JP2009053042A - Landslide evaluating method and auxiliary tool for it - Google Patents
Landslide evaluating method and auxiliary tool for it Download PDFInfo
- Publication number
- JP2009053042A JP2009053042A JP2007220056A JP2007220056A JP2009053042A JP 2009053042 A JP2009053042 A JP 2009053042A JP 2007220056 A JP2007220056 A JP 2007220056A JP 2007220056 A JP2007220056 A JP 2007220056A JP 2009053042 A JP2009053042 A JP 2009053042A
- Authority
- JP
- Japan
- Prior art keywords
- specimen
- landslide
- triaxial
- compression device
- axial direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本願発明は、三軸圧縮装置を用いた地滑り(この明細書及び特許請求の範囲において地層の崩壊を含む広い概念で「地滑り」という文言を使用する)の評価方法およびそのための補助具に関する。 The present invention relates to a method for evaluating a landslide using a triaxial compression device (in this specification and claims, the term “landslide” is used in a broad concept including the collapse of a formation) and an auxiliary tool therefor.
地滑りは、一般的に、上方から応力が作用している状態において雨期や台風等の雨量の多いときなどに発生しやすい。従って、建築物や土木施設(道路や鉄路等を含む:本明細書及び特許請求の範囲において「構造物」という)などを作る場合、そこの地盤がどの程度の応力が作用すると大量の雨等により地盤が地滑りを起こすのかを予め知っておくことは、地滑りを防止しあるいは被害を最小限に抑える上で、極めて重要になる。 In general, landslides are likely to occur when there is a lot of rainfall such as rainy season or typhoon in a state where stress is applied from above. Therefore, when building or civil engineering facilities (including roads, railways, etc .; referred to as “structures” in this specification and claims), etc., how much stress acts on the ground there will cause a lot of rain, etc. It is extremely important to know in advance whether or not the ground will cause landslides in order to prevent landslides or minimize damage.
例えば、造成をして、その上方に構造物、例えば道路や鉄路を施工する場合、その造成した部分における地滑りの可能性を予め評価できれば、つまり、どの程度の応力が作用すると地滑りの危険性が生じるのかを予測できれば、その対策(地盤の改良等)をとることが可能となる。 For example, when building and constructing a structure, such as a road or railway, above it, if the possibility of landslide in the created part can be evaluated in advance, that is, how much stress is applied, there is a risk of landslide If it can be predicted whether it will occur, it is possible to take countermeasures (such as ground improvement).
このため、従来より、地滑りの評価について種々研究がおこなわれている(特許文献1参照)。
しかしながら、自然界でおこる地滑りを試験装置内等で再現して正確な評価をすることは極めて難しい。特に、対象となる地盤に異なる地質の境界面が存在するような場合、具体的には、例えば、上方が土砂あるいは粘性土からなる層でその下方に岩盤等の層が形成されているような場合、どの程度の応力が作用するとどの部分で地滑りが生じるのかを、予測するような「地滑りの評価方法」は未だ提供されていないのが現状である。 However, it is extremely difficult to accurately evaluate a landslide that occurs in nature by reproducing it in a test apparatus or the like. In particular, when there is a boundary surface of different geology on the target ground, specifically, for example, the upper layer is a layer made of earth or sand and the lower layer is a layer of rock or the like In this case, there is not yet provided a “landslide evaluation method” that predicts how much stress is applied to which part of the landslide will occur.
しかしながら、異なる地質からなる層が積層されているような地盤は、多々あり、これらの地盤における地滑りの可能性を正確に評価できる方法等の提供が待たれているのが現況である。 However, there are many grounds in which layers of different geology are laminated, and it is currently waiting for the provision of a method that can accurately evaluate the possibility of landslides in these grounds.
本発明は、このような現況に鑑みておこなわれたもので、地質の異なる層の境界面があるような地盤における地滑りをも正確に評価できる評価方法とその方法を実施するのに好適な補助具を提供することを目的とする。 The present invention has been made in view of such a situation, and an evaluation method capable of accurately evaluating a landslide in a ground where there is a boundary surface between layers having different geological features and an auxiliary suitable for carrying out the method. The purpose is to provide ingredients.
本第1の発明にかかる地滑りの評価方法は、三軸圧縮装置の三軸圧力室(圧縮室)の液中に供試体を置き、該三軸圧縮装置のセル圧供給装置で該供試体を三軸方向から加圧した圧密状況下において、圧縮装置で軸方向(長手方向あるいは上下方向をいう)から圧縮したときの該供試体の変形に至る軸方向と側方向(供試体の外径方向をいう)の各主応力及び各有効主応力からその供試体の地滑りの評価をおこなう三軸圧縮装置を用いた土の三軸試験方法による地滑りの評価方法において、
排水のための溝又は穴が軸方向に形成された剛体からなる柱状の載置台の上面に、前記供試体の下面が当接する状態で、且つ、全体が軸方向に延びる柱状体になるように形成したものを、前記三軸圧力室内の所定位置に配置して、前記土の三軸試験方法をおこなうことを特徴とする。
In the landslide evaluation method according to the first aspect of the present invention, a specimen is placed in a liquid in a triaxial pressure chamber (compression chamber) of a triaxial compressor, and the specimen is placed by a cell pressure supply device of the triaxial compressor. Axial direction and lateral direction (outer diameter direction of the specimen) that lead to deformation of the specimen when compressed from the axial direction (longitudinal direction or up and down direction) with a compression device under the compaction condition pressurized from three axial directions In the evaluation method of landslide by the triaxial test method of soil using a triaxial compression device that evaluates the landslide of the specimen from each principal stress and each effective principal stress of
A state in which the lower surface of the specimen is in contact with the upper surface of a columnar mounting table made of a rigid body in which grooves or holes for drainage are formed in the axial direction, and the entire columnar body extends in the axial direction. The formed material is arranged at a predetermined position in the triaxial pressure chamber, and the soil triaxial test method is performed.
