦方向二段目のボルト(雄ねじ)を使用せず、更にこのボルト孔(雌ねじ部)を除去したものである。これらの試験条件および試験結果を、表1、表2に示す。なお、銅板材質の材質Bとは、Cr−Zr−銅合金の高強度材であり、材質Aとは、材質BのCr−Zr−銅合金の高強度材に冷間鍛造処理を加えることで更に高強度化したものである。 Next, in order to confirm the operation and effect of the present invention, the structure of the cooling member (long piece member) shown in the conventional examples, comparative examples 1 and 2 and examples 1 and 2 is used to perform FEM analysis (finite element method). The results of the analysis using In addition, the cooling member of the conventional example has a water guide groove formed on the entire back surface side of the copper plate and is thick (19 mm) from the bottom of the water guide groove to the molten steel cooling surface. The thickness from the bottom of the water guide groove to the molten steel cooling surface is smaller than the example (15 mm), and the cooling member of Comparative Example 2 is thinner than the comparative example 1 from the bottom of the water guide groove to the molten steel cooling surface (13 mm). On the other hand, the cooling member of Example 1 is formed with a water passage portion having a cooling portion and a water guide groove on the back surface side of the copper plate, and with or without a bolt (male screw) in the second vertical stage of the copper plate. In addition, the cooling member of Example 2 does not use the second-stage bolt (male screw) in the longitudinal direction of the copper plate of Example 1, and further removes this bolt hole (female screw part). These test conditions and test results are shown in Tables 1 and 2. The copper plate material B is a high strength material of Cr-Zr-copper alloy, and the material A is a cold forging treatment applied to the high strength material of material B Cr-Zr-copper alloy. Further, the strength is increased.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

また、銅板材質の材料特性を表3に、従来例、比較例1、2、および実施例1、2の試験結果のみを集めた結果を表4に、それぞれ示す。 Table 3 shows the material characteristics of the copper plate material, and Table 4 shows the results of collecting only the test results of the conventional examples, Comparative Examples 1 and 2, and Examples 1 and 2.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

以下、図7〜図9を参照しながら説明する。なお、図7(A)の温度分布、図7(B)の変位分布、図8(A)の塑性ひずみ分布、および図9(A)の塑性ひずみ幅は、めっきが施された銅板のめっき表面での解析結果であり、図8(B)の塑性ひずみ分布、および図9(B)の塑性ひずみ幅は、めっきと銅板との界面における解析結果である。 Hereinafter, a description will be given with reference to FIGS. In addition, the temperature distribution of FIG. 7 (A), the displacement distribution of FIG. 7 (B), the plastic strain distribution of FIG. 8 (A), and the plastic strain width of FIG. 9 (A) are plating of the plated copper plate. It is an analysis result on the surface, and the plastic strain distribution in FIG. 8B and the plastic strain width in FIG. 9B are the analysis results at the interface between the plating and the copper plate.

図7〜図9、および表4から明らかなように、従来例は、銅板の厚みが厚過ぎるため、銅板上部の温度が高く、拘束力も大きくなる。このため、発生する塑性ひずみも大きく、疲労寿命が短い。
また、比較例1のように、メニスカス部の銅板の厚みを薄くすることで、拘束力が若干改善され、疲労寿命が従来例の1.2倍程度まで増加したが、十分なものではなかった。
更に、比較例2のように、メニスカス部の銅板の厚みを更に薄肉化することで、銅板上部の温度は、比較例1の場合よりも改善され、また薄肉化による拘束力の緩和により、疲労寿命が従来例の1.5倍程度まで増加した。しかし、従来と比較して顕著な結果を得ることはできなかった。
As is apparent from FIGS. 7 to 9 and Table 4, in the conventional example, the thickness of the upper portion of the copper plate is high because the thickness of the copper plate is too thick, and the binding force is also increased. For this reason, the generated plastic strain is large and the fatigue life is short.
Further, as in Comparative Example 1, by reducing the thickness of the copper plate of the meniscus portion, the restraining force was slightly improved and the fatigue life increased to about 1.2 times that of the conventional example, but it was not sufficient. .
Further, as in Comparative Example 2, the thickness of the copper plate at the meniscus portion is further reduced, so that the temperature of the upper portion of the copper plate is improved as compared with the case of Comparative Example 1, and fatigue is reduced due to relaxation of the binding force due to the reduction in thickness. The lifetime has increased to about 1.5 times that of the conventional example. However, remarkable results could not be obtained compared to the conventional case.

一方、実施例1では、メニスカス部を含む銅板上部の構造を改善することにより、拘束力が十分に緩和された。また、銅板温度も改善され、めっき表面の疲労寿命が2.3倍程度まで改善した。なお、2段目のボルトを除去した場合、更に3.4倍程度まで改善した。
また、銅板の母材を高強度材とすることで、母材表面の疲労寿命が4.2倍程度まで改善した。
更に、実施例2では、構造改善に加え、縦方向2段目の締結ボルトを除去することにより、更に拘束力が改善され、めっき表面の疲労寿命が4倍程度まで改善した。
また、銅板母材を高強度材にすることにより、母材表面の疲労寿命が7.7倍程度まで改善した。
以上のことから、本願発明を適用することで、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることができることを確認できた。
On the other hand, in Example 1, the restraining force was sufficiently relaxed by improving the structure of the upper part of the copper plate including the meniscus portion. Moreover, the copper plate temperature was also improved, and the fatigue life of the plating surface was improved to about 2.3 times. In addition, when the second-stage bolt was removed, it was further improved to about 3.4 times.
Moreover, the fatigue life of the base metal surface was improved to about 4.2 times by using a copper plate base material as a high strength material.
Furthermore, in Example 2, in addition to the structural improvement, by removing the second fastening bolt in the longitudinal direction, the restraining force was further improved, and the fatigue life of the plating surface was improved to about 4 times.
Further, the fatigue life of the base metal surface was improved to about 7.7 times by making the copper plate base material a high strength material.
From the above, it has been confirmed that by applying the present invention, the generation of cracks due to thermal stress caused by repeated loads can be suppressed and further prevented, and the life can be extended.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長片部材を冷却部材として説明したが、短片部材のみ、または長片部材と短片部材の双方を冷却部材としてもよい。
そして、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ビレット、ブルーム、またはビームブランクを製造する鋳型に、本願発明を適用することも勿論可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the long piece member was demonstrated as a cooling member, it is good also considering only a short piece member or both a long piece member and a short piece member as a cooling member.
In the above-described embodiment, the configuration of a mold for manufacturing a slab, which is an example of a slab, has been described. However, a mold for manufacturing another slab having a different shape and size, for example, a billet, a bloom, or a beam blank. Of course, it is possible to apply the present invention.

(A)は本発明の一実施の形態に係る連続鋳造用鋳型の長片部材の正面図、(B)は(A)のa−a矢視断面図、(C)は(A)のb−b矢視断面図である。(A) is a front view of a long piece member of a continuous casting mold according to an embodiment of the present invention, (B) is a cross-sectional view taken along the line aa of (A), and (C) is b of (A). It is -b arrow sectional drawing. 同長片部材の部分拡大正面図である。It is a partial enlarged front view of the same long piece member. (A)〜(C)はそれぞれ図1(A)のc−c矢視断面図、d−d矢視断面図、e−e矢視断面図である。(A)-(C) are cc arrow sectional drawing, dd arrow sectional drawing, and ee arrow sectional drawing of FIG. 1 (A), respectively. (A)は図2のf−f矢視断面図、(B)は図2のg−g矢視断面図である。(A) is ff arrow directional cross-sectional view of FIG. 2, (B) is gg arrow directional cross-sectional view of FIG. (A)〜(D)はそれぞれ同長片部材の通水部を長片部材の表面側からみた斜視図、同長片部材の冷却部に連通する導水溝の接続部分の平面図、同導水溝の接続部分を長片部材の表面側からみた斜視図、同長片部材の裏面側からみた斜視図である。(A)-(D) is the perspective view which looked at the water flow part of the same long piece member from the surface side of the long piece member, respectively, The top view of the connection part of the water guide groove connected to the cooling part of the same long piece member, It is the perspective view which looked at the connection part of the groove | channel from the surface side of the long piece member, and the perspective view seen from the back surface side of the long piece member. 大きな熱応力が発生し易いメニスカス位置に近い部位における締結手段の説明図である。It is explanatory drawing of the fastening means in the site | part close | similar to the meniscus position where a big thermal stress tends to generate | occur | produce. (A)は長片部材表面の温度分布を示すグラフ、(B)は長片部材表面の変位分布を示すグラフである。(A) is a graph which shows the temperature distribution on the surface of a long piece member, (B) is a graph which shows the displacement distribution on the surface of a long piece member. (A)は長片部材のめっき表面における塑性ひずみ分布を示すグラフ、(B)は長片部材の母材表面における塑性ひずみ分布を示すグラフである。(A) is a graph which shows the plastic strain distribution in the plating surface of a long piece member, (B) is a graph which shows the plastic strain distribution in the base material surface of a long piece member. (A)は長片部材の湯面変動時のめっき表面における塑性ひずみ幅を示すグラフ、(B)は長片部材の湯面変動時の母材表面における塑性ひずみ幅を示すグラフである。(A) is a graph which shows the plastic strain width in the plating surface at the time of the molten metal surface fluctuation | variation of a long piece member, (B) is a graph which shows the plastic strain width in the base material surface at the time of the molten metal surface fluctuation | variation of a long piece member. 従来例に係る連続鋳造用鋳型の平面図である。It is a top view of the casting mold for continuous casting which concerns on a prior art example. (A)は同連続鋳造用鋳型の短片部材と長片部材の部分拡大正面図、(B)は(A)のl−l矢視断面図、(C)は(A)のm−m矢視断面図、(D)は(A)のn−n矢視断面図である。(A) is a partial enlarged front view of a short piece member and a long piece member of the casting mold for continuous casting, (B) is a cross-sectional view taken along line l-l in (A), and (C) is a m-m arrow in (A). (D) is a cross-sectional view taken along line nn of (A). (A)は同連続鋳造用鋳型の長片部材の熱間時におけるひずみ分布のグラフ、(B)は同連続鋳造用鋳型の長片部材の湯面変動時におけるひずみ分布のグラフである。(A) is a graph of the strain distribution when the long piece member of the continuous casting mold is hot, and (B) is a graph of the strain distribution when the molten metal level of the long piece member of the continuous casting mold is changed.

符号の説明Explanation of symbols

10、11:長片部材、12、12a:締結手段、13、14:バックプレート(支持部材)、15:給水部、16:通水部、17:排水部、18:冷却部、19、20:導水溝、21:空間部、22、22a、22b:薄板部材、23:ねじ、24:固定部、25:ねじ、26:固定部、27:止めねじ、28:裏面、29:接続部、30、31:直線状導水溝、32:雌ねじ部、33:雄ねじ、34:孔、35:シール座金、36:ばね(緩衝部材) 10, 11: Long piece member, 12, 12a: Fastening means, 13, 14: Back plate (support member), 15: Water supply part, 16: Water flow part, 17: Drain part, 18: Cooling part, 19, 20 : Water guide groove, 21: space part, 22, 22a, 22b: thin plate member, 23: screw, 24: fixing part, 25: screw, 26: fixing part, 27: set screw, 28: back surface, 29: connection part, 30, 31: linear water guide groove, 32: female screw part, 33: male screw, 34: hole, 35: seal washer, 36: spring (buffer member)

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、図10、図11(A)〜(D)に示す連続鋳造用鋳型(以下、単に鋳型ともいう)80に溶鋼を供給して鋳片を鋳造している。この鋳型80は、間隔を有して対向配置された銅板で構成される一対の短片部材(短辺部材ともいう)81、82と、この各短片部材81、82を幅方向両側から挟み込んだ状態で対向配置された銅板で構成される一対の長片部材(長辺部材ともいう)83、84とを備えている。
この短片部材81、82は、鏡面対称で同じ構成となっており、裏面側の上下方向に多数の導水溝85、86が設けられ、この短片部材81、82の裏面側に、ボルト87によってバックプレート(支持部材、冷却箱、または水箱ともいう)88、89が固定されている。また、長片部材83、84も、裏面側の上下方向に多数の導水溝85、86が設けられ、この長片部材83、84の裏面側に、ボルト87によってバックプレート90、91が固定されている(例えば、特許文献1参照)。
Conventionally, molten steel is supplied to a continuous casting mold (hereinafter, also simply referred to as a mold) 80 shown in FIGS. 10 and 11A to 11D to cast a slab. The mold 80 is a state in which a pair of short piece members (also referred to as short side members) 81 and 82 composed of copper plates opposed to each other with a gap therebetween, and the short piece members 81 and 82 sandwiched from both sides in the width direction. And a pair of long piece members (also referred to as long side members) 83 and 84 formed of copper plates opposed to each other.
The short piece members 81 and 82 are mirror-symmetrical and have the same configuration, and a large number of water guide grooves 85 and 86 are provided in the vertical direction on the back surface side. The short piece members 81 and 82 are backed by bolts 87 on the back surface side. Plates (also called support members, cooling boxes, or water boxes) 88 and 89 are fixed. The long piece members 83 and 84 are also provided with a large number of water guide grooves 85 and 86 in the vertical direction on the back surface side, and the back plates 90 and 91 are fixed to the back surface side of the long piece members 83 and 84 by bolts 87. (For example, refer to Patent Document 1).

鋳型80は、短片部材81、82、長片部材83、84、およびそれぞれのバックプレート88〜91を有して構成され、対向配置される長片部材83、84に固定されたバックプレート90、91の両端部には、それぞれボルト92が取付けられ、ばね(図示しない)を介してナット93で固定されている。
連続鋳造作業時においては、図11(B)に示すように、バックプレート88〜91の下部に設けられた給水部94から、短片部材81、82および長片部材83、84に設けられた多数の導水溝85、86を介して、バックプレート88〜91の上部に設けられた排水部95へ冷却水を流している。これにより、各短片部材81、82と各長片部材83、84を冷却しながら、鋳型80の上方から溶鋼を注いで溶鋼の初期凝固を行い、凝固した鋳片を鋳型下方よりほぼ一定速度で連続して引き抜き、鋳片を製造する。
The mold 80 is configured to include short piece members 81 and 82, long piece members 83 and 84, and respective back plates 88 to 91, and a back plate 90 fixed to the long piece members 83 and 84 disposed to face each other. Bolts 92 are attached to both ends of 91 and fixed with nuts 93 via springs (not shown).
At the time of continuous casting work, as shown in FIG. 11 (B), from the water supply part 94 provided in the lower part of the back plates 88 to 91, a large number of short pieces 81 and 82 and long pieces 83 and 84 are provided. The cooling water is supplied to the drainage part 95 provided in the upper part of the back plates 88 to 91 through the water guide grooves 85 and 86. Thereby, while cooling the short piece members 81 and 82 and the long piece members 83 and 84, the molten steel is poured from above the mold 80 to perform the initial solidification of the molten steel, and the solidified slab is made at a substantially constant speed from below the mold. Drawing continuously to produce slabs.

