JP2009041976A - Fault point locating method and system - Google Patents

Fault point locating method and system Download PDF

Info

Publication number
JP2009041976A
JP2009041976A JP2007205244A JP2007205244A JP2009041976A JP 2009041976 A JP2009041976 A JP 2009041976A JP 2007205244 A JP2007205244 A JP 2007205244A JP 2007205244 A JP2007205244 A JP 2007205244A JP 2009041976 A JP2009041976 A JP 2009041976A
Authority
JP
Japan
Prior art keywords
transmission line
surge
waveform
failure point
surge current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007205244A
Other languages
Japanese (ja)
Other versions
JP4914306B2 (en
Inventor
Hajime Kaijima
元 甲斐島
Hiroaki Yamaguchi
裕昭 山口
Mai Araki
真衣 荒木
Yoshikazu Ohashi
善和 大橋
Kazuki Sotoyama
一樹 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Enegate Co Ltd
Kinkei System Corp
Original Assignee
Kansai Electric Power Co Inc
Enegate Co Ltd
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Enegate Co Ltd, Kinkei System Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2007205244A priority Critical patent/JP4914306B2/en
Publication of JP2009041976A publication Critical patent/JP2009041976A/en
Application granted granted Critical
Publication of JP4914306B2 publication Critical patent/JP4914306B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fault point locating method and a fault point locating system capable of locating a fault point of a transmission line inexpensively with a simple constitution. <P>SOLUTION: When a surge current generated upon an electric accident of the transmission line 1a flows through a voltage divider 4 into a capacitor C connected between a secondary side circuit of the voltage divider 4 connected to a terminal (bus) 2a of the transmission line 1a for a commercial frequency AC, and the ground, the surge current flowing in the capacitor C is detected by a high-frequency current sensor CT. Then, a fault point of the transmission line is located by a fault point locating device 10 based on a waveform of the surge current detected by the high-frequency current sensor CT and an arrival time of the surge current. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、故障点標定方法および故障点標定システムに関し、より詳しくは、商用周波交流の送電線の短絡および地絡等の電気事故時に発生する事故サージ波形を検出して故障点を標定する故障点標定方法およびそれを用いた故障点標定システムに関する。   The present invention relates to a fault location method and a fault location system, and more particularly, a fault in which a fault point is detected by detecting an accident surge waveform generated in an electric accident such as a short circuit of a commercial frequency AC transmission line or a ground fault. The present invention relates to a point location method and a fault location system using the same.

従来、故障点標定方法としては、送電線に接続されたコンデンサの電流を専用の電流センサで観測して、故障点を標定するものがある(例えば、特開平1−161165号公報(特許文献1)参照)。また、従来の他の故障点標定方法としては、送電線路に接続された複数のコンデンサの電流波形の立ち上がりの傾きから故障点を求めるものがある(例えば、特許第3767528号(特許文献2)参照)。   Conventionally, as a failure point locating method, there is a method of locating a failure point by observing a current of a capacitor connected to a transmission line with a dedicated current sensor (for example, JP-A-1-161165 (Patent Document 1). )reference). As another conventional fault location method, there is a method for obtaining a fault point from the rising slope of current waveforms of a plurality of capacitors connected to a transmission line (see, for example, Japanese Patent No. 3767528 (Patent Document 2)). ).

このような従来の故障点標定方法を用いたサージ型故障点標定装置では、専用のサージセンサを送電線の付近に設置し、得られた波形データを電気信号として、または電気光変換(EO変換)を行って光信号で、変電所の建屋内まで送り、建屋内に設置した専用装置において解析して、故障点を標定している。   In such a surge type fault point locating device using the conventional fault point locating method, a dedicated surge sensor is installed in the vicinity of the transmission line, and the obtained waveform data is used as an electric signal or electro-optical conversion (EO conversion). ) Is sent to the substation building using optical signals and analyzed by a dedicated device installed in the building to locate the failure point.

しかし、この方法では、送電線の近傍にサージセンサを設置しなければならず、高圧電力設備での作業は危険な上、屋外であることからサージセンサの耐環境性も必要となり、また変電所の建屋内までの配線工事も必要となるため、コストが高くつくという問題がある。また、送電線路毎にサージセンサを設置しなければならず、2回路12線路の場合は2×12×3=72個のサージセンサおよびそれらのサージセンサと建屋間の配線工事が必要となる。
特開平1−161165号公報 特許第3767528号
However, this method requires that a surge sensor be installed in the vicinity of the transmission line, the work on the high-voltage power equipment is dangerous, and because it is outdoors, the surge sensor must also be resistant to the environment. There is also a problem of high cost because wiring work to the building is required. Further, a surge sensor must be installed for each transmission line, and in the case of two circuits and 12 lines, 2 × 12 × 3 = 72 pieces of surge sensors and wiring work between those surge sensors and the building are required.
JP-A-1-161165 Japanese Patent No. 3776728

そこで、この発明の課題は、変電所などの既存の設備である電圧分圧器または計測用変圧器を利用することで、簡単な構成でかつ低コストで送電線の故障点を標定できる故障点標定方法および故障点標定システムを提供することにある。   Accordingly, an object of the present invention is to provide a fault location that can locate a fault in a transmission line with a simple configuration and at a low cost by using a voltage divider or a measurement transformer which is an existing facility such as a substation. It is to provide a method and a fault location system.

上記課題を解決するため、この発明の故障点標定方法は、
商用周波交流の送電線の端子に接続された電圧分圧器または計測用変圧器の2次側回路と接地との間に接続されたコンデンサに、上記送電線の電気事故時に発生したサージ電流が上記電圧分圧器または上記計測用変圧器を介して流れたとき、上記コンデンサに流れる上記サージ電流を電流センサにより検出して、
上記電流センサにより検出された上記サージ電流の波形と上記サージ電流の到着時刻に基づいて、上記送電線の故障点を故障点標定装置により標定することを特徴とする。
In order to solve the above problems, the fault location method of the present invention is:
The surge current generated at the time of an electrical accident in the transmission line is applied to the capacitor connected between the voltage divider connected to the terminal of the commercial frequency AC transmission line or the secondary circuit of the measuring transformer and the ground. When flowing through the voltage divider or the measuring transformer, the surge current flowing through the capacitor is detected by a current sensor,
Based on the waveform of the surge current detected by the current sensor and the arrival time of the surge current, the failure point of the transmission line is determined by a failure point locating device.

本出願人は、商用周波交流の送電線の端子に接続された電力設備のある変電所において、送電線の電気事故時に発生したサージの伝搬について調査した結果、既存の電力設備である電圧分圧器または計測用変圧器の2次側回路からサージ電流波形成分を抽出して、抽出されたサージ電流波形成分が故障点標定に使用できることを見出した。   As a result of investigating the propagation of surges that occurred at the time of an electrical accident in a transmission line at a substation with power equipment connected to the terminal of a commercial frequency AC transmission line, the present applicant found that a voltage divider that is an existing power installation Alternatively, the surge current waveform component is extracted from the secondary circuit of the measurement transformer, and the extracted surge current waveform component can be used for fault location.

このようなサージの伝搬特性を利用して、上記構成の故障点標定方法によれば、商用周波交流の送電線の端子に接続された電圧分圧器(または計測用変圧器)の2次側回路と接地との間に接続されたコンデンサに、上記送電線の電気事故時に発生したサージ電流が電圧分圧器(または計測用変圧器)を介して流れたとき、電流センサにより検出された上記コンデンサに流れるサージ電流の波形とそのサージ電流の到着時刻に基づいて、送電線の故障点を故障点標定装置により標定することによって、送電線に端子に接続された電圧分圧器または計測用変圧器の2次側回路に、上記コンデンサと電流センサと故障点標定装置を1組設置すればよく、コストを大幅に低減できる。また、配電盤室などの故障点標定装置の設置場所までは、既存の計測用変圧器ラインのケーブルがそのまま流用できる。さらに、故障点標定装置は室内設置の仕様でよく、屋外設置基準に基づいた耐環境性能を満たす必要がない。したがって、簡単な構成でかつ低コストで送電線の故障点を標定できる。   By utilizing such surge propagation characteristics, according to the fault location method of the above configuration, the secondary side circuit of the voltage divider (or measurement transformer) connected to the terminal of the commercial frequency AC transmission line. When a surge current generated during an electrical accident in the transmission line flows through the voltage divider (or measurement transformer) to the capacitor connected between the capacitor and the ground, the capacitor detected by the current sensor Based on the waveform of the surge current flowing and the arrival time of the surge current, the failure point of the transmission line is located by the failure point locating device, so that the voltage divider 2 or the measurement transformer connected to the terminal of the transmission line One set of the capacitor, current sensor, and failure point locating device may be installed in the secondary circuit, and the cost can be greatly reduced. In addition, the cables of existing measuring transformer lines can be used as they are until the installation location of the fault location device such as the switchboard room. Furthermore, the failure point locating device may have a specification for indoor installation, and does not need to satisfy the environmental resistance performance based on the outdoor installation standard. Therefore, the failure point of the transmission line can be determined with a simple configuration and at a low cost.