このように構成された本発明にかかる地滑りの評価方法によれば、前記圧縮装置で軸方向に供試体が圧縮される際に、前記供試体が、剛体からなる載置台上に載置されて、これらの間に土と岩盤との境界に類する状況が形成されるとともに、該載置台に溝又は穴が軸方向に形成されていることから、これらの溝又は穴を介して供試体から間隙水圧を形成する水が円滑に排水されて、前記圧縮に伴う適正な間隙水圧を得ることができるため、自然界における岩盤と土との境界を有する地盤における地滑りの状況を正確に再現でき、このため、地滑りの評価を正確におこなうことが可能となる。 According to the landslide evaluation method according to the present invention configured as described above, when the specimen is compressed in the axial direction by the compression device, the specimen is placed on a mounting table made of a rigid body. In addition, a situation similar to the boundary between the soil and the rock is formed between them, and since a groove or a hole is formed in the mounting table in the axial direction, a gap is formed from the specimen through the groove or the hole. Since the water forming the water pressure is drained smoothly and the proper pore water pressure accompanying the compression can be obtained, the situation of landslide in the ground having the boundary between the rock and soil in nature can be accurately reproduced. This makes it possible to accurately evaluate landslides.
また、本第2の発明にかかる補助装置は、三軸圧縮装置の三軸圧力室の液中に供試体を置き、該三軸圧縮装置のセル圧供給装置で該供試体を三軸方向から加圧した圧密状況下において、圧縮装置で軸方向から供試体を圧縮したときの該供試体の変形に至る軸方向と側方向の各主応力及び各有効主応力からその供試体の地滑りの評価をおこなう三軸圧縮装置を用いた土の三軸試験方法による地滑りの評価方法に使用する補助具であって、
この補助具が、上方に前記供試体を載置し、該供試体と同じ横断面積を有するとともに軸方向に排水のための溝又は穴が形成された剛体からなる柱状の載置台であることを特徴とする。
In the auxiliary device according to the second aspect of the invention, the specimen is placed in the liquid in the triaxial pressure chamber of the triaxial compressor, and the specimen is removed from the triaxial direction by the cell pressure supply device of the triaxial compressor. Evaluation of the landslide of the specimen from axial and lateral principal stresses and effective principal stresses leading to deformation of the specimen when the specimen is compressed from the axial direction by a compression device under pressurized compaction conditions Auxiliary tool used in the evaluation method of landslide by the triaxial test method of soil using a triaxial compression device that performs
This auxiliary tool is a columnar mounting table comprising a rigid body on which the specimen is placed above, having the same cross-sectional area as the specimen and having a groove or a hole for drainage formed in the axial direction. Features.
そして、前述のように構成された補助具を使用すれば、前記本第1の発明を実施することができる。 And if the auxiliary tool comprised as mentioned above is used, the said 1st invention can be implemented.
前記第1の発明にかかる評価方法において、前記供試体の破壊が生じるまで前記圧縮装置で該供試体を軸方向に圧縮し、有効応力経路図表に、前記破壊が生じたときの値をプロットすることによって、このプロットした点と原点とを結ぶ斜線を描いて、地盤の境界面強度φ’を求めることによって、前記地滑りの評価がおこなわれると、一目瞭然に且つ簡単に、評価することが可能となる。 In the evaluation method according to the first aspect of the present invention, the specimen is compressed in the axial direction with the compression device until the specimen breaks, and the values when the breakage occurs are plotted on an effective stress path chart. Thus, by drawing a diagonal line connecting the plotted points and the origin, and determining the ground boundary strength φ ′, the evaluation of the landslide can be performed at a glance and easily. Become.
前記第1の発明にかかる評価方法において、前記三軸方向の加圧力と前記軸方向の圧縮力を変化させて、前記図表に複数の前記プロットをして、これらのプロットした点に基づいて、前記図表に前記傾線を描いて、地盤の境界面強度φ’を求めるように構成されていると、より正確に傾線を描くことができる。 In the evaluation method according to the first aspect of the present invention, by changing the pressure in the triaxial direction and the compressive force in the axial direction, making a plurality of the plots in the chart, based on the plotted points, If the tilt line is drawn on the chart to determine the boundary surface strength φ ′ of the ground, the tilt line can be drawn more accurately.
