JP2007039951A - Method of determining strength and layer thickness of improved layer of back filling sand by chemical injection and experiment device used therefor - Google Patents

Method of determining strength and layer thickness of improved layer of back filling sand by chemical injection and experiment device used therefor Download PDF

Info

Publication number
JP2007039951A
JP2007039951A JP2005224618A JP2005224618A JP2007039951A JP 2007039951 A JP2007039951 A JP 2007039951A JP 2005224618 A JP2005224618 A JP 2005224618A JP 2005224618 A JP2005224618 A JP 2005224618A JP 2007039951 A JP2007039951 A JP 2007039951A
Authority
JP
Japan
Prior art keywords
pressure
water
strength
layer
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005224618A
Other languages
Japanese (ja)
Other versions
JP4500231B2 (en
Inventor
Fumio Oka
二三生 岡
Yasutoshi Ono
康年 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Toa Corp
Original Assignee
Kyoto University
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Toa Corp filed Critical Kyoto University
Priority to JP2005224618A priority Critical patent/JP4500231B2/en
Publication of JP2007039951A publication Critical patent/JP2007039951A/en
Application granted granted Critical
Publication of JP4500231B2 publication Critical patent/JP4500231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Revetment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of determining the strength and the layer thickness of an improved layer of a back filling sand by chemical injection which can prevent the back filling sand from being sucked by forming the improved layer suitable for a construction site. <P>SOLUTION: The back filling sand 5 to be improved is collected from the construction site, the concentration of the chemical to be injected is changed, and an improved layer sample S is manufactured under a predetermined restraint pressure. Data on a relation between the concentration of the chemical and a strength q is acquired by using the improved layer sample S. A variable hydraulic pressure P is given to the improved layer sample S until it is ruptured under predetermined conditions while changing the layer thickness h for each chemical concentration to acquire data on the relation between the layer thickness h and the number of times N or a time t at which the improved layer sample is ruptured. Based on data on both relations acquired, the strength q and the layer thickness H (=h) fulfilling the requirement requested at the construction site are selected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、薬液注入による裏込砂の改良層の強度および層厚の決定方法およびこれに用いる実験装置に関し、さらに詳しくは、施工現場に適した改良層を形成して裏込砂の吸出し防止を可能とする薬液注入による裏込砂の改良層の強度および層厚の決定方法およびこれに用いる実験装置に関するものである。   The present invention relates to a method for determining the strength and thickness of an improved layer of backfill sand by chemical solution injection and an experimental apparatus used therefor, and more particularly, to form an improved layer suitable for a construction site to prevent backfill sand from being sucked out. The present invention relates to a method for determining the strength and thickness of an improved layer of backfill sand by injecting a chemical solution, and an experimental apparatus used therefor.

ケーソン等の海上構造体の裏込砂の吸出しを防止する工法として、薬液を注入して裏込砂を改良(硬化)させることによって吸出しを防ぐ工法がある。この薬液注入工法については、薬液によって改良された裏込砂のサンプルを製造して、このサンプルを用いた実験によって、吸出しが発生しない強度を把握して、この把握した強度を得ることができる濃度の薬液を注入する工法が提案されている(特許文献1参照)。   As a construction method for preventing the back sand from sucking off the offshore structure such as caisson, there is a method for preventing the suction by injecting a chemical solution to improve (harden) the back sand. Concerning this chemical injection method, the concentration of the backside sand improved by the chemical solution, the strength at which suction does not occur, and the obtained strength can be obtained by experiments using this sample. A method of injecting a chemical solution has been proposed (see Patent Document 1).

この提案では、注入する薬液濃度を変えることによって、裏込砂の強度のみを変えて、吸出しが発生しない最適な強度を検出するようにしている。即ち、改良する裏込砂の層厚を所与として、所定層厚の下における強度を検出している。また、24時間という一定時間に渡ってサンプルに変動水圧を与える実験によって、吸出しの有無という結果のみを検証するようにしている。   In this proposal, by changing the concentration of the chemical solution to be injected, only the strength of the back sand is changed, and the optimum strength at which no sucking occurs is detected. That is, the strength under a predetermined layer thickness is detected given the layer thickness of the back sand to be improved. In addition, only the result of the presence or absence of suction is verified by an experiment in which fluctuating water pressure is applied to the sample over a fixed time of 24 hours.

したがって、この提案では所定層厚の裏込砂の改良層において、ある所定期間において吸出しを防止する改良裏込砂を形成することしかできないという問題があった。そのため、層厚や吸出しを防止できる期間を変える場合等には適用できず、応用性に欠けるものであり、施工現場に最適な改良層を形成することができなかった。
特開2002−322639号公報
Therefore, in this proposal, there is a problem that only the improved back sand that prevents sucking out can be formed in a predetermined period in the improved back sand layer having a predetermined layer thickness. Therefore, it cannot be applied to the case where the layer thickness or the period during which the suction can be prevented is changed, and it lacks applicability, and an improved layer optimal for the construction site cannot be formed.
JP 2002-322639 A

本発明の目的は、施工現場に適した改良層を形成して裏込砂の吸出し防止を可能とする薬液注入による裏込砂の改良層の強度および層厚の決定方法およびこれに用いる実験装置を提供することにある。   The object of the present invention is to determine the strength and thickness of the improved layer of backfill sand by injecting a chemical solution that can prevent the backfill sand from being sucked out by forming an improved layer suitable for the construction site, and an experimental apparatus used therefor Is to provide.