また、一実施形態の故障点標定方法では、上記故障点標定装置は、上記電流センサにより検出された上記サージ電流の波形のうちの先頭サージ部分の波形とそれ以降の波形部分との相関関数を算出して、その相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、上記サージ電流の先頭部分の到着時刻と上記サージ電流の反射波の到達時刻に基づいて、上記送電線の故障点を標定する。   Further, in the failure point locating method of one embodiment, the failure point locating device calculates a correlation function between the waveform of the leading surge portion of the surge current waveform detected by the current sensor and the subsequent waveform portion. The point on the time axis at which the absolute value of the correlation function is calculated is the arrival time of the reflected wave of the surge current, the arrival time of the leading portion of the surge current and the arrival time of the reflected wave of the surge current Based on the above, the failure point of the transmission line is determined.

上記実施形態によれば、上記故障点標定装置により、電流センサにより検出されたサージ電流の波形のうちの先頭サージ部分の波形とそれ以降の波形部分との相関関数を算出して、その相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、サージ電流の先頭部分の到着時刻とサージ電流の反射波の到達時刻に基づいて、送電線の故障点を標定することによって、故障点標定を高精度にかつ高速に行うことができる。   According to the above embodiment, the failure point locator calculates a correlation function between the waveform of the leading surge portion and the waveform portion thereafter from the surge current waveform detected by the current sensor, and the correlation function The point on the time axis at which the absolute value of the peak current reaches is the arrival time of the reflected wave of the surge current, and the failure point of the transmission line based on the arrival time of the leading portion of the surge current and the arrival time of the reflected wave of the surge current By locating, fault location can be performed with high accuracy and at high speed.

また、一実施形態の故障点標定方法では、
上記送電線が複数接続された構成の系統であって、
上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報に基づいて、上記故障点標定装置により、上記電気事故が発生した送電線の区間に対して上記送電線の故障点を標定する。
Moreover, in the fault location method of one embodiment,
A system having a configuration in which a plurality of the transmission lines are connected,
Based on the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines, the failure point locating device causes the failure of the transmission line to the section of the transmission line in which the electrical accident has occurred. Locate the point.

上記実施形態によれば、上記送電線が複数接続された構成の系統において、複数の送電線のうちの電気事故が発生した送電線の区間を示す情報に基づいて、故障点標定装置により電気事故が発生した送電線の区間に対して送電線の故障点を標定することによって、送電線の回線数分のセンサを用いることなく、電気事故が発生した送電線を識別して故障点標定ができる。   According to the embodiment, in a system having a configuration in which a plurality of transmission lines are connected, an electrical accident is performed by the fault location device based on information indicating a section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines. By locating the failure point of the transmission line for the section of the transmission line where the failure occurred, it is possible to identify the failure line by identifying the transmission line where the electrical accident occurred without using sensors for the number of transmission lines. .

また、一実施形態の故障点標定方法では、上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報は、上記電気事故が発生した上記送電線の保護リレーの動作信号である。   Further, in the fault location method according to an embodiment, the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines is an operation signal of a protection relay of the transmission line in which the electrical accident has occurred. It is.

上記実施形態によれば、上記複数の送電線のうちの電気事故が発生した送電線の区間を示す情報として、電気事故が発生した送電線の保護リレーの動作信号を用いることによって、回線数分のセンサを設置する場合に比べてコストを低減できる。   According to the embodiment, as the information indicating the section of the power transmission line in which the electrical accident has occurred among the plurality of power transmission lines, the operation signal of the protection relay of the power transmission line in which the electrical accident has occurred is used. The cost can be reduced as compared with the case of installing this sensor.

また、この発明の故障点標定システムでは、
商用周波交流の送電線の端子に接続された電圧分圧器または計測用変圧器の2次側回路と接地との間に接続され、上記送電線の電気事故時に発生したサージ電流が上記電圧分圧器または上記計測用変圧器を介して流れるコンデンサと、
上記コンデンサに流れる上記サージ電流を検出する電流センサと、
上記電流センサにより検出された上記サージ電流の波形と上記サージ電流の到着時刻に基づいて、上記送電線の故障点を標定する故障点標定装置と
を備えたことを特徴とする。
In the fault location system of the present invention,
A voltage divider connected to a terminal of a commercial frequency AC power transmission line or a secondary side circuit of a measurement transformer and a ground, and a surge current generated at the time of an electrical accident of the power transmission line is a voltage divider. Or a capacitor flowing through the measuring transformer,
A current sensor for detecting the surge current flowing in the capacitor;
And a failure point locating device for locating a failure point of the transmission line based on a waveform of the surge current detected by the current sensor and an arrival time of the surge current.

上記構成によれば、商用周波交流の送電線の端子に接続された電圧分圧器(または計測用変圧器)の2次側回路と接地との間に接続されたコンデンサに、上記送電線の電気事故時に発生したサージ電流が電圧分圧器(または計測用変圧器)を介して流れたとき、電流センサにより検出された上記コンデンサに流れるサージ電流の波形とそのサージ電流の到着時刻に基づいて、送電線の故障点を故障点標定装置により標定することによって、送電線に端子に接続された電圧分圧器または計測用変圧器の2次側回路に、上記コンデンサと電流センサと故障点標定装置を1組設置すればよく、コストを大幅に低減できる。また、配電盤室などの故障点標定装置の設置場所までは、既存の計測用変圧器ラインのケーブルがそのまま流用できる。さらに、故障点標定装置は室内設置の仕様でよく、屋外設置基準に基づいた耐環境性能を満たす必要がない。したがって、簡単な構成でかつ低コストで送電線の故障点を標定できる。   According to the above configuration, the electric power of the transmission line is connected to the capacitor connected between the secondary side circuit of the voltage divider (or measurement transformer) connected to the terminal of the commercial frequency AC transmission line and the ground. When a surge current generated at the time of an accident flows through a voltage divider (or measurement transformer), it is sent based on the waveform of the surge current flowing through the capacitor detected by the current sensor and the arrival time of the surge current. By locating the failure point of the electric wire with the failure point locating device, the capacitor, current sensor, and failure point locating device are connected to the secondary circuit of the voltage divider or measuring transformer connected to the terminal of the transmission line. It is only necessary to install a set, and the cost can be greatly reduced. In addition, the cables of existing measuring transformer lines can be used as they are until the installation location of the fault location device such as the switchboard room. Furthermore, the failure point locating device may have a specification for indoor installation, and does not need to satisfy the environmental resistance performance based on the outdoor installation standard. Therefore, the failure point of the transmission line can be determined with a simple configuration and at a low cost.

また、一実施形態の故障点標定システムでは、
上記故障点標定装置は、
上記電流センサにより検出された上記サージ電流の波形のうちの先頭サージ部分の波形を抽出する先頭サージ抽出部と、
上記先頭サージ抽出部により抽出された上記サージ電流の波形のうちの先頭サージ部分の波形とそれ以降の波形部分との相関関数を算出する相関関数算出部と、
上記相関関数算出部により算出された相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、上記サージ電流の先頭部分の到着時刻と上記サージ電流の反射波の到達時刻に基づいて、上記送電線の故障点を標定する故障点標定部と
を有する。
Moreover, in the fault location system of one embodiment,
The above fault location device is
A leading surge extraction unit that extracts a waveform of a leading surge portion of the surge current waveform detected by the current sensor;
A correlation function calculating unit that calculates a correlation function between the waveform of the first surge portion of the surge current waveform extracted by the first surge extraction unit and the waveform portion thereafter;
The point on the time axis at which the absolute value of the correlation function calculated by the correlation function calculation unit peaks is the arrival time of the reflected wave of the surge current, and the arrival time of the leading portion of the surge current and the reflection of the surge current A failure point locating unit for locating the failure point of the transmission line based on the arrival time of the wave.

上記実施形態によれば、上記電流センサにより検出されたサージ電流の波形のうちの先頭サージ部分の波形を先頭サージ抽出部により抽出し、その抽出された先頭部分の波形とそれ以降の波形部分との相関関数を相関関数算出部により算出して、その相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、サージ電流の先頭部分の到着時刻とサージ電流の反射波の到達時刻に基づいて、故障点標定部により送電線の故障点を標定することによって、故障点標定を高精度にかつ高速に行うことができる。   According to the above embodiment, the waveform of the leading surge portion of the surge current waveform detected by the current sensor is extracted by the leading surge extraction unit, the extracted waveform of the leading portion and the subsequent waveform portion, The correlation function is calculated by the correlation function calculation unit, the point on the time axis at which the absolute value of the correlation function peaks is the arrival time of the reflected wave of the surge current, and the arrival time of the surge current and the surge By locating the failure point of the transmission line by the failure point locating unit based on the arrival time of the reflected wave of the current, the failure point locating can be performed with high accuracy and at high speed.

また、一実施形態の故障点標定システムでは、
上記送電線が複数接続された構成の系統であって、
上記故障点標定装置は、上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報に基づいて、上記電気事故が発生した送電線の区間に対して上記送電線の故障点を標定する。
Moreover, in the fault location system of one embodiment,
A system having a configuration in which a plurality of the transmission lines are connected,
The failure point locating device is configured to detect a failure of the transmission line with respect to a section of the transmission line in which the electrical accident has occurred based on information indicating a section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines. Locate the point.

上記実施形態によれば、上記送電線が複数接続された構成の系統において、複数の送電線のうちの電気事故が発生した送電線の区間を示す情報に基づいて、故障点標定装置により電気事故が発生した送電線の区間に対して送電線の故障点を標定することによって、送電線の回線数分のセンサを用いることなく、電気事故が発生した送電線を識別して故障点標定ができる。   According to the embodiment, in a system having a configuration in which a plurality of transmission lines are connected, an electrical accident is performed by the fault location device based on information indicating a section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines. By locating the failure point of the transmission line for the section of the transmission line where the failure occurred, it is possible to identify the failure line by identifying the transmission line where the electrical accident occurred without using sensors for the number of transmission lines. .