特開2003−136204号公報JP 2003-136204 A

しかしながら、前記した鋳型で連続鋳造を行った場合、例えば、短片部材と長片部材にメニスカスクラック(メニスカスレベル付近に発生するヒートクラック:以下、単にクラックともいう)が発生していた。このメニスカスクラックは、例えば、熱間(鋳造中)と冷間(鋳造後)の繰り返しによる鋳型への熱影響と、鋳型での湯面レベルの変動(バルジングやノズル吐出流、または電磁撹拌の影響などによる)とに起因した温度振幅により生じる応力(塑性ひずみ)振幅、即ち繰り返し荷重(熱応力)により発生する疲労破壊(低サイクル疲労)であると考えられる。
このメニスカスクラックは、単に力学的疲労破壊により発生し進展するもののほか、例えば、低融点金属との反応(Znアタック等)により発生した粒界亀裂、または反応により形成された合金層(非常に脆い)の脱落部を起点として進展するものもある。
However, when continuous casting is performed with the above-described mold, for example, meniscus cracks (heat cracks generated near the meniscus level: hereinafter also referred to simply as cracks) have occurred in the short piece member and the long piece member. This meniscus crack is caused by, for example, the thermal effects on the mold due to repeated hot (during casting) and cold (after casting), and fluctuations in the mold surface level in the mold (the effects of bulging, nozzle discharge flow, or electromagnetic stirring). It is considered that the stress (plastic strain) amplitude caused by the temperature amplitude due to the above-mentioned fatigue failure (low cycle fatigue) caused by repeated load (thermal stress).
This meniscus crack is not only generated and propagated by mechanical fatigue fracture, but also, for example, a grain boundary crack generated by reaction with a low melting point metal (Zn attack etc.) or an alloy layer formed by reaction (very brittle) Some of them start from the drop-off part.

また、ここで、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、熱間と冷間の繰り返しによる繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(A)に、現在使用している長片部材を構成する銅板の熱間時(鋳造中)におけるひずみ分布を示す。なお、この解析条件は、銅板をバックプレートに固定するボルトの取付け間隔:120mm、鋳造速度:2.8(m/分)、メニスカスレベル:銅板上端より100mm、冷却水流量:銅板1枚当たり4000(リットル/分)、冷却水温度:40(℃)、冷却水圧力:4(kg/cm)、銅板材質:高強度材(CCM−B)、めっき仕様:Co−Ni、銅板熱伝導率:305(kcal/m/hr)、Co−Niめっき熱伝導率:58(kcal/m/hr/℃)、銅板締結条件:ボルトM20(SUS)、初期締付力1600kg、銅板締結面摩擦係数:0.15である。
Here, a description will be given of a fracture site in a case where a repeated load due to repeated hot and cold is dominant among stress amplitudes caused by temperature amplitudes causing meniscus cracks.
FIG. 12A shows the strain distribution during hot (during casting) of the copper plate constituting the long piece member currently used. The analysis conditions were as follows: bolt mounting interval for fixing the copper plate to the back plate: 120 mm, casting speed: 2.8 (m / min), meniscus level: 100 mm from the upper end of the copper plate, cooling water flow rate: 4000 per copper plate (Liter / minute), cooling water temperature: 40 (° C.), cooling water pressure: 4 (kg / cm 2 ), copper plate material: high strength material (CCM-B), plating specification: Co—Ni, copper plate thermal conductivity : 305 (kcal / m 2 / hr), Co—Ni plating thermal conductivity: 58 (kcal / m / hr / ° C.), copper plate fastening condition: bolt M20 (SUS), initial fastening force 1600 kg, copper plate fastening surface friction Coefficient: 0.15.

図12(A)から明らかなように、ボルトで固定されている部位と、隣り合うボルト間の部位とでは、ボルト締結による拘束力の影響で、ボルトで固定されている部位のひずみ発生量が大きくなっている。
また、塑性ひずみが最大となる箇所は、銅板温度が最大となる銅板上端から130mm付近ではなく、銅板の縦方向2段目のボルト締結位置となる銅板上端より下方に170mm付近(拘束力の強い部位)である。
なお、塑性ひずみ振幅(=1/2塑性ひずみ幅)が最大となる箇所は、塑性ひずみが最大となる箇所に対応するため、上記した箇所の疲労寿命が最も短くなる(クラック大)。
しかし、クラック発生箇所の多くは、上記した位置よりも上方のメニスカスレベルに近い範囲にシフトしているため、他の振幅荷重がこのクラックの支配的要因になると考えられる。
As is clear from FIG. 12A, the amount of strain generated in the portion fixed by the bolt is affected by the restraining force due to the bolt fastening between the portion fixed by the bolt and the portion between the adjacent bolts. It is getting bigger.
Also, the place where the plastic strain is maximum is not about 130 mm from the upper end of the copper plate where the copper plate temperature is maximum, but is about 170 mm below the upper end of the copper plate that becomes the bolt fastening position in the second stage of the copper plate (strong binding force) Part).
In addition, since the location where the plastic strain amplitude (= 1/2 plastic strain width) is maximum corresponds to the location where the plastic strain is maximum, the fatigue life of the above-described location is the shortest (large crack).
However, since many of the crack occurrence locations are shifted to a range close to the meniscus level above the above-described position, it is considered that other amplitude loads are dominant factors of this crack.

続いて、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、鋳型での湯面レベルの変動による繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(B)に、湯面レベルの変動が銅板上端より下方へ100mm±20mm(80mm以上120mm以下)の範囲で発生していると仮定した場合のボルト部位のひずみ分布を示す。
図12(B)に示す湯面変動が±20mm時の(塑性)ひずみ幅の曲線の値が、湯面の最大レベルと最小レベルの間で発生する塑性ひずみ幅となり、塑性ひずみ振幅もこの塑性ひずみ幅に応じて発生する。
また、湯面レベルの変動により最大ひずみ振幅が発生する箇所は、湯面レベルの変動が100mm±20mmの範囲で発生する条件において、鋳型上端より下方へ110mm付近であり、現状のクラック発生レベル(今回の検討実例では、115mmレベル位置)に、ほぼ対応している。
Next, a description will be given of a fracture site in a case where the repeated load due to the fluctuation of the molten metal surface level in the mold is dominant among the stress amplitude generated by the temperature amplitude causing the meniscus crack.
FIG. 12 (B) shows the strain distribution of the bolt part when it is assumed that the fluctuation of the molten metal surface level occurs in the range of 100 mm ± 20 mm (80 mm or more and 120 mm or less) downward from the upper end of the copper plate.
The value of the (plastic) strain width curve when the fluctuation of the molten metal surface shown in FIG. 12 (B) is ± 20 mm is the plastic strain width generated between the maximum level and the minimum level of the molten metal surface, and the plastic strain amplitude is also plastic. It occurs according to the strain width.
Further, the location where the maximum strain amplitude is generated due to the fluctuation of the molten metal surface level is around 110 mm below the upper end of the mold under the condition that the fluctuation of the molten metal surface level is in the range of 100 mm ± 20 mm. In the examination example this time, it corresponds almost to the 115 mm level position).

なお、以上に示した検討結果は、コンピュータを用いたFEM解析(有限要素法を用いた解析)によるシミュレーションを使用し、湯面レベルの変動により生ずる塑性ひずみ振幅から推定される疲労(クラック)寿命の相対比較により行っている。また、疲労寿命は、マンソンの共通勾配法(εpa=εf0.6・Nf−0.6/2)により求めた。
以上のことから、メニスカスクラックの発生には、湯面レベルの変動による塑性ひずみ振幅が大きく影響を及ぼしており、これに、熱間と冷間とが繰り返されることによって生じる繰り返し荷重が複合的に重なって影響しているものと推測される。
In addition, the examination result shown above uses the simulation by the FEM analysis (analysis using the finite element method) using a computer, and the fatigue (crack) life estimated from the plastic strain amplitude caused by the fluctuation of the molten metal surface level This is done by relative comparison. The fatigue life was determined by Manson's common gradient method (ε pa = ε f 0.6 · Nf −0.6 / 2).
From the above, the occurrence of meniscus cracks is greatly influenced by the plastic strain amplitude due to the fluctuation of the molten metal surface level, and the repeated load generated by repeated hot and cold is combined with this. It is presumed that they are overlapping.

本発明はかかる事情に鑑みてなされたもので、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることが可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a continuous casting mold capable of suppressing and further preventing the occurrence of cracks due to thermal stress caused by repeated loads and extending the service life. With the goal.

前記目的に沿う本発明に係る連続鋳造用鋳型は、間隔を有して対向配置された一対の短片部材と、該短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材と、前記短片部材と前記長片部材の裏面側に締結手段によってそれぞれ固定された支持部材とを有し、該支持部材の下部に設けられた給水部から、前記短片部材と前記長片部材の裏面側に設けられた通水部を介して、前記支持部材の上部に設けられた排水部へ冷却水を流し、前記短片部材と前記長片部材とで形成される領域内に供給された溶鋼を該短片部材と該長片部材で冷却し凝固させながら下方へ引き抜き鋳片を製造する鋳型において、
前記短片部材および前記長片部材のいずれか一方または双方からなる冷却部材の少なくとも上側を薄肉平板化し、前記通水部が、該薄肉平板化した前記冷却部材の裏面側一面に形成される冷却部と、該冷却部と前記給水部を連通する多数の導水溝を有し、しかも該冷却部が、前記薄肉平板化した冷却部材の裏面側に設けられた空間部内に、該冷却部材の裏面に対して薄板部材の表面を平行に配置することにより形成される隙間であり、更に前記締結手段の取付け位置を、前記冷却部材のメニスカス位置から該メニスカス位置の下方へ50mmまでの範囲を除く部分とした
The continuous casting mold according to the present invention that meets the above-mentioned object is a pair of short piece members that are arranged to face each other with a gap therebetween, and a pair of long piece members that are arranged to face each other while sandwiching the short piece members from both sides in the width direction. And a supporting member fixed to the back side of the short piece member and the long piece member by fastening means, and from the water supply portion provided at the lower part of the supporting member, the short piece member and the long piece member Molten steel supplied to the region formed by the short piece member and the long piece member by flowing cooling water to the drainage portion provided at the upper part of the support member through the water passage portion provided on the back side. In a mold for producing a drawn slab downward while cooling and solidifying the short piece member and the long piece member,
A cooling part in which at least the upper side of the cooling member consisting of one or both of the short piece member and the long piece member is flattened, and the water flow part is formed on the entire back surface of the thinned cooling member. And a large number of water guide grooves communicating with the cooling part and the water supply part, and the cooling part is provided on the back surface of the cooling member in a space provided on the back surface side of the thinned flat cooling member. And a portion formed by arranging the surfaces of the thin plate members in parallel, and the attachment position of the fastening means is a portion excluding a range from the meniscus position of the cooling member to the lower side of the meniscus position up to 50 mm. I did .

本発明に係る連続鋳造用鋳型において、前記冷却部材の薄肉平板化された部分は、前記冷却部材の上端から50mm以上600mm以下の範囲であることが好ましい。
本発明に係る連続鋳造用鋳型において、薄肉平板化した前記冷却部材の厚みは、5mm以上30mm以下であることが好ましい。
In the continuous casting mold according to the present invention, it is preferable that the thinned flat portion of the cooling member is in a range of 50 mm or more and 600 mm or less from the upper end of the cooling member.
In the continuous casting mold according to the present invention, the thickness of the thinned cooling member is preferably 5 mm or more and 30 mm or less.

本発明に係る連続鋳造用鋳型において、前記冷却部の平断面積は、該冷却部に連通する前記導水溝の平断面積の合計と同じ、または該導水溝の平断面積の合計の−50%以上+50%以下の範囲内であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部に連通する前記導水溝の接続部は、該冷却部へ向け、その内幅を前記導水溝の他の部分の内幅よりも徐々に拡幅したことが好ましい。
In the continuous casting mold according to the present invention, the cooling section has a flat cross-sectional area equal to the sum of the cross-sectional areas of the water guide grooves communicating with the cooling section or a sum of the cross-sectional areas of the water guide grooves of −50. It is preferable to be within the range of not less than% and not more than 50%.
In the casting mold for continuous casting according to the present invention, the connection portion of the water guide groove communicating with the cooling portion is gradually widened toward the cooling portion with the inner width thereof being larger than the inner width of other portions of the water guide groove. It is preferable.

請求項1〜記載の連続鋳造用鋳型は、冷却部材の少なくとも上側を薄肉平板化しているので、冷却部材の上側構造を、従来の鋳型に設けていた導水溝(スリット)が設けられていない薄肉平板構造にできる。これにより、従来の導水溝構造と比較して、冷却部材自体の拘束ひずみを緩和することができ、また冷却効率も高めることができるので、冷却部材でのクラックの発生を抑制(発生ひずみを低減)でき、鋳型の長寿命化を図ることができる。
なお、従来の導水溝構造の場合、その構造そのものが、冷却部材の変形防止のリブの役目をしていたため、冷却部材の自由変形を拘束していた。このため、熱負荷が大きい湯面近傍では、冷却部材の拘束ひずみが増して応力状態が悪化、すなわち塑性ひずみの発生が増大していた。
特に、請求項2記載の連続鋳造用鋳型は、冷却部材の薄肉平板化する位置を規定しているので、熱応力の低減を確実にでき、クラックの発生頻度を更に低減できる。
請求項3記載の連続鋳造用鋳型は、薄肉平板化した冷却部材の厚みを規定するので、薄肉平板化した部分の熱応力の低減効果を更に高めることができる。
In the continuous casting mold according to any one of claims 1 to 6 , since at least the upper side of the cooling member is flattened, the upper structure of the cooling member is not provided with the water guide groove (slit) provided in the conventional mold. A thin plate structure can be formed. As a result, the restraining strain of the cooling member itself can be relaxed and the cooling efficiency can be increased as compared with the conventional water guide groove structure, so that the generation of cracks in the cooling member is suppressed (the generated strain is reduced). ) And the life of the mold can be extended.
In the case of the conventional water guide groove structure, the structure itself acts as a rib for preventing deformation of the cooling member, and thus restricts free deformation of the cooling member. For this reason, in the vicinity of the molten metal surface where the heat load is large, the restraint strain of the cooling member increases and the stress state deteriorates, that is, the occurrence of plastic strain increases.
In particular, since the continuous casting mold according to claim 2 defines the position where the cooling member is flattened, the thermal stress can be reliably reduced, and the occurrence frequency of cracks can be further reduced.
Since the continuous casting mold according to claim 3 defines the thickness of the thinned and flattened cooling member, the effect of reducing the thermal stress of the thinned and flattened portion can be further enhanced.

請求項記載の連続鋳造用鋳型は、通水部を、冷却部材の裏面側一面に形成される冷却部と、これに連通する導水溝により形成するので、簡単な構造で応力を緩和することができ、また、冷却効率も向上でき、熱応力を大幅に緩和させることができ、塑性ひずみの発生量を低減できる。
請求項記載の連続鋳造用鋳型は、冷却部となる隙間を、空間部内に配置する薄板部材により形成するので、冷却部の構成を簡単にでき、製造時における作業性も良好である。
請求項記載の連続鋳造用鋳型は、冷却部の平断面積と、導水溝の平断面積の合計との関係を規定するので、冷却部材の下部から上部へかけて、通水部における冷却水の流れを安定にできる。
In the casting mold for continuous casting according to claim 1 , since the water passing portion is formed by the cooling portion formed on the entire back surface side of the cooling member and the water guide groove communicating with the cooling portion, the stress can be relieved with a simple structure. In addition, the cooling efficiency can be improved, the thermal stress can be greatly relieved, and the amount of plastic strain generated can be reduced.
Continuous casting mold according to claim 1 is a gap as a cooling part, because it forms a thin plate member disposed in the space portion, easy configuration of the cooling unit, it is also good workability at the time of manufacture.
The continuous casting mold according to claim 4 defines the relationship between the flat cross-sectional area of the cooling part and the sum of the flat cross-sectional areas of the water guide grooves, so that the cooling in the water flow part is performed from the lower part to the upper part of the cooling member. The water flow can be stabilized.