前記第2の発明にかかる補助具において、前記補助具の底面に、前記溝に連通する溝が形成されていると、供試体から間隙水圧を形成する水がより円滑に排水され、正確な間隙水圧を測定することを可能とする。 In the assisting device according to the second invention, when a groove communicating with the groove is formed on the bottom surface of the assisting device, the water forming the pore water pressure is more smoothly drained from the specimen, and the accurate gap It makes it possible to measure the water pressure.
また、前記第2の発明にかかる補助具において、前記補助具の上面が傾斜面によって構成されていると、傾斜している岩盤上に土の層が形成されているような場合に、よりその状況に近い状態を三軸圧縮装置内で再現できる。 Further, in the assisting device according to the second invention, when the upper surface of the assisting device is constituted by an inclined surface, in the case where a soil layer is formed on the inclined bedrock, the A state close to the situation can be reproduced in the triaxial compressor.
本発明にかかる地滑り評価方法およびそのための補助具によれば、地質の異なる層の境界があるような地盤における地滑りをも正確に評価できる評価方法を実現することができる。 According to the landslide evaluation method and the auxiliary tool therefor according to the present invention, it is possible to realize an evaluation method capable of accurately evaluating landslide in the ground where there is a boundary between layers having different geological features.
(実施形態1)
以下、本発明の1の実施形態にかかる地滑り評価方法と該評価方法に使用される補助具について、図面を参照しながら、具体的に説明する。
(Embodiment 1)
Hereinafter, a landslide evaluation method according to one embodiment of the present invention and an auxiliary tool used in the evaluation method will be specifically described with reference to the drawings.
図1は本発明の実施形態にかかる補助具を構成する載置台の構成を示す図で、(a)は全体斜視図、(b)はその底面図(下面図)である。図2は、図1に示す載置台(補助具)の上面に供試体を載置した状態を示す斜視図で、載置台の上面を透視図的に示している。また、図3は、土の三軸試験方法の一つである土の圧密非排水三軸試験方法を実施するための三軸圧縮装置の要部の概略の構成を示す一部断面した側面図である。 1A and 1B are views showing a configuration of a mounting table constituting an auxiliary tool according to an embodiment of the present invention. FIG. 1A is an overall perspective view, and FIG. 1B is a bottom view (bottom view). FIG. 2 is a perspective view showing a state in which the specimen is placed on the upper surface of the mounting table (auxiliary tool) shown in FIG. 1, and shows the upper surface of the mounting table in a perspective view. FIG. 3 is a partially sectional side view showing a schematic configuration of a main part of a triaxial compression apparatus for carrying out a soil compaction undrained triaxial test method which is one of the triaxial test methods of soil. It is.
図1(a),(b)に示すように、供試体1(図2,図3参照)を上方に載置する載置台2は、横断面(横断面積)が供試体1の横断面(横断面積)と一致するよう構成され、図1(a)に図示するように、その外側周面には、軸方向(上下方向)に延びる溝2aが複数形成されている。そして、該載置台2の底面2Bには、図1(b)に図示するように、中心を合流箇所とするように放射線状に溝2bが形成され、該溝2bの外径端は、前記溝2a(図1(a)参照)と接続され、この溝2aの上端から下方に向けて流れる水(液)は、該溝2bへ流れることが可能に構成されている。また、前記溝2aは、この実施形態の場合、真っ直ぐ軸方向を向いて形成されているが、軸方向に対して斜めになっていてもよく、あるいは溝2aに代えて、軸方向に延びる細径(例えば、直径が1mm〜3mm)の穴であってもよい。また、前記溝2aに代えて、載置台2内に、軸方向に貫通する細径の穴が形成されていてもよい。
また、前記載置台2の上面2Aは、軸方向(上下方向)に対して、交角をなすよう、つまり傾斜面で構成されている。
そして、この上面2Aには、選択的に、粗さの異なる布やすり(サンド・ペーパー)が、接着剤等で一体になるよう、取着されている。しかし、前記布やすりに代えて、他の表面粗さのある材質のもので構成してもよいし、上面2A自体の表面をやすり等で加工して粗くしてもよい。
また、この載置台2は、剛体で構成され、この実施形態では、アルミニューム製の柱状体のもので構成されている。しかし、この載置台2は、剛体であればよく、材質的には、前記アルミニューム製に限定されるものでなく、例えば、ステンレス製であっても、鋼製であっても、その他の材質のものであってもよい。
As shown in FIGS. 1 (a) and 1 (b), the mounting table 2 on which the specimen 1 (see FIGS. 2 and 3) is placed upward has a transverse section (cross-sectional area) of the specimen 1 (see FIG. As shown in FIG. 1 (a), a plurality of