また、一実施形態の故障点標定システムでは、
上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報は、上記電気事故が発生した上記送電線の保護リレーの動作信号であり、
上記故障点標定装置は、上記送電線の保護リレーの動作信号が入力される信号入力部を有する。
Moreover, in the fault location system of one embodiment,
Information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines is an operation signal of a protection relay of the transmission line in which the electrical accident has occurred,
The failure point locating device has a signal input unit to which an operation signal of a protection relay of the power transmission line is input.

上記実施形態によれば、上記複数の送電線のうちの電気事故が発生した送電線の区間を示す情報として、電気事故が発生した送電線の保護リレーの動作信号を用いることによって、回線数分のセンサを設置する場合に比べてコストを低減できる。   According to the embodiment, as the information indicating the section of the power transmission line in which the electrical accident has occurred among the plurality of power transmission lines, the operation signal of the protection relay of the power transmission line in which the electrical accident has occurred is used. The cost can be reduced as compared with the case of installing this sensor.

以上より明らかなように、この発明の故障点標定方法および故障点標定システムによれば、変電所などの既存の設備である電圧分圧器または計測用変圧器を利用することで、低コストで送電線の故障点を標定できる故障点標定方法および故障点標定システムを実現することができる。   As is clear from the above, according to the fault location method and fault location system of the present invention, the voltage divider or the measurement transformer, which is an existing facility such as a substation, is used, so that the transmission can be performed at low cost. A failure point locating method and a failure point locating system capable of locating a failure point of an electric wire can be realized.

以下、この発明の故障点標定方法および故障点標定システムを図示の実施の形態により詳細に説明する。   Hereinafter, the failure point locating method and the failure point locating system of the present invention will be described in detail with reference to the illustrated embodiments.

図1Aはこの発明の実施の一形態の故障点標定方法を用いた故障点標定システムと電力系統の模式図を示しており、図1Aにおいて、1aは観測対象の平行2回線の3相送電線、1bは送電線1aと異なる電圧階級の平行2回線の3相送電線、2aは上記送電線1aの一端に接続された端子(母線)、2bは上記送電線1bの一端に接続された端子(母線)、3は送電線1aの端子(母線)2aと送電線1bの端子(母線)2bとを連系するトランス、4は端子(母線)2aの電圧を検出する電圧分圧器(Potential Divider)、5は上記電圧分圧器4の2次側回路と接地間に接続されたサージ対策用のアレスタ、Cは上記電圧分圧器4の2次側回路と接地間に接続され、サージ電流成分を分流させるためのコンデンサ、CTは上記コンデンサCに流れる高周波電流を検出する高周波電流センサ、11は上記高周波電流センサCTにより検出された高周波電流であるサージ電流とその到着時刻を記録する電流波形記録部、12は上記電流波形記録部11に記録されたサージ電流とその到着時刻に基づいて故障点を標定する電流波形解析部である。上記電流波形記録部11と電流波形解析部12に、複数の送電線のうちの電気事故が発生した送電線の区間を示す情報の一例として、電気事故が発生した送電線1a,1bの保護リレーの動作信号(リレー接点)が入力される。ここで、複数の送電線のうちの電気事故が発生した送電線の区間を示す情報は、保護リレーの動作信号に限らず、電気事故が発生した送電線の区間を示す情報を表す他の回路の信号を用いてもよい。   FIG. 1A shows a schematic diagram of a fault location system and a power system using a fault location method according to an embodiment of the present invention. In FIG. 1A, 1a is a three-phase transmission line of two parallel lines to be observed. 1b is a parallel two-line three-phase transmission line of a voltage class different from that of the transmission line 1a, 2a is a terminal (bus) connected to one end of the transmission line 1a, and 2b is a terminal connected to one end of the transmission line 1b (Bus) 3 is a transformer connecting the terminal (bus) 2a of the transmission line 1a and the terminal (bus) 2b of the transmission line 1b, and 4 is a voltage divider (Potential Divider) that detects the voltage of the terminal (bus) 2a. ) 5 is a surge countermeasure arrester connected between the secondary circuit of the voltage divider 4 and the ground, and C is connected between the secondary circuit of the voltage divider 4 and the ground, A capacitor for dividing the current, CT is a high frequency for detecting a high frequency current flowing in the capacitor C. A current sensor 11 is a current waveform recording unit that records a surge current that is a high-frequency current detected by the high-frequency current sensor CT and its arrival time, and 12 is a surge current that is recorded in the current waveform recording unit 11 and its arrival time. It is a current waveform analysis unit for locating the failure point based on. As an example of information indicating the section of the power transmission line in which the electrical accident has occurred among the plurality of power transmission lines in the current waveform recording unit 11 and the current waveform analysis unit 12, protective relays for the transmission lines 1 a and 1 b in which the electrical accident has occurred The operation signal (relay contact) is input. Here, the information indicating the section of the power transmission line in which the electric accident has occurred among the plurality of power transmission lines is not limited to the operation signal of the protection relay, and other circuits representing the information indicating the section of the power transmission line in which the electric accident has occurred These signals may be used.

上記電流波形記録部11と電流波形解析部12で故障点標定装置10を構成している。上記コンデンサCと高周波電流センサCTと故障点標定装置10で故障点標定システムを構成している。   The current waveform recording unit 11 and the current waveform analysis unit 12 constitute a failure point locating device 10. The capacitor C, the high-frequency current sensor CT, and the failure point locating device 10 constitute a failure point locating system.

上記電圧分圧器4の代わりに計測用変圧器(Potential Transformer)の2次側回路に、サージ分流用のコンデンサを設置してもよい。また、サージ対策用のアレスタ5の代わりにサージ対策用のコンデンサを用いてもよい。   Instead of the voltage divider 4, a surge shunt capacitor may be installed in the secondary side circuit of the measurement transformer (Potential Transformer). Further, a surge countermeasure capacitor may be used in place of the surge countermeasure arrester 5.

上記電流波形記録部11では、商用周波数の三相交流の送電線の送電端や受電端の送電設備において通常設置されている電圧分圧器4(または計測用変圧器)の2次側回路のコンデンサCを介して流れるサージ電流波形を、10MHz程度以上のサンプリング周波数でサンプリングして、所定時間分の電流波形データをリングバッファに常に保持しておき、系統事故時に保護リレーの動作信号(リレー接点)が入力されたとき、例えば事故前60msec、事故後140msecの合計200msecの波形データを収録する。   In the current waveform recording unit 11, the capacitor of the secondary side circuit of the voltage divider 4 (or measurement transformer) normally installed in the power transmission equipment of the three-phase AC transmission line of commercial frequency or the power transmission equipment of the power receiving terminal. The surge current waveform flowing through C is sampled at a sampling frequency of about 10 MHz or more, and the current waveform data for a predetermined time is always held in the ring buffer, and the protection relay operation signal (relay contact) in the event of a system fault Is input, for example, 60 msec before the accident and 140 msec after the accident are recorded for a total of 200 msec waveform data.

また、図1Bは上記電流波形解析部12のブロック図を示している。   FIG. 1B shows a block diagram of the current waveform analyzer 12.

上記電流波形解析部12は、図1Bに示すように、電流波形記録部11からのサージ電流波形データを受けて、先頭サージ波形を抽出する先頭サージ抽出部12aと、上記先頭サージ抽出部12aにより抽出された先頭サージ波形に基づいて得られたマザーウエーブレット関数Ψ(t)を用いて相関関数を算出する相関関数算出部12bと、上記相関関数算出部12bにより算出された相関関数により反射波サージ波形を検出して、先頭サージ波形の到着時刻と絶対値および反射波サージ波形の到着時刻と絶対値に基づいて送電線の故障点を標定する故障点標定部12cと、送電線の保護リレー(図示せず)の動作接点が入力されて、その動作接点入力を表す信号を故障点標定部12cに出力する信号入力部12dとを有する。   As shown in FIG. 1B, the current waveform analysis unit 12 receives the surge current waveform data from the current waveform recording unit 11 and extracts a leading surge waveform from the leading surge extraction unit 12a and the leading surge extraction unit 12a. A correlation function calculation unit 12b that calculates a correlation function using a mother wavelet function Ψ (t) obtained based on the extracted leading surge waveform, and a reflected wave by the correlation function calculated by the correlation function calculation unit 12b A fault location unit 12c for detecting a surge waveform and locating the fault point of the transmission line based on the arrival time and absolute value of the leading surge waveform and the arrival time and absolute value of the reflected wave surge waveform, and a protection relay for the transmission line An operation contact (not shown) is input, and a signal input unit 12d for outputting a signal representing the operation contact input to the fault location unit 12c.

ここで、信号入力部12dは、送電線が複数接続された構成の系統において、送電線毎に保護リレー(図示せず)の動作接点が入力され、故障点標定部12cは、どの送電線の電気事故であるかが分かる。   Here, the signal input unit 12d receives an operation contact of a protection relay (not shown) for each power transmission line in a system having a configuration in which a plurality of power transmission lines are connected. You can see if it is an electrical accident.

