JP6817521B2 - Single point of failure indicator - Google Patents

Single point of failure indicator Download PDF

Info

Publication number
JP6817521B2
JP6817521B2 JP2019011401A JP2019011401A JP6817521B2 JP 6817521 B2 JP6817521 B2 JP 6817521B2 JP 2019011401 A JP2019011401 A JP 2019011401A JP 2019011401 A JP2019011401 A JP 2019011401A JP 6817521 B2 JP6817521 B2 JP 6817521B2
Authority
JP
Japan
Prior art keywords
waveform
accident
surge
current
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019011401A
Other languages
Japanese (ja)
Other versions
JP2020118602A (en
Inventor
大浦 好文
好文 大浦
山口 保孝
保孝 山口
成章 辻
成章 辻
重良 藤内
重良 藤内
大橋 善和
善和 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2019011401A priority Critical patent/JP6817521B2/en
Publication of JP2020118602A publication Critical patent/JP2020118602A/en
Application granted granted Critical
Publication of JP6817521B2 publication Critical patent/JP6817521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、送電線路の故障点標定システムに関する。 The present invention relates to a transmission line failure point determination system.

サージ到達時間差型故障点標定方式は送電線路の事故時に発生するサージ波が送電線路の両端に設置した観測装置で検出されるまでの経過時間の差からサージの発生点の位置を特定するもので、サージ波の伝搬速度と線路長の設定が正しければ商用周波における線路定数に関係なく標定でき、標定結果も十分な精度が得られるものである。 The surge arrival time difference type failure point identification method identifies the position of the surge occurrence point from the difference in the elapsed time until the surge wave generated in the event of a transmission line accident is detected by the observation devices installed at both ends of the transmission line. If the propagation speed of the surge wave and the line length are set correctly, the standardization can be performed regardless of the line constant at the commercial frequency, and the standardization result can be obtained with sufficient accuracy.

しかし、雷の様にサージが発生しやすい事故ばかりではなく、樹木接触の様にサージが発生しにくい事故もあり、標定できないかまたは標定結果に非常に大きな誤差が含まれる場合があるという欠点があった。 However, there are not only accidents such as lightning where surges are likely to occur, but also accidents such as tree contact where surges are unlikely to occur, and there is a drawback that it may not be possible to locate or the orientation result may contain a very large error. there were.

また、遮断器開閉時など事故でなくてもサージが発生する場合があり、事故/非事故の見極めが困難であった。 In addition, a surge may occur even if it is not an accident such as when opening and closing a circuit breaker, and it is difficult to distinguish between an accident and a non-accident.

また、送電端背後の区間外事故の場合、サージ到達時間差型故障点標定装置では送受電端間の伝搬時間差が観測されるのみであるため、送電端またはその近傍での事故と誤認される場合が有った。また、設定された伝搬速度に誤差があれば区間外にも拘らず区間内事故と誤認される場合もあった。 In addition, in the case of an accident outside the section behind the power transmission end, the surge arrival time difference type failure point indicator only observes the propagation time difference between the power transmission and reception ends, so it may be mistaken for an accident at or near the power transmission end. There was. In addition, if there is an error in the set propagation speed, it may be mistaken as an accident within the section even though it is outside the section.

一方、従来のインピーダンス型故障点標定方式は地絡事故時の大地帰路抵抗値など正確には把握できないパラメータがあるため、大きく外れることは少ないものの、常に一定の誤差が含まれ得るという欠点がある。また、送電線の分岐が複数ある場合、演算が複雑になり、特許文献3のようにキルヒホッフの公式を用いて全体を定式化し、マトリックス演算を行って故障点標定するというような演算手法を使用する必要がある。 On the other hand, the conventional impedance-type single point of failure determination method has parameters that cannot be accurately grasped, such as the ground return resistance value at the time of a ground fault, so it is unlikely to deviate significantly, but it has the disadvantage that a certain error can always be included. .. In addition, when there are multiple branches of the transmission line, the calculation becomes complicated, and a calculation method such as formulating the whole using the Kirchhoff's formula as in Patent Document 3 and performing a matrix calculation to determine the failure point is used. There is a need to.

特許文献1では[請求項3]に第1のサンプリング回路のサンプリング周波数よりも低いサンプリン グ周波数の第2のサンプリング回路で波形データをサンプ リングし、第2のサンプリング回路によりサンプリングされた波形データの商用周波数成分の電圧実効値または電流の実効値を実効値演算手段により求め、それが所定電圧値以下かまたは所定電流値以上であるとき、事故が発生したと判別することが書かれている。 In Patent Document 1, in [claim 3], waveform data is sampled by a second sampling circuit having a sampling frequency lower than the sampling frequency of the first sampling circuit, and the waveform data sampled by the second sampling circuit is used. It is written that the effective voltage value or the effective value of the current of the commercial frequency component is obtained by the effective value calculation means, and when it is equal to or less than the predetermined voltage value or more than the predetermined current value, it is determined that an accident has occurred.