Further, the
Further, a cloth file (sand paper) having different roughness is selectively attached to the
Moreover, this
そして、前記載置台2上には、図2に図示するように、地滑りの評価をおこなおうとする土からなる供試体1が載置されるが、この供試体1の底面(下面)1Bは、前記載置台2の上面2Aの傾斜面に対応した傾斜面で構成されている。そして、該供試体1の底面1Bは、布やすりが取着されている記載置台2の上面2Aに当接する。また、供試体1は飽和した土(この実施形態では、飽和した粘性土)が用いられている。前記粘性土に代えて、他の土であってもよい。
On the mounting table 2, as shown in FIG. 2, a
そして、前述のように、載置台2上に載置された供試体1は、その外周面が、図4に図示するようなろ紙3で周囲が包装される。このろ紙3には、縦方向に延びる長穴状のスリット3aが適宜間隔で形成されている。このスリット3aは、供試体1が軸方向に圧縮された際に供試体1内部の水が排出され易いようにするためのものである。
And as above-mentioned, the periphery of the
そして、前記外周面がろ紙3が包装された供試体1とその下方の載置台2は、該ろ紙3の外方からさらに、図5に図示するようなチューブ状のゴム4が外被される。
Then, the
そして、前述のように、ろ紙3とゴム4で外周面が覆われた供試体1と載置台2は、地滑りの評価をおこなう際には、図3に図示するように、三軸圧縮装置5の三軸圧力室(圧縮室)5P内に配設される。
つまり、この三軸圧縮装置5は、図3に図示するように、全体が円筒体からなるガラス製の圧力円筒5aを有し、この圧力円筒5aは、前記三軸圧力室5Pの外周壁を構成する。この圧力円筒5aの上端は、円板状の上盤5Aで密封され、下端は円盤状の底盤5Bで密封されることによって、内部に隔壁された前記三軸圧力室5Pが形成される。また、この底盤5Bの平面視中央部には、載置部5bが設けられ、この載置部5b上に、前記載置台2が、多孔板6を介して載置される。
また、前記上盤5Aの平面視中央部には、円形の貫通穴が形成され、この貫通穴には、丸棒状の載荷ピストン7の先端部が上下動可能に挿入され、該載荷ピストン7の先端は、所定厚さの円板状のキャップ8中央の当接穴8aに当接している。
As described above, when the
That is, as shown in FIG. 3, the
In addition, a circular through hole is formed in the central portion of the
また、前記載荷ピストン7は、その上方に設けられた圧縮装置20によって、昇降動作(伸縮動作)して、前記供試体1に軸方向の応力(軸方向応力)を作用せしめることが可能に構成されている。また、該圧縮装置20と前記載荷ピストン7との間には、ロードセルを備えた荷重測定装置21が配置され、圧縮装置20から供試体1に作用する軸方向の応力(圧縮力)が測定できるように構成されている。
Further, the
そして、前記底盤5Bの載置部5bの平面視中央部には、上端が該載置部5bの表面に向けて開口し前記溝2bの前記合流箇所に連通する連通路5dが形成され、この連通路5dの下流側は途中で略直角に屈曲して、該底盤5Bの側周面5fを経て、間隙水圧測定装置8に連通している。
Then, a
また、前記底盤5Bの載置部5bの別の位置には、上端が該載置部5bの表面に向けて開口し前記三軸圧力室5Pに連通する連通路5eが形成され、この連通路5eの下流側は途中で略直角に屈曲して、該底盤5Bの側周面5fを経て、セル圧供給装置9に連通している。このセル圧供給装置9は、前記前記三軸圧力室5Pにセル圧を形成できるものであれば、特に限定されるものでなく、どのような構成のものであってよい。
Further, at another position of the mounting
そして、前記載置部5b上に載置された、前記載置台2と供試体1の上端は、多孔板10を介して、前記キャップ8に当接し保持されている。なお、この実施形態では、前記キャップ8と多孔板10とは平面視において同じ断面を有している。
そして、前記載置台2と供試体1の側周面を密封しているゴム4の上端部は、前記キャップ8の側周面まで延び、この位置で、Oリング11,12により、外周方から強固に締め付けられた状態で挟着され、シールされる。同じく、ゴム4の下端部は、前記載置部5bの側周面まで延び、この位置で、Oリング13,14により、外周方から強固に締め付けられた状態で挟着され、シールされる。
このような状態において、前記載置台2と供試体1は、前記三軸圧力室5P内において、ゴム4とOリング11〜14により、密封された状態となっている。
And the upper end of the mounting table 2 and the
And the upper end part of the rubber |
In such a state, the mounting table 2 and the
前述した如き構成を有する三軸圧縮装置5を用いて、地滑り評価のための土の圧密非排水三軸試験方法は、地盤工学会(社団法人地盤工学会:東京都文京区千石4丁目38番2号)で定められている基準に従って、以下のようにおこなわれる。即ち、その概略を説明すると、
前記三軸圧力室5P内に水(液:水以外の液であってもよい)を満した状態で、前記セル圧供給装置9が稼働して、該三軸圧力室5P内の圧力が高められ、前記供試体1に三軸方向から所定圧力(側方向応力)が作用して所望の圧密状況が形成される。
The soil compaction undrained triaxial test method for landslide evaluation using the
With the
かかる圧密状況下において、前記圧縮装置20を作動させて前記供試体1に軸方向の応力(軸方向応力)を加える。かかる軸方向の応力の加え方は、該供試体1の歪み速度が一定になるような状態でおこなわれる。この間、前記連通路5dの先端に配設されている間隙水圧測定装置8によって間隙水圧の値Utの変化のデータをとる。つまり、供試体1に、圧縮装置20により軸方向の応力が加えられると、供試体1内の水が前記ろ紙4を通過してゴム4との間に排出され、この水が前記連通路5dを介して、前記間隙水圧測定装置8に伝達されることによって、前記間隙水圧の値Utの変化のデータを得ることができる。
Under such a consolidation condition, the
また、前記軸方向の応力(主応力)の値σaの変化のデータを、前記荷重測定装置21で得る。
Further, the
さらに、前記セル圧供給装置9に設けられている測定装置によって、セル圧、つまり、三軸方向(側方向)の主応力の値σrの変化に関するデータを得る。 Furthermore, the measurement device provided in the cell pressure supply device 9 obtains data relating to the change in the cell pressure, that is, the principal stress value σr in the triaxial direction (side direction).