上記構成の故障点標定システムによれば、送電線1aの端子(母線)2aに接続された電圧分圧器4(または計測用変圧器)の2次側回路おいて、送電線の電気事故時に発生する事故サージ波形データ(事故開始点を含む)を電流波形記録部11によりサンプリングする。   According to the fault location system of the above configuration, it occurs in the secondary circuit of the voltage divider 4 (or measurement transformer) connected to the terminal (bus) 2a of the transmission line 1a in the event of an electrical accident on the transmission line Accident surge waveform data (including the accident start point) is sampled by the current waveform recording unit 11.

次に、上記電流波形解析部12において、電流波形記録部11によりサンプリングされた事故サージ波形データを、式3を用い事故先頭部分をマザーウエーブレットとし、スケールファクタを1とした専用のウエーブレット変換(事故先頭部分波形と後続波形との相関関数演算)により、変換結果の波形データを得て更にそれを絶対値化してピーク点を検出し、反射波サージ波形およびその到着時刻を得る。   Next, in the current waveform analysis unit 12, the accident surge waveform data sampled by the current waveform recording unit 11 is converted into a dedicated wavelet transform using Equation 3 with the beginning of the accident as a mother wavelet and a scale factor of 1. By (correlation function calculation of the accident start partial waveform and the subsequent waveform), the waveform data of the conversion result is obtained and further converted into an absolute value to detect the peak point, and the reflected wave surge waveform and its arrival time are obtained.

次に、保護リレーの動作接点の入力と送電線を含む系統の構成に基づいて、電気事故が発生した送電線を認識する。ここで、例えば、事故の発生した送電線が分岐のない単純な送電線路でかつ、事故点が至近端であることが判っている場合は、最初のサージが観測されてからその反射波サージが到着するまでの時間差を2で割ってサージの伝播速度(およそ280〜300m/μsec)を掛ければ事故点までのおよその距離が算出できる。   Next, the power transmission line where the electric accident has occurred is recognized based on the configuration of the system including the input of the operating contact of the protection relay and the power transmission line. Here, for example, if the transmission line where the accident occurred is a simple transmission line without branching, and it is known that the accident point is the closest end, the reflected wave surge is observed after the first surge is observed. The approximate distance to the accident point can be calculated by dividing the time difference until arriving by 2 and multiplying by the surge propagation speed (approximately 280 to 300 m / μsec).

しかるに反射波は必ずしも事故点からの反射波とは限らず、受電端からの反射波である場合もあり、また2回線送電線においては非事故回線を経由して送電端に伝播する反射波も有り得るため、上記方法では正しく標定できない場合が出てくる。そのため、電気事故が発生した送電線に沿って仮想故障点を移動させながら仮想事故波形の直接波の到着時刻と絶対値および反射波の到着時刻と絶対値をシミュレーションにより予測し、上記直接波の到着時刻と絶対値および反射波の到着時刻と絶対値に対して、最も相関関係のある予測された直接波の到着時刻と絶対値および反射波の到着時刻と絶対値に対応する仮想故障点を、送電線の故障点とする。   However, the reflected wave is not necessarily a reflected wave from the accident point, but may be a reflected wave from the power receiving end. In a two-line transmission line, a reflected wave propagating to the transmission end via a non-accident line is also included. Because there is a possibility, there are cases where the above method cannot be correctly positioned. Therefore, the arrival time and absolute value of the direct wave of the virtual accident waveform and the arrival time and absolute value of the reflected wave are predicted by simulation while moving the virtual failure point along the transmission line where the electric accident occurred. A virtual failure point corresponding to the predicted arrival time and absolute value of the direct wave and the arrival time and absolute value of the reflected wave that are most correlated with the arrival time and absolute value and the arrival time and absolute value of the reflected wave. The failure point of the transmission line.

なお、故障点標定はこれ以外にも他の方法を用いても良く、例えば、分岐の無い送電線の場合、送電線の両端で送電線または変電所の母線に設置された電圧分圧器または計器用変圧器の2次側にGPS等によって時刻同期したサージ電流観測装置を設置し、電圧分圧器または計器用変圧器の2次側のサージ電流を観測してサージ波形の到達時間差から標定する方法などを用いても良い。   In addition, other methods may be used for fault location. For example, in the case of a transmission line without a branch, a voltage divider or meter installed on the transmission line or the substation bus at both ends of the transmission line. A surge current observation device synchronized in time by GPS or the like on the secondary side of the transformer for power supply, and observe the surge current on the secondary side of the voltage divider or instrument transformer to determine from the arrival time difference of the surge waveform Etc. may be used.

変電所などに設置されている電圧分圧器(Potential Divider)や計測用変圧器(Potential Transformer)は、その特性試験の結果から、外来サージがかなり減衰されるものの全く通過させないというものではないことが判っている。通常、電圧分圧器または計測用変圧器の2次側回路は、アレスタやコンデンサといったサージ対策品が設置されている場合が多いため、一般には、変電所の建屋内でサージ波形を観測することは困難であった。   Voltage dividers (Potential Dividers) and measurement transformers (Potential Transformers) installed in substations, etc. are not able to pass external surges, although they are considerably attenuated, as a result of their characteristic tests. I understand. Usually, secondary circuits of voltage dividers or measuring transformers are often equipped with surge suppression products such as arresters and capacitors, so generally it is not possible to observe surge waveforms in substation buildings. It was difficult.

そこで、本願出願人により、電圧分圧器または計測用変圧器の2次側回路の電圧波形ではなく、2次側回路内のサージ電流波形を観測し、それを高周波電流センサCTで電圧に変換して、増幅器(図示せず)で増幅したところ、充分検出可能な振幅でサージ波形を観測することが判明した。さらに、このサージ電流波形は変電所の変圧用トランスを殆ど遅延されずに伝播することも判明した。   Therefore, the applicant of the present application observes the surge current waveform in the secondary side circuit, not the voltage waveform of the secondary side circuit of the voltage divider or measuring transformer, and converts it into a voltage by the high-frequency current sensor CT. When it was amplified with an amplifier (not shown), it was found that the surge waveform was observed with a sufficiently detectable amplitude. Furthermore, it was also found that this surge current waveform propagates through the transformer for transformer in the substation with little delay.

図2は計測用変圧器の出力の電圧波形の一例を示し、上から相電圧Va、相電圧Vb、相電圧Vcの波形を示している。また、図3は高周波電流センサの出力の電流波形を示し、上からA相、B相、C相のサージ電流波形の一例を示している。   FIG. 2 shows an example of the voltage waveform of the output of the measuring transformer, and shows the waveforms of the phase voltage Va, the phase voltage Vb, and the phase voltage Vc from the top. FIG. 3 shows the current waveform of the output of the high-frequency current sensor, and shows an example of the A-phase, B-phase, and C-phase surge current waveforms from the top.

図2に示す計測用変圧器の電圧波形では、サージ波形およびその反射波は判然としないが、図3に示す高周波電流センサの出力の電流波形では、先頭サージ波形とその反射波サージ波形が目視で判読できる。   In the voltage waveform of the measuring transformer shown in FIG. 2, the surge waveform and its reflected wave are not obvious, but in the current waveform of the output of the high frequency current sensor shown in FIG. 3, the leading surge waveform and its reflected wave surge waveform are visually observed. Can be read.

図3における先頭サージ波形と反射波サージ波形の時間差から故障点までの距離を推測可能であるが、このままでは、毎回目視によってサージ波形を確認する必要があり、効率的ではない。   Although the distance to the failure point can be estimated from the time difference between the leading surge waveform and the reflected surge waveform in FIG. 3, it is necessary to visually check the surge waveform every time, and this is not efficient.

そこで、本発明では、ハイパスフィルタによって比較的ゆっくりとした振動成分を排除し、更に先頭サージ波形の部分と他の波形部分との相関関数を算出して、図4に示すグラフ上に表した。   Therefore, in the present invention, a relatively slow vibration component is eliminated by the high-pass filter, and a correlation function between the head surge waveform portion and other waveform portions is calculated and represented on the graph shown in FIG.

図4はフィルタリングされたサージ波形および相関関数による変換結果を示し、上から元波形(サージ波形)、動揺成分(ハイパスフィルタにより除去された成分)、サージ成分、サージ(ノイズカット)、変換波形(絶対値)を示している。   FIG. 4 shows the filtered surge waveform and the conversion result based on the correlation function. From the top, the original waveform (surge waveform), the fluctuation component (the component removed by the high-pass filter), the surge component, the surge (noise cut), and the converted waveform ( Absolute value).

相関関数によってサージ波形の到着時刻を推定する方法は従来の技術であるが、変電所の計測用変圧器の2次側回路の波形は、通常電圧・電流とも複雑な要因による振動波形となっており、計測用変圧器の1次側の送電線のサージ波形とは全く波形が異なり、かつ、2次側回路の時定数によって決まるかなりの時間に渡って減衰しつつ振動を続ける。このため、その計測用変圧器の2次側回路の波形から送電線上に発生するサージ波形の到着時刻を推定することは困難であると考えられていた。   The method of estimating the arrival time of the surge waveform using the correlation function is a conventional technique, but the waveform of the secondary circuit of the transformer for measurement at the substation is usually a vibration waveform due to complex factors for both voltage and current. The waveform of the surge on the primary side of the transformer for measurement is completely different from the surge waveform, and continues to vibrate while being attenuated over a considerable time determined by the time constant of the secondary side circuit. For this reason, it was thought that it was difficult to estimate the arrival time of the surge waveform generated on the transmission line from the waveform of the secondary circuit of the measuring transformer.