上記目的を達成するため本発明の薬液注入による裏込砂の改良層の強度および層厚の決定方法は、ケーソン等の構造体の裏込砂の吸出しを防止する薬液注入による裏込砂の改良層の強度および層厚の決定方法であって、施工現場から改良対象の裏込砂を採取して注入する薬液の濃度を変えて所定拘束圧力下で改良層サンプルを製造する工程と、前記薬液濃度を変えた改良層サンプルを用いて薬液濃度と強度との関係データを取得する工程と、前記改良層サンプルを薬液濃度毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程と、前記取得した両関係データに基づいて前記施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程とを有することを特徴とするものである。   In order to achieve the above object, the method for determining the strength and layer thickness of the improved back sand by injecting the chemical solution according to the present invention is to improve the back sand by injecting the chemical solution to prevent the back sand from sucking out of the structure such as caisson. A method for determining the strength and thickness of a layer, which comprises collecting a back sand to be improved from a construction site and changing the concentration of the chemical to be injected, and producing an improved layer sample under a predetermined restraining pressure, and the chemical The process of acquiring the relation data between the chemical concentration and strength using the improved layer sample with the changed concentration, and changing the layer thickness for each chemical concentration to give the variable water pressure until it breaks under predetermined conditions The process of acquiring the relationship data between the layer thickness and the number of times or time until failure, and the strength and thickness of the improved layer that satisfies the conditions required at the construction site are selected based on the acquired both relationship data Having a process The one in which the features.

また、本発明の実験装置は、ケーソン等の構造体の裏込砂の吸出しを防止する薬液注入による裏込砂の改良層の強度および層厚の決定に用いる実験装置であって、変動水圧装置と、該変動水圧装置と水流通管を介して連結された流量測定装置とを備え、前記変動水圧装置は、裏込砂に薬液を注入して製造した改良層サンプルと水を収容する密閉容器と、該密閉容器内に上方から変動圧力を負荷する変動圧力ユニットと、該変動圧力を計測する変動圧力計測装置とを有し、前記水流通管は前記密閉容器の下方に接続され、前記変動圧力で生じる変動水圧によって改良層サンプルを透過する水を前記流量測定装置に流出入させるとともに、その水圧を計測する管路圧力計測装置を有し、前記流量測定装置は、前記水流通管から流出入する流量を測定するとともに、前記水流通管を介して前記密閉容器内を所定圧力に加圧可能な加圧ユニットを有することを特徴とするものである。   Further, the experimental device of the present invention is an experimental device used for determining the strength and thickness of the improved layer of back sand by injecting a chemical solution that prevents sucking out the back sand of a structure such as a caisson. And a flow rate measuring device connected to the fluctuating water pressure device via a water flow pipe, the fluctuating water pressure device being a sealed container for containing the improved layer sample and water produced by injecting a chemical into the back sand. A fluctuating pressure unit that loads a fluctuating pressure into the sealed container from above, and a fluctuating pressure measuring device that measures the fluctuating pressure, wherein the water circulation pipe is connected to the lower side of the sealed container, Water that permeates through the improvement layer sample due to fluctuating water pressure caused by pressure flows into and out of the flow measuring device, and has a line pressure measuring device that measures the water pressure, and the flow measuring device flows out of the water flow pipe. Measure the flow rate As well as, is characterized in that it has a pressurizable pressure unit said sealed vessel at a predetermined pressure through the water distribution pipe.

尚、本発明において裏込砂とは裏込めされる土壌を意味し、裏込土も含むものである。 In the present invention, the backfill sand means soil to be backfilled, and includes backfill soil.

本発明の薬液注入による裏込砂の改良層の強度および層厚の決定方法によれば、施工現場から改良対象の裏込砂を採取して注入する薬液の濃度を変えて所定拘束圧力下で改良層サンプルを製造する工程によって、実際に改良層が形成される施工現場と同じ条件でサンプルを製造して、現実をより再現して精度のよいデータを取得することができる。   According to the method for determining the strength and thickness of the improved back sand layer by injecting the chemical solution of the present invention, the concentration of the chemical solution to be collected and injected from the construction site is changed under a predetermined restraint pressure. By the process of manufacturing the improvement layer sample, the sample can be manufactured under the same conditions as the construction site where the improvement layer is actually formed, and the reality can be reproduced more accurately to obtain accurate data.

また、薬液濃度を変えた改良層サンプルを用いて薬液濃度と強度との関係データを取得する工程では、薬液濃度と改良層の強度との相関関係を把握することができる。改良層サンプルを薬液濃度毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程では、実際に施工現場で改良層に作用する条件に近似した実験によって、薬液濃度毎の改良層の層厚と強度との相関関係を把握することができる。   Further, in the step of obtaining the relationship data between the chemical solution concentration and the strength using the improved layer sample with the changed chemical solution concentration, the correlation between the chemical solution concentration and the strength of the improved layer can be grasped. In the process of obtaining the data of the relationship between the layer thickness and the number of times or the time until failure by applying variable water pressure until the improved layer sample is broken for each chemical concentration and changing the layer thickness under the specified conditions, Thus, the correlation between the thickness and strength of the improved layer for each chemical solution concentration can be grasped by an experiment that approximates the conditions acting on the improved layer.

そして、この取得した両関係データに基づいて施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程によって、条件満たす改良層の強度および層厚の組合せの中から最適な組合せを選択することができる。   Based on the acquired relationship data, an optimal combination is selected from the combinations of the strength and thickness of the improved layer that satisfies the conditions by the process of selecting the strength and thickness of the improved layer that satisfies the requirements at the construction site. Can be selected.

以上の工程によって選択決定された改良層の強度となる濃度の薬液を注入して、決定した層厚の改良層を形成すると、施工現場の要求条件を満たして、裏込砂の吸出しを防止することが可能となる。   Injecting a chemical solution with the strength of the improved layer selected and determined by the above process to form the improved layer with the determined layer thickness will satisfy the requirements of the construction site and prevent the back sand from being sucked out. It becomes possible.