そして、前記軸方向の主応力の値σaから前記間隙水圧の値Utを減算して軸方向の有効主応力σa’を得るとともに、前記三軸方向の主応力の値σrから前記間隙水圧の値Utを減算して三軸方向(側方向)の有効主応力σr’を得る。 Then, the effective hydraulic stress σa ′ in the axial direction is obtained by subtracting the pore pressure value Ut from the axial principal stress value σa, and the pore hydraulic pressure value is obtained from the triaxial principal stress value σr. The effective principal stress σr ′ in the triaxial direction (side direction) is obtained by subtracting Ut.
そして、前記軸方向の主応力の値σa、三軸方向の主応力の値σr、軸方向の有効主応力σa’、三軸方向の有効主応力σr’とを用いて、縦軸に(σa−σr)/2をとり、横軸に(σa’+σr’)/2をとって、これらの経時的変化を表す。 Then, using the axial principal stress value σa, the triaxial principal stress value σr, the axial effective principal stress σa ′, and the triaxial effective principal stress σr ′, -Σr) / 2 is taken, and (σa '+ σr') / 2 is taken on the horizontal axis to express these changes over time.
そして、前記三軸方向の応力と軸方向の応力とを変化させて、前記経時的変化を表すと、図6、図7のような有効応力経路図となる。図6において、前記載置台2を用いない場合を黒丸印で、前記上面2Aの傾斜角度が60度の場合を白角印で、同傾斜面2Aの角度が45度の場合を白丸印で表している。また、図7は、前記上面2Aの傾斜角度が45度の場合において、斜面の粗さが異なる場合、つまり、布やすりを用いない場合を白丸印で表し、布やすりの粗さが320番(R320)の場合を白角印で、布やすりの粗さが40番(R40)の場合を白三角印で表している。
Then, when the time-dependent change is expressed by changing the stress in the triaxial direction and the stress in the axial direction, an effective stress path diagram as shown in FIGS. 6 and 7 is obtained. In FIG. 6, the case where the mounting table 2 is not used is indicated by a black circle, the case where the inclination angle of the
そして、これらの図6,図7の有効応力経路図から、対象となる地盤の地滑りの評価をおこなうことができる。即ち、
いずれの場合にも、前記間隙水圧が最大を示したとき、例えば、図6において、白角印を見ると、横軸が約300(kN/m2)で縦軸が約140(kN/m2)の当たりで、大きく左側から右側に屈曲している。同様に、図6において、白角印を見ると、横軸が約100(kN/m2)で縦軸が約50(kN/m2)の当たりで、大きく右側に屈曲している。
この屈曲している点をプロットして、これらと原点を結ぶように傾線を描くと、図6(有効応力経路図)において、破線Kで示すような傾斜角φ’の傾線となり、この傾斜角φ’(図6の場合には、φ’=27.6度)が地滑りに対する強度、つまり、境界面強度となる。
Then, from these effective stress path diagrams of FIGS. 6 and 7, the landslide of the target ground can be evaluated. That is,
In any case, when the pore water pressure shows the maximum, for example, when the white square mark is seen in FIG. 6, the horizontal axis is about 300 (kN / m 2 ) and the vertical axis is about 140 (kN / m 2 ). 2 ) It is bent from the left side to the right side. Similarly, when a white square mark is seen in FIG. 6, the horizontal axis is about 100 (kN / m 2 ) and the vertical axis is about 50 (kN / m 2 ), and is bent to the right.
When the bent points are plotted and an inclination line is drawn so as to connect these points to the origin, an inclination line with an inclination angle φ ′ as shown by a broken line K in FIG. 6 (effective stress path diagram) is obtained. The inclination angle φ ′ (φ ′ = 27.6 degrees in the case of FIG. 6) is the strength against landslide, that is, the boundary strength.