通常、電圧分圧器や計測用変圧器は、その周波数特性からも数MHzに及ぶサージ波形成分を観測に充分なゲインで伝播させることは不可能であり、その2次側回路からサージ波形成分を抽出することは困難であるとの考え方が一般的であった。   Normally, voltage dividers and transformers for measurement cannot propagate surge waveform components of several MHz due to their frequency characteristics with sufficient gain for observation, and surge waveform components from the secondary side circuit cannot be transmitted. The general idea was that it was difficult to extract.

そのため、サージ型の故障点標定装置は、専用のセンサを送電線の近くに配置してサージ検出する方法が一般的であるが、屋外に設置する設備は耐環境性能が要求され、非常に高価なものになり、それを線路毎に設置するのは現実的でない。   For this reason, surge type failure point locating devices generally use a method in which a dedicated sensor is placed near the transmission line to detect surges, but equipment installed outdoors requires environmental resistance and is very expensive. It is not realistic to install it for each track.

本発明の故障点標定方法では、敢えて既存の設備である計測用変圧器の2次側回路からサージ波形成分を抽出し、それが故障点標定に使用できるか否かの検証を行った。   In the fault location method of the present invention, a surge waveform component is extracted from the secondary circuit of a measurement transformer, which is an existing facility, and it is verified whether it can be used for fault location.

その結果、故障点標定に充分使用でき得るサージ波形成分の検出が可能なことが判明した。   As a result, it has been found that a surge waveform component that can be sufficiently used for fault location can be detected.

図5は反射波サージの検出例を示し、上から元波形(サージ波形)、動揺成分(ハイパスフィルタにより除去された成分)、サージ成分、サージ(ノイズカット)、変換波形(絶対値)を示している。   Fig. 5 shows an example of reflected wave surge detection. From the top, the original waveform (surge waveform), fluctuation component (component removed by high-pass filter), surge component, surge (noise cut), and converted waveform (absolute value) are shown. ing.

次に、変電所内のサージの伝播について調査した結果の一例を図6A,図6Bに示しており、この図6Aは154kV系統の送電線路における電気事故時のサージ波形の例を示し、図6Bは図6Aの領域Sの拡大図を示している。これによると、154kV系統の電気事故にも関わらず、77kV系統の方が波形の変化は急峻で、変化点が判りやすく、故障点の標定に適していることが判る。   Next, FIG. 6A and FIG. 6B show an example of the results of investigation of surge propagation in the substation. FIG. 6A shows an example of a surge waveform at the time of an electrical accident in a 154 kV transmission line, and FIG. The enlarged view of the area | region S of FIG. 6A is shown. According to this, it can be understood that the 77 kV system has a steeper change in the waveform, the change point is easy to understand, and is suitable for fault location, despite the electric accident of the 154 kV system.

また、154kV系統と77kV系統の間にはトランスが設置されているが、トランスを経由してもサージの伝播には殆ど時間が掛っていないことが判る。   Further, although a transformer is installed between the 154 kV system and the 77 kV system, it can be seen that it takes almost no time for the propagation of the surge through the transformer.

このようなサージの伝搬現象を応用することにより、事故回線がどの送電線であるかの情報があれば、異なる電圧階級の送電線の電気事故時でも故障点標定が可能なことが判明した。実際、図5は154kV系統の送電線路の電気事故であるにも関わらず、77kV系統の計測用変圧器の2次側回路のサージ波形を用いて算出したものである。   By applying such a surge propagation phenomenon, it has been found that if there is information on which transmission line is the fault line, fault location can be performed even in the case of an electrical accident of a transmission line of a different voltage class. Actually, FIG. 5 is calculated by using the surge waveform of the secondary side circuit of the measuring transformer of the 77 kV system in spite of the electrical accident of the transmission line of the 154 kV system.

次に、従来技術と本発明との相異点(a)〜(d)について説明する。   Next, differences (a) to (d) between the prior art and the present invention will be described.

(a) 機器の必要個数
従来は標定対象の線路毎にセンサが必要であるのに対して、本発明では、母線の電圧分圧器または計測用変圧器の2次側回路に1台設置すれば良く、異なる電圧階級の送電線の電気事故でも標定可能となる場合がある。
(a) Necessary number of devices Conventionally, a sensor is required for each track to be standardized, but in the present invention, if one is installed in the secondary voltage circuit of the voltage divider or measuring transformer of the bus, Well, it may be possible to localize even in the case of electrical accidents on transmission lines of different voltage classes.

(b) 布設ケーブル
従来は送電線付近から波形収録装置まで専用のケーブルが必要であるのに対して、本発明では、配電盤室までは既存の計測用変圧器ラインのケーブルがそのまま流用できる。
(b) Installation cable Conventionally, a dedicated cable from the vicinity of the transmission line to the waveform recording device is required, but in the present invention, the cable of the existing measurement transformer line can be used as it is to the switchboard room.

(c) 耐環境性能
従来は屋外設置部分が生じるため、その部分に屋外設置基準に基づいた耐環境性能,仕様が要求されるのに対して、本発明では、故障点標定装置は室内設置の仕様で良い。
(c) Environmental resistance performance Conventionally, since an outdoor installation part occurs, the environmental resistance performance and specifications based on the outdoor installation standard are required for that part, whereas in the present invention, the fault location device is installed indoors. Specifications are good.

(d) 事故回線情報
従来は対象回線数分のセンサを設置するため、事故回線の情報は不要であるのに対して、本発明では、事故回線がどれであるかの情報を別途に入力する必要があるが、接点情報を入力するのに要するコストは回線数分のセンサを設置する場合に比べて比較的安価である。
(d) Accident line information Conventionally, as many sensors as the number of target lines are installed, so no information on the accident line is required. In the present invention, however, information regarding the accident line is input separately. Although it is necessary, the cost required to input the contact information is relatively low compared to the case where sensors corresponding to the number of lines are installed.

このように、本発明の故障点標定方法が従来のサージ検出型故障点標定方法に比べて多大なコストメリットを有するものであることが判る。   Thus, it can be seen that the failure point locating method of the present invention has a great cost merit compared with the conventional surge detection type failure point locating method.

次に、「サージ波形の先頭部分のみの波形とそれ以降の波形との相関」について説明する。   Next, “correlation between the waveform of only the head portion of the surge waveform and the subsequent waveform” will be described.

自己相関関数G(τ)の定義式は、次の式1で表される。
The defining formula of the autocorrelation function G (τ) is expressed by the following formula 1.

ここで、f(t)は元の関数、Tは積分区間、τは時間ファクタである。 Here, f (t) is the original function, T is the integration interval, and τ is the time factor.

一方、ウエーブレット変換は次の式2のような定義になっている。
On the other hand, the wavelet transform is defined as the following equation 2.

ここで、f(t)は元の関数、Ψ(t)はマザーウエーブレット関数、τは時間ファクタ、aはスケールファクタである。 Here, f (t) is an original function, Ψ (t) is a mother wavelet function, τ is a time factor, and a is a scale factor.

このマザーウエーブレット関数Ψ(t)は、区間[−∞、+∞]でその積分が存在する(∞にならない)という制約のみで、自己相関関数の場合のように区間[−∞、+∞]で、時間差τとなっている同一関数同士の積の積分でなければならないというものではない。そこで、本発明で使用した計算方法は、先頭サージ部分をマザーウエーブレット関数Ψ(t)とし、スケールファクタaを1とした場合のウエーブレット変換を行って、絶対値化している。   This mother wavelet function Ψ (t) has only the constraint that the integral exists in the interval [−∞, + ∞] (does not become ∞), and the interval [−∞, + ∞ as in the case of the autocorrelation function. ], It does not mean that the product must be an integral of the same functions with a time difference τ. Therefore, in the calculation method used in the present invention, the absolute value is obtained by performing wavelet transformation when the head surge portion is the mother wavelet function Ψ (t) and the scale factor a is 1.

本発明の故障点標定方法における相関関数G(τ)を求める変換式は、次の式3で表される。
The conversion formula for obtaining the correlation function G (τ) in the fault location method of the present invention is expressed by the following formula 3.

次に、サージ到着時刻の認識方法について説明する。   Next, a method for recognizing the surge arrival time will be described.

1) まず、先頭サージ波形をマザーウエーブレット関数としてウエーブレット変換を行う。   1) First, wavelet conversion is performed using the head surge waveform as a mother wavelet function.

図7は式3を適用したウエーブレット変換を説明するための図を示しており、図7に示すように、元の波形f(t)のうちの時刻T1からT1+τまでの区間を先頭サージ波形として、この先頭サージ波形をマザーウエーブレット関数Ψ(t)とする。そして、マザーウエーブレット関数Ψ(t)は、時間ファクタτの増加にしたがってΨ(t−τ)となって時間軸方向に移動する。   FIG. 7 is a diagram for explaining the wavelet transform to which Expression 3 is applied. As shown in FIG. 7, the section from the time T1 to T1 + τ in the original waveform f (t) is the head. As the surge waveform, this leading surge waveform is a mother wavelet function Ψ (t). Then, the mother wavelet function Ψ (t) becomes Ψ (t−τ) as the time factor τ increases and moves in the time axis direction.

そして、マザーウエーブレット関数Ψ(t−τ)と元の波形f(t)の積を積分する。   Then, the product of the mother wavelet function Ψ (t−τ) and the original waveform f (t) is integrated.

2) ウエーブレット変換の積分結果を絶対値化する。   2) Convert the wavelet transform integration result to an absolute value.