本発明の実験装置によれば、変動水圧装置と、この変動水圧装置と水流通管を介して連結された流量測定装置とを備え、変動水圧装置は、裏込砂に薬液を注入して製造した改良層サンプルと水を収容する密閉容器と、この密閉容器内に上方から変動圧力を負荷する変動圧力ユニットと、変動圧力を計測する変動圧力計測装置とを有し、水流通管は密閉容器の下方に接続され、変動圧力で生じる変動水圧によって改良層サンプルを透過する水を流量測定装置に流出入させるとともに、その水圧を計測する管路圧力計測装置を有し、流量測定装置は、水流通管から流出入する流量を測定するとともに、水流通管を介して密閉容器内を所定圧力に加圧可能な加圧ユニットを有するので、上記した、改良層サンプルを薬液濃度毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程に用いることができる。   According to the experimental apparatus of the present invention, it is provided with a fluctuating water pressure device and a flow rate measuring device connected to the fluctuating water pressure device and a water flow pipe, and the fluctuating water pressure device is manufactured by injecting a chemical into the back sand. A sealed container for containing the improved layer sample and water, a fluctuating pressure unit for loading a fluctuating pressure from above into the sealed container, and a fluctuating pressure measuring device for measuring the fluctuating pressure, and the water distribution pipe is a sealed container The flow rate measuring device has a pipe pressure measuring device for measuring the water pressure while flowing water into and out of the flow rate measuring device by the fluctuating water pressure generated by the fluctuating pressure. The flow rate flowing in and out of the flow pipe is measured, and the pressurization unit capable of pressurizing the inside of the sealed container to a predetermined pressure via the water flow pipe has a layer thickness for each chemical solution concentration. Change the prescribed article Can be used in the step of giving the variation pressure to failure under, obtains the relationship data between the number or time to failure and the layer thickness.

即ち、実際に施工現場で改良層に作用する条件に近似した変動水圧実験を実施することができ、変動圧力計測装置、管路圧力計測装置および流量測定装置による測定データに基づいて、薬液濃度毎の改良層の層厚と強度との相関関係を把握することができる。   That is, it is possible to carry out a fluctuating water pressure experiment that approximates the conditions that actually act on the improvement layer at the construction site, and based on the measurement data from the fluctuating pressure measuring device, the pipe pressure measuring device, and the flow rate measuring device, It is possible to grasp the correlation between the layer thickness and strength of the improved layer.

以下、本発明の薬液注入による裏込砂の改良層の強度および層厚の決定方法およびこれに用いる実験装置を図に示した実施形態に基づいて説明する。   Hereinafter, a method for determining the strength and thickness of an improved layer of backfill sand by chemical injection according to the present invention and an experimental apparatus used therefor will be described based on the embodiments shown in the drawings.

図9に裏込砂5に薬液を注入する施工現場の一例を断面図で例示する。この施工現場には、基礎捨石2の上にケーソン1が設置されており、ケーソン1の背面には裏込石3が敷設されている。裏込石3を被覆する防砂シート4の上に裏込砂5が埋め戻しされ、上面は舗装面7となっている。   FIG. 9 is a cross-sectional view illustrating an example of a construction site where a chemical solution is injected into the back sand 5. In this construction site, a caisson 1 is installed on a basic rubble 2, and a backstone 3 is laid on the back of the caisson 1. The back sand 5 is refilled on the sandproof sheet 4 covering the back stone 3, and the upper surface is a paved surface 7.

ここで、防砂シート4が破損すると、ケーソン1の前面の海水Wの波動によって、裏込砂5が海側に吸出される、いわゆる、吸出しが現象が発生する。そこで、裏込砂5に薬液を注入して硬化させた改良層6を形成して、吸出しを防止する。そのためには、施工現場の要求条件を満たした最適な強度および層厚Hの改良層6を形成する必要がある。薬液としては、例えば、活性シリカ、超微粒子シリカ等の特殊シリカから成る恒久グラウト、水ガラス系シリカゾル系の耐久グラウト等を用いる。   Here, when the sandproof sheet 4 is broken, a so-called sucking phenomenon occurs in which the back sand 5 is sucked out to the sea side by the wave motion of the seawater W in front of the caisson 1. Accordingly, the improved layer 6 is formed by injecting a chemical into the back sand 5 and curing it to prevent sucking. For this purpose, it is necessary to form the improved layer 6 having the optimum strength and thickness H that satisfies the requirements of the construction site. As the chemical solution, for example, permanent grout made of special silica such as activated silica or ultrafine silica, water glass-based silica sol durable grout, or the like is used.

そこで、図1に示す手順で改良層6の強度および層厚Hを決定する。まず、施工現場から改良対象の裏込砂5を採取して注入する薬液の濃度を数通りに変えて所定拘束圧力下で改良層サンプルSを製造する(第1工程)。所定拘束圧力とは、改良層6が形成される位置で受ける圧力を想定した圧力であり、例えば、改良層6を形成する位置での代表深さ地点Dでの圧力とする。   Therefore, the strength and the layer thickness H of the improved layer 6 are determined by the procedure shown in FIG. First, the improvement layer sample S is manufactured under a predetermined restraint pressure by changing the concentration of the chemical solution to be collected by collecting the back sand 5 to be improved from the construction site in several ways (first step). The predetermined restraining pressure is a pressure that assumes a pressure received at a position where the improvement layer 6 is formed, and is, for example, a pressure at a representative depth point D at a position where the improvement layer 6 is formed.

モールド等の耐圧容器に裏込砂5を詰めた後、各濃度の薬液を浸透させて、この拘束圧力下で、例えば、28日間養生して改良層サンプルSを製造する。この改良層サンプルSは、実際に改良層6が形成される施工現場の拘束圧力に近い圧力条件下で製造されるので、この改良層サンプルSを実験に用いると、現実をより再現して精度のよいデータが取得可能となる。   After the back sand 5 is packed in a pressure-resistant container such as a mold, the chemical solution of each concentration is infiltrated, and the improved layer sample S is manufactured by curing for 28 days, for example, under this restraining pressure. Since this improved layer sample S is manufactured under pressure conditions that are close to the restraint pressure at the construction site where the improved layer 6 is actually formed, when this improved layer sample S is used in an experiment, the reality is reproduced more accurately. Good data can be acquired.