そして、図6からは、前記載置台2を使用した場合には、前記破線Kで示す境界面強度が得られるが、前記載置台2を使用しない場合、つまり土そのもので供試体を構成したものが崩壊する場合には、図6の実線Gで示すような傾斜角φ’(φ’=33.7度)の強度となる。このことから、岩盤上に土が堆積したような地盤では、その土そのものが崩壊する前に、岩盤との境界面で崩壊が生じ、その土そのものが崩壊する値より小さい前記値(φ’=27.6度)が地滑りに対する正確な評価となる。 From FIG. 6, when the mounting table 2 is used, the boundary strength indicated by the broken line K is obtained, but when the mounting table 2 is not used, that is, the specimen is constituted by the soil itself. Is collapsed, the intensity becomes an inclination angle φ ′ (φ ′ = 33.7 degrees) as shown by a solid line G in FIG. From this, in the ground where the soil is deposited on the rock, before the soil collapses, the collapse occurs at the boundary surface with the rock, and the value (φ ′ = 27.6 degrees) is an accurate assessment of landslides.
また、図7からは、前記上面2Aの表面の粗さは、前記値に殆ど影響を与えないことが判った。つまり、前記上面2Aの粗さが異なる場合にも、境界面強度は、φ’=27.6度の値を示している。
Also, from FIG. 7, it was found that the surface roughness of the
さらに、図6と図7から、前記上面2Aの傾斜角は60度の場合も45度の場合も同じ値を示し、上面2Aの傾斜角そのものに前記値φ’は影響を受けないものと思われる。従って、上面2Aの傾斜角については、種々の傾斜角のものを使用することができるものと推測できる。
Further, from FIG. 6 and FIG. 7, it is considered that the inclination angle of the
前述のように、本発明にかかる地滑りの評価方法によれば、補助具としての載置台2を用いることで、岩盤上に土が堆積したような異なる地質の境界がある地盤においても、正確な地滑りの評価をおこなうことができる。 As described above, according to the landslide evaluation method according to the present invention, by using the mounting table 2 as an auxiliary tool, even on the ground having different geological boundaries such as soil accumulated on the rock, Can evaluate landslides.
また、前記実施形態では、有効応力経路図表を用いて、地滑りの評価をおこなっているが、「モールの円」を利用して、前記傾線を求めて解析して地滑りの評価をおこなうこともできるし、前記軸方向と側方向の各主応力及び各有効主応力を用いた計算により求めることによって地滑りの評価をすることもできる。 In the embodiment, the landslide is evaluated using the effective stress path chart. However, the landslide may be evaluated by using the “Mole circle” to obtain and analyze the inclination line. Alternatively, the landslide can be evaluated by obtaining the principal stress in the axial direction and the lateral direction and the calculation using each effective principal stress.
なお、前記実施形態では、土の三軸試験方法について、土の圧密非排水三軸試験方法を例に挙げて説明したが、他の三軸試験方法についても、本発明を適用することができることは言うまでもない。 In the above embodiment, the soil triaxial test method has been described by taking the soil compaction undrained triaxial test method as an example, but the present invention can also be applied to other triaxial test methods. Needless to say.
本発明は、前述した実施形態に限定されるものでなく、当業者が自明の範囲において、適宜変更した形態で実施することができることは言うまでもない。 It goes without saying that the present invention is not limited to the above-described embodiment, and can be implemented in a mode appropriately modified by those skilled in the art.
本発明にかかる地滑りの評価方法及び補助具(載置台)は、地質の異なる層の境界があるような地盤における地滑りの評価等に利用することができる。 The landslide evaluation method and auxiliary tool (mounting table) according to the present invention can be used for evaluation of landslides on the ground where there are boundaries between layers of different geology.
1…供試体
2…載置台(補助具)
2A…載置台の上面
2a…載置台の溝
5…三軸圧縮装置
5P…三軸圧力室
8…セル圧供給装置
20…圧縮装置
1 ... Specimen
2 ... Mounting table (auxiliary tool)
2A ... Upper surface of mounting table
2a ... Groove for mounting table
5. Triaxial compressor
5P… Triaxial pressure chamber
8 ... Cell pressure supply device
20 ... Compressor
Claims (6)
排水のための溝又は穴が軸方向に形成された剛体からなる柱状の載置台の上面に、前記供試体の下面が当接する状態で、且つ、全体が軸方向に延びる柱状体になるように形成したものを、前記三軸圧力室内の所定位置に配置して、前記土の三軸試験方法をおこなうことを特徴とする地滑りの評価方法。 Place the specimen in the liquid in the triaxial pressure chamber of the triaxial compression device, and press the specimen from the triaxial direction with the cell pressure supply device of the triaxial compression device. Three axes of soil using a triaxial compression device that evaluates the landslide of the specimen from axial and lateral principal stresses and effective principal stresses that lead to the deformation of the specimen when the specimen is compressed from In the evaluation method of landslide by the test method,
A state in which the lower surface of the specimen is in contact with the upper surface of a columnar mounting table made of a rigid body in which grooves or holes for drainage are formed in the axial direction, and the entire columnar body extends in the axial direction. A method for evaluating landslide, wherein the formed one is arranged at a predetermined position in the triaxial pressure chamber and the triaxial test method for the soil is performed.