図8(A)は式3の積分結果を示し、図8(B)はその積分結果を絶対値化した波形を示している。図8(B)において、ピーク点はその前の2つの山のピークと後の2つの山のピークを判定して決定する。このピーク点が反射波サージ波形の位置を表す。   FIG. 8A shows the integration result of Equation 3, and FIG. 8B shows a waveform obtained by converting the integration result into an absolute value. In FIG. 8B, the peak point is determined by determining the peak of the two previous peaks and the peak of the subsequent two peaks. This peak point represents the position of the reflected wave surge waveform.

図9は本発明の故障点標定方法を適用した例を示している。図9に示すように、円で囲まれた先頭サージ波形の区間を時間軸方向に移動させつつマザーウエーブレット関数Ψ(t−τ)を計算し、マザーウエーブレット関数Ψ(t−τ)と元の波形f(t)の積を積分して絶対値化した結果が下側に示す変換分総合波形である。   FIG. 9 shows an example in which the fault location method of the present invention is applied. As shown in FIG. 9, the mother wavelet function Ψ (t−τ) is calculated while moving the section of the head surge waveform surrounded by a circle in the time axis direction, and the mother wavelet function Ψ (t−τ) and A result obtained by integrating the product of the original waveform f (t) to obtain an absolute value is a converted total waveform shown on the lower side.

なお、相関関数を算出するにあたって「サージ波形の先頭部分の波形」は、次のようにして抽出する。   In calculating the correlation function, “the waveform at the head of the surge waveform” is extracted as follows.

従来の故障点標定装置では、商用電圧または電流波形に重畳したサージ波形の中からサージ成分のみを検出しなければならなかったので、その検出方法には種々の手法が考えられている(特許第3767528号他)。しかし、本発明の故障点標定方法では、変電所の計測用変圧器の2次側回路内のサージ電流成分を観測しているので、電気事故が無い場合の振幅は零に近くなっている。実際の故障点標定装置では、事故検出部分の前20msec程度から先の波形を元にその中の振幅最大となっている部分の10%程度以上の振幅を検出した時点を基準として、それより後50μsec間(サンプル数500個分)のデータを「サージ波形の先頭部分の波形」としている。   In conventional fault location devices, only the surge component must be detected from the surge waveform superimposed on the commercial voltage or current waveform, so various detection methods have been considered (Patent No. 1). 3767528 et al.). However, in the fault location method of the present invention, the surge current component in the secondary circuit of the transformer for measurement at the substation is observed, so the amplitude when there is no electrical accident is close to zero. In the actual fault location device, the time point after detecting the amplitude of about 10% or more of the maximum amplitude portion based on the previous waveform from about 20 msec before the accident detection portion is used as a reference, and thereafter The data for 50 μsec (500 samples) is defined as “the waveform at the head of the surge waveform”.

そして、マザーウエーブレット関数Ψ(t)と元の関数f(t)の2つの関数の積の積分値は、2つの関数が相似波形になっている部分で絶対値が最大となる(ピーク点)。   The integral value of the product of the two functions of the mother wavelet function Ψ (t) and the original function f (t) has the maximum absolute value at the part where the two functions have similar waveforms (peak point ).

図10は変換波形の説明のための模擬サージ波形とその変換結果を示しており、図10において、横軸は時間[サンプル数]、縦軸は電流レベル[任意目盛]を表している。   FIG. 10 shows a simulated surge waveform for explaining the converted waveform and its conversion result. In FIG. 10, the horizontal axis represents time [number of samples] and the vertical axis represents current level [arbitrary scale].

図10に示すように、太い線で示す元の波形のうちの先頭サージ波形のピーク点から250サンプルをマザーウエーブレット関数Ψ(t)として使用し、そのマザーウエーブレット関数Ψ(t)と元の波形の積を区間[−∞、+∞]で積分した結果を絶対値化した結果を細い線で示している。この変換結果では、先頭サージ波形のピーク点以外に反射波サージ波形のピーク点が2つある。   As shown in FIG. 10, 250 samples are used as the mother wavelet function Ψ (t) from the peak point of the leading surge waveform in the original waveform indicated by the thick line, and the mother wavelet function Ψ (t) and the original The thin line represents the result of integrating the product of the waveform of で in the interval [−∞, + ∞] into an absolute value. In this conversion result, there are two peak points of the reflected wave surge waveform in addition to the peak point of the leading surge waveform.

図10におけるマザーウエーブレット関数Ψ(t)の時間幅を変動させ場合の変換結果を図11,図12,図13に示している。   The conversion results when the time width of the mother wavelet function Ψ (t) in FIG. 10 is varied are shown in FIGS.

図11は太い線で示す元の波形のうちの先頭サージ波形のピーク点から100サンプルをマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示している。   FIG. 11 shows a simulated surge waveform for explaining the converted waveform when 100 samples are used as the mother wavelet function Ψ (t) from the peak point of the leading surge waveform in the original waveform indicated by a thick line, and the conversion result. Is shown.

また、図12は太い線で示す元の波形のうちの先頭サージ波形のピーク点から50サンプルをマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示している。   FIG. 12 shows a simulated surge waveform for explaining a converted waveform when 50 samples are used as the mother wavelet function Ψ (t) from the peak point of the leading surge waveform in the original waveform indicated by a thick line, and its waveform. The conversion result is shown.

また、図13は太い線で示す元の波形のうちの先頭サージ波形のピーク点から25サンプルをマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示している。   FIG. 13 shows a simulated surge waveform for explaining the converted waveform when 25 samples are used as the mother wavelet function Ψ (t) from the peak point of the leading surge waveform in the original waveform indicated by a thick line and its waveform. The conversion result is shown.

図11,図12,図13に示すように、マザーウエーブレット関数Ψ(t)の時間幅をかなり変動させても変換結果のピーク点の位置が変化しないことが分かる。   As shown in FIGS. 11, 12, and 13, it can be seen that the position of the peak point of the conversion result does not change even if the time width of the mother wavelet function Ψ (t) is considerably varied.

上記実施形態の故障点標定方法およびそれを用いた故障点標定システムによれば、商用周波交流の送電線の端子に接続された電圧分圧器(または計測用変圧器)の2次側回路と接地との間に接続されたコンデンサに、上記送電線の電気事故時に発生したサージ電流が電圧分圧器(または計測用変圧器)を介して流れたとき、高周波電流センサにより検出された上記コンデンサに流れるサージ電流の波形とそのサージ電流の到着時刻に基づいて、送電線の故障点を故障点標定装置により標定することによって、送電線に端子に接続された電圧分圧器(または計測用変圧器)の2次側回路に、コンデンサCと高周波電流センサCTと故障点標定装置10を1組設置すればよく、コストを大幅に低減することができる。また、配電盤室などの故障点標定装置の設置場所までは、既存の計測用変圧器ラインのケーブルがそのまま流用できる。さらに、故障点標定装置は室内設置の仕様でよく、屋外設置基準に基づいた耐環境性能を満たす必要がない。したがって、簡単な構成でかつ低コストで送電線の故障点を標定できる故障点標定システムを実現することができる。   According to the fault location method and the fault location system using the fault location method of the above embodiment, the secondary side circuit of the voltage divider (or measurement transformer) connected to the terminal of the commercial frequency AC transmission line and the ground When a surge current generated during an electrical accident on the transmission line flows through a voltage divider (or a measurement transformer), the capacitor connected between and flows into the capacitor detected by a high-frequency current sensor. Based on the surge current waveform and the arrival time of the surge current, the failure point of the transmission line is located by the failure point locating device, so that the voltage divider (or measuring transformer) connected to the terminal on the transmission line One set of the capacitor C, the high-frequency current sensor CT, and the failure point locating device 10 may be installed in the secondary side circuit, and the cost can be greatly reduced. In addition, the cables of existing measuring transformer lines can be used as they are until the installation location of the fault location device such as the switchboard room. Furthermore, the failure point locating device may have a specification for indoor installation, and does not need to satisfy the environmental resistance performance based on the outdoor installation standard. Therefore, it is possible to realize a failure point locating system that can determine a failure point of a transmission line with a simple configuration and at a low cost.

一般に高電圧の送電線に直接波形検出手段を設置することは非常にコストが掛かり、また電力会社の変電所は通常広大な敷地の上に建設されているため、観測結果を変電所の建て屋内までで数百m伝送しなければならないため、既存の電圧分圧器(または計測用変圧器)とその2次側回路の既設のケーブルをそのまま利用することにより遥かに低コストとなる。   In general, it is very costly to install waveform detection means directly on high-voltage transmission lines, and the substations of electric power companies are usually built on very large sites. Since several hundred meters must be transmitted, the existing voltage divider (or measuring transformer) and the existing cable of the secondary side circuit are used as they are, so that the cost becomes much lower.

通常、電圧変換器の周波数特性は数十kHzまでであり、数100kHz〜数MHzの波形は観測できないと考えられていた。ところが、電圧分圧器(または計測用変圧器)の2次側の電圧波形を観測するのではなく、電圧分圧器(または計測用変圧器)の2次側回路内のサージ電流を観測した結果、事故時のサージ電流波形を容易に検出できることが判った。本発明の故障点標定方法およびそれを用いた故障点標定システムは、このサージ電流波形を利用して故障点標定したものである。   Usually, the frequency characteristic of the voltage converter is up to several tens of kHz, and it has been considered that waveforms of several hundreds of kHz to several MHz cannot be observed. However, instead of observing the voltage waveform on the secondary side of the voltage divider (or measurement transformer), as a result of observing the surge current in the secondary circuit of the voltage divider (or measurement transformer), It was found that the surge current waveform at the time of the accident can be easily detected. The failure point locating method and the failure point locating system using the failure point locating method of the present invention are obtained by locating a failure point using this surge current waveform.

