JP4511400B2 - Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing - Google Patents

Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing Download PDF

Info

Publication number
JP4511400B2
JP4511400B2 JP2005094487A JP2005094487A JP4511400B2 JP 4511400 B2 JP4511400 B2 JP 4511400B2 JP 2005094487 A JP2005094487 A JP 2005094487A JP 2005094487 A JP2005094487 A JP 2005094487A JP 4511400 B2 JP4511400 B2 JP 4511400B2
Authority
JP
Japan
Prior art keywords
cement
layer
strength
thickness
improved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005094487A
Other languages
Japanese (ja)
Other versions
JP2006274650A (en
Inventor
康年 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP2005094487A priority Critical patent/JP4511400B2/en
Publication of JP2006274650A publication Critical patent/JP2006274650A/en
Application granted granted Critical
Publication of JP4511400B2 publication Critical patent/JP4511400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Revetment (AREA)

Description

本発明は、セメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法に関し、さらに詳しくは、施工現場に適した改良層を形成して裏込砂の吸出し防止を可能とするセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法に関するものである。   The present invention relates to a method for determining the strength and thickness of an improved layer of backfill sand by injecting and mixing cement-based solidifying material, and more specifically, an improved layer suitable for the construction site can be formed to prevent backfill sand from being sucked out. The present invention relates to a method for determining the strength and thickness of an improved layer of backfill sand by cement-based solidifying material injection mixing.

ケーソン等の海上構造体の裏込砂の吸出しを防止する工法として、薬液を注入して裏込砂を改良(硬化)させることによって吸出しを防ぐ工法がある。この薬液注入工法については、薬液によって改良された裏込砂のサンプルを製造して、このサンプルを用いた実験によって、吸出しが発生しない強度を把握して、この把握した強度を得ることができる濃度の薬液を注入する工法が提案されている(特許文献1参照)。   As a construction method for preventing the back sand from sucking off the offshore structure such as caisson, there is a method for preventing the suction by injecting a chemical solution to improve (harden) the back sand. Concerning this chemical injection method, the concentration of the backside sand improved by the chemical solution, the strength at which suction does not occur, and the obtained strength can be obtained by experiments using this sample. A method of injecting a chemical solution has been proposed (see Patent Document 1).

この提案では、注入する薬液濃度を変えることによって、裏込砂の強度のみを変えて、24時間という一定時間に渡ってサンプルに変動水圧を与える実験で、吸出しの有無という結果のみを検証して吸出しが発生しない最適な強度を検出するようにしている。即ち、改良する裏込砂の層厚を所与として、ある所定期間(24時間)において吸出しを防止できる薬液注入による改良裏込砂を形成することしかできず、適切な層厚等が明確にならない等の問題があった。   In this proposal, by changing the concentration of the chemical to be injected, only the strength of the back sand is changed, and in the experiment in which the sample is subjected to variable water pressure over a certain period of 24 hours, only the result of the presence or absence of suction is verified. The optimum intensity that does not cause suction is detected. That is, given the layer thickness of the back sand to be improved, it is only possible to form the improved back sand by chemical injection that can prevent sucking in a certain period (24 hours), and the appropriate layer thickness etc. can be clearly defined. There was a problem of not becoming.

改良層により高い強度が必要な場合等には、原位置の裏込砂にセメント系固化材を注入して噴射攪拌や機械攪拌等で混合することによって、改良層を形成する工法があるが、上記の提案では適切な層厚の決定ができず、工法も異なるため、そのまま適用することができず、施工現場に最適なセメント系固化材による改良層の形成が困難であった。
特開2002−322639号公報
When high strength is required for the improved layer, etc., there is a method of forming the improved layer by injecting cement-based solidified material into the in-situ back sand and mixing it by spray stirring, mechanical stirring, etc. In the above proposal, an appropriate layer thickness cannot be determined and the construction method is different, so that it cannot be applied as it is, and it is difficult to form an improved layer using a cement-based solidifying material optimal for the construction site.
JP 2002-322639 A

本発明の目的は、施工現場に適した改良層を形成して裏込砂の吸出し防止を可能とするセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法を提供することにある。   It is an object of the present invention to provide a method for determining the strength and thickness of an improved layer of back sand by injecting and mixing cement-based solidifying material that can prevent the back sand from being sucked out by forming an improved layer suitable for the construction site. There is to do.

上記目的を達成するため本発明のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法は、ケーソン等の構造体の裏込砂の吸出しを防止するセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法であって、施工現場から改良対象の裏込砂を採取して、注入するセメント系固化材の裏込砂単位体積当りの添加量を変えて混合して大気圧下で改良層サンプルを製造する工程と、前記セメント系固化材の添加量を変えて混合した改良層サンプルを用いてセメント系固化材添加量と強度との関係データを取得する工程と、前記改良層サンプルをセメント系固化材添加量毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程と、前記取得した両関係データに基づいて前記施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程とを有することを特徴とするものである。   In order to achieve the above object, the method for determining the strength and thickness of the improved back sand layer by injecting and mixing the cement-based solidifying material of the present invention is a cement-based solidifying material that prevents the back-sand from sucking out of the structure such as caisson. This is a method for determining the strength and thickness of the improved layer of backfill sand by injection mixing, collecting the backfill sand to be improved from the construction site, and adding the cement-based solidified material to be injected per unit volume of backfill sand. The process of producing an improved layer sample under atmospheric pressure by mixing in different amounts, and the relationship between the cement-based solidifying material addition amount and strength using the improved layer sample mixed by changing the added amount of the cement-based solidifying material The process of acquiring data, and changing the layer thickness for each addition amount of the cement-based solidifying material and applying a variable hydraulic pressure until it breaks under predetermined conditions, the layer thickness and the number of times or time until breakage Process for obtaining related data , It is characterized in that a step of selecting the strength and thickness of satisfying improvement layer required in the construction site based on both relationship data the acquired.

尚、本発明において裏込砂とは裏込めされる土壌を意味し、裏込土も含むものである。   In the present invention, the backfill sand means soil to be backfilled and includes backfill soil.

本発明のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法によれば、施工現場から改良対象の裏込砂を採取して、注入するセメント系固化材の裏込砂単位体積当りの添加量を変えて混合して大気圧下で改良層サンプルを製造する工程によって、実際に用いられる裏込砂とセメント系固化材とでサンプルを製造でき、現実をより再現して精度のよいデータを取得することができる。   According to the method for determining the strength and thickness of the improved back sand layer by the cement-based solidifying material injection and mixing of the present invention, the back-ground sand to be improved is collected from the construction site and injected. By changing the amount of added sand per unit volume and mixing to produce an improved layer sample under atmospheric pressure, the sample can be produced with the actual backfill sand and cement-based solidified material, making the reality more realistic Thus, accurate data can be acquired.

また、セメント系固化材の添加量を変えて混合した改良層サンプルを用いてセメント系固化材添加量と強度との関係データを取得する工程では、セメント系固化材添加量と改良層の強度との相関関係を把握することができる。改良層サンプルをセメント系固化材添加量毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程では、実際に施工現場で改良層に作用する条件に近似した実験によって、セメント系固化材添加量毎の改良層の層厚と強度との相関関係を把握することができる。   In addition, in the process of obtaining the relationship data between the cement-based solidifying material addition amount and the strength using the improved layer sample mixed by changing the cement-based solidifying material addition amount, the cement-based solidifying material addition amount and the strength of the improvement layer Can be grasped. In the process of obtaining the relationship data between the layer thickness and the number of times or the time until destruction by giving a variable hydraulic pressure until the improved layer sample is destroyed under predetermined conditions by changing the layer thickness for each cement-based solidifying material addition amount, The correlation between the layer thickness and strength of the improved layer for each cement-based solidifying material addition amount can be grasped by an experiment that approximates the conditions that actually act on the improved layer at the construction site.

そして、この取得した両関係データに基づいて施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程によって、条件満たす改良層の強度および層厚の組合せの中から最適な組合せを選択することができる。   Based on the acquired relationship data, an optimal combination is selected from the combinations of the strength and thickness of the improved layer that satisfies the conditions by the process of selecting the strength and thickness of the improved layer that satisfies the requirements at the construction site. Can be selected.

以上の工程によって選択決定された改良層の強度となる裏込砂単位体積当り添加量Cのセメント系固化材を注入して、決定した層厚の改良層を形成すると、施工現場の要求条件を満たして、裏込砂の吸出しを防止することが可能となる。   When the cement-type solidified material of the added amount C per unit volume of the back sand, which becomes the strength of the improved layer selected and determined by the above process, is injected to form the improved layer with the determined layer thickness, It is possible to satisfy and prevent sucking back sand.

以下、本発明のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法を図に示した実施形態に基づいて説明する。   Hereinafter, a method for determining the strength and thickness of an improved layer of backfill sand by cement-based solidifying material injection and mixing according to the present invention will be described based on the embodiments shown in the drawings.

図9に裏込砂5にセメント系固化材を注入混合する施工現場の一例を断面図で例示する。施工現場の基礎捨石2の上にケーソン1が設置されており、ケーソン1の背面には裏込石3が敷設され、上面は防砂シート4で被覆されて、その上に裏込砂5が埋め戻しされ、最上面は舗装面7となっている。このケーソン1は護岸の延長方向に複数設置されて隣り合うケーソン1の間は隙間をあけて目地が形成され、この隙間は目地板によって塞がれている。   FIG. 9 is a cross-sectional view illustrating an example of a construction site where a cement-based solidifying material is injected and mixed into the back sand 5. The caisson 1 is installed on the foundation rubble 2 at the construction site, the backside stone 3 is laid on the back of the caisson 1, the top surface is covered with the sandproof sheet 4, and the backside sand 5 is buried on it. The uppermost surface is the pavement surface 7. A plurality of the caisson 1 are installed in the extending direction of the revetment, and a joint is formed with a gap between adjacent caisson 1, and the gap is closed by a joint plate.

ここで、ケーソン1の目地板が破損等すると、ケーソン1の前面の海水Wの波動によって、裏込砂5が海側に吸出される、いわゆる、吸出し現象が発生する。そこで、ケーソン1の背面に沿って垂直にセメント系固化材を裏込砂5に注入混合して硬化させた改良層6を形成して、吸出しを防止する。そのためには、施工現場の要求条件を満たした最適な強度および層厚Hの改良層6を形成する必要がある。   Here, when the joint plate of the caisson 1 is damaged, a so-called sucking phenomenon occurs in which the back sand 5 is sucked out to the sea side by the wave motion of the seawater W on the front surface of the caisson 1. Therefore, an improved layer 6 is formed by injecting, mixing and hardening a cement-based solidified material into the back sand 5 vertically along the back surface of the caisson 1 to prevent sucking. For this purpose, it is necessary to form the improved layer 6 having the optimum strength and thickness H that satisfies the requirements of the construction site.

改良層6の形成には例えば、図10に示すように、水を混合したスラリー状のセメント系固化材を電動モータ25で回転する攪拌軸22を通じて先端の吐出口24からジェット噴流によって回転噴射して上下移動させて、改良層形成範囲を切削しつつ、セメント系固化材を供給して裏込砂5と攪拌混合する噴射攪拌方式を用いることができる。この方式では、図12(a)に示す平面図のように、徐々にケーソン1の長手方向に沿って背面に改良層6aが形成される。   For example, as shown in FIG. 10, the improved layer 6 is formed by rotating and injecting a slurry-like cement-based solidified material mixed with water by a jet jet from a discharge port 24 at the tip through a stirring shaft 22 rotated by an electric motor 25. It is possible to use a jet stirring method in which the cement-type solidified material is supplied and stirred with the back sand 5 while cutting the improved layer forming range by moving the material up and down. In this method, the improvement layer 6a is gradually formed on the back surface along the longitudinal direction of the caisson 1 as shown in the plan view of FIG.

改良層6を形成する別の方法としては例えば、図11に示すように、水を混合したスラリー状のセメント系固化材を電動モータ25で回転する攪拌軸22を通じて先端部側の吐出口24から吐出させながら攪拌翼23で裏込砂5とセメント系固化材とを攪拌混合する機械攪拌方式によって改良層6bを形成し、その外側に噴射攪拌方式によってケーソン1の背面に接する改良層6aを形成する機械・噴射攪拌併用方式を用いることもできる。機械攪拌方式だけでは、攪拌翼23がケーソン1の背面に接触するので、ケーソン1の背面にすき間なく改良層6を形成するのは困難であるが、この併用方式では図12(b)に示す平面図にように、内側が機械攪拌で形成された改良層6bとなり、その外側が噴射攪拌で形成された改良層6aとなり、ケーソン1の長手方向に沿って背面に改良層6が形成される。   As another method for forming the improved layer 6, for example, as shown in FIG. 11, a slurry-like cement-based solidified material mixed with water is discharged from a discharge port 24 on the tip side through a stirring shaft 22 rotated by an electric motor 25. The improved layer 6b is formed by a mechanical stirring method in which the back sand 5 and the cement-based solidified material are stirred and mixed by the stirring blade 23 while being discharged, and the improved layer 6a in contact with the back surface of the caisson 1 is formed by the jet stirring method on the outer side. It is also possible to use a combination of mechanical and jet stirring. With only the mechanical stirring method, the stirring blade 23 comes into contact with the back surface of the caisson 1, so it is difficult to form the improvement layer 6 without a gap on the back surface of the caisson 1, but this combined method is shown in FIG. As shown in the plan view, the inner layer is an improved layer 6b formed by mechanical stirring, the outer side is an improved layer 6a formed by jet stirring, and the improved layer 6 is formed on the back surface along the longitudinal direction of the caisson 1. .

これらの方式で改良層6を形成するために、図1に示す手順で改良層6の強度および層厚Hを決定する。まず、施工現場から改良対象の裏込砂5を採取して、裏込砂単位体積当りのセメント系固化材の添加量Cを数通りに変えて混合して大気圧下で改良層サンプルSを製造する(第1工程)。この改良層サンプルSは、裏込砂5と各添加量Cのセメント系固化材と水とを混合してモールド等の容器に詰めた後、大気圧下で、例えば、28日間養生して改良層サンプルSを製造する。   In order to form the improved layer 6 by these methods, the strength and the layer thickness H of the improved layer 6 are determined by the procedure shown in FIG. First, the back sand 5 to be improved is collected from the construction site, and the amount C of the cement-based solidification material per unit volume of the back sand is changed in several ways and mixed to obtain the improved layer sample S under atmospheric pressure. Manufacture (first step). This improved layer sample S is prepared by mixing backfill sand 5, cement-type solidified material of each addition amount C and water, filling the container with a mold or the like, and then curing and improving at atmospheric pressure, for example, for 28 days. A layer sample S is produced.

改良層サンプルSを製造するには、地盤工学会基準「安定処理土の締固めをしない供試体作製方法(JGS 0821−2000)」に記載されている供試体の製造方法を用いると、今までに蓄積された知見やデータを利用することができるので好ましい。   In order to manufacture the improvement layer sample S, until now, using the specimen manufacturing method described in the Geotechnical Society standard “Method of preparing specimen without compaction of stabilized soil (JGS 0821-2000)”, It is preferable because knowledge and data accumulated in the database can be used.

この改良層サンプルSは、実際に改良層6が形成される施工現場の裏込砂5を用いて製造されるので、この改良層サンプルSを実験に用いることによって、現実をより再現して精度のよいデータが取得可能となる。改良層サンプルSは、強度試験と変動水圧試験に使用するので、セメント系固化材の添加量C毎に強度試験用として数本以上および層厚の異なる数種類を製造しておく。   Since this improved layer sample S is manufactured using the back sand 5 at the construction site where the improved layer 6 is actually formed, the improved layer sample S can be used for experiments to reproduce the reality more accurately. Good data can be acquired. Since the improved layer sample S is used for the strength test and the fluctuating hydraulic pressure test, several or more types and several types having different layer thicknesses are manufactured for the strength test for each addition amount C of the cement-based solidified material.

つぎに、裏込砂単位体積当りのセメント系固化材の添加量Cを変えた改良層サンプルSを用いて添加量Cと強度qとの関係データを取得する(第2工程)。具体的には、改良層サンプルSの一軸圧縮強度試験を実施して、強度qと添加量Cとの関係をプロットすると、図5に例示するような強度qと添加量Cとの比例関係データを取得することができる。これによって、注入混合するセメント系固化材の裏込砂単位体積当りの添加量Cによって、施工現場で形成される改良層6の強度qを把握、推定することが可能となる。   Next, the relationship data of the addition amount C and the strength q are acquired using the improved layer sample S in which the addition amount C of the cement-based solidifying material per unit volume of the back sand is changed (second step). Specifically, when the uniaxial compressive strength test of the improved layer sample S is performed and the relationship between the strength q and the addition amount C is plotted, the proportional relationship data between the strength q and the addition amount C as illustrated in FIG. Can be obtained. Accordingly, it is possible to grasp and estimate the strength q of the improved layer 6 formed at the construction site by the addition amount C per unit volume of the back sand of the cement-based solidified material to be injected and mixed.

つぎに、改良層サンプルSを添加量C毎に層厚hを変えて所定条件下で破壊するまで変動水圧Pを与える変動水圧実験を実施して、層厚hと破壊するまでの回数Nまたは時間tとの関係データを取得する(第3工程)。   Next, a variable water pressure experiment is performed in which a variable water pressure P is applied until the improved layer sample S is broken under predetermined conditions by changing the layer thickness h for each addition amount C. Data related to time t is acquired (third step).

この変動水圧実験を概念的に示すと図3のようになり、上部に変動圧力ユニットとなる導管11を、下部に水流通管12を接続した密閉容器8に改良層サンプルSを収容して実施する。密閉容器8の底部には水の流通性を確保するためにガラスビーズGが敷設されている。   This fluctuating water pressure experiment is conceptually shown in FIG. 3, and the improvement layer sample S is accommodated in a sealed container 8 having a fluctuating pressure unit connected to the upper part and a water flow pipe 12 connected to the lower part. To do. Glass beads G are laid at the bottom of the sealed container 8 in order to ensure water flowability.

改良層サンプルSには、上部の導管11の水Wおよび下部の水流通管12の水Wによって所定圧力が負荷される。この所定圧力は、改良層6が形成される位置で受ける圧力に相当する圧力であり、例えば、改良層6が形成される代表深さ地点Dでの圧力とする。   The improvement layer sample S is loaded with a predetermined pressure by the water W in the upper conduit 11 and the water W in the lower water circulation pipe 12. This predetermined pressure is a pressure corresponding to the pressure received at the position where the improvement layer 6 is formed, and is, for example, the pressure at the representative depth point D where the improvement layer 6 is formed.

この状態で、上部の導管11の水Wを上下動させる変動圧力Pを与える。この変動圧力Pは、施工現場で発生する波の波動データを予め取得しておき、このデータに基づいて、例えば、図4に示すような最頻出の波と同じ圧力振幅および周波数に設定する。尚、変動圧力Pは代表深さ地点Dでの圧力に最頻出の波による上下動によって変化した値となる。   In this state, a fluctuating pressure P for moving the water W in the upper conduit 11 up and down is applied. The fluctuating pressure P is obtained in advance as wave data of waves generated at the construction site, and based on this data, for example, is set to the same pressure amplitude and frequency as the most frequent waves as shown in FIG. The fluctuating pressure P is a value that changes due to the vertical movement caused by the most frequent wave to the pressure at the representative depth point D.

この変動圧力Pによって、導管11の水Wが改良層サンプルSを透過して水流通管12を流出入し、水Wの繰返し透過によって徐々に改良層サンプルSが破壊され、その破壊までの繰返し回数Nまたは時間tを測定する。   Due to this fluctuating pressure P, the water W in the conduit 11 permeates the improved layer sample S and flows in and out of the water circulation pipe 12, and the improved layer sample S is gradually destroyed by repeated permeation of the water W, and the repetition until the destruction is repeated. The number of times N or time t is measured.

即ち、裏込砂5の吸出しを発生させる施工現場に近似した状態を再現して、改良層サンプルSの耐久性について精度のよいデータを取得することができる。   That is, it is possible to reproduce the state approximate to the construction site where suction of the back sand 5 is generated, and to acquire accurate data on the durability of the improved layer sample S.

変動水圧実験装置は全体概要を図2に示すように、変動水圧装置8と流量計測装置13と両装置8、13を連結する水流通管12とを備えている。変動水圧装置8は、底部にガラスビーズGを敷設した密閉容器9と、変動圧力ユニットとを有し、この変動圧力ユニットは導管11、電空変換器20aおよび圧縮空気発生装置17で構成されて制御装置18で制御される。密閉容器9は、例えば、外径100mm、高さ100mm程度のものを使用する。圧縮空気発生装置17は、コンプレッサやレギュレータ等から構成される。   As shown in FIG. 2, the fluctuation water pressure experimental device includes a fluctuation water pressure device 8, a flow rate measurement device 13, and a water flow pipe 12 that connects both devices 8 and 13. The fluctuating water pressure device 8 includes a sealed container 9 in which glass beads G are laid at the bottom, and a fluctuating pressure unit. The fluctuating pressure unit includes a conduit 11, an electropneumatic converter 20a, and a compressed air generating device 17. It is controlled by the control device 18. For example, a sealed container 9 having an outer diameter of about 100 mm and a height of about 100 mm is used. The compressed air generator 17 includes a compressor, a regulator, and the like.

流量計測装置13は、密閉容器14内部に設置され、計測ユニット19に接続された微小荷重計15と、これに吊設された水収容タンク16と、加圧ユニットとを有し、この加圧ユニットは密閉容器14、電空変換器20b、圧力計21bおよび圧縮空気発生装置17で構成されて制御装置18で制御される。   The flow rate measurement device 13 includes a micro load meter 15 installed in the sealed container 14 and connected to the measurement unit 19, a water storage tank 16 suspended from the pressure meter, and a pressure unit. The unit includes a sealed container 14, an electropneumatic converter 20 b, a pressure gauge 21 b, and a compressed air generator 17, and is controlled by a controller 18.

水流通管12は、一端を変動水圧装置8の密閉容器9の底部に連結し、他端を流量計測装置13の水収容タンク16に配置し、管路水圧計測装置を構成する計測ユニット19に接続された圧力計21cを有している。   One end of the water distribution pipe 12 is connected to the bottom of the sealed container 9 of the variable water pressure device 8, and the other end is disposed in the water storage tank 16 of the flow rate measurement device 13, so that the measurement unit 19 constituting the pipe water pressure measurement device is provided. It has a connected pressure gauge 21c.

変動水圧実験は、変動水圧装置8の密閉容器9に改良層サンプルSを金網10で上下を挟んだ状態にして、水Wおよび空気Aとともに収容して実施する。流量測定装置13の圧縮空気発生装置17および電空変換器20aで密閉容器14内部を所定圧力に調整することによって、水流通管12を介して密閉容器9内部が所定圧力に維持される。この所定圧力とは、既述したように改良層6が形成される位置で受ける相当圧力であり、この所定圧力は計測ユニット19に接続された圧力計21bで計測される。   The fluctuating water pressure experiment is carried out by containing the improvement layer sample S in the airtight container 9 of the fluctuating water pressure device 8 with the wire mesh 10 sandwiched between the water W and the air A. By adjusting the inside of the sealed container 14 to a predetermined pressure with the compressed air generator 17 and the electropneumatic converter 20 a of the flow rate measuring device 13, the inside of the sealed container 9 is maintained at a predetermined pressure via the water circulation pipe 12. This predetermined pressure is an equivalent pressure received at the position where the improvement layer 6 is formed as described above, and this predetermined pressure is measured by the pressure gauge 21 b connected to the measurement unit 19.

そして、導管11を通じて圧縮空気発生装置17および電空変換器20aによって、密閉容器9内に空気Aを流出入させることによって、水Wに既述したような施工現場で発生する波に則した変動水圧P1を与える。この変動水圧P1は、圧力計21aで計測される。変動水圧P1を与える方法は、これに限定されず他の方法を用いてもよい。   Then, by causing the compressed air generator 17 and the electropneumatic converter 20a to flow the air A into and out of the sealed container 9 through the conduit 11, the fluctuation in accordance with the waves generated at the construction site as described above in the water W is achieved. Water pressure P1 is applied. This fluctuating water pressure P1 is measured by the pressure gauge 21a. The method of giving the fluctuating water pressure P1 is not limited to this, and other methods may be used.

変動水圧P1によって、密閉容器9内の水Wが改良層サンプルSを透過して、水流通管12を通じて流量測定装置13の水収容タンク16に流出入し、その水Wの流量は、微小荷重計15で計測され、水流通管12における水圧P2は圧力計21cで計測される。改良層サンプルSの上下に設置された金網10は、改良層サンプルSが脆い場合等に保護するためのものであり、設置を省略することもできる。   Due to the fluctuating water pressure P1, the water W in the sealed container 9 permeates the improved layer sample S and flows into and out of the water storage tank 16 of the flow rate measuring device 13 through the water flow pipe 12, and the flow rate of the water W is a minute load. The water pressure P2 in the water distribution pipe 12 is measured by the pressure gauge 21c. The wire mesh 10 installed above and below the improvement layer sample S is for protection when the improvement layer sample S is fragile, and the installation can be omitted.

流量測定装置13で測定した流量を経時的に示すと、図6のように圧力変動による上下変位をしながら、流出流量Qが急増してくる。図6の縦軸の流出流量Qは、マイナス(下方)になる程、水流通管12を通じて流量測定装置13の収容タンク16から密閉容器9内へ水Wが流出していることを意味している。即ち、改良層サンプルSが破壊して流出流量Qが増加していることを示している。このように、流量データに基づいて、例えば、流出流量Qが急増した時点B1を、改良層サンプルSが破壊したと判定する。尚、本発明において改良層サンプルS(改良層6)の破壊とは、亀裂等が発生することだけではなく、水の透過量が増加して止水機能を果たさなくなった場合も含むものである。   When the flow rate measured by the flow rate measuring device 13 is shown with time, the outflow flow rate Q rapidly increases while vertically moving due to pressure fluctuation as shown in FIG. As the outflow flow rate Q on the vertical axis in FIG. 6 becomes negative (downward), it means that the water W flows from the storage tank 16 of the flow measurement device 13 into the sealed container 9 through the water flow pipe 12. Yes. That is, it is shown that the improvement layer sample S is broken and the outflow flow rate Q is increased. Thus, based on the flow rate data, for example, it is determined that the improvement layer sample S has been destroyed at the point B1 at which the outflow rate Q has increased rapidly. In the present invention, the destruction of the improved layer sample S (improved layer 6) includes not only the occurrence of cracks and the like, but also the case where the water permeation amount increases and the water stop function is not performed.

また、圧力計21aで測定した変動水圧P1と圧力計21cで測定した水流通管12の改良層サンプルS下面の水圧P2のデータを経時的に示すと、図7のように圧力変動による上下変位をしながら、水圧P2が増加し始め、水圧P1とP2とが一致するようになる。これは、改良層サンプルSが破壊して圧力が均一化したことを示している。図7では水圧P2のデータ(実線)を明確にするため水圧P1のデータ(点線)を中途で省略して示している。改良層サンプルS下面の水圧P2が増加した時点B2は、流量Qが急増する時点B1と一致することが確認されているので、例えば、流出流量Qが急増した時点B2を改良層サンプルSが破壊したと判定することもできる。尚、図6、7では横軸を時間tとしているが、変動水圧P1を与えた回数(繰返し回数N)としてもよい。   Further, when the data of the fluctuation water pressure P1 measured by the pressure gauge 21a and the water pressure P2 on the lower surface of the improved layer sample S of the water flow pipe 12 measured by the pressure gauge 21c are shown with time, the vertical displacement due to the pressure fluctuation as shown in FIG. The water pressure P2 starts to increase while the water pressures P1 and P2 coincide with each other. This has shown that the improvement layer sample S destroyed and the pressure became uniform. In FIG. 7, in order to clarify the data (solid line) of the water pressure P2, the data (dotted line) of the water pressure P1 is omitted in the middle. It is confirmed that the point B2 when the water pressure P2 on the lower surface of the improvement layer sample S increases coincides with the point B1 when the flow rate Q rapidly increases. It can also be determined that 6 and 7, the horizontal axis represents time t, but the number of times the fluctuating water pressure P1 is applied (the number of repetitions N) may be used.

第2工程と第3工程を実施する順番は、どちらが先でもよく、同時に実施して実験時間を短縮することが好ましい。   The order of performing the second step and the third step may be either, and it is preferable to perform the steps at the same time to shorten the experiment time.

そして、先に取得した添加量Cと強度qとの関係データ、層厚hと破壊回数Nまたは破壊時間tとの関係データに基づいて、施工現場で要求される条件を満たす改良層6の強度および層厚hを選択する(第4工程)。具体的には、取得データを強度q(即ち、セメント系固化材の裏込砂単位体積当り添加量C)毎に、層厚hと破壊までの繰返し回数Nとの関係をプロットすると、図8に例示するような強度q1〜q3毎に曲線q1〜q3の二次曲線の関係データを取得することができる。   Then, based on the relationship data between the addition amount C and the strength q acquired earlier and the relationship data between the layer thickness h and the number of times of destruction N or the failure time t, the strength of the improved layer 6 that satisfies the conditions required at the construction site. Then, the layer thickness h is selected (fourth step). Specifically, when the acquired data is plotted for each strength q (that is, the addition amount C per unit volume of the back sand of the cement-based solidified material), the relationship between the layer thickness h and the number N of repetitions until fracture is shown in FIG. The relational data of the quadratic curves of the curves q1 to q3 can be acquired for each of the strengths q1 to q3 as exemplified in FIG.

破壊までの繰返し回数Nに、周波数(変動水圧の変動周波数)を乗じると破壊するまでの時間tとなるので、図8において、横軸を破壊するまでの時間tとしてデータをプロットすれば、同様に二次曲線の関係データを取得することができる
例えば、データを回帰分析すると、次の(1)、(2)式を得ることができる。
h=A+BlogN+C(logN)・・・(1)
h=A+Blogt+C(logt)・・・(2)
ここに、h:改良層サンプルの層厚
A、B、C:係数
N:破壊までの繰返し回数
t:破壊までの繰返し時間
Multiplying the number N of repetitions until destruction by the frequency (fluctuation frequency of fluctuating water pressure) gives time t until destruction. Therefore, in FIG. For example, when the data is subjected to regression analysis, the following equations (1) and (2) can be obtained.
h = A + BlogN + C (logN) 2 (1)
h = A + Blogt + C (logt) 2 (2)
Where h: layer thickness of improved layer sample A, B, C: coefficient N: number of repetitions until failure t: repetition time until failure

これによって、強度q(即ち、裏込砂単位体積当りのセメント系固化材の添加量C)毎の層厚hと耐久性(破壊するまでの繰返し回数Nや時間t)の相関関係を把握することができ、強度qおよび層厚hによって耐久性を推定することが可能となる。このプロットデータから、施工現場の要求条件を満たす最適な層厚H(=h)と強度qとの組合せを選択する。例えば、耐久年数の要求条件がある場合は、その耐久年数に対応する繰返し回数Nをクリアする層厚Hおよび強度qの組合せを選択する。条件を満たす組合せが複数ある場合は、コスト算出して最も低コストになる組合せや層厚Hに規制がある場合は、その層厚Hとなる組合せを選択する。   Thus, the correlation between the layer thickness h for each strength q (that is, the amount C of the cement-based solidifying material added per unit volume of the back sand) and the durability (the number of repetitions N and time t until breakage) is grasped. The durability can be estimated by the strength q and the layer thickness h. From this plot data, an optimum combination of the layer thickness H (= h) and the strength q that satisfies the requirements of the construction site is selected. For example, when there is a requirement for the durable years, a combination of the layer thickness H and the strength q that clears the repetition number N corresponding to the durable years is selected. When there are a plurality of combinations that satisfy the conditions, the combination that achieves the lowest cost by calculating the cost or the layer thickness H is selected when there is a restriction on the layer thickness H.

以上の工程によって、改良層6の層厚Hと強度qとの組合せを決定した後、実際の施工では室内試験よりも強度が低下するので、決定した強度qに安全率αを乗じた強度αqとなる裏込砂単位体積当りの添加量Cのセメント系固化材を注入混合して決定した層厚Hの改良層6を形成する。これによって、施工現場の要求条件を満たした最適な改良層6が形成され、裏込砂5の吸出しを防止することが可能となる。   After the combination of the layer thickness H and the strength q of the improved layer 6 is determined by the above steps, the strength is lower than the laboratory test in actual construction. Therefore, the strength αq obtained by multiplying the determined strength q by the safety factor α. An improved layer 6 having a layer thickness H determined by injecting and mixing an added amount C of cementitious solidifying material per unit volume of the back sand is obtained. Thereby, the optimal improvement layer 6 which satisfy | filled the requirements of a construction site is formed, and it becomes possible to prevent the back sand 5 from being sucked out.

本発明のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法を例示するフロー図である。It is a flowchart which illustrates the determination method of the intensity | strength and layer thickness of the improvement layer of backfill sand by the cement-type solidification material injection | pouring mixing of this invention. 本発明の変動水圧実験装置の全体概要を例示する説明図である。It is explanatory drawing which illustrates the whole outline | summary of the fluctuation | variation water pressure experiment apparatus of this invention. 改良層サンプルに変動水圧を与える方法を概念的に示す説明図である。It is explanatory drawing which shows notionally the method of giving a fluctuation | variation water pressure to an improvement layer sample. 改良層サンプルに与える変動水圧を例示するグラフ図である。It is a graph which illustrates the fluctuating water pressure given to an improvement layer sample. セメント系固化材の単位当り添加量と一軸圧縮強度との関係を示すグラフ図である。It is a graph which shows the relationship between the addition amount per unit of a cement-type solidification material, and uniaxial compressive strength. 変動水圧によって改良層サンプルを透過する水の流量の経時変動を示すグラフ図である。It is a graph which shows the time-dependent fluctuation | variation of the flow volume of the water which permeate | transmits an improvement layer sample with a fluctuation | variation water pressure. 変動水圧によって水流通管を流出入する水の水圧の経時変動を示すグラフ図である。It is a graph which shows the time-dependent fluctuation | variation of the water pressure of the water which flows in and out of a water circulation pipe with a fluctuation | variation water pressure. 改良層サンプルの層厚と耐久性との関係を示すグラフ図である。It is a graph which shows the relationship between the layer thickness of an improvement layer sample, and durability. 裏込砂にセメント系固化材を注入混合する施工現場の一例を示す断面図である。It is sectional drawing which shows an example of the construction site which inject | pours and mixes a cement-type solidification material to backfill sand. 裏込砂にセメント系固化材を注入混合する噴射攪拌方式を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the injection stirring system which inject | pours and mixes a cement-type solidification material to backfill sand. 裏込砂にセメント系固化材を注入混合する機械攪拌方式を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the mechanical stirring system which inject | pours and mixes a cement-type solidification material to backfill sand. 改良層の形成過程を示し、図12(a)は噴射攪拌方式による過程、図12(b)は機械・噴射攪拌併用方式による過程を示す平面図である。FIG. 12A is a plan view showing a process using an injection stirring method, and FIG. 12B is a plan view showing a process using a combined mechanical and jet stirring method.

符号の説明Explanation of symbols

1 ケーソン 2 基礎捨石 3 裏込石
4 防砂シート 5 裏込砂
6 裏込砂の改良層
6a 噴射攪拌方式で形成された改良層
6b 機械攪拌方式で形成された改良層
7 舗装面
8 変動水圧装置
9 密閉容器 10 金網
11 導管 12 水流通管
13 流量測定装置 14 密閉容器
15 微小荷重計 16 水収容タンク
17 圧縮空気発生装置
18 制御装置
19 計測ユニット
20a〜20b 電空変換器
21a〜21c 圧力計
22 攪拌軸 23 攪拌翼 24 吐出口 25 電動モータ
A 空気 G ガラスビーズ S 改良層サンプル W 水

1 Caisson 2 Basic rubble 3 Back lining stone
4 Sediment prevention sheet 5 Backfill sand 6 Improved layer of backfill sand
6a Improved layer formed by spray stirring method
6b Improved layer formed by mechanical stirring method 7 Pavement surface 8 Fluctuating hydraulic device
9 Sealed container 10 Wire mesh 11 Conduit 12 Water flow pipe 13 Flow rate measuring device 14 Sealed container
15 Micro load cell 16 Water storage tank 17 Compressed air generator
DESCRIPTION OF SYMBOLS 18 Control apparatus 19 Measurement unit 20a-20b Electropneumatic converter 21a-21c Pressure gauge 22 Stirring shaft 23 Stirring blade 24 Discharge port 25 Electric motor A Air G Glass bead S Improvement layer sample W Water

Claims (3)

ケーソン等の構造体の裏込砂の吸出しを防止するセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法であって、施工現場から改良対象の裏込砂を採取して、注入するセメント系固化材の裏込砂単位体積当りの添加量を変えて混合して大気圧下で改良層サンプルを製造する工程と、前記セメント系固化材の添加量を変えて混合した改良層サンプルを用いてセメント系固化材添加量と強度との関係データを取得する工程と、前記改良層サンプルをセメント系固化材添加量毎に層厚を変えて所定条件下で破壊するまで変動水圧を与えて、層厚と破壊するまでの回数または時間との関係データを取得する工程と、前記取得した両関係データに基づいて前記施工現場で要求される条件を満たす改良層の強度および層厚を選択する工程とを有するセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法。   A method for determining the strength and thickness of an improved layer of backfill sand by injecting and mixing cement-based solidifying material that prevents sucking out the backfill sand of caisson and other structures. Then, changing the addition amount of the cement-based solidified material per unit volume of the back sand and mixing the mixture to produce an improved layer sample under atmospheric pressure, and mixing the cement-based solidified material while changing the addition amount The process of acquiring the relationship data between the cement-based solidifying material addition amount and strength using the improved layer sample, and changing the layer thickness for each cement-based solidifying material addition amount until the layer is destroyed under predetermined conditions The process of obtaining the relational data between the layer thickness and the number of times or the time until destruction by giving a fluctuating water pressure, the strength of the improved layer that satisfies the conditions required at the construction site based on the obtained both relational data and Select the layer thickness Strength and thickness determination method of improving layer of Urakomi sand by cement solidifying material injection mixture and a step. 前記層厚と破壊するまでの回数または時間との関係データを取得する工程において、前記変動水圧によって前記改良層サンプルを透過する水の流量を測定し、該測定した流量データに基づいて、前記破壊するまでの回数または時間を判定する請求項1に記載のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法。   In the step of acquiring the relational data between the layer thickness and the number of times or time until destruction, the flow rate of water that permeates the improved layer sample is measured by the fluctuating water pressure, and the destruction is performed based on the measured flow rate data. The method for determining the strength and thickness of the improved layer of back sand by cement-solidifying material injection and mixing according to claim 1, wherein the number of times or time until the determination is determined. 前記層厚と破壊するまでの回数または時間との関係データを取得する工程において、前記変動水圧によって前記改良層サンプルを透過する水の圧力を測定し、該測定した水の圧力データに基づいて、前記破壊するまでの回数または時間を判定する請求項1に記載のセメント系固化材注入混合による裏込砂の改良層の強度および層厚の決定方法。   In the step of obtaining the relationship data between the layer thickness and the number of times or time until failure, the pressure of water that permeates the improved layer sample by the fluctuating water pressure is measured, and based on the measured water pressure data, The method for determining the strength and layer thickness of an improved layer of back sand by cement-based solidifying material injection and mixing according to claim 1, wherein the number of times or time until destruction is determined.
JP2005094487A 2005-03-29 2005-03-29 Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing Active JP4511400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005094487A JP4511400B2 (en) 2005-03-29 2005-03-29 Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005094487A JP4511400B2 (en) 2005-03-29 2005-03-29 Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing

Publications (2)

Publication Number Publication Date
JP2006274650A JP2006274650A (en) 2006-10-12
JP4511400B2 true JP4511400B2 (en) 2010-07-28

Family

ID=37209674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005094487A Active JP4511400B2 (en) 2005-03-29 2005-03-29 Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing

Country Status (1)

Country Link
JP (1) JP4511400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4500231B2 (en) * 2005-08-02 2010-07-14 国立大学法人京都大学 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
JP6727874B2 (en) * 2016-03-25 2020-07-22 小野田ケミコ株式会社 Ground improvement method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322639A (en) * 2001-02-21 2002-11-08 Port & Airport Research Institute Back-filling soil draft preventing construction method
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2006077443A (en) * 2004-09-09 2006-03-23 Port & Airport Research Institute Ground improvement structure in back face of structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002322639A (en) * 2001-02-21 2002-11-08 Port & Airport Research Institute Back-filling soil draft preventing construction method
JP2003013437A (en) * 2001-06-28 2003-01-15 Port & Airport Research Institute Method for preventing draw-out of back-filling soil
JP2006077443A (en) * 2004-09-09 2006-03-23 Port & Airport Research Institute Ground improvement structure in back face of structure

Also Published As

Publication number Publication date
JP2006274650A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
Consoli et al. Behavior of plate load tests on soil layers improved with cement and fiber
CN212568764U (en) Induced grouting experimental model for saturated fine sand layer
Kirsch Evaluation of ground improvement by groups of vibro stone columns using field measurements and numerical analysis
JP2010037812A (en) Method of estimating origin position gel time of ground injection chemical
JP4511400B2 (en) Determination method of strength and thickness of improved layer of backfill sand by cement-type solidifying material injection mixing
JP4500231B2 (en) Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
Ding et al. Bearing behavior of cast-in-place expansive concrete pile in coral sand under vertical loading
Ashour The response of stone columns under the cyclic loading
Ruffing et al. Case study: construction and in situ hydraulic conductivity evaluation of a deep soil-cement-bentonite cutoff wall
JP2012012856A (en) Strength evaluation method of pile foot protection part in pile construction
CN109883887B (en) Highway subgrade horizontal grouting injectability testing device and evaluation method
Loehr et al. Evaluation and guidance development for post-grouted drilled shafts for highways
Fattah et al. An experimental analysis of embankment on stone columns
KR20070068006A (en) Concrete compaction pile grouting method
US11486110B2 (en) Porous displacement piles meeting filter design criteria for rapid consolidation and densification of subsurface soils and intermediate geomaterials
CN110230271A (en) Bridge biased displacement post-reinforcing resets construction method
JP4505319B2 (en) Determination method of water shielding material
CN114086561B (en) Symmetrical backfilling and pouring method for rubble concrete on two sides of side wall of open cut tunnel
Bittar et al. The role of physicochemical processes in ageing of shaft friction of driven steel piles in sand
CN209907453U (en) Model system of single pile foundation in mucky soil layer
Prasad et al. IMPROVEMENT OF MARINE CLAYS USING GEO-TEXTILE ENCASED SILICA-MANGANESE SLAG STONE COLUMN
Ganiyu et al. Model tests on soil displacement effects for differently shaped piles
Mackiewicz et al. Ground modification: how much improvement?
Craig Simulating cohesive backfills in centrifuge models of subsea pipelines
Mahdavi Three-dimensional numerical and physical modelling of soft soil improvement using concrete injected columns

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4511400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250