改良層サンプルSを製造するには、例えば、特許第3502079号公報に記載されている供試体の製造方法を用いることができる。改良層サンプルSは、強度試験と変動水圧試験に使用するので、薬液濃度毎に数本以上製造しておく。   In order to manufacture the improved layer sample S, for example, a method for manufacturing a specimen described in Japanese Patent No. 3502079 can be used. Since the improved layer sample S is used for the strength test and the fluctuating hydraulic pressure test, several or more improved layer samples S are manufactured for each chemical concentration.

つぎに、薬液濃度を変えた改良層サンプルSを用いて薬液濃度と強度との関係データを取得する(第2工程)。具体的には、改良層サンプルSの一軸圧縮強度試験を実施して、強度qと薬液濃度との関係をプロットすると、図5に例示するような強度qと薬液濃度との比例関係データを取得することができる。これによって、注入する薬液濃度によって、施工現場で形成される改良層6の強度qを把握、推定することが可能となる。   Next, using the improved layer sample S in which the chemical concentration is changed, relational data between the chemical concentration and the strength is acquired (second step). Specifically, when the uniaxial compressive strength test of the improved layer sample S is performed and the relationship between the strength q and the chemical concentration is plotted, the proportional relationship data between the strength q and the chemical concentration is obtained as illustrated in FIG. can do. This makes it possible to grasp and estimate the strength q of the improved layer 6 formed at the construction site, based on the concentration of the injected chemical solution.

つぎに、改良層サンプルSを薬液濃度毎に層厚hを変えて所定条件下で破壊するまで変動水圧Pを与える変動水圧実験を実施して、層厚hと破壊するまでの回数Nまたは時間tとの関係データを取得する(第3工程)。   Next, a variable water pressure experiment is performed in which a variable water pressure P is applied until the modified layer sample S is broken under predetermined conditions by changing the layer thickness h for each chemical solution concentration, and the number N or time until the layer thickness h is broken. Data related to t is acquired (third step).

この変動水圧実験を概念的に示すと図3のようになり、上部に変動圧力ユニットとなる導管11を、下部に水流通管12を接続した密閉容器8に改良層サンプルSを収容して実施する。密閉容器8の底部には水の流通性を確保するためにガラスビーズGが敷設されている。   This fluctuating water pressure experiment is conceptually shown in FIG. 3, and the improvement layer sample S is accommodated in a sealed container 8 having a fluctuating pressure unit connected to the upper part and a water flow pipe 12 connected to the lower part. To do. Glass beads G are laid at the bottom of the sealed container 8 in order to ensure water flowability.

改良層サンプルSには、上部の導管11の水Wおよび下部の水流通管12の水Wによって所定圧力が負荷される。この所定圧力は、改良層6が形成される位置で受ける圧力に相当する圧力であり、例えば、既述した代表深さ地点Dでの圧力とする。   The improvement layer sample S is loaded with a predetermined pressure by the water W in the upper conduit 11 and the water W in the lower water circulation pipe 12. This predetermined pressure is a pressure corresponding to the pressure received at the position where the improvement layer 6 is formed, and is, for example, the pressure at the representative depth point D described above.

この状態で、上部の導管11の水Wを上下動させる変動圧力Pを与える。この変動圧力Pは、施工現場で発生する波の波動データを予め取得しておき、このデータに基づいて、例えば、図4に示すような最頻出の波と同じ圧力振幅および周波数に設定する。尚、変動圧力Pは代表深さ地点Dでの圧力に最頻出の波による上下動によって変化した値となる。   In this state, a fluctuating pressure P for moving the water W in the upper conduit 11 up and down is applied. The fluctuating pressure P is obtained in advance as wave data of waves generated at the construction site, and based on this data, for example, is set to the same pressure amplitude and frequency as the most frequent waves as shown in FIG. The fluctuating pressure P is a value that changes due to the vertical movement caused by the most frequent wave to the pressure at the representative depth point D.

この変動圧力Pによって、導管11の水Wが改良層サンプルSを透過して水流通管12を流出入し、水Wの繰返し透過によって徐々に改良層サンプルSが破壊され、その破壊までの繰返し回数Nまたは時間tを測定する。   Due to this fluctuating pressure P, the water W in the conduit 11 permeates the improved layer sample S and flows in and out of the water circulation pipe 12, and the improved layer sample S is gradually destroyed by repeated permeation of the water W, and the repetition until the destruction is repeated. The number of times N or time t is measured.

即ち、裏込砂5の吸出しを発生させる施工現場に近似した状態を再現して、改良層サンプルSの耐久性について精度のよいデータを取得することができる。   That is, it is possible to reproduce the state approximate to the construction site where suction of the back sand 5 is generated, and to acquire accurate data on the durability of the improved layer sample S.

変動水圧実験装置は全体概要を図2に示すように、変動水圧装置8と流量計測装置13と両装置8、13を連結する水流通管12とを備えている。変動水圧装置8は、底部にガラスビーズGを敷設した密閉容器9と、変動圧力ユニットとを有し、この変動圧力ユニットは導管11、電空変換器20aおよび圧縮空気発生装置17で構成されて制御装置18で制御される。密閉容器9は、例えば、外径100mm、高さ100mm程度のものを使用する。圧縮空気発生装置17は、コンプレッサやレギュレータ等から構成される。   As shown in FIG. 2, the fluctuation water pressure experimental device includes a fluctuation water pressure device 8, a flow rate measurement device 13, and a water flow pipe 12 that connects both devices 8 and 13. The fluctuating water pressure device 8 includes a sealed container 9 in which glass beads G are laid at the bottom, and a fluctuating pressure unit. The fluctuating pressure unit includes a conduit 11, an electropneumatic converter 20a, and a compressed air generating device 17. It is controlled by the control device 18. For example, a sealed container 9 having an outer diameter of about 100 mm and a height of about 100 mm is used. The compressed air generator 17 includes a compressor, a regulator, and the like.