また、上記高周波電流センサCTにより検出されたサージ電流の波形のうちの先頭サージ部分の波形を先頭サージ抽出部12aにより抽出し、その抽出された先頭部分の波形とそれ以降の波形部分との相関関数を相関関数算出部12bにより算出して、その相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、サージ電流の先頭部分の到着時刻とサージ電流の反射波の到達時刻に基づいて、故障点標定部12cにより送電線の故障点を標定することによって、故障点標定を高精度にかつ高速に行うことができる。   In addition, the waveform of the leading surge portion of the surge current waveform detected by the high-frequency current sensor CT is extracted by the leading surge extraction unit 12a, and the correlation between the extracted waveform of the leading portion and the subsequent waveform portion is extracted. The function is calculated by the correlation function calculation unit 12b, and the point on the time axis at which the absolute value of the correlation function peaks is defined as the arrival time of the reflected wave of the surge current, and the arrival time of the surge current and the surge current By locating the failure point of the transmission line by the failure point locating unit 12c based on the arrival time of the reflected wave, the failure point locating can be performed with high accuracy and at high speed.

また、上記送電線が複数接続された構成の系統において、複数の送電線のうちの電気事故が発生した送電線の区間を示す情報に基づいて、故障点標定装置10により電気事故が発生した送電線の区間に対して送電線の故障点を標定することによって、送電線の回線数分のセンサを用いることなく、電気事故が発生した送電線を識別して故障点標定ができる。   Further, in the system having a configuration in which a plurality of the transmission lines are connected, the fault location device 10 transmits the transmission in which the electrical accident has occurred based on the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines. By locating the failure point of the transmission line with respect to the section of the electric wire, the failure point can be determined by identifying the transmission line in which the electric accident has occurred without using sensors for the number of transmission lines.

また、上記複数の送電線のうちの電気事故が発生した送電線の区間を示す情報として、電気事故が発生した送電線の保護リレーの動作信号を用いることによって、回線数分のセンサを設置する場合に比べてコストを低減することができる。   In addition, as the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines, sensors for the number of lines are installed by using the operation signal of the protection relay of the transmission line in which the electrical accident has occurred. Cost can be reduced compared to the case.

通常の変電所では、送電を停止する時期や期間が制限され、変電所内での故障点標定装置の設置工事の時期や期間も制限される。このような状況において、本発明の故障点標定方法およびそれを用いた故障点標定システムによれば、高圧系統の事故サージを変電所内のより低い電圧階級の母線の計測用変圧器の2次側回路で観測して、例えば図6A,図6Bに示すように154kV系統の事故サージ波形を77kV系統の母線の計測用変圧器の2次側回路内のサージ電流成分として検出することができる。   In ordinary substations, the timing and period for stopping power transmission are limited, and the timing and period for installing the fault location device in the substation is also limited. In such a situation, according to the fault location method and fault location system using the fault location method of the present invention, the secondary side of the transformer for measuring the bus voltage of the lower voltage class in the substation can cause the surge surge of the high voltage system. Observed by the circuit, for example, as shown in FIGS. 6A and 6B, the accident surge waveform of the 154 kV system can be detected as a surge current component in the secondary circuit of the measuring transformer for the bus of the 77 kV system.

この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.

図1Aはこの発明の実施の一形態の故障点標定方法を用いた故障点標定装置と電力系統の模式図である。FIG. 1A is a schematic diagram of a fault location apparatus and a power system using the fault location method according to an embodiment of the present invention. 図1Bは上記故障点標定装置の電流波形解析部のブロック図である。FIG. 1B is a block diagram of a current waveform analysis unit of the fault location apparatus. 図2は計測用変圧器の出力の電圧波形を示す図である。FIG. 2 is a diagram showing a voltage waveform of the output of the measuring transformer. 図3は高周波電流センサの出力の電流波形を示す図である。FIG. 3 is a diagram showing a current waveform of the output of the high-frequency current sensor. 図4はフィルタリングされたサージ波形および相関関数による変換結果を示す図である。FIG. 4 is a diagram showing a conversion result by the filtered surge waveform and the correlation function. 図5は反射波サージの検出例を示す図である。FIG. 5 is a diagram illustrating an example of detection of a reflected wave surge. 図6Aは154kV系統の送電線路における電気事故時のサージ波形の例を示す図である。FIG. 6A is a diagram illustrating an example of a surge waveform at the time of an electrical accident in a 154 kV transmission line. 図6Bは図6Aに示す領域Sの拡大図である。FIG. 6B is an enlarged view of the region S shown in FIG. 6A. 図7はウエーブレット変換を説明するための図である。FIG. 7 is a diagram for explaining wavelet transformation. 図8(A)はウエーブレット変換の積分結果を示す図であり、図8(B)はその積分結果を絶対値化した波形を示す図である。FIG. 8A is a diagram showing the integration result of the wavelet transform, and FIG. 8B is a diagram showing a waveform obtained by converting the integration result into an absolute value. 図9は本発明の故障点標定方法を適用した例を示す図である。FIG. 9 is a diagram showing an example in which the fault location method of the present invention is applied. 図10は変換波形の説明のための模擬サージ波形とその変換結果を示す図である。FIG. 10 is a diagram showing a simulated surge waveform for explaining the converted waveform and its conversion result. 図11は100サンプルの先頭サージ波形をマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示す図である。FIG. 11 is a diagram showing a simulated surge waveform for explaining a converted waveform and a result of the conversion when the head surge waveform of 100 samples is used as the mother wavelet function Ψ (t). 図12は50サンプルの先頭サージ波形をマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示す図である。FIG. 12 is a diagram showing a simulated surge waveform for explaining a converted waveform and a result of the conversion when the first sample surge waveform of 50 samples is used as the mother wavelet function Ψ (t). 図13は25サンプルの先頭サージ波形をマザーウエーブレット関数Ψ(t)として使用したときの変換波形の説明のための模擬サージ波形とその変換結果を示す図である。FIG. 13 is a diagram showing a simulated surge waveform for explaining a converted waveform and a result of the conversion when the first surge waveform of 25 samples is used as the mother wavelet function Ψ (t).

符号の説明Explanation of symbols

1a…平行2回線の3相送電線
1b…平行2回線の3相送電線
2a…端子(母線)
2b…端子(母線)
3…トランス
4…電圧分圧器
5…サージ対策用のアレスタ
10…故障点標定装置
11…電流波形記録部
12…電流波形解析部
12a…先頭サージ抽出部
12b…相関関数算出部
12c…故障点標定部
12d…信号入力部
C…コンデンサ
CT…高周波電流センサ
1a: Parallel 2-line 3-phase transmission line 1b: Parallel 2-line 3-phase transmission line 2a: Terminal (bus)
2b ... Terminal (bus)
DESCRIPTION OF SYMBOLS 3 ... Transformer 4 ... Voltage voltage divider 5 ... Arrestor for surge countermeasures 10 ... Fault location device 11 ... Current waveform recording part 12 ... Current waveform analysis part 12a ... Lead surge extraction part 12b ... Correlation function calculation part 12c ... Fault location Part 12d ... Signal input part C ... Capacitor CT ... High frequency current sensor

Claims (8)