この補助具が、上方に前記供試体を載置し、該供試体と同じ横断面積を有するとともに軸方向に排水のための溝又は穴が形成された剛体からなる柱状の載置台であることを特徴とする補助具。 Place the specimen in the liquid in the triaxial pressure chamber of the triaxial compression device, and press the specimen from the triaxial direction with the cell pressure supply device of the triaxial compression device. Three axes of soil using a triaxial compression device that evaluates the landslide of the specimen from axial and lateral principal stresses and effective principal stresses that lead to the deformation of the specimen when the specimen is compressed from Auxiliary tool used for the evaluation method of landslide by the test method,
This auxiliary tool is a columnar mounting table comprising a rigid body on which the specimen is placed above, having the same cross-sectional area as the specimen and having a groove or a hole for drainage formed in the axial direction. Auxiliary tool characterized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007220056A JP2009053042A (en) | 2007-08-27 | 2007-08-27 | Landslide evaluating method and auxiliary tool for it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007220056A JP2009053042A (en) | 2007-08-27 | 2007-08-27 | Landslide evaluating method and auxiliary tool for it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009053042A true JP2009053042A (en) | 2009-03-12 |
Family
ID=40504245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007220056A Pending JP2009053042A (en) | 2007-08-27 | 2007-08-27 | Landslide evaluating method and auxiliary tool for it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009053042A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102507307A (en) * | 2011-10-28 | 2012-06-20 | 西安理工大学 | Sealing device for pressure chamber of true triaxial apparatus |
CN103245768A (en) * | 2013-04-09 | 2013-08-14 | 西南交通大学 | High-speed landslide starting mechanism tester |
CN103344747A (en) * | 2013-07-03 | 2013-10-09 | 兰州大学 | Technical method for shortening saturation time of silty clay |
CN103884555A (en) * | 2014-03-19 | 2014-06-25 | 河海大学 | Assembling reference testing device of landslide physical model |
CN103900877A (en) * | 2014-03-21 | 2014-07-02 | 浙江水利水电学院 | Preparation device for three-axis compression test original-state sample and preparation method of preparation device |
CN104048879A (en) * | 2014-07-02 | 2014-09-17 | 南京力淮软件科技有限公司 | Full-automatic three-axis testing system for saturated soil stress path |
CN105842424A (en) * | 2016-05-20 | 2016-08-10 | 山东科技大学 | Three-dimensional stress fluid coupling grouting test system and method |
CN105973710A (en) * | 2016-06-14 | 2016-09-28 | 长江水利委员会长江科学院 | Complicated jointed rock mass hydraulic coupling field tri-axial testing system and method |
CN106018741A (en) * | 2016-05-24 | 2016-10-12 | 山西省交通科学研究院 | Novel three-axis soil sample body change measuring device and measuring method |
CN107247129A (en) * | 2017-06-16 | 2017-10-13 | 张豫 | A kind of native fish device |
CN107247128A (en) * | 2017-05-16 | 2017-10-13 | 华北水利水电大学 | The model test apparatus of retrogressive landslide sliding process under real-time measurement condition of raining |
CN109613119A (en) * | 2019-01-11 | 2019-04-12 | 山东科技大学 | A kind of acoustic-electric seeps quasi- triaxial cell and the test method of comprehensive monitoring |
CN110132746A (en) * | 2019-06-19 | 2019-08-16 | 四川大学 | The laboratory experiment simulator and method of triaxial tester progress geological fault mechanical behavior |
CN111141578A (en) * | 2020-01-10 | 2020-05-12 | 清华大学 | Sample preparation device and method for granular materials |
JP2021117086A (en) * | 2020-01-24 | 2021-08-10 | 鹿島建設株式会社 | Preparation method of triaxial testing sample, triaxial testing laminate, and triaxial testing sample |
CN114088812A (en) * | 2021-11-18 | 2022-02-25 | 中铁电气化局集团有限公司 | Method for evaluating vibration of surrounding soil body in shield tunnel construction |
CN114235571A (en) * | 2021-11-29 | 2022-03-25 | 宁夏大学 | Method for realizing three-dimensional space stress or strain path by using conventional triaxial apparatus |
-
2007
- 2007-08-27 JP JP2007220056A patent/JP2009053042A/en active Pending
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102507307A (en) * | 2011-10-28 | 2012-06-20 | 西安理工大学 | Sealing device for pressure chamber of true triaxial apparatus |
CN103245768A (en) * | 2013-04-09 | 2013-08-14 | 西南交通大学 | High-speed landslide starting mechanism tester |
CN103344747A (en) * | 2013-07-03 | 2013-10-09 | 兰州大学 | Technical method for shortening saturation time of silty clay |
CN103344747B (en) * | 2013-07-03 | 2015-07-15 | 兰州大学 | Technical method for shortening saturation time of silty clay |
CN103884555A (en) * | 2014-03-19 | 2014-06-25 | 河海大学 | Assembling reference testing device of landslide physical model |
CN103884555B (en) * | 2014-03-19 | 2016-08-03 | 河海大学 | A kind of landslide physical assembles with reference to assay device |