流量計測装置13は、密閉容器14内部に設置され、計測ユニット19に接続された微小荷重計15と、これに吊設された水収容タンク16と、加圧ユニットとを有し、この加圧ユニットは密閉容器14、電空変換器20b、圧力計21bおよび圧縮空気発生装置17で構成されて制御装置18で制御される。   The flow rate measurement device 13 includes a micro load meter 15 installed in the sealed container 14 and connected to the measurement unit 19, a water storage tank 16 suspended from the pressure meter, and a pressure unit. The unit includes a sealed container 14, an electropneumatic converter 20 b, a pressure gauge 21 b, and a compressed air generator 17, and is controlled by a controller 18.

水流通管12は、一端を変動水圧装置8の密閉容器9の底部に連結し、他端を流量計測装置13の水収容タンク16に配置し、管路水圧計測装置を構成する計測ユニット19に接続された圧力計21cを有している。   One end of the water distribution pipe 12 is connected to the bottom of the sealed container 9 of the variable water pressure device 8, and the other end is disposed in the water storage tank 16 of the flow rate measurement device 13, so that the measurement unit 19 constituting the pipe water pressure measurement device is provided. It has a connected pressure gauge 21c.

変動水圧実験は、変動水圧装置8の密閉容器9に改良層サンプルSを金網10で上下を挟んだ状態にして、水Wおよび空気Aとともに収容して実施する。流量測定装置13の圧縮空気発生装置17および電空変換器20aで密閉容器14内部を所定圧力に調整することによって、水流通管12を介して密閉容器9内部が所定圧力に維持される。この所定圧力とは、既述したように改良層6が形成される位置で受ける相当圧力であり、この所定圧力は計測ユニット19に接続された圧力計21bで計測される。   The fluctuating water pressure experiment is carried out by containing the improvement layer sample S in the airtight container 9 of the fluctuating water pressure device 8 with the wire mesh 10 sandwiched between the water W and the air A. By adjusting the inside of the sealed container 14 to a predetermined pressure with the compressed air generator 17 and the electropneumatic converter 20 a of the flow rate measuring device 13, the inside of the sealed container 9 is maintained at a predetermined pressure via the water circulation pipe 12. This predetermined pressure is an equivalent pressure received at the position where the improvement layer 6 is formed as described above, and this predetermined pressure is measured by the pressure gauge 21 b connected to the measurement unit 19.

そして、導管11を通じて圧縮空気発生装置17および電空変換器20aによって、密閉容器9内に空気Aを流出入させることによって、水Wに既述したような施工現場で発生する波に則した変動水圧P1を与える。この変動水圧P1は、圧力計21aで計測される。変動水圧P1を与える方法は、これに限定されず他の方法を用いてもよい。   Then, by causing the compressed air generator 17 and the electropneumatic converter 20a to flow the air A into and out of the sealed container 9 through the conduit 11, the fluctuation in accordance with the waves generated at the construction site as described above in the water W is achieved. Water pressure P1 is applied. This fluctuating water pressure P1 is measured by the pressure gauge 21a. The method of providing the fluctuating water pressure P1 is not limited to this, and other methods may be used.

変動水圧P1によって、密閉容器9内の水Wが改良層サンプルSを透過して、水流通管12を通じて流量測定装置13の水収容タンク16に流出入し、その水Wの流量は、微小荷重計15で計測され、水流通管12における水圧P2は圧力計21cで計測される。改良層サンプルSの上下に設置された金網10は、改良層サンプルSが脆い場合等に保護するためのものであり、設置を省略することもできる。   Due to the fluctuating water pressure P1, the water W in the sealed container 9 permeates the improved layer sample S and flows into and out of the water storage tank 16 of the flow rate measuring device 13 through the water flow pipe 12, and the flow rate of the water W is a minute load. The water pressure P2 in the water distribution pipe 12 is measured by the pressure gauge 21c. The wire mesh 10 installed above and below the improvement layer sample S is for protection when the improvement layer sample S is fragile, and the installation can be omitted.

流量測定装置13で測定した流量を経時的に示すと、図6のように圧力変動による上下変位をしながら、流出流量Qが急増してくる。図6の縦軸の流出流量Qは、マイナス(下方)になる程、水流通管12を通じて流量測定装置13の収容タンク16から密閉容器9内へ水Wが流出していることを意味している。即ち、改良層サンプルSが破壊して流出流量Qが増加していることを示している。このように、流量データに基づいて、例えば、流出流量Qが急増した時点B1を、改良層サンプルSが破壊したと判定する。   When the flow rate measured by the flow rate measuring device 13 is shown with time, the outflow flow rate Q rapidly increases while vertically moving due to pressure fluctuation as shown in FIG. As the outflow flow rate Q on the vertical axis in FIG. 6 becomes negative (downward), it means that the water W flows from the storage tank 16 of the flow measurement device 13 into the sealed container 9 through the water flow pipe 12. Yes. That is, it shows that the improvement layer sample S is broken and the outflow flow rate Q is increased. Thus, based on the flow rate data, for example, it is determined that the improvement layer sample S has been destroyed at the point B1 at which the outflow rate Q has increased rapidly.

また、圧力計21aで測定した変動水圧P1と圧力計21cで測定した水流通管12の改良層サンプルS下面の水圧P2のデータを経時的に示すと、図7のように圧力変動による上下変位をしながら、水圧P2が増加し始め、水圧P1とP2とが一致するようになる。これは、改良層サンプルSが破壊して圧力が均一化したことを示している。図7では水圧P2のデータ(実線)を明確にするため水圧P1のデータ(点線)を中途で省略して示している。   Further, when the data of the fluctuation water pressure P1 measured by the pressure gauge 21a and the water pressure P2 on the lower surface of the improved layer sample S of the water flow pipe 12 measured by the pressure gauge 21c are shown with time, the vertical displacement due to the pressure fluctuation as shown in FIG. The water pressure P2 starts to increase while the water pressures P1 and P2 coincide with each other. This has shown that the improvement layer sample S destroyed and the pressure became uniform. In FIG. 7, in order to clarify the data (solid line) of the water pressure P2, the data (dotted line) of the water pressure P1 is omitted in the middle.

改良層サンプルS下面の水圧P2が増加した時点B2は、流量Qが急増する時点B1と一致することが確認されているので、例えば、流出流量Qが急増した時点B1が明確でない場合は、改良層サンプルS下面の水圧P2が急増した時点B2を改良層サンプルSが破壊したと判定することもできる。尚、図6、7では横軸を時間tとしているが、変動水圧P1を与えた回数(繰返し回数N)としてもよい。   Since it has been confirmed that the point B2 at which the water pressure P2 on the lower surface of the improvement layer sample S increases coincides with the point B1 at which the flow rate Q increases rapidly, for example, if the point B1 at which the outflow flow rate Q increases rapidly is not clear, the improvement is made. It can also be determined that the improved layer sample S has broken at the point B2 when the water pressure P2 on the lower surface of the layer sample S has increased rapidly. 6 and 7, the horizontal axis represents time t, but the number of times the fluctuating water pressure P1 is applied (the number of repetitions N) may be used.

第2工程と第3工程を実施する順番は、どちらが先でもよく、同時に実施して実験時間を短縮することが好ましい。   The order of performing the second step and the third step may be either, and it is preferable to perform the steps at the same time to shorten the experiment time.

そして、先に取得した薬液濃度と強度との関係データ、層厚hと破壊回数Nまたは破壊時間tとの関係データに基づいて、施工現場で要求される条件を満たす改良層6の強度および層厚hを選択する(第4工程)。具体的には、取得データを強度q(即ち、薬液濃度)毎に、層厚hと破壊までの繰返し回数Nとの関係をプロットすると、図8に例示するような二次曲線の関係データを取得することができる。   And based on the relationship data between the chemical solution concentration and strength acquired previously, and the relationship data between the layer thickness h and the number of times of destruction N or the failure time t, the strength and layer of the improved layer 6 satisfying the conditions required at the construction site. A thickness h is selected (fourth step). Specifically, when the relationship between the layer thickness h and the number of repetitions N until the destruction is plotted for each strength q (that is, the concentration of the chemical solution), the relationship data of the quadratic curve as illustrated in FIG. Can be acquired.

破壊までの繰返し回数Nに、周波数(変動水圧の変動周波数)を乗じると破壊するまでの時間tとなるので、図8において、横軸を破壊するまでの時間tとしてデータをプロットすれば、同様に二次曲線の関係データを取得することができる
例えば、データを回帰分析すると、次の(1)、(2)式を得ることができる。
h=A+BlogN+C(logN)・・・(1)
h=A+Blogt+C(logt)・・・(2)
ここに、h:改良層サンプルの層厚
A、B、C:係数
N:破壊までの繰返し回数
t:破壊までの繰返し時間
Multiplying the number N of repetitions until destruction by the frequency (fluctuation frequency of fluctuating water pressure) gives the time t until destruction. Therefore, if data is plotted as time t until destruction in FIG. For example, when the data is subjected to regression analysis, the following equations (1) and (2) can be obtained.
h = A + BlogN + C (logN) 2 (1)
h = A + Blogt + C (logt) 2 (2)
Where h: layer thickness of improved layer sample A, B, C: coefficient N: number of repetitions until failure t: repetition time until failure

これによって、強度q(即ち、薬液濃度)毎の層厚hと耐久性(破壊するまでの繰返し回数Nや時間t)の相関関係を把握することができ、強度qおよび層厚hによって耐久性を推定することが可能となる。このプロットデータから、施工現場の要求条件を満たす最適な層厚H(=h)と強度qとの組合せを選択する。例えば、耐久年数の要求条件がある場合は、その耐久年数に対応する繰返し回数Nをクリアする層厚Hおよび強度qの組合せを選択する。条件を満たす組合せが複数ある場合は、コスト算出して最も低コストになる組合せや層厚Hに規制がある場合は、その層厚Hとなる組合せを選択する。   As a result, the correlation between the layer thickness h for each strength q (that is, the chemical concentration) and durability (the number of repetitions N and the time t until destruction) can be grasped, and the durability is determined by the strength q and the layer thickness h. Can be estimated. From this plot data, an optimum combination of the layer thickness H (= h) and the strength q that satisfies the requirements of the construction site is selected. For example, when there is a requirement for the durable years, a combination of the layer thickness H and the strength q that clears the repetition number N corresponding to the durable years is selected. When there are a plurality of combinations that satisfy the conditions, the combination that achieves the lowest cost by calculating the cost or the layer thickness H is selected when there is a restriction on the layer thickness H.

以上の工程によって、改良層6の層厚Hと強度qとの組合せを決定した後は、決定した強度qとなる濃度の薬液を注入して決定した層厚Hの改良層6を形成する。これによって、施工現場の要求条件を満たした最適な改良層6が形成され、裏込砂5の吸出しを防止することが可能となる。   After determining the combination of the layer thickness H and the strength q of the improved layer 6 by the above steps, the improved layer 6 having the determined layer thickness H is formed by injecting a chemical solution having the determined strength q. Thereby, the optimal improvement layer 6 which satisfy | filled the requirements of a construction site is formed, and it becomes possible to prevent the back sand 5 from being sucked out.

本発明の薬液注入による裏込砂の改良層の強度および層厚の決定方法を例示するフロー図である。It is a flowchart which illustrates the determination method of the intensity | strength and layer thickness of the improvement layer of backfill sand by chemical | medical solution injection | pouring of this invention. 本発明の変動水圧実験装置の全体概要を例示する説明図である。It is explanatory drawing which illustrates the whole outline | summary of the fluctuation | variation water pressure experiment apparatus of this invention. 改良層サンプルに変動水圧を与える方法を概念的に示す説明図である。It is explanatory drawing which shows notionally the method of giving a fluctuation | variation water pressure to an improvement layer sample. 改良層サンプルに与える変動水圧を例示するグラフ図である。It is a graph which illustrates the fluctuating water pressure given to an improvement layer sample. 薬液濃度と一軸圧縮強度との関係を示すグラフ図である。It is a graph which shows the relationship between a chemical | medical solution concentration and uniaxial compressive strength. 変動水圧によって改良層サンプルを透過する水の流量の経時変動を示すグラフ図である。It is a graph which shows the time-dependent fluctuation | variation of the flow volume of the water which permeate | transmits an improvement layer sample with a fluctuation | variation water pressure. 変動水圧によって水流通管を流出入する水の水圧の経時変動を示すグラフ図である。It is a graph which shows the time-dependent fluctuation | variation of the water pressure of the water which flows in and out of a water circulation pipe with a fluctuation | variation water pressure. 改良層サンプルの層厚と耐久性との関係を示すグラフ図である。It is a graph which shows the relationship between the layer thickness of an improvement layer sample, and durability. 裏込砂に薬液を注入する施工現場の一例を示す断面図である。It is sectional drawing which shows an example of the construction site which inject | pours a chemical | medical solution into backfill sand.

符号の説明Explanation of symbols

1 ケーソン
2 基礎捨石
3 裏込石
4 防砂シート
5 裏込砂
6 裏込砂の改良層
7 舗装面
8 変動水圧装置
9 密閉容器
10 金網
11 導管
12 水流通管
13 流量測定装置
14 密閉容器
15 微小荷重計
16 水収容タンク
17 圧縮空気発生装置
18 制御装置
19 計測ユニット
20a〜20b 電空変換器
21a〜21c 圧力計
A 空気 G ガラスビーズ S 改良層サンプル W 水
1 Caisson
2 Foundation rubble 3 Back lining stone 4 Sand protection sheet 5 Back lining sand 6 Improved layer of back lining sand 7 Pavement surface 8 Fluctuating hydraulic device
DESCRIPTION OF SYMBOLS 9 Sealed container 10 Wire net 11 Conduit 12 Water distribution pipe 13 Flow rate measuring device 14 Sealed container 15 Micro load cell 16 Water storage tank 17 Compressed air generator
18 Control Device 19 Measuring Unit 20a-20b Electropneumatic Converter 21a-21c Pressure Gauge A Air G Glass Bead S Improved Layer Sample W Water

Claims (4)

ケーソン等の構造体の裏込砂の吸出しを防止する薬液注入による裏込砂の改良層の強度および層厚の決定方法であって、施工現場から改良対象の裏込砂を採取して注入する薬液の濃度を変えて所定拘束圧力下で改良層サンプルを製造する工程と、前記薬液濃度を変えた改良層サンプルを用いて薬液濃度と強度との関係データを取得する工程と、前記改良層サンプルを薬液濃度毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程と、前記取得した両関係データに基づいて前記施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程とを有する薬液注入による裏込砂の改良層の強度および層厚の決定方法。   This is a method for determining the strength and thickness of the improved layer of backfill sand by injecting chemicals to prevent the backfill sand from sucking out caisson and other structures. A step of producing an improved layer sample under a predetermined restraining pressure by changing the concentration of the chemical solution; a step of obtaining relationship data between the chemical concentration and the strength using the improved layer sample having the changed chemical solution concentration; and the improved layer sample To change the layer thickness for each chemical solution concentration, apply a variable water pressure until it breaks under a predetermined condition, and obtain the relationship data between the layer thickness and the number of times or time until destruction, and the obtained both relationship data A method for determining the strength and thickness of the improved layer of backfill sand by injecting a chemical solution, the method comprising: selecting the strength and thickness of the improved layer that satisfies the conditions required at the construction site. 前記層厚と破壊するまでの回数または時間との関係データを取得する工程において、前記変動水圧によって前記改良層サンプルを透過する水の流量を測定し、該測定した流量データに基づいて、前記破壊するまでの回数または時間を判定する請求項1に記載の薬液注入による裏込砂の改良層の強度および層厚の決定方法。   In the step of acquiring the relational data between the layer thickness and the number of times or time until destruction, the flow rate of water that permeates the improved layer sample is measured by the fluctuating water pressure, and the destruction is performed based on the measured flow rate data. The method for determining the strength and thickness of the improved layer of back sand by chemical injection according to claim 1, wherein the number of times or the time until the determination is determined. 前記層厚と破壊するまでの回数または時間との関係データを取得する工程において、前記変動水圧によって前記改良層サンプルを透過する水の圧力を測定し、該測定した水の圧力データに基づいて、前記破壊するまでの回数または時間を判定する請求項1に記載の薬液注入による裏込砂の改良層の強度および層厚の決定方法。   In the step of obtaining the relationship data between the layer thickness and the number of times or time until failure, the pressure of water that permeates the improved layer sample by the fluctuating water pressure is measured, and based on the measured water pressure data, The method for determining the strength and thickness of the improved layer of backfill sand by chemical solution injection according to claim 1, wherein the number of times or time until the destruction is determined. ケーソン等の構造体の裏込砂の吸出しを防止する薬液注入による裏込砂の改良層の強度および層厚の決定に用いる実験装置であって、変動水圧装置と、該変動水圧装置と水流通管を介して連結された流量測定装置とを備え、前記変動水圧装置は、裏込砂に薬液を注入して製造した改良層サンプルと水を収容する密閉容器と、該密閉容器内に上方から変動圧力を負荷する変動圧力ユニットと、該変動圧力を計測する変動圧力計測装置とを有し、前記水流通管は前記密閉容器の下方に接続され、前記変動圧力で生じる変動水圧によって改良層サンプルを透過する水を前記流量測定装置に流出入させるとともに、その水圧を計測する管路水圧計測装置を有し、前記流量測定装置は、前記水流通管から流出入する流量を測定するとともに、前記水流通管を介して前記密閉容器内を所定圧力に加圧可能な加圧ユニットを有する実験装置。   An experimental apparatus used to determine the strength and thickness of an improved layer of backfill sand by injecting a chemical solution that prevents suction of the backfill sand of a structure such as a caisson, the variable water pressure apparatus, and the variable water pressure apparatus and water flow A flow rate measuring device connected through a pipe, and the variable hydraulic pressure device includes an improved layer sample produced by injecting a chemical solution into the back sand and a sealed container containing water, and the sealed container from above. A variable pressure unit for loading a variable pressure; and a variable pressure measuring device for measuring the variable pressure, wherein the water circulation pipe is connected to the lower side of the closed vessel, and the improved layer sample is generated by the variable water pressure generated by the variable pressure. And a water pressure measuring device for measuring the water pressure, and the flow measuring device measures the flow rate of the water flowing in and out of the water flow pipe, and Water distribution Experimental device having a pressurizable pressure unit to a predetermined pressure the closed vessel through the.
JP2005224618A 2005-08-02 2005-08-02 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor Active JP4500231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224618A JP4500231B2 (en) 2005-08-02 2005-08-02 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224618A JP4500231B2 (en) 2005-08-02 2005-08-02 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2007039951A true JP2007039951A (en) 2007-02-15
JP4500231B2 JP4500231B2 (en) 2010-07-14

Family

ID=37798195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224618A Active JP4500231B2 (en) 2005-08-02 2005-08-02 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor

Country Status (1)

Country Link
JP (1) JP4500231B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031678A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017031677A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017141588A (en) * 2016-02-10 2017-08-17 五洋建設株式会社 Soil draw-out prevention structure and soil draw-out prevention method for revetment structure
CN113513312A (en) * 2021-04-19 2021-10-19 天津大学 Sand control simulation experiment device for natural gas hydrate exploitation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322639A (en) * 2001-02-21 2002-11-08 Port & Airport Research Institute Back-filling soil draft preventing construction method
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2004036388A (en) * 2003-10-03 2004-02-05 Toa Harbor Works Co Ltd Method of preventing runoff of back-filling earth
JP2004084392A (en) * 2002-08-28 2004-03-18 Kajima Corp Investigation method for ground, data arrangement method for ground, improvement method for ground, and ground
JP2004196899A (en) * 2002-12-17 2004-07-15 Toa Harbor Works Co Ltd Method for determining chemical concentration useful for preventing liquefaction by chemical grouting
JP2006274650A (en) * 2005-03-29 2006-10-12 Toa Harbor Works Co Ltd Method of determining strength and layer thickness of improved layer of back-filling sand by injecting and mixing cement-based solidifying material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322639A (en) * 2001-02-21 2002-11-08 Port & Airport Research Institute Back-filling soil draft preventing construction method
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2004084392A (en) * 2002-08-28 2004-03-18 Kajima Corp Investigation method for ground, data arrangement method for ground, improvement method for ground, and ground
JP2004196899A (en) * 2002-12-17 2004-07-15 Toa Harbor Works Co Ltd Method for determining chemical concentration useful for preventing liquefaction by chemical grouting
JP2004036388A (en) * 2003-10-03 2004-02-05 Toa Harbor Works Co Ltd Method of preventing runoff of back-filling earth
JP2006274650A (en) * 2005-03-29 2006-10-12 Toa Harbor Works Co Ltd Method of determining strength and layer thickness of improved layer of back-filling sand by injecting and mixing cement-based solidifying material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017031678A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017031677A (en) * 2015-08-03 2017-02-09 Jfeスチール株式会社 Gravity-type breakwater
JP2017141588A (en) * 2016-02-10 2017-08-17 五洋建設株式会社 Soil draw-out prevention structure and soil draw-out prevention method for revetment structure
CN113513312A (en) * 2021-04-19 2021-10-19 天津大学 Sand control simulation experiment device for natural gas hydrate exploitation
CN113513312B (en) * 2021-04-19 2023-02-03 天津大学 Sand control simulation experiment device for exploitation of natural gas hydrate

Also Published As

Publication number Publication date
JP4500231B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Castellanza et al. Oedometric tests on artificially weathered carbonatic soft rocks
Al-Madhhachi et al. Measuring soil erodibility using a laboratory “mini” JET
Moraci et al. Soil geosynthetic interaction: design parameters from experimental and theoretical analysis
Gniel et al. Improvement of soft soils using geogrid encased stone columns
CN106638725B (en) A kind of pile pile soil compaction effect test device and method
KR101221684B1 (en) System for measuring of impedance and ultrasonic wave in concrete structure, and the method
Sato et al. Laboratory testing for evaluation of the influence of a small degree of internal erosion on deformation and stiffness
JP5014389B2 (en) Soil tensile strength measuring device and soil tensile strength measuring method
JP4500231B2 (en) Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
Stirling Multiphase modelling of desiccation cracking in compacted soil
Wang et al. Development of a model test system for studying the behaviour of a compaction grouted soil nail under unsaturated conditions
Damavandi-Monfared et al. Development of a miniature cone penetrometer for calibration chamber testing
Wan et al. Study on the response of postside-grouted piles subjected to lateral loading in calcareous sand
Rong et al. Drained seismic compression of unsaturated sand
Zakaria Yielding of unsaturated soil.
CN106442253B (en) Method and device for evaluating artificial crack wall compaction damage caused by proppant embedding
Kutter et al. Centrifuge testing of the seismic performance of a submerged cut-and-cover tunnel in liquefiable soil
CN108181173A (en) It can be with the test model of simulative immersion embankment
Goulding Tensile strength, shear strength, and effective stress for unsaturated sand
JP4511400B2 (en) Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing
CN110308082B (en) Indoor foundation pit precipitation test method
Rajesh et al. An apparatus to measure gas diffusion and gas permeability of unsaturated cap barriers subjected to distortion
Berndt et al. Materials properties of barricade bricks for mining applications
CN105021507A (en) Field detection device of gas permeability coefficient of bridge structural concrete and application method thereof
CN211318136U (en) Water inrush simulation device suitable for fault water inrush research on confined aquifer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250