請求項記載の連続鋳造用鋳型は、冷却部に連通する導水溝の接続部の形状を規定することで、導水溝から冷却部への冷却水の流れを淀みなく安定にできる。
請求項記載の連続鋳造用鋳型は、締結手段の取付け位置を規定しているので、熱応力が発生し易い部分での締結手段による拘束力を低減でき、発生する熱応力を更に緩和することができる。
In the continuous casting mold according to the sixth aspect, the flow of the cooling water from the water guiding groove to the cooling part can be stabilized without any stagnation by defining the shape of the connecting part of the water guiding groove communicating with the cooling part.
Since the continuous casting mold according to claim 1 defines the mounting position of the fastening means, it is possible to reduce the restraining force by the fastening means at a portion where thermal stress is likely to occur, and to further reduce the generated thermal stress. Can do.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1〜図6に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、間隔を有して対向配置された図示しない一対の短片部材(短辺部材ともいう)と、短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材(長辺部材ともいう)10、11と、短片部材と長片部材10、11の裏面側に締結手段12、12aによってそれぞれ固定された支持部材の一例であるバックプレート(冷却箱または水箱ともいう)13、14とを有するものである。これにより、バックプレート13、14の下部に設けられた給水部15から、短片部材と長片部材10、11の裏面側に設けられた通水部16を介して、バックプレート13、14の上部に設けられた排水部17へ冷却水を流し、短片部材と長片部材10、11とで形成される領域内に供給された溶鋼を短片部材と長片部材10、11で冷却し凝固させながら下方へ引き抜きスラブ(鋳片の一例)を製造できる。なお、短片部材と長片部材10、11は、その幅のみが異なって他の構成は略同様であり、また長片部材10、11は鏡面対称であるため、以下、図1〜図6に示す長片部材10を冷却部材としその構成を主として、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 6, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention has a pair of short pieces (not shown) that are arranged to face each other at intervals. Side members), a pair of long piece members (also referred to as long side members) 10 and 11, which are opposed to each other while sandwiching the short piece members from both sides in the width direction, and the back surfaces of the short piece members and the long piece members 10 and 11 It has back plates (also referred to as cooling boxes or water boxes) 13 and 14 which are examples of support members fixed to the side by fastening means 12 and 12a, respectively. Thereby, from the water supply part 15 provided in the lower part of the back plates 13 and 14, the upper part of the back plates 13 and 14 through the water passing part 16 provided in the back surface side of the short piece member and the long piece members 10 and 11 While flowing cooling water to the drainage part 17 provided in the molten steel, the molten steel supplied in the region formed by the short piece members and the long piece members 10 and 11 is cooled and solidified by the short piece members and the long piece members 10 and 11. A downwardly drawn slab (an example of a cast piece) can be manufactured. In addition, since the short piece member and the long piece members 10 and 11 differ only in the width | variety and the other structure is substantially the same, and the long piece members 10 and 11 are mirror-symmetrical, below, FIGS. The long piece member 10 to be shown is a cooling member, and its configuration will be mainly described in detail.

各短片部材は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、各長片部材10、11は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅(鋳片と接触する幅)が600mm以上3000mm以下程度、上下方向の長さが短片部材と同程度である。
従って、対向配置される一対の短片部材の間隔は、600mm以上3000mm以下程度であり、一対の長片部材10、11の間隔は、50mm以上300mm以下程度であり、また鋳型の上下方向の長さは、600mm以上1200mm以下程度である。なお、対向配置される短片部材は、上記した範囲内でその間隔を変えることができる。
これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。
Each short piece member is made of copper or a copper alloy, and has a thickness of about 10 mm to 100 mm, a width of about 50 mm to 300 mm, and a vertical length of about 600 mm to 1200 mm. Each of the long piece members 10 and 11 is made of copper or a copper alloy. For example, the thickness is about 10 mm or more and 100 mm or less, and the width (the width in contact with the cast piece) is about 600 mm or more and 3000 mm or less, and the length in the vertical direction. Is about the same as the short piece member.
Accordingly, the distance between the pair of short piece members arranged to face each other is about 600 mm to 3000 mm, the distance between the pair of long piece members 10 and 11 is about 50 mm to 300 mm, and the length of the mold in the vertical direction. Is about 600 mm or more and 1200 mm or less. In addition, the space | interval of the short piece member arrange | positioned facing can be changed within the above-mentioned range.
Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

図1(A)〜(C)、図2、図3(A)〜(C)に示すように、長片部材10の裏面側に設けられた通水部16は、長片部材10の少なくとも上側に冷却部18と、この冷却部18と給水部15を連通する多数の導水溝19、20を有する。なお、長片部材10の上側とは、長片部材10の上端から50mm以上600mm以下(好ましくは、上限を500mm、更には400mm、下限を80mm、更には100mm)の範囲である。これは、長片部材10の上端から80mm以上150mm以下の範囲で従来発生していたヒートクラックを抑制、更には防止することによる。
この冷却部18は、長片部材10の上側の裏面側一面に設けられた空間部21内に、薄板部材22、22a、22bを配置することにより形成される隙間Gである。なお、薄板部材22、22a、22bは、締結手段12、12aによって幅方向両端部または一端部の形状が異なっているものである。また、空間部21は、長片部材10の幅方向に渡って形成されており、側断面形状が船形となっている。
As shown in FIGS. 1A to 1C, FIG. 2, and FIGS. 3A to 3C, the water flow portion 16 provided on the back surface side of the long piece member 10 is at least of the long piece member 10. On the upper side, a cooling unit 18 and a plurality of water guide grooves 19 and 20 that communicate the cooling unit 18 and the water supply unit 15 are provided. The upper side of the long piece member 10 is a range of 50 mm to 600 mm from the upper end of the long piece member 10 (preferably, the upper limit is 500 mm, further 400 mm, the lower limit is 80 mm, and further 100 mm). This is because heat cracks that have conventionally occurred in the range of 80 mm or more and 150 mm or less from the upper end of the long piece member 10 are suppressed and further prevented.
The cooling portion 18 is a gap G formed by disposing the thin plate members 22, 22 a, and 22 b in the space portion 21 provided on the entire upper surface of the long piece member 10. The thin plate members 22, 22 a, 22 b have different shapes at both ends or one end in the width direction depending on the fastening means 12, 12 a. Moreover, the space part 21 is formed over the width direction of the long piece member 10, and the side cross-sectional shape is a ship shape.

この空間部21の形成は、長片部材10の厚みT1を、5mm以上30mm以下とするように行っており、その結果、この部分の長片部材10を薄肉平板化できる。
ここで、薄肉平板化した部分の長片部材の厚みが5mm未満の場合、長片部材の繰り返し使用時における研削代が減少して鋳型使用回数の低下が生じる。一方、厚みが30mmを超える場合、厚みが厚くなり過ぎ、鋳型温度の上昇と締結の拘束による発生応力の増加により、塑性ひずみの発生量が増大する。
以上のことから、薄肉平板化した長片部材の厚みT1を、5mm以上30mm以下としたが、上限を20mm、更には15mmとすることが好ましく、下限を8mm、更には10mmとすることが好ましい。
この空間部21内の上部位置には、薄板部材22の上部を取付けるためのねじ23の固定部24が、間隔を有して複数(ここでは2個)設けられている。
The space portion 21 is formed so that the thickness T1 of the long piece member 10 is 5 mm or more and 30 mm or less. As a result, the long piece member 10 in this portion can be flattened.
Here, when the thickness of the long piece member of the thinned flat portion is less than 5 mm, the grinding allowance at the time of repeated use of the long piece member is reduced and the number of times the mold is used is reduced. On the other hand, when the thickness exceeds 30 mm, the thickness becomes too thick, and the amount of plastic strain increases due to an increase in generated temperature due to an increase in mold temperature and fastening constraints.
From the above, the thickness T1 of the thin flat member is 5 mm or more and 30 mm or less, but the upper limit is preferably 20 mm, more preferably 15 mm, and the lower limit is preferably 8 mm, more preferably 10 mm. .
A plurality (two in this case) of fixing parts 24 of screws 23 for attaching the upper part of the thin plate member 22 are provided at an upper position in the space part 21.

図4(A)、(B)に示すように、冷却部18に連通する多数の導水溝19、20は、その底位置から長片部材10の溶鋼冷却面までの厚みT2、T3が、薄肉平板化した長片部材10の厚みT1よりも、例えば、5mm以上20mm以下程度厚くなるように形成されている。なお、導水溝19と導水溝20の構成は、その深さが異なる(導水溝20の方が導水溝19よりもその深さが深い)こと以外は、同じである。この導水溝19、20は、長片部材10の縦方向へ沿って直線状で、しかも長片部材10の幅方向に渡って所定ピッチ(例えば、6mm以上30mm以下程度)で形成されている。
従って、隣り合う導水溝19、19、導水溝19、20の間が、薄板部材22、22a、22bの下部を取付けるためのねじ25の固定部26となる。
これにより、空間部21内に薄板部材22、22a、22bを配置した後、その上部と下部をねじ23、25によって長片部材10に固定できる。このように固定したとき、薄板部材22、22a、22bの裏面は、長片部材10の上端部および導水溝19、20が形成されている部分の裏面と、同一平面上に配置されるようになっている。
As shown in FIGS. 4 (A) and 4 (B), the large number of water guide grooves 19 and 20 communicating with the cooling unit 18 are thin in thickness T2 and T3 from the bottom position to the molten steel cooling surface of the long piece member 10. For example, it is formed so as to be thicker by about 5 mm or more and 20 mm or less than the thickness T1 of the flattened long piece member 10. In addition, the structure of the water guide groove 19 and the water guide groove 20 is the same except that the depth differs (the water guide groove 20 is deeper than the water guide groove 19). The water guide grooves 19 and 20 are linear along the longitudinal direction of the long piece member 10, and are formed at a predetermined pitch (for example, about 6 mm or more and 30 mm or less) in the width direction of the long piece member 10.
Therefore, between the adjacent water guide grooves 19 and 19 and the water guide grooves 19 and 20 becomes a fixing portion 26 of the screw 25 for attaching the lower part of the thin plate members 22, 22 a and 22 b.
Thereby, after arranging the thin plate members 22, 22 a, 22 b in the space portion 21, the upper and lower portions can be fixed to the long piece member 10 by the screws 23, 25. When fixed in this manner, the back surfaces of the thin plate members 22, 22 a, 22 b are arranged on the same plane as the back surface of the portion where the upper end portion of the long piece member 10 and the water guide grooves 19, 20 are formed. It has become.

この薄板部材22、22a、22bは、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄、または耐食性を備えるステンレスで構成され、長片部材10の幅方向に複数(本実施の形態では、15個)に分割されたものである。この各薄板部材22、22a、22bは、側断面形状が船形となっており、薄板部材22、22a、22bに取付けられ長片部材10の裏面側へ所定長さ突出する複数の止めねじ27の先端が、薄肉平板化された長片部材10の裏面28に当接して、一定の隙間Gを形成できる構成となっている。
この隙間Gは、例えば、2mm以上7mm以下程度であり、この部分を冷却水が流れる。
なお、図5(A)〜(D)には、冷却水が流れる通水部16の部分を示しているが、冷却部18に連通する導水溝19、20の接続部29は、冷却部18へ向け、その内幅を導水溝19、20の他の部分の内幅(例えば、1mm以上5mm以下程度)よりも連続的(曲面的)に徐々に拡幅している。また、接続部29は、冷却部18へ向け、その深さを導水溝19、20の他の部分の深さよりも徐々に浅くしている。
The thin plate members 22, 22 a, 22 b are made of, for example, copper, copper alloy, aluminum, aluminum alloy, iron, or stainless steel having corrosion resistance, and a plurality (in the present embodiment, 15 in the width direction). ). Each of the thin plate members 22, 22 a, and 22 b has a ship-like cross-sectional shape, and is attached to the thin plate members 22, 22 a, 22 b and includes a plurality of set screws 27 that protrude a predetermined length toward the back side of the long piece member 10. The tip is in contact with the back surface 28 of the long flat member 10 which is thin and flat, and a certain gap G can be formed.
The gap G is, for example, about 2 mm to 7 mm, and cooling water flows through this portion.
5A to 5D show the portion of the water flow portion 16 through which the cooling water flows, but the connection portion 29 of the water guide grooves 19 and 20 communicating with the cooling portion 18 is the cooling portion 18. The inner width is gradually widened more continuously (curved surface) than the inner width (for example, about 1 mm or more and about 5 mm or less) of other portions of the water guide grooves 19 and 20. Moreover, the connection part 29 is gradually made shallower than the depth of the other part of the water guide grooves 19 and 20 toward the cooling part 18.

上記した冷却部18の平断面積は、冷却部18に連通する導水溝19、20の平断面積の合計と同じ、または導水溝19、20の平断面積の合計の−50%以上+50%以下(好ましくは、上限を+40%、下限を−30%)の範囲内である。
これにより、通水部16を流れる冷却水の流速を、長片部材10の下部から上部まで略均一にできるが、冷却部18の平断面積を、冷却部18に連通する導水溝19、20の平断面積の合計より小さくして、冷却部18における冷却効率を高めることもできる。
また、接続部29の平断面積も、上記のように規定した導水溝19、20の平断面積の範囲内で設定するとよい。
なお、長片部材10の幅方向両端部には、冷却水が流れる直線状導水溝30、31が形成されているが、これは冷却部18に連通しないため、この平断面積は、前記した導水溝19、20の平断面積に算入していない。
The flat cross-sectional area of the cooling unit 18 described above is the same as the total of the cross-sectional areas of the water guide grooves 19 and 20 communicating with the cooling unit 18, or −50% or more + 50% of the total of the cross-sectional areas of the water guide grooves 19 and 20. It is within the following range (preferably, the upper limit is + 40% and the lower limit is −30%).
Thereby, although the flow rate of the cooling water flowing through the water flow part 16 can be made substantially uniform from the lower part to the upper part of the long piece member 10, the water guide grooves 19, 20 communicating the plane cross-sectional area of the cooling part 18 with the cooling part 18. It is possible to increase the cooling efficiency in the cooling section 18 by making it smaller than the total of the cross sectional areas of the above.
Further, the plane cross-sectional area of the connecting portion 29 may be set within the range of the cross-sectional area of the water guide grooves 19 and 20 defined as described above.
Note that linear water guide grooves 30 and 31 through which cooling water flows are formed at both ends in the width direction of the long piece member 10, but since this does not communicate with the cooling unit 18, this plane cross-sectional area is as described above. It is not included in the cross-sectional area of the water guide grooves 19 and 20.

以上に示した長片部材10の裏面側(冷却面とは反対側)には、複数の締結手段12、12aを使用して、例えば、ステンレス製のバックプレート13(例えば、厚みが50mm以上500mm以下程度)が取付けられる。この取付けに際しては、バックプレート13の周辺部に、バックプレート13の給水部15、排水部17、および長片部材10の通水部(長片部材10の幅方向両側に配置される直線状導水溝30、31も含む)16を囲むように溝(図示しない)が形成され、ここにOリング(図示しない)を配置することで、長片部材10とバックプレート13の密着性を向上させ、通水部16からの冷却水の漏れを防止している。
図6に示すように、締結手段12、12aは、長片部材10に形成されている雌ねじ部32と、雌ねじ部32に螺合してバックプレート13を締着する雄ねじ33を有している。また、雄ねじ33を取付けるため、バックプレート13に形成された孔34には、予め防水可能なシール座金35が配置されており、雄ねじ33を取付けた部分からの冷却水の漏れを防止している。
On the back side of the long piece member 10 shown above (the side opposite to the cooling surface), a plurality of fastening means 12, 12a are used, for example, a stainless steel back plate 13 (for example, a thickness of 50 mm or more and 500 mm or more). The following is attached). At the time of this attachment, the water supply portion 15, the drainage portion 17 of the back plate 13, and the water passage portions of the long piece member 10 (straight water guides disposed on both sides in the width direction of the long piece member 10) Grooves (not shown) are formed so as to surround 16 (including grooves 30 and 31), and by arranging an O-ring (not shown) here, the adhesion between the long piece member 10 and the back plate 13 is improved, The leakage of the cooling water from the water flow part 16 is prevented.
As shown in FIG. 6, the fastening means 12, 12 a has a female screw portion 32 formed on the long piece member 10 and a male screw 33 that is screwed into the female screw portion 32 and fastens the back plate 13. . Further, in order to attach the male screw 33, a seal washer 35 that can be waterproofed is disposed in advance in the hole 34 formed in the back plate 13, thereby preventing leakage of cooling water from the portion to which the male screw 33 is attached. .