商用周波交流の送電線の端子に接続された電圧分圧器または計測用変圧器の2次側回路と接地との間に接続されたコンデンサに、上記送電線の電気事故時に発生したサージ電流が上記電圧分圧器または上記計測用変圧器を介して流れたとき、上記コンデンサに流れる上記サージ電流を電流センサにより検出して、
上記電流センサにより検出された上記サージ電流の波形と上記サージ電流の到着時刻に基づいて、上記送電線の故障点を故障点標定装置により標定することを特徴とする故障点標定方法。
The surge current generated at the time of an electrical accident in the transmission line is applied to the capacitor connected between the voltage divider or the secondary circuit of the measuring transformer connected to the terminal of the commercial frequency AC transmission line and the ground. When flowing through the voltage divider or the measuring transformer, the surge current flowing through the capacitor is detected by a current sensor,
A failure point locating method, wherein a failure point locating device locates a failure point of the transmission line based on a waveform of the surge current detected by the current sensor and an arrival time of the surge current.
請求項1に記載の故障点標定方法において、
上記故障点標定装置は、上記電流センサにより検出された上記サージ電流の波形のうちの先頭サージ部分の波形とそれ以降の波形部分との相関関数を算出して、その相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、上記サージ電流の先頭部分の到着時刻と上記サージ電流の反射波の到達時刻に基づいて、上記送電線の故障点を標定することを特徴とする故障点標定方法。
In the fault location method according to claim 1,
The fault locator calculates a correlation function between the waveform of the leading surge portion and the waveform portion after the surge current waveform detected by the current sensor, and the absolute value of the correlation function is peaked. The point on the time axis becomes the arrival time of the reflected wave of the surge current, and the failure point of the transmission line is determined based on the arrival time of the leading portion of the surge current and the arrival time of the reflected wave of the surge current A fault location method characterized by:
請求項1または2に記載の故障点標定方法において、
上記送電線が複数接続された構成の系統であって、
上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報に基づいて、上記故障点標定装置により、上記電気事故が発生した送電線の区間に対して上記送電線の故障点を標定することを特徴とする故障点標定方法。
The failure point locating method according to claim 1 or 2,
A system having a configuration in which a plurality of the transmission lines are connected,
Based on the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines, the failure point locating device causes the failure of the transmission line to the section of the transmission line in which the electrical accident has occurred. A fault location method characterized by location of points.
請求項3に記載の故障点標定方法において、
上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報は、上記電気事故が発生した上記送電線の保護リレーの動作信号であることを特徴とする故障点標定方法。
In the failure point locating method according to claim 3,
The fault location method, wherein the information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines is an operation signal of a protection relay of the transmission line in which the electrical accident has occurred.
商用周波交流の送電線の端子に接続された電圧分圧器または計測用変圧器の2次側回路と接地との間に接続され、上記送電線の電気事故時に発生したサージ電流が上記電圧分圧器または上記計測用変圧器を介して流れるコンデンサと、
上記コンデンサに流れる上記サージ電流を検出する電流センサと、
上記電流センサにより検出された上記サージ電流の波形と上記サージ電流の到着時刻に基づいて、上記送電線の故障点を標定する故障点標定装置と
を備えたことを特徴とする故障点標定システム。
A voltage divider connected to a terminal of a commercial frequency AC power transmission line or a secondary side circuit of a measurement transformer and a ground, and a surge current generated at the time of an electrical accident of the power transmission line is a voltage divider. Or a capacitor flowing through the measuring transformer,
A current sensor for detecting the surge current flowing in the capacitor;
A failure point locating system comprising: a failure point locating device for locating a failure point of the transmission line based on a waveform of the surge current detected by the current sensor and an arrival time of the surge current.
請求項5に記載の故障点標定システムにおいて、
上記故障点標定装置は、
上記電流センサにより検出された上記サージ電流の波形のうちの先頭サージ部分の波形を抽出する先頭サージ抽出部と、
上記先頭サージ抽出部により抽出された上記サージ電流の波形のうちの先頭サージ部分の波形とそれ以降の波形部分との相関関数を算出する相関関数算出部と、
上記相関関数算出部により算出された相関関数の絶対値がピークとなる時間軸上の点を上記サージ電流の反射波の到達時刻とし、上記サージ電流の先頭部分の到着時刻と上記サージ電流の反射波の到達時刻に基づいて、上記送電線の故障点を標定する故障点標定部と
を有することを特徴とする故障点標定システム。
In the fault location system according to claim 5,
The above fault location device is
A leading surge extraction unit that extracts a waveform of a leading surge portion of the surge current waveform detected by the current sensor;
A correlation function calculating unit that calculates a correlation function between the waveform of the first surge portion of the surge current waveform extracted by the first surge extraction unit and the waveform portion thereafter;
The point on the time axis at which the absolute value of the correlation function calculated by the correlation function calculation unit peaks is the arrival time of the reflected wave of the surge current, and the arrival time of the leading portion of the surge current and the reflection of the surge current A failure point locating system comprising: a failure point locating unit for locating a failure point of the transmission line based on a wave arrival time.
請求項5または6に記載の故障点標定システムにおいて、
上記送電線が複数接続された構成の系統であって、
上記故障点標定装置は、上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報に基づいて、上記電気事故が発生した送電線の区間に対して上記送電線の故障点を標定することを特徴とする故障点標定システム。
In the fault location system according to claim 5 or 6,
A system having a configuration in which a plurality of the transmission lines are connected,
The failure point locating device is configured to detect a failure of the transmission line with respect to a section of the transmission line in which the electrical accident has occurred based on information indicating a section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines. A fault location system characterized by locating points.
請求項7に記載の故障点標定システムにおいて、
上記複数の送電線のうちの上記電気事故が発生した送電線の区間を示す情報は、上記電気事故が発生した上記送電線の保護リレーの動作信号であり、
上記故障点標定装置は、上記送電線の保護リレーの動作信号が入力される信号入力部を有することを特徴とする故障点標定システム。
In the fault location system according to claim 7,
Information indicating the section of the transmission line in which the electrical accident has occurred among the plurality of transmission lines is an operation signal of a protection relay of the transmission line in which the electrical accident has occurred,
The fault location system has a signal input unit to which an operation signal of a protection relay of the power transmission line is input.
JP2007205244A 2007-08-07 2007-08-07 Fault location method and fault location system Expired - Fee Related JP4914306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205244A JP4914306B2 (en) 2007-08-07 2007-08-07 Fault location method and fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205244A JP4914306B2 (en) 2007-08-07 2007-08-07 Fault location method and fault location system

Publications (2)

Publication Number Publication Date
JP2009041976A true JP2009041976A (en) 2009-02-26
JP4914306B2 JP4914306B2 (en) 2012-04-11

Family

ID=40442877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205244A Expired - Fee Related JP4914306B2 (en) 2007-08-07 2007-08-07 Fault location method and fault location system

Country Status (1)

Country Link
JP (1) JP4914306B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075555A (en) * 2009-09-30 2011-04-14 Korea Electric Power Corp Detection system and method of cable failure part
CN103412221A (en) * 2013-08-13 2013-11-27 昆明理工大学 Transformer excitation surge current identification method based on time-frequency characteristic quantities
CN111433616A (en) * 2017-11-17 2020-07-17 Abb电网瑞士股份公司 Parametric traveling wave based fault location for power transmission lines
CN111999597A (en) * 2020-08-24 2020-11-27 国网陕西省电力公司电力科学研究院 Traveling wave fault positioning device of hybrid power transmission line
KR20220163001A (en) * 2021-06-02 2022-12-09 주식회사 성진테크윈 High surge current measuring method using low-current transformer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179762A (en) * 1981-04-30 1982-11-05 Toshiba Corp Surge receiving type fault point orienting device
JPH10117431A (en) * 1996-10-09 1998-05-06 Fuji Electric Co Ltd Electric power system accident zone discrimination
JP2005338000A (en) * 2004-05-28 2005-12-08 Tohoku Electric Power Co Inc Surge location system and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57179762A (en) * 1981-04-30 1982-11-05 Toshiba Corp Surge receiving type fault point orienting device
JPH10117431A (en) * 1996-10-09 1998-05-06 Fuji Electric Co Ltd Electric power system accident zone discrimination
JP2005338000A (en) * 2004-05-28 2005-12-08 Tohoku Electric Power Co Inc Surge location system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011075555A (en) * 2009-09-30 2011-04-14 Korea Electric Power Corp Detection system and method of cable failure part
CN103412221A (en) * 2013-08-13 2013-11-27 昆明理工大学 Transformer excitation surge current identification method based on time-frequency characteristic quantities
CN111433616A (en) * 2017-11-17 2020-07-17 Abb电网瑞士股份公司 Parametric traveling wave based fault location for power transmission lines
CN111433616B (en) * 2017-11-17 2022-11-08 日立能源瑞士股份公司 Parametric traveling wave based fault location for power transmission lines
CN111999597A (en) * 2020-08-24 2020-11-27 国网陕西省电力公司电力科学研究院 Traveling wave fault positioning device of hybrid power transmission line
CN111999597B (en) * 2020-08-24 2023-01-24 国网陕西省电力公司电力科学研究院 Traveling wave fault positioning device of hybrid power transmission line
KR20220163001A (en) * 2021-06-02 2022-12-09 주식회사 성진테크윈 High surge current measuring method using low-current transformer
KR102524718B1 (en) 2021-06-02 2023-04-24 이계광 High surge current measuring method using low-current transformer

Also Published As

Publication number Publication date
JP4914306B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
CN108181552B (en) Underground cable fault detection system and fault detection method thereof
Lopes et al. Practical methodology for two-terminal traveling wave-based fault location eliminating the need for line parameters and time synchronization
Dong et al. Implementation and application of practical traveling-wave-based directional protection in UHV transmission lines
JP4095073B2 (en) Transmission line fault location method, transmission line fault location apparatus, and fault location program
US20190094291A1 (en) Distance protection using traveling waves in an electric power delivery system
CN108139438A (en) Use the power system monitoring of high-frequency signal
JP4914306B2 (en) Fault location method and fault location system
KR101029292B1 (en) Device and method for fault location search in cable
CA2836938A1 (en) On-line monitoring system of insulation losses for underground power cables
Parkey et al. Analyzing artifacts in the time domain waveform to locate wire faults
US11038342B2 (en) Traveling wave identification using distortions for electric power system protection
US20100010761A1 (en) Method and device for monitoring a system
JP6817521B2 (en) Single point of failure indicator
Thomas et al. Single ended travelling wave fault location scheme based on wavelet analysis
Silva et al. A fault locator for transmission lines using traveling waves and wavelet transform theory
Zarbita et al. A new approach of fast fault detection in HV-B transmission lines based on detail spectrum energy analysis using oscillographic data
JP6624165B2 (en) Distribution line fault location system
CN111095007A (en) Safe travelling wave distance protection in an electric power transmission system
CN102650654A (en) Operation performance on-line assessment method for power transformer iron core and clamping piece grounding current monitoring device
KR100538018B1 (en) A new measurement equipment for the shieth currents of grounding power cables
CN108369254B (en) Method of locating a fault in a power transmission medium
Zimath et al. Traveling wave-based fault location experiences
CN210465583U (en) Sensor for submarine cable fault monitoring
Sack et al. A non-contact directional sensor for partial discharge measurements
JP3844757B2 (en) Feeder fault location system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees