JP2009043840A - レーザ発振波長を変更可能な発光装置 - Google Patents

レーザ発振波長を変更可能な発光装置 Download PDF

Info

Publication number
JP2009043840A
JP2009043840A JP2007205637A JP2007205637A JP2009043840A JP 2009043840 A JP2009043840 A JP 2009043840A JP 2007205637 A JP2007205637 A JP 2007205637A JP 2007205637 A JP2007205637 A JP 2007205637A JP 2009043840 A JP2009043840 A JP 2009043840A
Authority
JP
Japan
Prior art keywords
light
emitting device
light emitting
wavelength
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007205637A
Other languages
English (en)
Inventor
Takashi Kato
隆志 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2007205637A priority Critical patent/JP2009043840A/ja
Publication of JP2009043840A publication Critical patent/JP2009043840A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】レーザの外部に波長基準となる追加の素子を必要とせずに、光伝送のためのチャネル波長の高速な切り替えを可能にする発光装置を提供する。
【解決手段】発光装置10は、半導体光素子11と、外部光学反射鏡18と、ファブリペローエタロン19とを備える。半導体光素子11の光反射器13では、回折格子21a、21b、21iの周期は互いに異なる。電極23a〜23iは、回折格子21a〜21iのためにそれぞれ設けられている。ファブリペローエタロン19は、半導体光素子11の第1の端面15aと外部光学反射鏡18との間に設けられている。ファブリペローエタロン19および利得導波路17は、レーザキャビティ内において直列に配置されている。半導体光素子11の第2の端面15bからレーザ光Lが出射する。光反射器13および外部光学反射鏡18の各々は、発光装置11のレーザキャビティのための反射鏡である。
【選択図】図1

Description

本発明は、レーザ発振波長を変更可能な発光装置に関する。
非特許文献1には、外部共振器型波長可変レーザが記載されている。このレーザは、50GHzのフリースペクトラルレンジを有する固定ファブリペローエタロンと、液晶系波長可変ミラーとを含む。利得セクションを含む半導体発光素子、液晶系波長可変ミラー、ファブリペローエタロン等は、サブキャリア上に配置され、また単一の熱電子冷却器が使用される。レーザ発振波長は、液晶系波長可変ミラーの反射率のピークを電圧によって変更して選択される。液晶系波長可変ミラーの反射率は、ブロードなピークを有しており、ピーク波長の両側において緩やかに減少する。
非特許文献2には、波長可変半導体レーザは、外部共振器構造ではなく、活性層の両側にそれぞれ設けられた不均一回折格子を用いる。両回折格子に電流を注入して屈折率を変化させることによって、それぞれの反射スペクトルの波長を変化させる。バーニア効果により、両回折格子の反射波長が一致したときに、全体として高い透過率を得ることができる。不均一回折格子の構造としては、サンプルド回折格子(Sampled Grating)や超構造回折格子(Super Structure Grating)がある。
非特許文献3には、ディジタルスーパーモード(Digital Super-mode)DBR回折格子が報告されている。このレーザ共振器は、利得領域の前方にレーザ反射鏡のために形成された周期の異なる複数の均一な回折格子と、利得領域の後方にレーザ反射鏡のために形成されたサンプルド回折格子(または超構造回折格子)とを含む。いずれかの回折格子の組み合わせに対して電流を注入して、良好な波長制御性を得ている。
2005年 電子情報通信学会エレクトロニクスソサイエティ大会、C-4-28 "High Wavelength Channel Accuracy of a Full C-band External CavityWavelength Tunable Laser with Intracavity Wavelength Reference Etalon" J. De Merlier, et. al. 光集積デバイス、小林功郎、共立出版、1999年、116頁 IEE-Proc.-Optoelectron., vol.150, no.2, 2003, p.199-204
非特許文献1における外部共振器鏡を用いた波長可変レーザでは、液晶の応答速度はせいぜいミリ秒程度であり、光伝送のためのチャネル波長の切り替えをより速く(例えばナノ秒程度〜マイクロ秒程度)行う光通信システムには適用できない。
非特許文献2および3の波長可変レーザでは、複雑な波長制御が必要である。また、レーザ共振器において少なくとも一方の反射鏡としてサンプルド回折格子や超構造回折格子を用いるので、広い波長帯域で均等な反射率を得ることができない。このため、波長可変を広くすると、レーザ発振波長に応じて光出力が変化する。また、波長領域多重(WDM)通信の用途では、レーザの外部に波長ロッカーなどの波長の基準となる追加の素子が必要である。
本発明は、このような事情を鑑みて為されたものであり、レーザの外部に波長基準となる追加の素子を必要とせずに、光伝送のためのチャネル波長の高速な切り替えを可能にする発光装置を提供することを目的とする。
本発明の一側面に係る発明は、レーザ発振波長を変更可能な発光装置である。発光装置は、(a)互いに周期の異なる複数の回折格子および前記回折格子のためにそれぞれ設けられた複数の電極を含む光反射器、キャリア注入による光学的利得を有する利得導波路、並びに第1および第2の端面を含む半導体光素子と、(b)外部光学反射鏡と、(c)前記半導体光素子の前記第1の端面と前記外部光学反射鏡との間に設けられたファブリペローエタロンと備え、前記半導体光素子の前記第2の端面からレーザ光が出射し、前記光反射器および前記外部光学反射鏡は、当該発光装置のレーザキャビティのための反射鏡である。
この発光装置によれば、回折格子のためにそれぞれ対応づけられた電極に信号を印加する。この印加により、光反射器の互いに周期の異なる複数の回折格子の反射スペクトルによる合成反射スペクトルは変更される。このため、バーニア効果を用いること無く、ファブリペローエタロンの透過率ピークのうちの一つが光反射器内の回折格子を用いて選択される。また、発振波長の選択が、外部光学反射鏡の反射率等を変更することなく、回折格子のための電極への信号印加により行われるので、切り替えを高速に行うことが可能である。
本発明に係る発光装置では、前記光反射器は、前記回折格子の各々に光学的に結合された光導波路を含むことができる。前記複数の電極のうち所望の発振波長に対応する電極への電気信号に応答して、前記複数の回折格子のうち前記所望の発振波長のための回折格子の反射スペクトルが変更されて、前記光反射器の反射スペクトルは、前記所望の発振波長を含む波長領域において反射率が増大される。
この半導体発光素子によれば、電極へ印加する電気信号に応じて、所望の発振波長を含む波長領域における反射スペクトルのピーク強度を調整可能である。なお、前記回折格子の任意の一回折格子は、他の回折格子から隔置されていることが好ましい。
本発明の別の側面に係る発明は、レーザ発振波長を変更可能な発光装置である。この発光装置は、(a)チャープ回折格子および前記チャープ回折格子のために設けられた複数の電極を含む光反射器、キャリア注入による光学的利得を有する利得導波路、並びに第1および第2の端面を含む半導体光素子と、(b)外部光学反射鏡と、(c)前記半導体光素子の前記第1の端面と前記外部光学反射鏡との間に設けられたファブリペローエタロンとを備え、前記半導体光素子の前記第2の端面からレーザ光が出射し、前記光反射器および前記外部光学反射鏡は、当該発光装置のレーザキャビティのための反射鏡である。
この発光装置によれば、回折格子のために対応づけられた電極に信号を印加する。この印加により、光反射器のチャープ回折格子の反射スペクトルが変更される。このため、バーニア効果を用いること無く、ファブリペローエタロンの透過率ピークのうちの一つが光反射器内のチャープ回折格子を用いて選択される。また、発振波長の選択が、外部光学反射鏡の反射率等を変更することなく、チャープ回折格子のための電極への信号印加により行われるので、切り替えを高速に行うことが可能である。
本発明に係る発光装置では、前記光反射器は、前記チャープ回折格子に光学的に結合され所定の軸の方向に延びる光導波路を含み、前記チャープ回折格子は、前記光導波路に沿って設けられており、前記チャープ回折格子の反射スペクトルが、前記複数の電極のうち所望の発振波長に対応する電極への電気信号に応答して変更されて、前記光反射器の反射スペクトルは、前記所望の発振波長を含む波長領域において反射率が増大される。
この発光装置によれば、電極へ印加する電気信号に応じて、所望の発振波長を含む波長領域における反射スペクトルのピーク強度を調整可能である。
本発明に係る発光装置は、前記半導体光素子は、前記レーザキャビティ外において前記光反射器に光学的に結合されており前記光反射器からのレーザ光を処理する光処理素子を更に含むことができる。前記光処理素子は、前記光反射器と前記第2の端面との間に設けられており、前記光処理素子は、前記レーザ光を変調するための光変調器および前記レーザ光を増幅する光増幅器の少なくともいずれか一方を含む。
本発明に係る発光装置では、前記外部光学反射鏡は、前記ファブリペローエタロンの第1の面上に設けられることができる。前記ファブリペローエタロンの第2の面は、前記半導体光素子の前記第1の端面と光学的に結合されている。
外部光学反射鏡とファブリペローエタロンとの距離を近づけることができるので、光共振器長を短縮できる。好適には、外部光学反射鏡は、ファブリペローエタロンの第1の面上に形成された反射膜を含むことができる。
本発明に係る発光装置では、前記半導体光素子は、前記レーザキャビティ内に設けられた光導波路の位相調整のための信号を印加するための電極を含む位相調整器を更に含むことができる。この発光装置によれば、レーザ発振波長の可変に伴いレーザ発振条件を満たす位相の調整が可能になる。
本発明に係る発光装置は、前記ファブリペローエタロンの温度を調整するためのペルチェ素子を更に備えることができる。前記ファブリペローエタロンは前記ペルチェ素子に搭載されている。この発光装置によれば、ペルチェ素子によりファブリペローエタロンの温度を調整することによって、ファブリペローエタロンの温度が変更される。
本発明に係る発光装置では、前記ファブリペローエタロンは、第1および第2の電極を有する液晶ファブリペローエタロンであり、前記液晶ファブリペローエタロンのフリースペクトラルレンジは、前記第1および第2の電極に印加される信号に応じて変更される。
この発光装置によれば、第1および第2の電極に印加される信号に応答して、液晶の屈折率が変更される。これにより、液晶ファブリペローエタロンのフリースペクトラルレンジを調整できる。
本発明に係る発光装置は、前記半導体光素子の温度を調整するための別のペルチェ素子を更に備えることができる。前記半導体光素子は前記別のペルチェ素子に搭載されている。
この発光装置によれば、半導体光素子の温度調整を別のペルチェ素子を用いて行うので、エタロンの温度調整は半導体光素子の温度調整により干渉されない。
本発明に係る発光装置では、前記外部光学反射鏡の反射率は、前記レーザ発振波長を変更可能な波長範囲において、波長が長くなるにつれて単調に減少する。この発光装置によれば、半導体光素子の特性の波長依存性を外部光学反射鏡の反射率の波長依存性により補償することができる。
本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らかになる。
以上説明したように、レーザの外部に波長基準となる追加の素子を必要とせずに光伝送のためのチャネル波長の高速な切り替えを可能にする発光装置が提供される。
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発明の、レーザ発振波長を変更可能な発光装置に係る実施の形態を説明する。可能な場合には、同一の部分には同一の符号を付する。
図1は、本発明の実施の形態に係る発光装置を示す図面である。発光装置10は、レーザ発振波長を変更可能である。発光装置10は、半導体光素子11と、外部光学反射鏡18と、ファブリペローエタロン19とを備える。半導体光素子11は、光反射器13、第1および第2の端面15(15a、15b)、並びに利得導波路17を含む。光反射器13は、光導波路に光学的に結合された複数の回折格子21a、21b、21iと、複数の電極23a、23b、23iとを含む。図1には、I−I線に沿って取られた、回折格子21a、21b、21iの断面が模式的に示されている。回折格子21a、21b、21iの周期は互いに異なる。電極23a、23b、23iは、回折格子21a、21b、21iのために設けられている。利得導波路17は、電極25からキャリア注入による光学的利得を有する。ファブリペローエタロン19は、半導体光素子11の第1の端面15aと外部光学反射鏡18との間に設けられている。ファブリペローエタロン19の第2の面19bは、半導体光素子11の第1の端面15aに光学的に結合されており、また第1の面19aは、外部光学反射鏡18と光学的に結合されている。ファブリペローエタロン19は、複数の極大値を含む透過スペクトルを有する。ファブリペローエタロン19および利得導波路17は、光源27を構成しており、またレーザキャビティ内において直列に配置されている。半導体光素子11の第2の端面15bからレーザ光Lが出射される。光反射器13および外部光学反射鏡18の各々は、発光装置11のレーザキャビティのための反射鏡である。レーザキャビティにより縦モードが規定される。
この発光装置11によれば、回折格子21a、21b、21iのためにそれぞれ対応づけられた電極23a、23b、23iに信号を印加する。この印加により、光反射器13の互いに周期の異なる複数の回折格子21a、21b、21iの反射スペクトルによる合成反射スペクトルは変更される。このため、バーニア効果を用いること無く、ファブリペローエタロン19の透過率ピークのうちの一つが光反射器13内の回折格子21a、21b、21iを用いて選択される。また、発振波長の選択が、液晶反射器を用いて反射鏡の反射率等を変更することなく、電極23a、23b、23iへの信号印加により行われるので、発振波長の切り替えを高速に行うことが可能である。
外部光学反射鏡18の反射率の範囲は50%〜95%であり、使用波長可変範囲は、例えば1.53μm〜1.63μmであり、この範囲における反射率の変動幅(波長依存性)は、故意に反射率を変えない場合に、例えば−10%〜+10%である。外部光学反射鏡18としては、例えば、支持体の表面に形成された金(Au)、銀(Ag)などの単層の金属膜、または誘電体多層膜を用いることができる。誘電体多層膜は、例えばSiOといったシリコン酸化膜、TiOといったチタン酸化膜、ZnOといった亜鉛酸化膜を含むことができる。
半導体光素子11は、互いに異なる回折波長を有する複数の回折格子を含む光反射器13の長さは、例えば300μm〜1000μmである。位相調整領域27の長さは、20μm〜100μmである。利得領域17の長さは、例えば300μm〜1500μmである。
図2は、本実施の形態に係る発光装置における一例の光反射器の反射スペクトルを示す図面である。理解を容易にするために、例示的な光反射器は、光導波路に沿って配置された9個の回折格子21a〜21iと、9個の電極23a〜23iとを含む。回折格子21a〜21iの各々は、可変範囲の波長域にBragg回折波長を有する均一回折格子である。例えば、半導体発光素子11では、図2(a)に示されるように、回折格子21a〜21iの反射スペクトル20a〜20iのうち所望の発振波長を含む波長領域(例えば回折格子20eの反射スペクトルの波長領域)における反射スペクトルが、電極23a〜23iのうち該回折格子(例えば、回折格子21e)に対応する電極への電気信号に応答して、残りの回折格子21a〜21d、21f〜21iの反射スペクトル20a〜20d、21f〜20iの最大値と比較して増大されることが好ましい。図2(b)に示されるように、電極へ印加する電気信号に応じて、選択された回折格子の反射スペクトルの波長および/またはピーク強度を調整可能である。
回折格子反射境の反射率調整について説明する。回折格子の波長λg(1次回折波長)は、屈折率n、回折格子周期Λを用いて、
λg(0)=2×n×Λ
と表される。電流注入すると、キャリア密度増加によるプラズマ効果で屈折率は下がる。このため、回折格子の波長は短波長にシフトする。低下した屈折率nINJ(<n)を用いて、シフト波長は
λg(INJ)=2×nINJ×Λ
と表される。所望のレーザ発振波長λLDにおける回折格子の反射率を上げるためには、
λg>λLD
を満たす回折波長の回折格子を選択する。この回折格子に電流を注入すると、回折波長λgはλLDに近づき、λLDでの反射率が高くなる。
図2を参照しながら説明すると、回折格子20eに対応する波長帯の反射率を高くするためには、電極23eに電流注入せずに電極23fに電流を注入する。電極23fに対応する回折格子の回折波長が短波長にシフトして、回折格子20eの反射スペクトルに近づく。このような現象により、光反射器の合成反射スペクトルでは、電流注入によりシフトした回折格子20fの反射スペクトルと回折格子20eの反射スペクトルとの反射率が加算されて、周囲よりも大きな反射ピークが現れる。つまり、複数の回折格子21a〜21iのうち、所望の発振波長λgのための回折格子20eの反射スペクトルが、複数の電極23a〜23iのうち所望の発振波長λgよりも長波長の回折格子23fのための電極23fへの電気信号に応答して、残りの回折格子21a〜21d、21f〜21iの反射ス
ペクトルの最大値と比較して増大される。
故に、所望の発振波長付近に回折波長を持つ回折格子に対応する電極に電気信号を加えてその回折波長を所望の発振波長に近づけて、光反射器内の複数の回折格子の反射スペクトルの重なりにより所望の発振波長での反射率を高めることになる。上記の説明は、電流注入による調整について行われた。回折格子に電圧を加えて屈折率を変化させる電圧調整では、電圧印加に伴う光吸収による影響で屈折率が高くなる場合がある。
複数の均一な回折格子をレーザ共振器の反射鏡として用いた場合、図2(a)に示されるように、回折格子に電流を注入しないとき、幅広い平坦な反射率を有する反射スペクトルになる。このため、レーザの出力光や自然放出光を観測することにより、ファブリペローエタロンの特性(透過スペクトル周期など)を検査できる。
半導体発光素子11では、当該半導体発光素子11からの光出射は端面15bから行われることができる。また、図1に示されるように、半導体発光素子11は、位相調整器27を更に備えることができる。位相調整器27は、位相調整のための信号を光導波路に印加するための電極30を含む。この光導波路は、レーザキャビティのための反射鏡の間に位置する。この位相調整器27によれば、レーザ発振波長の可変に伴い位相の調整が可能になる。例えば、信号の印加としては、電圧の印加または電流印加が行われる。
図3(a)は、本実施の形態に係る半導体発光素子における一例のファブリペローエタロンの透過スペクトルを示す図面である。ファブリペローエタロン19は、光学的に平行な2つの界面からなり、これらの界面における光の多重反射による干渉を利用して、反射光や透過光強度に波長依存性を有する光学部品である。ファブリペローエタロン19の透過スペクトルでは、フリー・スペクトラル・レンジ(FSR)の間隔で透過率のピークが配列されている。FSRは、ファブリペローエタロン19の温度を変更することによって変更される。例えば、温度の変更は、ペルチェ素子33aといった温度調整素子によって行われる。図1に示されるように、ファブリペローエタロン19はペルチェ素子33a上に搭載されている。
光源(17、19)の利得導波路17からの光は、ファブリペローエタロン19の透過スペクトルによりフィルタリングされると共に、レーザキャビティを往復する。図3(b)は、本実施の形態に係る半導体発光素子におけるレーザ発振可能な波長グリットとグリットの一つを選択するための反射スペクトルを示す図面である。半導体光素子11では、図3(b)に示される波長グリッドλ〜λにおいて、レーザ発振が可能である。この波長グリッドは、ファブリペローエタロン19のFSRによって規定される。波長グリッドλ〜λからの選択は、光反射器13の電極23a〜23iへの信号印加により行われる。発光装置11は、電極23a〜23iへの信号印加に応じて形成されたスペクトルのピーク反射率に従って、レーザ発振条件を満たす位相(縦モード)調整の後、最も高利得の波長λを有するレーザ光を生成する。図1に示されるように、発光装置11は、半導体光素子11とファブリペローエタロン19との間に設けられた光学レンズ35を含むことができる。光学レンズ35は、半導体光素子11の端面15aでのレーザ光をファブリペローエタロン19の端面19bにほぼコリメートされた状態で光学結合させることができる。
ファブリペローエタロン19のFSRは、例えば12.5GHz〜200GHzである。ファブリペローエタロン19の透過ピークを少なくとも一つが、均一回折格子の反射スペクトルの半値幅(FWHM)内に含まれる。また、レーザの共振器長で決まる縦モード間隔は、例えば0.05nm〜0.25nmであり、ファブリペローエタロン19の透過スペクトルの1つのピークスペクトル幅(FWHM)内に1〜3本の縦モードが含まれることが好ましい。縦モードの波長位置は、位相調整領域27に電圧印加あるいは電流注入することによる屈折率変化で調整できる。
発光装置10では、図4(a)に示されるように、外部光学反射鏡18は、ファブリペローエタロン19の第1の面19a上に設けられることができる。ファブリペローエタロン19の第2の面19bは、半導体光素子11の第1の端面15aと光学的に結合されている。外部光学反射鏡18とファブリペローエタロン19との距離を近づけることができるので、レーザキャビティ長LCAVを短縮できる。好適には、外部光学反射鏡18は、ファブリペローエタロン19の第1の面19a上に形成された反射膜を含むことができる。また、光学レンズ35は、ファブリペローエタロン19の第2の面19b上に設けられることができる。
発光装置10では、ファブリペローエタロン19に替えて、図4(b)に示されるように、ファブリペローエタロン29を用いることができる。ファブリペローエタロン29は、第1および第2の透明電極29a、29bと、これらの電極29a、29bの間に設けられた液晶体29cとを有する液晶ファブリペローエタロンであり、この液晶ファブリペローエタロンのFSRは、第1および第2の電極29a、29bに印加される信号に応じて変更される。第1および第2の電極29a、29bに印加される信号に応答して、液晶体29cの屈折率が変更される。これにより、ファブリペローエタロン29のFSRを電気的に調整できる。ファブリペローエタロン29としては、例えば(米国)Scientific SolutionsInc.の液晶エタロンなどを利用できる。
発光装置11は、図1に示されるように、半導体光素子11の温度を調整するための別のペルチェ素子33bを更に備えることができる。半導体光素子11は別のペルチェ素子33bに搭載されている。別のペルチェ素子33bを用いて半導体光素子11の温度調整を行うので、エタロン19の温度調整は半導体光素子の温度調整により干渉されない。
また、発光装置11は、図1に示されるように、外部光学反射鏡18の温度を調整するための更なる別のペルチェ素子33cを更に備えることができる。外部光学反射鏡18をペルチェ素子33c上に搭載するので、外部光学反射鏡18の一定の温度に維持できる。これにより、外部光学反射鏡18の反射特性の温度依存性を考慮して一定の反射特性を得ることができるので、外部光学反射鏡18の温度の調整のために独立のペルチェ素子33cを用いることが好ましい。
エタロン19のためのペルチェ素子33bの温度は、エタロン19の光透過特性の制御のために、それほど大きくは変化されることはない。ペルチェ素子33bの温度は、少なくとも外部光学反射鏡18の反射特性に影響を与えるほど大きくは変更さない。このため、ペルチェ素子33bの温度はほぼ一定の温度に保たれる。この場合、エタロン19を搭載するペルチェ素子33b上に外部光学反射鏡18を搭載することも可能である。これにより、発光装置10の部品点数の増加が抑えられるので、組み立てコスト、部品コストを低減できる。
図5に示されるように、発光装置10は、半導体光素子11に替えて半導体光素子12を含むことができる。半導体光素子12は、光反射器13と、利得導波路17と、位相調整器27とに加えて、光処理素子37を更に含むことができる。光処理素子37は、レーザキャビティ外において光反射器13に光学的に結合されており、また光反射器13からのレーザ光を処理する。光処理素子37は、光反射器13と第2の端面15bとの間に設けられており、また処理のための外部信号を受ける電極39を有する。光処理素子37は、レーザ光を変調するための光変調器およびレーザ光を増幅する光増幅器の少なくともいずれか一方を含む。発光装置10は、処理されたレーザ光Lを第2の端面15bから提供する。
再び図1を参照すると、光反射器13は、回折格子群21に替えて、チャープ回折格子22を含むことができる。半導体光素子11の光反射器13は、チャープ回折格子22と、チャープ回折格子22のためにそれぞれ設けられた複数の電極24a、24b、24iを含む。チャープ回折格子22は、位置に関する一次関数で変化する周期を有しており、例えば回折格子の一周期Λの部分22a、回折格子の一周期Λ(Λ>Λ)の部分22b、回折格子の一周期Λ(Λ>Λ)の部分22iを含む。チャープ回折格子22では、回折格子群21と同様に、一周期の最小値は値Λであり、一周期の最大値は値Λである。電極24a、24b、24iは、チャープ回折格子22上に順に配置されている。
この発光装置10によれば、チャープ回折格子22のためにそれぞれ対応づけられた電極24a、24b、24iに信号を印加する。この印加により、光反射器13のチャープ回折格子22の反射スペクトルが変更される。このため、バーニア効果を用いること無く、ファブリペローエタロン19の透過率のピークの一つが光反射器内のチャープ回折格子22を用いて選択される。また、発振波長の選択が、外部光学反射鏡18の反射率等を変更することなく、チャープ回折格子22のための電極24a、24b、24iへの信号印加により行われるので、切り替えを高速に行うことが可能である。
図6は、本実施の形態に係る発光装置における一例の光反射器の反射スペクトルを示す図面である。発振可能なレーザ光の波長の最小値は、例えば波長λB1であり、最大値は波長λBiである。理解を容易にするために、例示的な光反射器は、光導波路に沿って配置されたチャープ回折格子22は、9個の電極24a〜24iを含む。電極24a〜24iは、それぞれ、チャープ回折格子22の部分(以下、「回折格子部分」と呼ぶ)22a〜22iに対応付けられている。回折格子部分22a〜22iの各々は、可変範囲の波長域内のBragg回折波長に対応する一周期を有する。半導体光素子11では、図6(a)に示されるように、例えば、電極24a〜24iに信号が印加されていないとき、回折格子部分22a〜22iにそれぞれ対応する波長領域は、反射スペクトル値26a〜26iを有する。半導体光素子11では、電極24a〜24iのうち該回折格子部分(例えば、回折格子部分22e)に対応する電極への電気信号に応答して、図6(b)に示されるように、回折格子22の反射スペクトル20のうち所望の発振波長を含む波長領域(例えば回折格子部分22dの一周期に対応する波長領域)における反射スペクトル値が、残りの回折格子部分22a〜22c、22e〜22iに対応する波長領域の反射スペクトル値20a〜20c、21e〜20iの最大値と比較して増大される。図6(b)に示されるように、電極へ印加する電気信号に応じて、選択された回折格子の反射スペクトルの波長および/またはピーク強度を調整可能である。
回折格子反射境の反射率調整について説明する。回折格子の波長λg(1次回折波長)は、複数の均一回折格子と同様に、対応する回折格子部分に電流を注入すると、回折波長λgはλLDに近づき、λLDでの反射率が高くなる。
図6を参照しながら説明すると、回折格子部分22eに対応する波長帯の反射率を高くするためには、電極22dに電流注入せずに電極22eに電流を注入する。電極22eに対応する回折格子部分の回折波長が短波長にシフトして、反射スペクトル値26dの反射スペクトルに近づく。このような現象により、光反射器の合成反射スペクトルでは、電流注入によりシフトした回折格子部分22dの反射スペクトルと回折格子部分22eの反射スペクトルとの反射率が加算されて、周囲よりも大きな反射ピークが現れる。つまり、複数の回折格子22a〜22iのうち、所望の発振波長λgのための回折格子部分に対応する反射スペクトル値が、複数の電極24a〜24iのうち所望の発振波長λgよりも長波長の回折格子部分22eのための電極24eへの電気信号に応答して、残りの回折格子部分22a〜22c、22e〜22iの反射スペクトルの最大値と比較して増大される。
故に、所望の発振波長付近に回折波長を持つ回折格子部分に対応する電極に電気信号を加えてその回折波長を所望の発振波長に近づけて、光反射器内の回折格子の反射スペクトルの重なりにより所望の発振波長での反射率を高めることになる。上記の説明は、電流注入による調整について行われた。回折格子部分に電圧を加えて屈折率を変化させる電圧調整では、電圧印加に伴う光吸収による影響で屈折率が高くなる場合がある。
チャープ回折格子をレーザ共振器の反射鏡として用いた場合、図6(a)に示されるように、回折格子に電流を注入しないとき、幅広い平坦な反射率を有する反射スペクトルになる。このため、レーザの出力光や自然放出光を観測することにより、ファブリペローエタロンの特性(透過スペクトル周期など)を検査できる。
半導体光素子11の利得導波路17からの光は、ファブリペローエタロン19の透過スペクトルによりフィルタリングされると共に、レーザキャビティを往復する。図7は、本実施の形態に係る半導体発光素子におけるレーザ発振可能な波長グリットとグリットの一つを選択するための反射スペクトルを示す図面である。半導体光素子11では、図7に示される波長グリッドλB1〜λBiにおいて、レーザ発振が可能である。この波長グリッドは、エタロン19のFSRによって規定される。波長グリッドλB1〜λBiからの選択は、光反射器13の電極23a〜23iへの信号印加により行われる。発光装置11は、電極24a〜24iへの信号印加に応じて形成されたスペクトルのピーク反射率に従って、レーザ発振条件を満たす位相(縦モード)調整の後に、最も高利得の波長λLDを有するレーザ光を生成する。
発光装置10では、外部光学反射鏡18の反射率は、レーザ発振波長を変更可能な波長範囲において、波長が長くなるにつれて単調に減少することが好ましい。このような波長依存性は、例えば誘電体多層膜等の製造において実現できる。半導体光素子11の特性の波長依存性を外部光学反射鏡18の反射率の波長依存性により補償できる。
図8は、図5に示されたII−II線およびIII−III線に沿って取られた半導体発光素子の縦断面を概略的に示す図面である。図8(a)を参照すると、利得導波路17は、基板51上に順に形成されたn型クラッド層61、光ガイド層63、量子井戸構造の活性層65a、光ガイド層67a、p型クラッド層69およびコンタクト層71aを含む。利得導波路17では、コンタクト層71a上には電極25が設けられている。光反射器13は、基板51上に順に形成されたn型クラッド層61、光ガイド層63、コア導波路層65b、光ガイド層67b、回折格子構造68、各回折格子に対応して分離されたコンタクト層71b(711b、712b、713b)、およびp型クラッド層69を含む。光反射器13では、コンタクト層71b上には電極群23が設けられている。回折格子構造68は、光ガイド層67bの表面に設けられた周期構造から構成される。位相調整器27は、基板51上に順に形成されたn型クラッド層61、光ガイド層63、コア導波路層65c、光ガイド層67c、p型クラッド層69およびコンタクト層71cを含む。位相調整器27では、コンタクト層71c上には電極30が設けられている。光処理素子37は、基板51上に順に形成されたn型クラッド層61、光ガイド層63、量子井戸構造を有する活性層65d、光ガイド層67d、p型クラッド層69およびコンタクト層71dを含む。光処理素子37では、コンタクト層71d上には電極39が設けられている。半導体光導波路構造75は、基板51上に順に形成されたn型クラッド層61、光ガイド層63、コア導波路層65c、光ガイド層67cおよびp型クラッド層69を含む。
縦方向の光閉じ込めはクラッド層61、69により行われる。また、図8(b)に示されるように、横方向の光閉じ込めはストライプ状の導波路構造と、この導波路構造を埋め込む埋め込み層73とによって提供される。
例示すれば、利得領域の活性層は、1.25μm〜1.65μm帯に利得を持つGaInAsP/GaInAsP量子井戸構造を有することができる。光導波層は、量子井戸構造のバンドギャップ波長より短い波長のGaInAsP半導体からなることができ、n型およびp型クラッド層はInP半導体からなることができる。コンタクト層は、高濃度ドープされたGaInAs層からなることができる。埋込層としては、半絶縁性InPから成ることができる。
また、利得導波路17の活性層は、互いに異なるバンドギャップを有する複数の井戸層と、これらの複数の井戸層の間に位置する障壁層とを含む多重量子井戸構造とすることができる。井戸層が、互いに異なるバンドギャップを有する複数の井戸層から形成されているので、レーザ発振可能な活性層の利得バンド幅を拡大することが可能であり、広い波長範囲でレーザの発振波長を可変にすることができる。また、利得導波路17の活性層の利得バンド幅を拡大するための方法として、互いに異なるバンドギャップエネルギを有する複数の井戸層を積層すること以外に、互いに異なる厚み(幅)の井戸層を備えるようにしてもよいし、あるいは量子井戸層の材料組成および厚みの両方を変更することもできる。
以上説明したように、レーザの外部に波長基準となる追加の素子を必要とせずに、光伝送のためのチャネル波長の高速な切り替えを可能にする発光装置10が提供される。
本実施の形態では、液晶ミラーではなく、回折格子を用いた光反射鏡を含む。液晶ミラーの応答速度は、20msec〜30msec程度あり、回折格子を用いた光反射鏡の応答速度は、ナノ秒オーダーである。光反射鏡の電極への信号印加によるので、応答速度が速い。WDM通信でのRODAM(Reconfigurable Optical Add/Drop Multiplexers)や光バーストスイッチング、光パケットスイッチングに用いることが可能になる。
液晶ミラーでは、波長λからλに波長変更を行うとき、波長λとλの間の波長が出力されてしまう。なぜなら、液晶ミラーへの制御電圧に対する液晶分子の動きが連続的であるからである。故に、レーザの波長切り替えの間に余分な波長の光が出ないように、光可変減衰器(VOA)や光シャッターの機構が必要である。しかしながら、本実施の形態における回折格子では、レーザの波長切り替えの間に余分な波長の光が出力されることなく、不連続に波長を選択できる。
回折格子の反射ピークの反射率が、回折格子に流す電流の大きさや、電流を流す2個以上の電極の組み合わせで制御可能である。利得領域の光吸収係数の波長依存性などによるレーザ光出力の波長依存性を補償できる。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そのような原理から逸脱することなく配置および詳細において変更され得ることは、当業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定されるものではない。したがって、特許請求の範囲およびその精神の範囲から来る全ての修正および変更に権利を請求する。
図1は、本発明の実施の形態に係る発光装置を示す図面である。 図2は、本実施の形態に係る発光装置における一例の光反射器の反射スペクトルを示す図面である。 図3(a)は、本実施の形態に係る発光装置における一例のファブリペローエタロンの透過スペクトルを示す図面である。図3(b)は、本実施の形態に係る発光装置におけるレーザ発振光の波長を選択する機構を示す図面である。 図4(a)は、本実施の形態に係る発光装置におけるファブリペローエタロンの一例を示す図面である。図4(b)は、本実施の形態に係る発光装置におけるファブリペローエタロンの別の例を示す図面である。 図5は、本発明の実施の形態に係る、光処理素子を含む発光装置を示す図面である。 図6は、本実施の形態に係る発光装置における一例の光反射器の反射スペクトルを示す図面である。 図7は、本実施の形態に係る半導体発光素子におけるレーザ発振可能な波長グリットとグリットの一つを選択するための反射スペクトルを示す図面である。 図8は、図5に示されたII−II線およびIII−III線に沿って取られた半導体発光素子の縦断面を概略的に示す図面である。
符号の説明
10…発光装置、11…半導体光素子、13…光反射器、15(15a、15b)…第1および第2の端面、17…利得導波路、18…外部光学反射鏡、19…ファブリペローエタロン、19a、19b…ファブリペローエタロンの面、21a〜21i…回折格子、22…チャープ回折格子、22a〜22i…回折格子部分、23a〜23i…電極、24a〜24i…電極、25…電極、27…位相調整器、29…ファブリペローエタロン、29a、29b…ファブリペローエタロンの電極、29c…液晶体、33a、33b…ペルチェ素子、35…光学レンズ、37…光処理素子、39…電極、L、L…レーザ光、λg…回折波長、Λ、Λ、Λ…チャープ回折格子の一周期、λB1〜λBi…波長グリッド、λLD…波長、λ〜λ…波長グリッド

Claims (11)

  1. レーザ発振波長を変更可能な発光装置であって、
    互いに周期の異なる複数の回折格子および前記回折格子のためにそれぞれ設けられた複数の電極を含む光反射器、キャリア注入による光学的利得を有する利得導波路、並びに第1および第2の端面を含む半導体光素子と、
    外部光学反射鏡と、
    前記半導体光素子の前記第1の端面と前記外部光学反射鏡との間に設けられたファブリペローエタロンと
    を備え、
    前記半導体光素子の前記第2の端面からレーザ光が出射し、
    前記光反射器および前記外部光学反射鏡は、当該発光装置のレーザキャビティのための反射鏡である、ことを特徴とする発光装置。
  2. 前記光反射器は、前記回折格子の各々に光学的に結合された光導波路を含み、
    前記複数の電極のうち所望の発振波長に対応する電極への電気信号に応答して、前記複数の回折格子のうち前記所望の発振波長のための回折格子の反射スペクトルが変更されて、前記光反射器の反射スペクトルは、前記所望の発振波長を含む波長領域において反射率が増大される、ことを特徴とする請求項1に記載された発光装置。
  3. レーザ発振波長を変更可能な発光装置であって、
    チャープ回折格子および前記チャープ回折格子のためにそれぞれ設けられた複数の電極を含む光反射器、キャリア注入による光学的利得を有する利得導波路、並びに第1および第2の端面を含む半導体光素子と、
    外部光学反射鏡と、
    前記半導体光素子の前記第1の端面と前記外部光学反射鏡との間に設けられたファブリペローエタロンと
    を備え、
    前記半導体光素子の前記第2の端面からレーザ光が出射し、
    前記光反射器および前記外部光学反射鏡は、当該発光装置のレーザキャビティのための反射鏡である、ことを特徴とする発光装置。
  4. 前記光反射器は、前記チャープ回折格子に光学的に結合され所定の軸の方向に延びる光導波路を含み、
    前記チャープ回折格子は、前記光導波路に沿って設けられており、
    前記チャープ回折格子の反射スペクトルが、前記複数の電極のうち所望の発振波長に対応する電極への電気信号に応答して変更されて、前記光反射器の前記反射スペクトルは、前記所望の発振波長を含む波長領域において反射率が増大される、ことを特徴とする請求項3に記載された発光装置。
  5. 前記半導体光素子は、前記レーザキャビティ外において前記光反射器に光学的に結合されており前記光反射器からのレーザ光を処理する光処理素子を更に含み、
    前記光処理素子は、前記光反射器と前記第2の端面との間に設けられており、
    前記光処理素子は、前記レーザ光を変調するための光変調器および前記レーザ光を増幅する光増幅器の少なくともいずれか一方を含む、ことを特徴とする請求項1〜請求項4のいずれか一項に記載された発光装置。
  6. 前記外部光学反射鏡は、前記ファブリペローエタロンの第1の面上に設けられており、
    前記ファブリペローエタロンの第2の面は、前記半導体光素子の前記第1の端面と光学的に結合されている、ことを特徴とする請求項1〜請求項5のいずれか一項に記載された発光装置。
  7. 前記半導体光素子は、前記レーザキャビティ内に設けられた光導波路の位相調整のための信号を印加するための電極を含む位相調整器を更に含む、ことを特徴とする請求項1〜請求項6のいずれか一項に記載された発光装置。
  8. 前記ファブリペローエタロンの温度を調整するためのペルチェ素子を更に備え、
    前記ファブリペローエタロンは前記ペルチェ素子に搭載されている、ことを特徴とする請求項1〜請求項7のいずれか一項に記載された発光装置。
  9. 前記ファブリペローエタロンは、第1および第2の電極を有する液晶ファブリペローエタロンであり、
    前記液晶ファブリペローエタロンのフリースペクトラルレンジは、前記第1および第2の電極に印加される信号に応じて変更される、ことを特徴とする請求項1〜請求項7のいずれか一項に記載された発光装置。
  10. 前記半導体光素子の温度を調整するための別のペルチェ素子を更に備え、
    前記半導体光素子は前記別のペルチェ素子に搭載されている、ことを特徴とする請求項8または請求項9に記載された発光装置。
  11. 前記外部光学反射鏡の反射率は、前記レーザ発振波長を変更可能な波長範囲において、波長が長くなるにつれて単調に減少する、ことを特徴とする請求項1〜請求項10のいずれか一項に記載された発光装置。
JP2007205637A 2007-08-07 2007-08-07 レーザ発振波長を変更可能な発光装置 Pending JP2009043840A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205637A JP2009043840A (ja) 2007-08-07 2007-08-07 レーザ発振波長を変更可能な発光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205637A JP2009043840A (ja) 2007-08-07 2007-08-07 レーザ発振波長を変更可能な発光装置

Publications (1)

Publication Number Publication Date
JP2009043840A true JP2009043840A (ja) 2009-02-26

Family

ID=40444284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205637A Pending JP2009043840A (ja) 2007-08-07 2007-08-07 レーザ発振波長を変更可能な発光装置

Country Status (1)

Country Link
JP (1) JP2009043840A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086714A (ja) * 2009-10-14 2011-04-28 Opnext Japan Inc 波長可変レーザ
JP2011091107A (ja) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd 半導体回折格子素子、及び、半導体レーザ
JPWO2015162671A1 (ja) * 2014-04-21 2017-04-13 富士通株式会社 波長可変レーザ光源、光送信器及び光送受信器モジュール
JP2018532277A (ja) * 2015-10-28 2018-11-01 ロックリー フォトニクス リミテッドRockley Photonics Limited 離散波長可変レーザ
WO2022019079A1 (ja) * 2020-07-22 2022-01-27 パナソニック株式会社 レーザ光源装置及びレーザ加工装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086714A (ja) * 2009-10-14 2011-04-28 Opnext Japan Inc 波長可変レーザ
JP2011091107A (ja) * 2009-10-20 2011-05-06 Sumitomo Electric Ind Ltd 半導体回折格子素子、及び、半導体レーザ
JPWO2015162671A1 (ja) * 2014-04-21 2017-04-13 富士通株式会社 波長可変レーザ光源、光送信器及び光送受信器モジュール
JP2018532277A (ja) * 2015-10-28 2018-11-01 ロックリー フォトニクス リミテッドRockley Photonics Limited 離散波長可変レーザ
JP7108538B2 (ja) 2015-10-28 2022-07-28 ロックリー フォトニクス リミテッド マルチセクションデジタルスーパーモード分布ブラッグ反射器及び離散波長可変レーザ
WO2022019079A1 (ja) * 2020-07-22 2022-01-27 パナソニック株式会社 レーザ光源装置及びレーザ加工装置

Similar Documents

Publication Publication Date Title
JP4458413B2 (ja) チューナブルレーザ
EP1753104B1 (en) Semiconductor laser
JP6273701B2 (ja) 光半導体素子
US20070133647A1 (en) Wavelength modulated laser
US9356425B2 (en) Semiconductor DBR laser
US20090092159A1 (en) Semiconductor light-emitting device with tunable emission wavelength
JP2016102926A (ja) 波長可変レーザ及び波長可変レーザモジュール
US10355451B2 (en) Laser with sampled grating distributed bragg reflector
JP2009059729A (ja) 半導体発光素子
KR20110101016A (ko) 파장 가변 레이저 장치
JP2009010197A (ja) 半導体レーザ素子
JP7108538B2 (ja) マルチセクションデジタルスーパーモード分布ブラッグ反射器及び離散波長可変レーザ
US9013785B2 (en) Tunable multi-mode laser
JP2002299755A (ja) 迅速かつ広帯域にわたって同調可能なレーザ
JP2009043840A (ja) レーザ発振波長を変更可能な発光装置
US6937638B2 (en) Manufacturable sampled grating mirrors
US9025628B2 (en) Semiconductor laser
JP2007115900A (ja) 波長可変光源、波長可変光源モジュール、および波長可変光源の駆動方法
JP2011086714A (ja) 波長可変レーザ
JP2010050162A (ja) 半導体波長可変レーザ
Debrégeas Widely tunable laser diodes
JP2009088015A (ja) 回折格子デバイス、半導体レーザおよび波長可変フィルタ
JP2015088675A (ja) 波長可変レーザの制御方法
JP2008294371A (ja) 半導体発光素子
JP5058087B2 (ja) 波長可変半導体レーザ