CN103900877A (en) * | 2014-03-21 | 2014-07-02 | 浙江水利水电学院 | Preparation device for three-axis compression test original-state sample and preparation method of preparation device |
CN104048879A (en) * | 2014-07-02 | 2014-09-17 | 南京力淮软件科技有限公司 | Full-automatic three-axis testing system for saturated soil stress path |
CN105842424A (en) * | 2016-05-20 | 2016-08-10 | 山东科技大学 | Three-dimensional stress fluid coupling grouting test system and method |
CN106018741A (en) * | 2016-05-24 | 2016-10-12 | 山西省交通科学研究院 | Novel three-axis soil sample body change measuring device and measuring method |
CN105973710A (en) * | 2016-06-14 | 2016-09-28 | 长江水利委员会长江科学院 | Complicated jointed rock mass hydraulic coupling field tri-axial testing system and method |
CN107247128A (en) * | 2017-05-16 | 2017-10-13 | 华北水利水电大学 | The model test apparatus of retrogressive landslide sliding process under real-time measurement condition of raining |
CN107247129A (en) * | 2017-06-16 | 2017-10-13 | 张豫 | A kind of native fish device |
CN107247129B (en) * | 2017-06-16 | 2019-05-21 | 张豫 | A kind of native fish device |
CN109613119A (en) * | 2019-01-11 | 2019-04-12 | 山东科技大学 | A kind of acoustic-electric seeps quasi- triaxial cell and the test method of comprehensive monitoring |
CN110132746B (en) * | 2019-06-19 | 2024-05-10 | 四川大学 | Indoor experimental simulation device and method for performing geological fault mechanical behaviors by triaxial tester |
CN110132746A (en) * | 2019-06-19 | 2019-08-16 | 四川大学 | The laboratory experiment simulator and method of triaxial tester progress geological fault mechanical behavior |
CN111141578A (en) * | 2020-01-10 | 2020-05-12 | 清华大学 | Sample preparation device and method for granular materials |
JP7312122B2 (en) | 2020-01-24 | 2023-07-20 | 鹿島建設株式会社 | Manufacturing method for triaxial test specimen |
JP2021117086A (en) * | 2020-01-24 | 2021-08-10 | 鹿島建設株式会社 | Preparation method of triaxial testing sample, triaxial testing laminate, and triaxial testing sample |
CN114088812A (en) * | 2021-11-18 | 2022-02-25 | 中铁电气化局集团有限公司 | Method for evaluating vibration of surrounding soil body in shield tunnel construction |
CN114088812B (en) * | 2021-11-18 | 2024-05-28 | 中铁电气化局集团有限公司 | Surrounding soil vibration evaluation method for shield tunnel construction |
CN114235571A (en) * | 2021-11-29 | 2022-03-25 | 宁夏大学 | Method for realizing three-dimensional space stress or strain path by using conventional triaxial apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009053042A (en) | Landslide evaluating method and auxiliary tool for it | |
Portelinha et al. | Performance of nonwoven geotextile-reinforced walls under wetting conditions: laboratory and field investigations | |
JP2009525420A (en) | Method and system for monitoring soil quality | |
Bo et al. | Quality management of prefabricated vertical drain materials in mega land reclamation projects: A case study | |
CN101936161B (en) | In-situ measurement method for coal rock strength and deformation modulus | |
KR101769352B1 (en) | sinking-measuring method | |
KR101917881B1 (en) | sinking-measuring method | |
KR102219264B1 (en) | Earthquake measuring method | |
CN104674792B (en) | A kind of pumped type concrete guncreting pile puies forward brill display device | |
JP2004117319A (en) | Method for measuring in-situ stress of base rock | |
CN107142822B (en) | A kind of roadbed cavity detection device and its detection method | |
KR102011891B1 (en) | sinking-measuring means | |
CN114813374A (en) | Method for testing and calculating settlement of loess subgrade | |
CN210604213U (en) | Railway rockfill embankment shear test device | |
CN110219297B (en) | Real-time measuring device for soil thickness | |
JP2007039951A (en) | Method of determining strength and layer thickness of improved layer of back filling sand by chemical injection and experiment device used therefor | |
Indraratna et al. | Development of the smear zone around vertical band drains | |
Jarushi et al. | Prediction of High Pile Rebound with Fines Content and Uncorrected Blow Counts from Standard Penetration Test | |
KR100764243B1 (en) | Consolidation cell with horizontal drain and measuring elastic wave and apparatus for testing consolidation characteristics therewith | |
KR102447572B1 (en) | Earthquake measuring method | |
Holchin et al. | The liquefaction of sand lenses due to cyclic loading | |
Iliesi et al. | Use of cone penetration tests and cone penetration tests with porewater pressure measurement for difficult soils profiling | |
CN210916952U (en) | Laser monitoring instrument for monitoring road grouting | |
Rivera Cruz | An evaluation of seismic flat dilatometer and lateral stress seismic piezocone | |
Alkahtani et al. | Response of piers installed in sand near sloping ground under inclined loading |