また、バックプレート13への雄ねじ33の取付けは、1または複数のばね(緩衝部材の一例)36を介して行われており、バックプレート13に対する長片部材10の締結力を調整し、その動きに自由度を与えている。
なお、締結手段12、12aは、長片部材10の縦方向に等ピッチで複数(ここでは、8箇所)設けられているが、長片部材10のメニスカス位置からメニスカス位置の下方へ50mmまでの範囲を除くのが好ましい。このとき、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲にある雄ねじ33を単に取り外すのみの構造でもよいが、長片部材に雌ねじ部を形成することなく、またバックプレートに孔を形成しないことが好ましい。また、メニスカス位置近傍(例えば、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲)に位置する締結手段のみばねを設けたものを使用し、他の部分については、ばねを設けないものを使用することもできる。
これにより、バックプレートによる長片部材の拘束力を更に弱めることができる。
The male screw 33 is attached to the back plate 13 via one or a plurality of springs (an example of a buffer member) 36. The fastening force of the long piece member 10 with respect to the back plate 13 is adjusted, and its movement Is given a degree of freedom.
A plurality of fastening means 12 and 12a are provided at equal pitches in the longitudinal direction of the long piece member 10 (here, 8 locations), but the length of the long piece member 10 from the meniscus position to the lower part of the meniscus position is 50 mm. It is preferred to exclude the range. At this time, the male screw 33 in the range from the meniscus position to 50 mm below the meniscus position may be simply removed. However, the female screw portion is not formed in the long piece member, and the hole is not formed in the back plate. Is preferred. In addition, only the fastening means located near the meniscus position (for example, a range from the meniscus position to 50 mm below the meniscus position) is provided with a spring, and other parts are provided with no spring. You can also
Thereby, the restraining force of the long piece member by the back plate can be further weakened.

また、長片部材の表面(溶鋼面)には、コーティング層を形成してもよい。
コーティング層は、例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、またはNiのめっきを使用できるが、溶射(例えば、NiベースのCr−Si−B系合金)も使用できる。このコーティング層は、同一種類の成分を、長片部材に使用する銅板の表面全面に渡って形成してもよく、また、複数種類の成分を、銅板の上下方向の異なる領域に、各成分の機能に応じてそれぞれ形成してもよい。
以上に示した長片部材は、それぞれ銅板表面にコーティング層を形成した後、所定の形状を、従来公知の機械加工を行って製造する。
この長片部材の形状は、一対の長片部材の間隔を、スラブの引き抜き方向へ向けて同一としてもよいが、スラブの凝固収縮形状に応じて狭くすることが好ましい。
Moreover, you may form a coating layer in the surface (molten steel surface) of a long piece member.
For example, a Co alloy such as Co—Ni, a Ni alloy such as Ni—Fe, or Ni plating can be used for the coating layer, but thermal spraying (eg, Ni-based Cr—Si—B alloy) is also used. it can. This coating layer may be formed of the same type of component over the entire surface of the copper plate used for the long piece member, and plural types of components may be formed in different regions in the vertical direction of the copper plate. You may form each according to a function.
Each of the long piece members shown above is manufactured by forming a coating layer on the surface of the copper plate and then performing a conventionally known machining process on a predetermined shape.
As for the shape of the long piece member, the distance between the pair of long piece members may be the same in the drawing direction of the slab, but it is preferable that the long piece member be narrowed according to the solidification shrinkage shape of the slab.

次に、本発明の作用効果を確認するため、従来例、比較例1、2、および実施例1、2に示す冷却部材(長片部材)の構造を使用して、FEM解析(有限要素法を用いた解析)を行った結果について説明する。なお、従来例の冷却部材は、銅板の裏面側一面に導水溝が形成され、導水溝の底から溶鋼冷却面までの厚みが厚いもの(19mm)であり、比較例1の冷却部材は、従来例よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(15mm)であり、比較例2の冷却部材は、比較例1よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(13mm)である。一方、実施例1の冷却部材は、銅板の裏面側に冷却部と導水溝を有する通水部が形成され、銅板の縦方向二段目にボルト(雄ねじ)を付けたものと付けないものであり、実施例2の冷却部材は、実施例1の銅板の縦方向二段目のボルト(雄ねじ)を使用せず、更にこのボルト孔(雌ねじ部)を除去したものである。これらの試験条件および試験結果を、表1、表2に示す。なお、銅板材質の材質Bとは、Cr−Zr−銅合金の高強度材であり、材質Aとは、材質BのCr−Zr−銅合金の高強度材に冷間鍛造処理を加えることで更に高強度化したものである。 Next, in order to confirm the operation and effect of the present invention, the structure of the cooling member (long piece member) shown in the conventional examples, comparative examples 1 and 2 and examples 1 and 2 is used to perform FEM analysis (finite element method). The results of the analysis using In addition, the cooling member of the conventional example has a water guide groove formed on the entire back surface side of the copper plate and is thick (19 mm) from the bottom of the water guide groove to the molten steel cooling surface. The thickness from the bottom of the water guide groove to the molten steel cooling surface is smaller than the example (15 mm), and the cooling member of Comparative Example 2 is thinner than the comparative example 1 from the bottom of the water guide groove to the molten steel cooling surface (13 mm). On the other hand, the cooling member of Example 1 is formed with a water passage portion having a cooling portion and a water guide groove on the back surface side of the copper plate, and with or without a bolt (male screw) in the second vertical stage of the copper plate. In addition, the cooling member of Example 2 does not use the second-stage bolt (male screw) in the longitudinal direction of the copper plate of Example 1, and further removes this bolt hole (female screw part). These test conditions and test results are shown in Tables 1 and 2. The copper plate material B is a high strength material of Cr-Zr-copper alloy, and the material A is a cold forging treatment applied to the high strength material of material B Cr-Zr-copper alloy. Further, the strength is increased.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

また、銅板材質の材料特性を表3に、従来例、比較例1、2、および実施例1、2の試験結果のみを集めた結果を表4に、それぞれ示す。 Table 3 shows the material characteristics of the copper plate material, and Table 4 shows the results of collecting only the test results of the conventional examples, Comparative Examples 1 and 2, and Examples 1 and 2.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

以下、図7〜図9を参照しながら説明する。なお、図7(A)の温度分布、図7(B)の変位分布、図8(A)の塑性ひずみ分布、および図9(A)の塑性ひずみ幅は、めっきが施された銅板のめっき表面での解析結果であり、図8(B)の塑性ひずみ分布、および図9(B)の塑性ひずみ幅は、めっきと銅板との界面における解析結果である。 Hereinafter, a description will be given with reference to FIGS. In addition, the temperature distribution of FIG. 7 (A), the displacement distribution of FIG. 7 (B), the plastic strain distribution of FIG. 8 (A), and the plastic strain width of FIG. 9 (A) are plating of the plated copper plate. It is an analysis result on the surface, and the plastic strain distribution in FIG. 8B and the plastic strain width in FIG. 9B are the analysis results at the interface between the plating and the copper plate.

図7〜図9、および表4から明らかなように、従来例は、銅板の厚みが厚過ぎるため、銅板上部の温度が高く、拘束力も大きくなる。このため、発生する塑性ひずみも大きく、疲労寿命が短い。
また、比較例1のように、メニスカス部の銅板の厚みを薄くすることで、拘束力が若干改善され、疲労寿命が従来例の1.2倍程度まで増加したが、十分なものではなかった。
更に、比較例2のように、メニスカス部の銅板の厚みを更に薄肉化することで、銅板上部の温度は、比較例1の場合よりも改善され、また薄肉化による拘束力の緩和により、疲労寿命が従来例の1.5倍程度まで増加した。しかし、従来と比較して顕著な結果を得ることはできなかった。
As is apparent from FIGS. 7 to 9 and Table 4, in the conventional example, the thickness of the upper portion of the copper plate is high because the thickness of the copper plate is too thick, and the binding force is also increased. For this reason, the generated plastic strain is large and the fatigue life is short.
Further, as in Comparative Example 1, by reducing the thickness of the copper plate of the meniscus portion, the restraining force was slightly improved and the fatigue life increased to about 1.2 times that of the conventional example, but it was not sufficient. .
Further, as in Comparative Example 2, the thickness of the copper plate at the meniscus portion is further reduced, so that the temperature of the upper portion of the copper plate is improved as compared with the case of Comparative Example 1, and fatigue is reduced due to relaxation of the binding force due to the reduction in thickness. The lifetime has increased to about 1.5 times that of the conventional example. However, remarkable results could not be obtained compared to the conventional case.

一方、実施例1では、メニスカス部を含む銅板上部の構造を改善することにより、拘束力が十分に緩和された。また、銅板温度も改善され、めっき表面の疲労寿命が2.3倍程度まで改善した。なお、2段目のボルトを除去した場合、更に3.4倍程度まで改善した。
また、銅板の母材を高強度材とすることで、母材表面の疲労寿命が4.2倍程度まで改善した。
更に、実施例2では、構造改善に加え、縦方向2段目の締結ボルトを除去することにより、更に拘束力が改善され、めっき表面の疲労寿命が4倍程度まで改善した。
また、銅板母材を高強度材にすることにより、母材表面の疲労寿命が7.7倍程度まで改善した。
以上のことから、本願発明を適用することで、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることができることを確認できた。
On the other hand, in Example 1, the restraining force was sufficiently relaxed by improving the structure of the upper part of the copper plate including the meniscus portion. Moreover, the copper plate temperature was also improved, and the fatigue life of the plating surface was improved to about 2.3 times. In addition, when the second-stage bolt was removed, it was further improved to about 3.4 times.
Moreover, the fatigue life of the base metal surface was improved to about 4.2 times by using a copper plate base material as a high strength material.
Furthermore, in Example 2, in addition to the structural improvement, by removing the second fastening bolt in the longitudinal direction, the restraining force was further improved, and the fatigue life of the plating surface was improved to about 4 times.
Further, the fatigue life of the base metal surface was improved to about 7.7 times by making the copper plate base material a high strength material.
From the above, it has been confirmed that by applying the present invention, the generation of cracks due to thermal stress caused by repeated loads can be suppressed and further prevented, and the life can be extended.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長片部材を冷却部材として説明したが、短片部材のみ、または長片部材と短片部材の双方を冷却部材としてもよい。
そして、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ビレット、ブルーム、またはビームブランクを製造する鋳型に、本願発明を適用することも勿論可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the long piece member was demonstrated as a cooling member, it is good also considering only a short piece member or both a long piece member and a short piece member as a cooling member.
In the above-described embodiment, the configuration of a mold for manufacturing a slab, which is an example of a slab, has been described. However, a mold for manufacturing another slab having a different shape and size, for example, a billet, a bloom, or a beam blank. Of course, it is possible to apply the present invention.

(A)は本発明の一実施の形態に係る連続鋳造用鋳型の長片部材の正面図、(B)は(A)のa−a矢視断面図、(C)は(A)のb−b矢視断面図である。(A) is a front view of a long piece member of a continuous casting mold according to an embodiment of the present invention, (B) is a cross-sectional view taken along the line aa of (A), and (C) is b of (A). It is -b arrow sectional drawing. 同長片部材の部分拡大正面図である。It is a partial enlarged front view of the same long piece member. (A)〜(C)はそれぞれ図1(A)のc−c矢視断面図、d−d矢視断面図、e−e矢視断面図である。(A)-(C) are cc arrow sectional drawing, dd arrow sectional drawing, and ee arrow sectional drawing of FIG. 1 (A), respectively. (A)は図2のf−f矢視断面図、(B)は図2のg−g矢視断面図である。(A) is ff arrow directional cross-sectional view of FIG. 2, (B) is gg arrow directional cross-sectional view of FIG. (A)〜(D)はそれぞれ同長片部材の通水部を長片部材の表面側からみた斜視図、同長片部材の冷却部に連通する導水溝の接続部分の平面図、同導水溝の接続部分を長片部材の表面側からみた斜視図、同長片部材の裏面側からみた斜視図である。(A)-(D) is the perspective view which looked at the water flow part of the same long piece member from the surface side of the long piece member, respectively, The top view of the connection part of the water guide groove connected to the cooling part of the same long piece member, It is the perspective view which looked at the connection part of the groove | channel from the surface side of the long piece member, and the perspective view seen from the back surface side of the long piece member. 大きな熱応力が発生し易いメニスカス位置に近い部位における締結手段の説明図である。It is explanatory drawing of the fastening means in the site | part close | similar to the meniscus position where a big thermal stress tends to generate | occur | produce. (A)は長片部材表面の温度分布を示すグラフ、(B)は長片部材表面の変位分布を示すグラフである。(A) is a graph which shows the temperature distribution on the surface of a long piece member, (B) is a graph which shows the displacement distribution on the surface of a long piece member. (A)は長片部材のめっき表面における塑性ひずみ分布を示すグラフ、(B)は長片部材の母材表面における塑性ひずみ分布を示すグラフである。(A) is a graph which shows the plastic strain distribution in the plating surface of a long piece member, (B) is a graph which shows the plastic strain distribution in the base material surface of a long piece member. (A)は長片部材の湯面変動時のめっき表面における塑性ひずみ幅を示すグラフ、(B)は長片部材の湯面変動時の母材表面における塑性ひずみ幅を示すグラフである。(A) is a graph which shows the plastic strain width in the plating surface at the time of the molten metal surface fluctuation | variation of a long piece member, (B) is a graph which shows the plastic strain width in the base material surface at the time of the molten metal surface fluctuation | variation of a long piece member. 従来例に係る連続鋳造用鋳型の平面図である。It is a top view of the casting mold for continuous casting which concerns on a prior art example. (A)は同連続鋳造用鋳型の短片部材と長片部材の部分拡大正面図、(B)は(A)のl−l矢視断面図、(C)は(A)のm−m矢視断面図、(D)は(A)のn−n矢視断面図である。(A) is a partial enlarged front view of a short piece member and a long piece member of the casting mold for continuous casting, (B) is a cross-sectional view taken along line l-l in (A), and (C) is a m-m arrow in (A). (D) is a cross-sectional view taken along line nn of (A). (A)は同連続鋳造用鋳型の長片部材の熱間時におけるひずみ分布のグラフ、(B)は同連続鋳造用鋳型の長片部材の湯面変動時におけるひずみ分布のグラフである。(A) is a graph of the strain distribution when the long piece member of the continuous casting mold is hot, and (B) is a graph of the strain distribution when the molten metal level of the long piece member of the continuous casting mold is changed.

符号の説明Explanation of symbols

10、11:長片部材、12、12a:締結手段、13、14:バックプレート(支持部材)、15:給水部、16:通水部、17:排水部、18:冷却部、19、20:導水溝、21:空間部、22、22a、22b:薄板部材、23:ねじ、24:固定部、25:ねじ、26:固定部、27:止めねじ、28:裏面、29:接続部、30、31:直線状導水溝、32:雌ねじ部、33:雄ねじ、34:孔、35:シール座金、36:ばね(緩衝部材) 10, 11: Long piece member, 12, 12a: Fastening means, 13, 14: Back plate (support member), 15: Water supply part, 16: Water flow part, 17: Drain part, 18: Cooling part, 19, 20 : Water guide groove, 21: space part, 22, 22a, 22b: thin plate member, 23: screw, 24: fixing part, 25: screw, 26: fixing part, 27: set screw, 28: back surface, 29: connection part, 30, 31: linear water guide groove, 32: female screw part, 33: male screw, 34: hole, 35: seal washer, 36: spring (buffer member)

本発明は、鋳片を製造するために使用する連続鋳造用鋳型に関する。 The present invention relates to a continuous casting mold used for producing a slab.

従来、図10、図11(A)〜(D)に示す連続鋳造用鋳型(以下、単に鋳型ともいう)80に溶鋼を供給して鋳片を鋳造している。この鋳型80は、間隔を有して対向配置された銅板で構成される一対の短片部材(短辺部材ともいう)81、82と、この各短片部材81、82を幅方向両側から挟み込んだ状態で対向配置された銅板で構成される一対の長片部材(長辺部材ともいう)83、84とを備えている。
この短片部材81、82は、鏡面対称で同じ構成となっており、裏面側の上下方向に多数の導水溝85、86が設けられ、この短片部材81、82の裏面側に、ボルト87によってバックプレート(支持部材、冷却箱、または水箱ともいう)88、89が固定されている。また、長片部材83、84も、裏面側の上下方向に多数の導水溝85、86が設けられ、この長片部材83、84の裏面側に、ボルト87によってバックプレート90、91が固定されている(例えば、特許文献1参照)。
Conventionally, molten steel is supplied to a continuous casting mold (hereinafter, also simply referred to as a mold) 80 shown in FIGS. 10 and 11A to 11D to cast a slab. The mold 80 is a state in which a pair of short piece members (also referred to as short side members) 81 and 82 composed of copper plates opposed to each other with a gap therebetween, and the short piece members 81 and 82 sandwiched from both sides in the width direction. And a pair of long piece members (also referred to as long side members) 83 and 84 formed of copper plates opposed to each other.
The short piece members 81 and 82 are mirror-symmetrical and have the same configuration, and a large number of water guide grooves 85 and 86 are provided in the vertical direction on the back surface side. The short piece members 81 and 82 are backed by bolts 87 on the back surface side. Plates (also called support members, cooling boxes, or water boxes) 88 and 89 are fixed. The long piece members 83 and 84 are also provided with a large number of water guide grooves 85 and 86 in the vertical direction on the back surface side, and the back plates 90 and 91 are fixed to the back surface side of the long piece members 83 and 84 by bolts 87. (For example, refer to Patent Document 1).

鋳型80は、短片部材81、82、長片部材83、84、およびそれぞれのバックプレート88〜91を有して構成され、対向配置される長片部材83、84に固定されたバックプレート90、91の両端部には、それぞれボルト92が取付けられ、ばね(図示しない)を介してナット93で固定されている。
連続鋳造作業時においては、図11(B)に示すように、バックプレート88〜91の下部に設けられた給水部94から、短片部材81、82および長片部材83、84に設けられた多数の導水溝85、86を介して、バックプレート88〜91の上部に設けられた排水部95へ冷却水を流している。これにより、各短片部材81、82と各長片部材83、84を冷却しながら、鋳型80の上方から溶鋼を注いで溶鋼の初期凝固を行い、凝固した鋳片を鋳型下方よりほぼ一定速度で連続して引き抜き、鋳片を製造する。
The mold 80 is configured to include short piece members 81 and 82, long piece members 83 and 84, and respective back plates 88 to 91, and a back plate 90 fixed to the long piece members 83 and 84 disposed to face each other. Bolts 92 are attached to both ends of 91 and fixed with nuts 93 via springs (not shown).
At the time of continuous casting work, as shown in FIG. 11 (B), from the water supply part 94 provided in the lower part of the back plates 88 to 91, a large number of short pieces 81 and 82 and long pieces 83 and 84 are provided. The cooling water is supplied to the drainage part 95 provided in the upper part of the back plates 88 to 91 through the water guide grooves 85 and 86. Thereby, while cooling the short piece members 81 and 82 and the long piece members 83 and 84, the molten steel is poured from above the mold 80 to perform the initial solidification of the molten steel, and the solidified slab is made at a substantially constant speed from below the mold. Drawing continuously to produce slabs.

特開2003−136204号公報JP 2003-136204 A

しかしながら、前記した鋳型で連続鋳造を行った場合、例えば、短片部材と長片部材にメニスカスクラック(メニスカスレベル付近に発生するヒートクラック:以下、単にクラックともいう)が発生していた。このメニスカスクラックは、例えば、熱間(鋳造中)と冷間(鋳造後)の繰り返しによる鋳型への熱影響と、鋳型での湯面レベルの変動(バルジングやノズル吐出流、または電磁撹拌の影響などによる)とに起因した温度振幅により生じる応力(塑性ひずみ)振幅、即ち繰り返し荷重(熱応力)により発生する疲労破壊(低サイクル疲労)であると考えられる。
このメニスカスクラックは、単に力学的疲労破壊により発生し進展するもののほか、例えば、低融点金属との反応(Znアタック等)により発生した粒界亀裂、または反応により形成された合金層(非常に脆い)の脱落部を起点として進展するものもある。
However, when continuous casting is performed with the above-described mold, for example, meniscus cracks (heat cracks generated near the meniscus level: hereinafter also referred to simply as cracks) have occurred in the short piece member and the long piece member. This meniscus crack is caused by, for example, the thermal effects on the mold due to repeated hot (during casting) and cold (after casting), and fluctuations in the mold surface level in the mold (the effects of bulging, nozzle discharge flow, or electromagnetic stirring). It is considered that the stress (plastic strain) amplitude caused by the temperature amplitude due to the above-mentioned fatigue failure (low cycle fatigue) caused by repeated load (thermal stress).
This meniscus crack is not only generated and propagated by mechanical fatigue fracture, but also, for example, a grain boundary crack generated by reaction with a low melting point metal (Zn attack etc.) or an alloy layer formed by reaction (very brittle) Some of them start from the drop-off part.

また、ここで、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、熱間と冷間の繰り返しによる繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(A)に、現在使用している長片部材を構成する銅板の熱間時(鋳造中)におけるひずみ分布を示す。なお、この解析条件は、銅板をバックプレートに固定するボルトの取付け間隔:120mm、鋳造速度:2.8(m/分)、メニスカスレベル:銅板上端より100mm、冷却水流量:銅板1枚当たり4000(リットル/分)、冷却水温度:40(℃)、冷却水圧力:4(kg/cm)、銅板材質:高強度材(CCM−B)、めっき仕様:Co−Ni、銅板熱伝導率:305(kcal/m/hr)、Co−Niめっき熱伝導率:58(kcal/m/hr/℃)、銅板締結条件:ボルトM20(SUS)、初期締付力1600kg、銅板締結面摩擦係数:0.15である。
Here, a description will be given of a fracture site in a case where a repeated load due to repeated hot and cold is dominant among stress amplitudes caused by temperature amplitudes causing meniscus cracks.
FIG. 12A shows the strain distribution during hot (during casting) of the copper plate constituting the long piece member currently used. The analysis conditions were as follows: bolt mounting interval for fixing the copper plate to the back plate: 120 mm, casting speed: 2.8 (m / min), meniscus level: 100 mm from the upper end of the copper plate, cooling water flow rate: 4000 per copper plate (Liter / minute), cooling water temperature: 40 (° C.), cooling water pressure: 4 (kg / cm 2 ), copper plate material: high strength material (CCM-B), plating specification: Co—Ni, copper plate thermal conductivity : 305 (kcal / m 2 / hr), Co—Ni plating thermal conductivity: 58 (kcal / m / hr / ° C.), copper plate fastening condition: bolt M20 (SUS), initial fastening force 1600 kg, copper plate fastening surface friction Coefficient: 0.15.

図12(A)から明らかなように、ボルトで固定されている部位と、隣り合うボルト間の部位とでは、ボルト締結による拘束力の影響で、ボルトで固定されている部位のひずみ発生量が大きくなっている。
また、塑性ひずみが最大となる箇所は、銅板温度が最大となる銅板上端から130mm付近ではなく、銅板の縦方向2段目のボルト締結位置となる銅板上端より下方に170mm付近(拘束力の強い部位)である。
なお、塑性ひずみ振幅(=1/2塑性ひずみ幅)が最大となる箇所は、塑性ひずみが最大となる箇所に対応するため、上記した箇所の疲労寿命が最も短くなる(クラック大)。
しかし、クラック発生箇所の多くは、上記した位置よりも上方のメニスカスレベルに近い範囲にシフトしているため、他の振幅荷重がこのクラックの支配的要因になると考えられる。
As is clear from FIG. 12A, the amount of strain generated in the portion fixed by the bolt is affected by the restraining force due to the bolt fastening between the portion fixed by the bolt and the portion between the adjacent bolts. It is getting bigger.
Also, the place where the plastic strain is maximum is not about 130 mm from the upper end of the copper plate where the copper plate temperature is maximum, but is about 170 mm below the upper end of the copper plate that becomes the bolt fastening position in the second stage of the copper plate (strong binding force) Part).
In addition, since the location where the plastic strain amplitude (= 1/2 plastic strain width) is maximum corresponds to the location where the plastic strain is maximum, the fatigue life of the above-described location is the shortest (large crack).
However, since many of the crack occurrence locations are shifted to a range close to the meniscus level above the above-described position, it is considered that other amplitude loads are dominant factors of this crack.

続いて、メニスカスクラックを発生させる温度振幅により生じる応力振幅のうち、鋳型での湯面レベルの変動による繰り返し荷重が支配的な場合の破壊部位について説明する。
図12(B)に、湯面レベルの変動が銅板上端より下方へ100mm±20mm(80mm以上120mm以下)の範囲で発生していると仮定した場合のボルト部位のひずみ分布を示す。
図12(B)に示す湯面変動が±20mm時の(塑性)ひずみ幅の曲線の値が、湯面の最大レベルと最小レベルの間で発生する塑性ひずみ幅となり、塑性ひずみ振幅もこの塑性ひずみ幅に応じて発生する。
また、湯面レベルの変動により最大ひずみ振幅が発生する箇所は、湯面レベルの変動が100mm±20mmの範囲で発生する条件において、鋳型上端より下方へ110mm付近であり、現状のクラック発生レベル(今回の検討実例では、115mmレベル位置)に、ほぼ対応している。
Next, a description will be given of a fracture site in a case where the repeated load due to the fluctuation of the molten metal surface level in the mold is dominant among the stress amplitude generated by the temperature amplitude causing the meniscus crack.
FIG. 12 (B) shows the strain distribution of the bolt part when it is assumed that the fluctuation of the molten metal surface level occurs in the range of 100 mm ± 20 mm (80 mm or more and 120 mm or less) downward from the upper end of the copper plate.
The value of the (plastic) strain width curve when the fluctuation of the molten metal surface shown in FIG. 12 (B) is ± 20 mm is the plastic strain width generated between the maximum level and the minimum level of the molten metal surface, and the plastic strain amplitude is also plastic. It occurs according to the strain width.
Further, the location where the maximum strain amplitude is generated due to the fluctuation of the molten metal surface level is around 110 mm below the upper end of the mold under the condition that the fluctuation of the molten metal surface level is in the range of 100 mm ± 20 mm. In the examination example this time, it corresponds almost to the 115 mm level position).

なお、以上に示した検討結果は、コンピュータを用いたFEM解析(有限要素法を用いた解析)によるシミュレーションを使用し、湯面レベルの変動により生ずる塑性ひずみ振幅から推定される疲労(クラック)寿命の相対比較により行っている。また、疲労寿命は、マンソンの共通勾配法(εpa=εf0.6・Nf−0.6/2)により求めた。
以上のことから、メニスカスクラックの発生には、湯面レベルの変動による塑性ひずみ振幅が大きく影響を及ぼしており、これに、熱間と冷間とが繰り返されることによって生じる繰り返し荷重が複合的に重なって影響しているものと推測される。
In addition, the examination result shown above uses the simulation by the FEM analysis (analysis using the finite element method) using a computer, and the fatigue (crack) life estimated from the plastic strain amplitude caused by the fluctuation of the molten metal surface level This is done by relative comparison. The fatigue life was determined by Manson's common gradient method (ε pa = ε f 0.6 · Nf −0.6 / 2).
From the above, the occurrence of meniscus cracks is greatly influenced by the plastic strain amplitude due to the fluctuation of the molten metal surface level, and the repeated load generated by repeated hot and cold is combined with this. It is presumed that they are overlapping.

本発明はかかる事情に鑑みてなされたもので、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることが可能な連続鋳造用鋳型を提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a continuous casting mold capable of suppressing and further preventing the occurrence of cracks due to thermal stress caused by repeated loads and extending the service life. With the goal.

前記目的に沿う本発明に係る連続鋳造用鋳型は、間隔を有して対向配置された一対の短片部材と、該短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材と、前記短片部材と前記長片部材の裏面側に締結手段によってそれぞれ固定された支持部材とを有し、該支持部材の下部に設けられた給水部から、前記短片部材と前記長片部材の裏面側に設けられた通水部を介して、前記支持部材の上部に設けられた排水部へ冷却水を流し、前記短片部材と前記長片部材とで形成される領域内に供給された溶鋼を該短片部材と該長片部材で冷却し凝固させながら下方へ引き抜き鋳片を製造する鋳型において、
前記短片部材および前記長片部材のいずれか一方または双方からなる冷却部材の少なくとも上側を薄肉平板化し、前記通水部が、該薄肉平板化した前記冷却部材の裏面側一面に形成される冷却部と、該冷却部と前記給水部を連通する多数の導水溝を有し、しかも該冷却部が、前記薄肉平板化した冷却部材の裏面側に設けられた空間部内に、該冷却部材の裏面に対して薄板部材の表面を平行に配置し、かつ該薄板部材に取付けられ前記冷却部材の裏面側へ突出する複数の止めねじの先端を、該冷却部材の裏面に当接することにより形成される隙間であり、更に前記締結手段の取付け位置を、前記冷却部材のメニスカス位置から該メニスカス位置の下方へ50mmまでの範囲を除く部分とした。
The continuous casting mold according to the present invention that meets the above-mentioned object is a pair of short piece members that are arranged to face each other with a gap therebetween, and a pair of long piece members that are arranged to face each other while sandwiching the short piece members from both sides in the width direction. And a supporting member fixed to the back side of the short piece member and the long piece member by fastening means, and from the water supply portion provided at the lower part of the supporting member, the short piece member and the long piece member Molten steel supplied to the region formed by the short piece member and the long piece member by flowing cooling water to the drainage portion provided at the upper part of the support member through the water passage portion provided on the back side. In a mold for producing a drawn slab downward while cooling and solidifying the short piece member and the long piece member,
A cooling part in which at least the upper side of the cooling member consisting of one or both of the short piece member and the long piece member is flattened, and the water flow part is formed on the entire back surface of the thinned cooling member. And a large number of water guide grooves communicating with the cooling part and the water supply part, and the cooling part is provided on the back surface of the cooling member in a space provided on the back surface side of the thinned flat cooling member. On the other hand, the front surface of the thin plate member is arranged in parallel , and the tips of a plurality of set screws attached to the thin plate member and projecting to the back surface side of the cooling member are in contact with the back surface of the cooling member. It is a gap, and the attachment position of the fastening means is a portion excluding the range from the meniscus position of the cooling member to 50 mm below the meniscus position.

本発明に係る連続鋳造用鋳型において、前記冷却部材の薄肉平板化された部分は、前記冷却部材の上端から50mm以上600mm以下の範囲であることが好ましい。
本発明に係る連続鋳造用鋳型において、薄肉平板化した前記冷却部材の厚みは、5mm以上30mm以下であることが好ましい。
In the continuous casting mold according to the present invention, it is preferable that the thinned flat portion of the cooling member is in a range of 50 mm or more and 600 mm or less from the upper end of the cooling member.
In the continuous casting mold according to the present invention, the thickness of the thinned cooling member is preferably 5 mm or more and 30 mm or less.

本発明に係る連続鋳造用鋳型において、前記冷却部の平断面積は、該冷却部に連通する前記導水溝の平断面積の合計と同じ、または該導水溝の平断面積の合計の−50%以上+50%以下の範囲内であることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部の平断面積を、該冷却部に連通する前記導水溝の平断面積の合計より小さくすることが好ましい。
本発明に係る連続鋳造用鋳型において、前記冷却部に連通する前記導水溝の接続部は、該冷却部へ向け、その内幅を前記導水溝の他の部分の内幅よりも徐々に拡幅したことが好ましい。
In the continuous casting mold according to the present invention, the cooling section has a flat cross-sectional area equal to the sum of the cross-sectional areas of the water guide grooves communicating with the cooling section or a sum of the cross-sectional areas of the water guide grooves of −50. It is preferable to be within the range of not less than% and not more than 50%.
In the continuous casting mold according to the present invention, it is preferable that a flat cross-sectional area of the cooling portion is smaller than a sum of flat cross-sectional areas of the water guide grooves communicating with the cooling portion.
In the casting mold for continuous casting according to the present invention, the connection portion of the water guide groove communicating with the cooling portion is gradually widened toward the cooling portion with the inner width thereof being larger than the inner width of other portions of the water guide groove. It is preferable.

請求項1〜6記載の連続鋳造用鋳型は、冷却部材の少なくとも上側を薄肉平板化しているので、冷却部材の上側構造を、従来の鋳型に設けていた導水溝(スリット)が設けられていない薄肉平板構造にできる。これにより、従来の導水溝構造と比較して、冷却部材自体の拘束ひずみを緩和することができ、また冷却効率も高めることができるので、冷却部材でのクラックの発生を抑制(発生ひずみを低減)でき、鋳型の長寿命化を図ることができる。
なお、従来の導水溝構造の場合、その構造そのものが、冷却部材の変形防止のリブの役目をしていたため、冷却部材の自由変形を拘束していた。このため、熱負荷が大きい湯面近傍では、冷却部材の拘束ひずみが増して応力状態が悪化、すなわち塑性ひずみの発生が増大していた。
特に、請求項2記載の連続鋳造用鋳型は、冷却部材の薄肉平板化する位置を規定しているので、熱応力の低減を確実にでき、クラックの発生頻度を更に低減できる。
請求項3記載の連続鋳造用鋳型は、薄肉平板化した冷却部材の厚みを規定するので、薄肉平板化した部分の熱応力の低減効果を更に高めることができる。
In the continuous casting mold according to claims 1 to 6, since at least the upper side of the cooling member is flattened, the upper structure of the cooling member is not provided with the water guide groove (slit) provided in the conventional mold. A thin plate structure can be formed. As a result, the restraining strain of the cooling member itself can be relaxed and the cooling efficiency can be increased as compared with the conventional water guide groove structure, so that the generation of cracks in the cooling member is suppressed (the generated strain is reduced). ) And the life of the mold can be extended.
In the case of the conventional water guide groove structure, the structure itself acts as a rib for preventing deformation of the cooling member, and thus restricts free deformation of the cooling member. For this reason, in the vicinity of the molten metal surface where the heat load is large, the restraint strain of the cooling member increases and the stress state deteriorates, that is, the occurrence of plastic strain increases.
In particular, since the continuous casting mold according to claim 2 defines the position where the cooling member is flattened, the thermal stress can be reliably reduced, and the occurrence frequency of cracks can be further reduced.
Since the continuous casting mold according to claim 3 defines the thickness of the thinned and flattened cooling member, the effect of reducing the thermal stress of the thinned and flattened portion can be further enhanced.

請求項1記載の連続鋳造用鋳型は、通水部を、冷却部材の裏面側一面に形成される冷却部と、これに連通する導水溝により形成するので、簡単な構造で応力を緩和することができ、また、冷却効率も向上でき、熱応力を大幅に緩和させることができ、塑性ひずみの発生量を低減できる。
請求項1記載の連続鋳造用鋳型は、冷却部となる隙間を、空間部内に配置する薄板部材により形成するので、冷却部の構成を簡単にでき、製造時における作業性も良好である。
請求項4記載の連続鋳造用鋳型は、冷却部の平断面積と、導水溝の平断面積の合計との関係を規定するので、冷却部材の下部から上部へかけて、通水部における冷却水の流れを安定にできる。
In the casting mold for continuous casting according to claim 1, since the water passing portion is formed by the cooling portion formed on the entire back surface side of the cooling member and the water guide groove communicating with the cooling portion, the stress can be relieved with a simple structure. In addition, the cooling efficiency can be improved, the thermal stress can be greatly relieved, and the amount of plastic strain generated can be reduced.
In the continuous casting mold according to the first aspect, since the gap serving as the cooling part is formed by a thin plate member disposed in the space part, the structure of the cooling part can be simplified, and the workability at the time of manufacture is also good.
The continuous casting mold according to claim 4 defines the relationship between the flat cross-sectional area of the cooling part and the sum of the flat cross-sectional areas of the water guide grooves, so that the cooling in the water flow part is performed from the lower part to the upper part of the cooling member. The water flow can be stabilized.

請求項6記載の連続鋳造用鋳型は、冷却部に連通する導水溝の接続部の形状を規定することで、導水溝から冷却部への冷却水の流れを淀みなく安定にできる。
請求項1記載の連続鋳造用鋳型は、締結手段の取付け位置を規定しているので、熱応力が発生し易い部分での締結手段による拘束力を低減でき、発生する熱応力を更に緩和することができる。
In the continuous casting mold according to the sixth aspect, the flow of the cooling water from the water guiding groove to the cooling part can be stabilized without any stagnation by defining the shape of the connecting part of the water guiding groove communicating with the cooling part.
Since the continuous casting mold according to claim 1 defines the mounting position of the fastening means, it is possible to reduce the restraining force by the fastening means at a portion where thermal stress is likely to occur, and to further reduce the generated thermal stress. Can do.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1〜図6に示すように、本発明の一実施の形態に係る連続鋳造用鋳型(以下、単に鋳型ともいう)は、間隔を有して対向配置された図示しない一対の短片部材(短辺部材ともいう)と、短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材(長辺部材ともいう)10、11と、短片部材と長片部材10、11の裏面側に締結手段12、12aによってそれぞれ固定された支持部材の一例であるバックプレート(冷却箱または水箱ともいう)13、14とを有するものである。これにより、バックプレート13、14の下部に設けられた給水部15から、短片部材と長片部材10、11の裏面側に設けられた通水部16を介して、バックプレート13、14の上部に設けられた排水部17へ冷却水を流し、短片部材と長片部材10、11とで形成される領域内に供給された溶鋼を短片部材と長片部材10、11で冷却し凝固させながら下方へ引き抜きスラブ(鋳片の一例)を製造できる。なお、短片部材と長片部材10、11は、その幅のみが異なって他の構成は略同様であり、また長片部材10、11は鏡面対称であるため、以下、図1〜図6に示す長片部材10を冷却部材としその構成を主として、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIGS. 1 to 6, a continuous casting mold (hereinafter also simply referred to as a mold) according to an embodiment of the present invention has a pair of short pieces (not shown) that are arranged to face each other at intervals. Side members), a pair of long piece members (also referred to as long side members) 10 and 11, which are opposed to each other while sandwiching the short piece members from both sides in the width direction, and the back surfaces of the short piece members and the long piece members 10 and 11 It has back plates (also referred to as cooling boxes or water boxes) 13 and 14 which are examples of support members fixed to the side by fastening means 12 and 12a, respectively. Thereby, from the water supply part 15 provided in the lower part of the back plates 13 and 14, the upper part of the back plates 13 and 14 through the water passing part 16 provided in the back surface side of the short piece member and the long piece members 10 and 11 While flowing cooling water to the drainage part 17 provided in the molten steel, the molten steel supplied in the region formed by the short piece members and the long piece members 10 and 11 is cooled and solidified by the short piece members and the long piece members 10 and 11. A downwardly drawn slab (an example of a cast piece) can be manufactured. In addition, since the short piece member and the long piece members 10 and 11 differ only in the width | variety and the other structure is substantially the same, and the long piece members 10 and 11 are mirror-symmetrical, below, FIGS. The long piece member 10 to be shown is a cooling member, and its configuration will be mainly described in detail.

各短片部材は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅が50mm以上300mm以下程度で、上下方向の長さが600mm以上1200mm以下程度である。また、各長片部材10、11は、銅または銅合金で構成され、例えば、厚みが10mm以上100mm以下程度、幅(鋳片と接触する幅)が600mm以上3000mm以下程度、上下方向の長さが短片部材と同程度である。
従って、対向配置される一対の短片部材の間隔は、600mm以上3000mm以下程度であり、一対の長片部材10、11の間隔は、50mm以上300mm以下程度であり、また鋳型の上下方向の長さは、600mm以上1200mm以下程度である。なお、対向配置される短片部材は、上記した範囲内でその間隔を変えることができる。
これにより、例えば、幅が600mm以上3000mm以下程度、厚みが50mm以上300mm以下程度のスラブを製造できる。
Each short piece member is made of copper or a copper alloy, and has a thickness of about 10 mm to 100 mm, a width of about 50 mm to 300 mm, and a vertical length of about 600 mm to 1200 mm. Each of the long piece members 10 and 11 is made of copper or a copper alloy. For example, the thickness is about 10 mm or more and 100 mm or less, and the width (the width in contact with the cast piece) is about 600 mm or more and 3000 mm or less, and the length in the vertical direction. Is about the same as the short piece member.
Accordingly, the distance between the pair of short piece members arranged to face each other is about 600 mm to 3000 mm, the distance between the pair of long piece members 10 and 11 is about 50 mm to 300 mm, and the length of the mold in the vertical direction. Is about 600 mm or more and 1200 mm or less. In addition, the space | interval of the short piece member arrange | positioned facing can be changed within the above-mentioned range.
Thereby, for example, a slab having a width of about 600 mm to about 3000 mm and a thickness of about 50 mm to about 300 mm can be manufactured.

図1(A)〜(C)、図2、図3(A)〜(C)に示すように、長片部材10の裏面側に設けられた通水部16は、長片部材10の少なくとも上側に冷却部18と、この冷却部18と給水部15を連通する多数の導水溝19、20を有する。なお、長片部材10の上側とは、長片部材10の上端から50mm以上600mm以下(好ましくは、上限を500mm、更には400mm、下限を80mm、更には100mm)の範囲である。これは、長片部材10の上端から80mm以上150mm以下の範囲で従来発生していたヒートクラックを抑制、更には防止することによる。
この冷却部18は、長片部材10の上側の裏面側一面に設けられた空間部21内に、薄板部材22、22a、22bを配置することにより形成される隙間Gである。なお、薄板部材22、22a、22bは、締結手段12、12aによって幅方向両端部または一端部の形状が異なっているものである。また、空間部21は、長片部材10の幅方向に渡って形成されており、側断面形状が船形となっている。
As shown in FIGS. 1A to 1C, FIG. 2, and FIGS. 3A to 3C, the water flow portion 16 provided on the back surface side of the long piece member 10 is at least of the long piece member 10. On the upper side, a cooling unit 18 and a plurality of water guide grooves 19 and 20 that communicate the cooling unit 18 and the water supply unit 15 are provided. The upper side of the long piece member 10 is a range of 50 mm to 600 mm from the upper end of the long piece member 10 (preferably, the upper limit is 500 mm, further 400 mm, the lower limit is 80 mm, and further 100 mm). This is because heat cracks that have conventionally occurred in the range of 80 mm or more and 150 mm or less from the upper end of the long piece member 10 are suppressed and further prevented.
The cooling portion 18 is a gap G formed by disposing the thin plate members 22, 22 a, and 22 b in the space portion 21 provided on the entire upper surface of the long piece member 10. The thin plate members 22, 22 a, 22 b have different shapes at both ends or one end in the width direction depending on the fastening means 12, 12 a. Moreover, the space part 21 is formed over the width direction of the long piece member 10, and the side cross-sectional shape is a ship shape.

この空間部21の形成は、長片部材10の厚みT1を、5mm以上30mm以下とするように行っており、その結果、この部分の長片部材10を薄肉平板化できる。
ここで、薄肉平板化した部分の長片部材の厚みが5mm未満の場合、長片部材の繰り返し使用時における研削代が減少して鋳型使用回数の低下が生じる。一方、厚みが30mmを超える場合、厚みが厚くなり過ぎ、鋳型温度の上昇と締結の拘束による発生応力の増加により、塑性ひずみの発生量が増大する。
以上のことから、薄肉平板化した長片部材の厚みT1を、5mm以上30mm以下としたが、上限を20mm、更には15mmとすることが好ましく、下限を8mm、更には10mmとすることが好ましい。
この空間部21内の上部位置には、薄板部材22の上部を取付けるためのねじ23の固定部24が、間隔を有して複数(ここでは2個)設けられている。
The space portion 21 is formed so that the thickness T1 of the long piece member 10 is 5 mm or more and 30 mm or less. As a result, the long piece member 10 in this portion can be flattened.
Here, when the thickness of the long piece member of the thinned flat portion is less than 5 mm, the grinding allowance at the time of repeated use of the long piece member is reduced and the number of times the mold is used is reduced. On the other hand, when the thickness exceeds 30 mm, the thickness becomes too thick, and the amount of plastic strain increases due to an increase in generated temperature due to an increase in mold temperature and fastening constraints.
From the above, the thickness T1 of the thin flat member is 5 mm or more and 30 mm or less, but the upper limit is preferably 20 mm, more preferably 15 mm, and the lower limit is preferably 8 mm, more preferably 10 mm. .
A plurality (two in this case) of fixing parts 24 of screws 23 for attaching the upper part of the thin plate member 22 are provided at an upper position in the space part 21.

図4(A)、(B)に示すように、冷却部18に連通する多数の導水溝19、20は、その底位置から長片部材10の溶鋼冷却面までの厚みT2、T3が、薄肉平板化した長片部材10の厚みT1よりも、例えば、5mm以上20mm以下程度厚くなるように形成されている。なお、導水溝19と導水溝20の構成は、その深さが異なる(導水溝20の方が導水溝19よりもその深さが深い)こと以外は、同じである。この導水溝19、20は、長片部材10の縦方向へ沿って直線状で、しかも長片部材10の幅方向に渡って所定ピッチ(例えば、6mm以上30mm以下程度)で形成されている。
従って、隣り合う導水溝19、19、導水溝19、20の間が、薄板部材22、22a、22bの下部を取付けるためのねじ25の固定部26となる。
これにより、空間部21内に薄板部材22、22a、22bを配置した後、その上部と下部をねじ23、25によって長片部材10に固定できる。このように固定したとき、薄板部材22、22a、22bの裏面は、長片部材10の上端部および導水溝19、20が形成されている部分の裏面と、同一平面上に配置されるようになっている。
As shown in FIGS. 4 (A) and 4 (B), the large number of water guide grooves 19 and 20 communicating with the cooling unit 18 are thin in thickness T2 and T3 from the bottom position to the molten steel cooling surface of the long piece member 10. For example, it is formed so as to be thicker by about 5 mm or more and 20 mm or less than the thickness T1 of the flattened long piece member 10. In addition, the structure of the water guide groove 19 and the water guide groove 20 is the same except that the depth differs (the water guide groove 20 is deeper than the water guide groove 19). The water guide grooves 19 and 20 are linear along the longitudinal direction of the long piece member 10, and are formed at a predetermined pitch (for example, about 6 mm or more and 30 mm or less) in the width direction of the long piece member 10.
Therefore, between the adjacent water guide grooves 19 and 19 and the water guide grooves 19 and 20 becomes a fixing portion 26 of the screw 25 for attaching the lower part of the thin plate members 22, 22 a and 22 b.
Thereby, after arranging the thin plate members 22, 22 a, 22 b in the space portion 21, the upper and lower portions can be fixed to the long piece member 10 by the screws 23, 25. When fixed in this manner, the back surfaces of the thin plate members 22, 22 a, 22 b are arranged on the same plane as the back surface of the portion where the upper end portion of the long piece member 10 and the water guide grooves 19, 20 are formed. It has become.

この薄板部材22、22a、22bは、例えば、銅、銅合金、アルミニウム、アルミニウム合金、鉄、または耐食性を備えるステンレスで構成され、長片部材10の幅方向に複数(本実施の形態では、15個)に分割されたものである。この各薄板部材22、22a、22bは、側断面形状が船形となっており、薄板部材22、22a、22bに取付けられ長片部材10の裏面側へ所定長さ突出する複数の止めねじ27の先端が、薄肉平板化された長片部材10の裏面28に当接して、一定の隙間Gを形成できる構成となっている。
この隙間Gは、例えば、2mm以上7mm以下程度であり、この部分を冷却水が流れる。
なお、図5(A)〜(D)には、冷却水が流れる通水部16の部分を示しているが、冷却部18に連通する導水溝19、20の接続部29は、冷却部18へ向け、その内幅を導水溝19、20の他の部分の内幅(例えば、1mm以上5mm以下程度)よりも連続的(曲面的)に徐々に拡幅している。また、接続部29は、冷却部18へ向け、その深さを導水溝19、20の他の部分の深さよりも徐々に浅くしている。
The thin plate members 22, 22 a, 22 b are made of, for example, copper, copper alloy, aluminum, aluminum alloy, iron, or stainless steel having corrosion resistance, and a plurality (in the present embodiment, 15 in the width direction). ). Each of the thin plate members 22, 22 a, and 22 b has a ship-like cross-sectional shape, and is attached to the thin plate members 22, 22 a, 22 b and includes a plurality of set screws 27 that protrude a predetermined length toward the back side of the long piece member 10. The tip is in contact with the back surface 28 of the long flat member 10 which is thin and flat, and a certain gap G can be formed.
The gap G is, for example, about 2 mm to 7 mm, and cooling water flows through this portion.
5A to 5D show the portion of the water flow portion 16 through which the cooling water flows, but the connection portion 29 of the water guide grooves 19 and 20 communicating with the cooling portion 18 is the cooling portion 18. The inner width is gradually widened more continuously (curved surface) than the inner width (for example, about 1 mm or more and about 5 mm or less) of other portions of the water guide grooves 19 and 20. Moreover, the connection part 29 is gradually made shallower than the depth of the other part of the water guide grooves 19 and 20 toward the cooling part 18.

上記した冷却部18の平断面積は、冷却部18に連通する導水溝19、20の平断面積の合計と同じ、または導水溝19、20の平断面積の合計の−50%以上+50%以下(好ましくは、上限を+40%、下限を−30%)の範囲内である。
これにより、通水部16を流れる冷却水の流速を、長片部材10の下部から上部まで略均一にできるが、冷却部18の平断面積を、冷却部18に連通する導水溝19、20の平断面積の合計より小さくして、冷却部18における冷却効率を高めることもできる。
また、接続部29の平断面積も、上記のように規定した導水溝19、20の平断面積の範囲内で設定するとよい。
なお、長片部材10の幅方向両端部には、冷却水が流れる直線状導水溝30、31が形成されているが、これは冷却部18に連通しないため、この平断面積は、前記した導水溝19、20の平断面積に算入していない。
The flat cross-sectional area of the cooling unit 18 described above is the same as the total of the cross-sectional areas of the water guide grooves 19 and 20 communicating with the cooling unit 18, or −50% or more + 50% of the total of the cross-sectional areas of the water guide grooves 19 and 20. It is within the following range (preferably, the upper limit is + 40% and the lower limit is −30%).
Thereby, although the flow rate of the cooling water flowing through the water flow part 16 can be made substantially uniform from the lower part to the upper part of the long piece member 10, the water guide grooves 19, 20 communicating the plane cross-sectional area of the cooling part 18 with the cooling part 18. It is possible to increase the cooling efficiency in the cooling section 18 by making it smaller than the total of the cross sectional areas of the above.
Further, the plane cross-sectional area of the connecting portion 29 may be set within the range of the cross-sectional area of the water guide grooves 19 and 20 defined as described above.
Note that linear water guide grooves 30 and 31 through which cooling water flows are formed at both ends in the width direction of the long piece member 10, but since this does not communicate with the cooling unit 18, this plane cross-sectional area is as described above. It is not included in the cross-sectional area of the water guide grooves 19 and 20.

以上に示した長片部材10の裏面側(冷却面とは反対側)には、複数の締結手段12、12aを使用して、例えば、ステンレス製のバックプレート13(例えば、厚みが50mm以上500mm以下程度)が取付けられる。この取付けに際しては、バックプレート13の周辺部に、バックプレート13の給水部15、排水部17、および長片部材10の通水部(長片部材10の幅方向両側に配置される直線状導水溝30、31も含む)16を囲むように溝(図示しない)が形成され、ここにOリング(図示しない)を配置することで、長片部材10とバックプレート13の密着性を向上させ、通水部16からの冷却水の漏れを防止している。
図6に示すように、締結手段12、12aは、長片部材10に形成されている雌ねじ部32と、雌ねじ部32に螺合してバックプレート13を締着する雄ねじ33を有している。また、雄ねじ33を取付けるため、バックプレート13に形成された孔34には、予め防水可能なシール座金35が配置されており、雄ねじ33を取付けた部分からの冷却水の漏れを防止している。
On the back side of the long piece member 10 shown above (the side opposite to the cooling surface), a plurality of fastening means 12, 12a are used, for example, a stainless steel back plate 13 (for example, a thickness of 50 mm or more and 500 mm or more). The following is attached). At the time of this attachment, the water supply portion 15, the drainage portion 17 of the back plate 13, and the water passage portions of the long piece member 10 (straight water guides disposed on both sides in the width direction of the long piece member 10) Grooves (not shown) are formed so as to surround 16 (including grooves 30 and 31), and by arranging an O-ring (not shown) here, the adhesion between the long piece member 10 and the back plate 13 is improved, The leakage of the cooling water from the water flow part 16 is prevented.
As shown in FIG. 6, the fastening means 12, 12 a has a female screw portion 32 formed on the long piece member 10 and a male screw 33 that is screwed into the female screw portion 32 and fastens the back plate 13. . Further, in order to attach the male screw 33, a seal washer 35 that can be waterproofed is disposed in advance in the hole 34 formed in the back plate 13, thereby preventing leakage of cooling water from the portion to which the male screw 33 is attached. .

また、バックプレート13への雄ねじ33の取付けは、1または複数のばね(緩衝部材の一例)36を介して行われており、バックプレート13に対する長片部材10の締結力を調整し、その動きに自由度を与えている。
なお、締結手段12、12aは、長片部材10の縦方向に等ピッチで複数(ここでは、8箇所)設けられているが、長片部材10のメニスカス位置からメニスカス位置の下方へ50mmまでの範囲を除くのが好ましい。このとき、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲にある雄ねじ33を単に取り外すのみの構造でもよいが、長片部材に雌ねじ部を形成することなく、またバックプレートに孔を形成しないことが好ましい。また、メニスカス位置近傍(例えば、メニスカス位置からメニスカス位置の下方へ50mmまでの範囲)に位置する締結手段のみばねを設けたものを使用し、他の部分については、ばねを設けないものを使用することもできる。
これにより、バックプレートによる長片部材の拘束力を更に弱めることができる。
The male screw 33 is attached to the back plate 13 via one or a plurality of springs (an example of a buffer member) 36. The fastening force of the long piece member 10 with respect to the back plate 13 is adjusted, and its movement Is given a degree of freedom.
A plurality of fastening means 12 and 12a are provided at equal pitches in the longitudinal direction of the long piece member 10 (here, 8 locations), but the length of the long piece member 10 from the meniscus position to the lower part of the meniscus position is 50 mm. It is preferred to exclude the range. At this time, the male screw 33 in the range from the meniscus position to 50 mm below the meniscus position may be simply removed. However, the female screw portion is not formed in the long piece member, and the hole is not formed in the back plate. Is preferred. In addition, only the fastening means located near the meniscus position (for example, a range from the meniscus position to 50 mm below the meniscus position) is provided with a spring, and other parts are provided with no spring. You can also
Thereby, the restraining force of the long piece member by the back plate can be further weakened.

また、長片部材の表面(溶鋼面)には、コーティング層を形成してもよい。
コーティング層は、例えば、Co−NiのようなCo合金、Ni−FeのようなNi合金、またはNiのめっきを使用できるが、溶射(例えば、NiベースのCr−Si−B系合金)も使用できる。このコーティング層は、同一種類の成分を、長片部材に使用する銅板の表面全面に渡って形成してもよく、また、複数種類の成分を、銅板の上下方向の異なる領域に、各成分の機能に応じてそれぞれ形成してもよい。
以上に示した長片部材は、それぞれ銅板表面にコーティング層を形成した後、所定の形状を、従来公知の機械加工を行って製造する。
この長片部材の形状は、一対の長片部材の間隔を、スラブの引き抜き方向へ向けて同一としてもよいが、スラブの凝固収縮形状に応じて狭くすることが好ましい。
Moreover, you may form a coating layer in the surface (molten steel surface) of a long piece member.
For example, a Co alloy such as Co—Ni, a Ni alloy such as Ni—Fe, or Ni plating can be used for the coating layer, but thermal spraying (eg, Ni-based Cr—Si—B alloy) is also used. it can. This coating layer may be formed of the same type of component over the entire surface of the copper plate used for the long piece member, and plural types of components may be formed in different regions in the vertical direction of the copper plate. You may form each according to a function.
Each of the long piece members shown above is manufactured by forming a coating layer on the surface of the copper plate and then performing a conventionally known machining process on a predetermined shape.
As for the shape of the long piece member, the distance between the pair of long piece members may be the same in the drawing direction of the slab, but it is preferable that the long piece member be narrowed according to the solidification shrinkage shape of the slab.

次に、本発明の作用効果を確認するため、従来例、比較例1、2、および実施例1、2に示す冷却部材(長片部材)の構造を使用して、FEM解析(有限要素法を用いた解析)を行った結果について説明する。なお、従来例の冷却部材は、銅板の裏面側一面に導水溝が形成され、導水溝の底から溶鋼冷却面までの厚みが厚いもの(19mm)であり、比較例1の冷却部材は、従来例よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(15mm)であり、比較例2の冷却部材は、比較例1よりも導水溝の底から溶鋼冷却面までの厚みが薄いもの(13mm)である。一方、実施例1の冷却部材は、銅板の裏面側に冷却部と導水溝を有する通水部が形成され、銅板の縦方向二段目にボルト(雄ねじ)を付けたものと付けないものであり、実施例2の冷却部材は、実施例1の銅板の縦方向二段目のボルト(雄ねじ)を使用せず、更にこのボルト孔(雌ねじ部)を除去したものである。これらの試験条件および試験結果を、表1、表2に示す。なお、銅板材質の材質Bとは、Cr−Zr−銅合金の高強度材であり、材質Aとは、材質BのCr−Zr−銅合金の高強度材に冷間鍛造処理を加えることで更に高強度化したものである。 Next, in order to confirm the operation and effect of the present invention, the structure of the cooling member (long piece member) shown in the conventional examples, comparative examples 1 and 2 and examples 1 and 2 is used to perform FEM analysis (finite element method). The results of the analysis using In addition, the cooling member of the conventional example has a water guide groove formed on the entire back surface side of the copper plate and is thick (19 mm) from the bottom of the water guide groove to the molten steel cooling surface. The thickness from the bottom of the water guide groove to the molten steel cooling surface is smaller than the example (15 mm), and the cooling member of Comparative Example 2 is thinner than the comparative example 1 from the bottom of the water guide groove to the molten steel cooling surface (13 mm). On the other hand, the cooling member of Example 1 is formed with a water passage portion having a cooling portion and a water guide groove on the back surface side of the copper plate, and with or without a bolt (male screw) in the second vertical stage of the copper plate. In addition, the cooling member of Example 2 does not use the second-stage bolt (male screw) in the longitudinal direction of the copper plate of Example 1, and further removes this bolt hole (female screw part). These test conditions and test results are shown in Tables 1 and 2. The copper plate material B is a high strength material of Cr-Zr-copper alloy, and the material A is a cold forging treatment applied to the high strength material of material B Cr-Zr-copper alloy. Further, the strength is increased.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

また、銅板材質の材料特性を表3に、従来例、比較例1、2、および実施例1、2の試験結果のみを集めた結果を表4に、それぞれ示す。 Table 3 shows the material characteristics of the copper plate material, and Table 4 shows the results of collecting only the test results of the conventional examples, Comparative Examples 1 and 2, and Examples 1 and 2.

Figure 2008105068
Figure 2008105068

Figure 2008105068
Figure 2008105068

以下、図7〜図9を参照しながら説明する。なお、図7(A)の温度分布、図7(B)の変位分布、図8(A)の塑性ひずみ分布、および図9(A)の塑性ひずみ幅は、めっきが施された銅板のめっき表面での解析結果であり、図8(B)の塑性ひずみ分布、および図9(B)の塑性ひずみ幅は、めっきと銅板との界面における解析結果である。 Hereinafter, a description will be given with reference to FIGS. In addition, the temperature distribution of FIG. 7 (A), the displacement distribution of FIG. 7 (B), the plastic strain distribution of FIG. 8 (A), and the plastic strain width of FIG. 9 (A) are plating of the plated copper plate. It is an analysis result on the surface, and the plastic strain distribution in FIG. 8B and the plastic strain width in FIG. 9B are the analysis results at the interface between the plating and the copper plate.

図7〜図9、および表4から明らかなように、従来例は、銅板の厚みが厚過ぎるため、銅板上部の温度が高く、拘束力も大きくなる。このため、発生する塑性ひずみも大きく、疲労寿命が短い。
また、比較例1のように、メニスカス部の銅板の厚みを薄くすることで、拘束力が若干改善され、疲労寿命が従来例の1.2倍程度まで増加したが、十分なものではなかった。
更に、比較例2のように、メニスカス部の銅板の厚みを更に薄肉化することで、銅板上部の温度は、比較例1の場合よりも改善され、また薄肉化による拘束力の緩和により、疲労寿命が従来例の1.5倍程度まで増加した。しかし、従来と比較して顕著な結果を得ることはできなかった。
As is apparent from FIGS. 7 to 9 and Table 4, in the conventional example, the thickness of the upper portion of the copper plate is high because the thickness of the copper plate is too thick, and the binding force is also increased. For this reason, the generated plastic strain is large and the fatigue life is short.
Further, as in Comparative Example 1, by reducing the thickness of the copper plate of the meniscus portion, the restraining force was slightly improved and the fatigue life increased to about 1.2 times that of the conventional example, but it was not sufficient. .
Further, as in Comparative Example 2, the thickness of the copper plate at the meniscus portion is further reduced, so that the temperature of the upper portion of the copper plate is improved as compared with the case of Comparative Example 1, and fatigue is reduced due to relaxation of the binding force due to the reduction in thickness. The lifetime has increased to about 1.5 times that of the conventional example. However, remarkable results could not be obtained compared to the conventional case.

一方、実施例1では、メニスカス部を含む銅板上部の構造を改善することにより、拘束力が十分に緩和された。また、銅板温度も改善され、めっき表面の疲労寿命が2.3倍程度まで改善した。なお、2段目のボルトを除去した場合、更に3.4倍程度まで改善した。
また、銅板の母材を高強度材とすることで、母材表面の疲労寿命が4.2倍程度まで改善した。
更に、実施例2では、構造改善に加え、縦方向2段目の締結ボルトを除去することにより、更に拘束力が改善され、めっき表面の疲労寿命が4倍程度まで改善した。
また、銅板母材を高強度材にすることにより、母材表面の疲労寿命が7.7倍程度まで改善した。
以上のことから、本願発明を適用することで、繰り返し荷重に起因した熱応力によるクラックの発生を抑制、更には防止して、長寿命化を図ることができることを確認できた。
On the other hand, in Example 1, the restraining force was sufficiently relaxed by improving the structure of the upper part of the copper plate including the meniscus portion. Moreover, the copper plate temperature was also improved, and the fatigue life of the plating surface was improved to about 2.3 times. In addition, when the second-stage bolt was removed, it was further improved to about 3.4 times.
Moreover, the fatigue life of the base metal surface was improved to about 4.2 times by using a copper plate base material as a high strength material.
Furthermore, in Example 2, in addition to the structural improvement, by removing the second fastening bolt in the longitudinal direction, the binding force was further improved, and the fatigue life of the plating surface was improved to about 4 times.
Further, the fatigue life of the base metal surface was improved to about 7.7 times by making the copper plate base material a high strength material.
From the above, it was confirmed that by applying the present invention, it was possible to suppress and further prevent the occurrence of cracks due to thermal stress caused by repeated loads, thereby extending the life.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部または全部を組合せて本発明の連続鋳造用鋳型を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、長片部材を冷却部材として説明したが、短片部材のみ、または長片部材と短片部材の双方を冷却部材としてもよい。
そして、前記実施の形態においては、鋳片の一例であるスラブを製造する鋳型の構成について説明したが、形状と寸法の異なる他の鋳片、例えば、ビレット、ブルーム、またはビームブランクを製造する鋳型に、本願発明を適用することも勿論可能である。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the continuous casting mold of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the long piece member was demonstrated as a cooling member, it is good also considering only a short piece member or both a long piece member and a short piece member as a cooling member.
In the above-described embodiment, the configuration of a mold for manufacturing a slab, which is an example of a cast slab, has been described. Of course, it is possible to apply the present invention.

(A)は本発明の一実施の形態に係る連続鋳造用鋳型の長片部材の正面図、(B)は(A)のa−a矢視断面図、(C)は(A)のb−b矢視断面図である。(A) is a front view of a long piece member of a continuous casting mold according to an embodiment of the present invention, (B) is a cross-sectional view taken along the line aa of (A), and (C) is b of (A). It is -b arrow sectional drawing. 同長片部材の部分拡大正面図である。It is a partial enlarged front view of the same long piece member. (A)〜(C)はそれぞれ図1(A)のc−c矢視断面図、d−d矢視断面図、e−e矢視断面図である。(A)-(C) are cc arrow sectional drawing, dd arrow sectional drawing, and ee arrow sectional drawing of FIG. 1 (A), respectively. (A)は図2のf−f矢視断面図、(B)は図2のg−g矢視断面図である。(A) is ff arrow directional cross-sectional view of FIG. 2, (B) is gg arrow directional cross-sectional view of FIG. (A)〜(D)はそれぞれ同長片部材の通水部を長片部材の表面側からみた斜視図、同長片部材の冷却部に連通する導水溝の接続部分の平面図、同導水溝の接続部分を長片部材の表面側からみた斜視図、同長片部材の裏面側からみた斜視図である。(A)-(D) is the perspective view which looked at the water flow part of the same long piece member from the surface side of the long piece member, respectively, The top view of the connection part of the water guide groove connected to the cooling part of the same long piece member, It is the perspective view which looked at the connection part of the groove | channel from the surface side of the long piece member, and the perspective view seen from the back surface side of the long piece member. 大きな熱応力が発生し易いメニスカス位置に近い部位における締結手段の説明図である。It is explanatory drawing of the fastening means in the site | part close | similar to the meniscus position where a big thermal stress tends to generate | occur | produce. (A)は長片部材表面の温度分布を示すグラフ、(B)は長片部材表面の変位分布を示すグラフである。(A) is a graph which shows the temperature distribution on the surface of a long piece member, (B) is a graph which shows the displacement distribution on the surface of a long piece member. (A)は長片部材のめっき表面における塑性ひずみ分布を示すグラフ、(B)は長片部材の母材表面における塑性ひずみ分布を示すグラフである。(A) is a graph which shows the plastic strain distribution in the plating surface of a long piece member, (B) is a graph which shows the plastic strain distribution in the base material surface of a long piece member. (A)は長片部材の湯面変動時のめっき表面における塑性ひずみ幅を示すグラフ、(B)は長片部材の湯面変動時の母材表面における塑性ひずみ幅を示すグラフである。(A) is a graph which shows the plastic strain width in the plating surface at the time of the molten metal surface fluctuation | variation of a long piece member, (B) is a graph which shows the plastic strain width in the base material surface at the time of the molten metal surface fluctuation | variation of a long piece member. 従来例に係る連続鋳造用鋳型の平面図である。It is a top view of the casting mold for continuous casting which concerns on a prior art example. (A)は同連続鋳造用鋳型の短片部材と長片部材の部分拡大正面図、(B)は(A)のl−l矢視断面図、(C)は(A)のm−m矢視断面図、(D)は(A)のn−n矢視断面図である。(A) is a partial enlarged front view of a short piece member and a long piece member of the casting mold for continuous casting, (B) is a cross-sectional view taken along line l-l in (A), and (C) is a m-m arrow in (A). (D) is a cross-sectional view taken along line nn of (A). (A)は同連続鋳造用鋳型の長片部材の熱間時におけるひずみ分布のグラフ、(B)は同連続鋳造用鋳型の長片部材の湯面変動時におけるひずみ分布のグラフである。(A) is a graph of the strain distribution when the long piece member of the continuous casting mold is hot, and (B) is a graph of the strain distribution when the molten metal level of the long piece member of the continuous casting mold is changed.

符号の説明Explanation of symbols

10、11:長片部材、12、12a:締結手段、13、14:バックプレート(支持部材)、15:給水部、16:通水部、17:排水部、18:冷却部、19、20:導水溝、21:空間部、22、22a、22b:薄板部材、23:ねじ、24:固定部、25:ねじ、26:固定部、27:止めねじ、28:裏面、29:接続部、30、31:直線状導水溝、32:雌ねじ部、33:雄ねじ、34:孔、35:シール座金、36:ばね(緩衝部材) 10, 11: Long piece member, 12, 12a: Fastening means, 13, 14: Back plate (support member), 15: Water supply part, 16: Water flow part, 17: Drain part, 18: Cooling part, 19, 20 : Water guide groove, 21: space part, 22, 22a, 22b: thin plate member, 23: screw, 24: fixing part, 25: screw, 26: fixing part, 27: set screw, 28: back surface, 29: connection part, 30, 31: linear water guide groove, 32: female screw part, 33: male screw, 34: hole, 35: seal washer, 36: spring (buffer member)

Claims (9)

間隔を有して対向配置された一対の短片部材と、該短片部材を幅方向両側から挟み込んだ状態で対向配置された一対の長片部材と、前記短片部材と前記長片部材の裏面側に締結手段によってそれぞれ固定された支持部材とを有し、該支持部材の下部に設けられた給水部から、前記短片部材と前記長片部材の裏面側に設けられた通水部を介して、前記支持部材の上部に設けられた排水部へ冷却水を流し、前記短片部材と前記長片部材とで形成される領域内に供給された溶鋼を該短片部材と該長片部材で冷却し凝固させながら下方へ引き抜き鋳片を製造する鋳型において、
前記短片部材および前記長片部材のいずれか一方または双方からなる冷却部材の少なくとも上側を薄肉平板化したことを特徴とする連続鋳造用鋳型。
A pair of short piece members arranged to face each other with a gap, a pair of long piece members arranged to face each other with the short piece members sandwiched from both sides in the width direction, and a back side of the short piece member and the long piece member Each of the support members fixed by the fastening means, from the water supply portion provided in the lower portion of the support member, through the water passing portion provided on the back side of the short piece member and the long piece member, Cooling water is allowed to flow to a drainage section provided at the upper part of the support member, and the molten steel supplied in the region formed by the short piece member and the long piece member is cooled and solidified by the short piece member and the long piece member. While in the mold to produce the drawn slab downward,
A continuous casting mold, wherein at least an upper side of a cooling member composed of one or both of the short piece member and the long piece member is formed into a thin flat plate.
請求項1記載の連続鋳造用鋳型において、前記冷却部材の薄肉平板化された部分は、前記冷却部材の上端から50mm以上600mm以下の範囲であることを特徴とする連続鋳造用鋳型。 2. The continuous casting mold according to claim 1, wherein the thinned flat portion of the cooling member is in a range of 50 mm to 600 mm from the upper end of the cooling member. 請求項1および2のいずれか1項に記載の連続鋳造用鋳型において、薄肉平板化した前記冷却部材の厚みは、5mm以上30mm以下であることを特徴とする連続鋳造用鋳型。 3. The continuous casting mold according to claim 1, wherein the thickness of the cooling member formed into a flat plate is 5 mm or more and 30 mm or less. 4. 請求項1〜3のいずれか1項に記載の連続鋳造用鋳型において、前記通水部は、薄肉平板化した前記冷却部材の裏面側一面に形成される冷却部と、該冷却部と前記給水部を連通する多数の導水溝を有することを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 1 to 3, wherein the water flow portion includes a cooling portion formed on the entire back surface side of the cooling member that has been flattened, and the cooling portion and the water supply. A continuous casting mold having a plurality of water guide grooves communicating with each other. 請求項4記載の連続鋳造用鋳型において、前記冷却部は、前記薄肉平板化した冷却部材の裏面側に設けられた空間部内に薄板部材を配置することにより形成される隙間であることを特徴とする連続鋳造用鋳型。 5. The continuous casting mold according to claim 4, wherein the cooling part is a gap formed by arranging a thin plate member in a space provided on the back side of the thinned flat cooling member. Continuous casting mold. 請求項4および5のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部の平断面積は、該冷却部に連通する前記導水溝の平断面積の合計と同じ、または該導水溝の平断面積の合計の−50%以上+50%以下の範囲内であることを特徴とする連続鋳造用鋳型。 6. The continuous casting mold according to claim 4, wherein a planar cross-sectional area of the cooling part is the same as a sum of flat cross-sectional areas of the water guiding grooves communicating with the cooling part, or the water guiding grooves. A continuous casting mold characterized in that it is within a range of -50% or more and + 50% or less of the total cross-sectional area. 請求項4〜6のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部に連通する前記導水溝の接続部は、該冷却部へ向け、その内幅を前記導水溝の他の部分の内幅よりも徐々に拡幅したことを特徴とする連続鋳造用鋳型。 The continuous casting mold according to any one of claims 4 to 6, wherein the connecting portion of the water guiding groove communicating with the cooling portion is directed toward the cooling portion, and the inner width thereof is the other portion of the water guiding groove. A mold for continuous casting, characterized in that it is gradually widened from the inner width. 請求項1〜7のいずれか1項に記載の連続鋳造用鋳型において、前記締結手段の取付け位置は、前記冷却部材のメニスカス位置から該メニスカス位置の下方へ50mmまでの範囲を除く部分であることを特徴とする連続鋳造用鋳型。 The casting mold for continuous casting according to any one of claims 1 to 7, wherein the attachment position of the fastening means is a portion excluding a range from the meniscus position of the cooling member to 50 mm below the meniscus position. A mold for continuous casting characterized by 請求項1〜7のいずれか1項に記載の連続鋳造用鋳型において、前記冷却部材のメニスカス位置近傍に位置する前記締結手段には、前記支持部材に対する前記冷却部材の締結力を調整する緩衝部材が設けられていることを特徴とする連続鋳造用鋳型。 8. The continuous casting mold according to claim 1, wherein the fastening means positioned in the vicinity of the meniscus position of the cooling member includes a buffer member for adjusting a fastening force of the cooling member with respect to the support member. A casting mold for continuous casting, characterized in that is provided.
JP2006291536A 2006-10-26 2006-10-26 Continuous casting mold Active JP4008018B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006291536A JP4008018B1 (en) 2006-10-26 2006-10-26 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006291536A JP4008018B1 (en) 2006-10-26 2006-10-26 Continuous casting mold

Publications (2)

Publication Number Publication Date
JP4008018B1 JP4008018B1 (en) 2007-11-14
JP2008105068A true JP2008105068A (en) 2008-05-08

Family

ID=38769859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006291536A Active JP4008018B1 (en) 2006-10-26 2006-10-26 Continuous casting mold

Country Status (1)

Country Link
JP (1) JP4008018B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115809A (en) * 2009-12-01 2011-06-16 Mishima Kosan Co Ltd Method for detecting abnormality in mold for continuous casting, and mold for continuous casting
JP2011161507A (en) * 2010-02-15 2011-08-25 Mishima Kosan Co Ltd Mold for continuous casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011115809A (en) * 2009-12-01 2011-06-16 Mishima Kosan Co Ltd Method for detecting abnormality in mold for continuous casting, and mold for continuous casting
JP2011161507A (en) * 2010-02-15 2011-08-25 Mishima Kosan Co Ltd Mold for continuous casting

Also Published As

Publication number Publication date
JP4008018B1 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4808196B2 (en) Continuous casting mold
JP4659706B2 (en) Continuous casting mold
JP2004074283A (en) Liquid-cooled mold
JP4008018B1 (en) Continuous casting mold
TWI268821B (en) Adjustment of heat transfer in continuous casting molds in particular in the region of the meniscus
JP6003851B2 (en) Continuous casting mold and steel continuous casting method
KR101941506B1 (en) Continuous casting mold and method for continuous casting of steel
JP4659796B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
JP5180876B2 (en) Continuous casting mold
JP6085571B2 (en) Continuous casting mold
JP4611350B2 (en) Continuous casting mold
JP4611349B2 (en) Continuous casting mold
JP6365604B2 (en) Steel continuous casting method
JP4355684B2 (en) Continuous casting mold
RU2544978C2 (en) Casting mould
JP2019171435A (en) Method of continuous casting
JP4992254B2 (en) Continuous casting mold and continuous casting method
JP5463189B2 (en) Method for repairing continuous casting mold and repaired continuous casting mold
KR20190017978A (en) Continuous casting method for continuous casting molds and steel
JP5525966B2 (en) Continuous casting mold
WO2020095932A1 (en) Mold for continuous steel casting and continuous steel casting method
JP5180868B2 (en) Continuous casting mold
JP6817498B1 (en) Mold for continuous casting
JP5525925B2 (en) Continuous casting mold
JP5525896B2 (en) Continuous casting mold

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070828

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4008018

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250