特許文献2では[請求項1]にローパスフィルターによって商用周波数帯域の事故電流を抽出して出力する商用周波数成分検出部と、ハイパスフィルターによって前記商用周波数帯域よりも高周波のサージ電流を抽出して出力するサージ電流成分検出部と、複数周期の事故電流に基づいて事故区間を検出する事故区間検出部と、サージ電流が各光電流センサーに到達した時間差を算出することにより、事故点距離を標定する事故点標定部とを有する事故点標定装置が書かれており、[請求項2]には事故区間検出部が事故区間を検出したときにのみ事故点を表す事故点情報を出力する事故点標定装置が書かれている。 In Patent Document 2, in [Claim 1], a commercial frequency component detection unit that extracts and outputs an accident current in a commercial frequency band with a low-pass filter and a surge current having a higher frequency than the commercial frequency band are extracted and output by a high-pass filter. The accident point distance is determined by calculating the time difference between the surge current component detection unit that detects the surge current component, the accident section detection unit that detects the accident section based on the accident currents of multiple cycles, and the surge current reaching each optical current sensor. An accident point locating device having an accident point locating unit is written, and in [Claim 2], the accident point locating that outputs the accident point information indicating the accident point only when the accident section detecting unit detects the accident section. The device is written.

確かに、特許文献1の故障点標定システムではサージ検出の度に故障点標定を行っていた従来のサージ波形到達時間差型故障点標定装置とは異なり、地絡事故や短絡事故発生時にのみ標定するため、非事故時の誤標定が少なくなった。 Certainly, unlike the conventional surge waveform arrival time difference type failure point locating device in which the failure point locating system of Patent Document 1 performs failure point calibration each time a surge is detected, it is calibrated only when a ground fault or short circuit accident occurs. Therefore, the number of false indications at the time of non-accident has decreased.

しかしながら、標定対象区間外で発生した事故でも電圧降下や過電流などの状態になり、サージ到達時間差での標定を行うため、送電端よりもはるか手前の電源側の事故や受電端よりもさらに遠方の負荷側の事故を送電端もしくは受電端またはその近傍での事故と誤標定するという問題があった。 However, even if an accident occurs outside the target section of the target, a voltage drop or overcurrent will occur, and since the standarding will be performed with the surge arrival time difference, the accident on the power supply side far before the power transmission end and the distance from the power reception end will be further. There was a problem that the accident on the load side was erroneously labeled as an accident at or near the power transmission end or the power reception end.

また、特許文献2の事故点標定装置では送電端および受電端の双方で中性点接地された地中線ケーブル系統の場合は地絡時のサージ電流が事故点から送電端および受電端の双方に向かって流れ、地絡電流が送電端および受電端の双方から事故点に向かって流れるので特許文献2の[請求項1]の方法が成立するが、低圧系統の単回線運用の架空送電線の場合、受電端は中性点非接地であることが多く、そのため受電端では地絡電流や地絡時のサージ電流が殆ど流れないという問題があり、上記特許文献2の[請求項1]の方法は使えない。 Further, in the accident point locator of Patent Document 2, in the case of an underground cable system in which the neutral point is grounded at both the power transmission end and the power reception end, the surge current at the time of a ground fault is from the accident point to both the power transmission end and the power reception end. Since the ground fault current flows from both the transmitting end and the receiving end toward the accident point, the method of [claim 1] of Patent Document 2 is established, but an overhead transmission line operated by a single line of a low voltage system. In this case, the power receiving end is often not grounded at the neutral point, and therefore there is a problem that a ground fault current or a surge current at the time of a ground fault hardly flows at the power receiving end, and the above-mentioned Patent Document 2 [Claim 1] Method cannot be used.

また、特許文献2の事故点標定装置では送電端および受電端から事故点標定装置まで電流サージ波形情報を送るための専用の光ファイバーが必要となり設備が高価となる。また、特許文献2には特に記載されていないが、標定に際しては前記光ファイバーでのサージ波形情報の伝搬遅延時間も考慮する必要がある。 Further, the accident point locating device of Patent Document 2 requires a dedicated optical fiber for transmitting current surge waveform information from the power transmitting end and the power receiving end to the accident point locating device, and the equipment becomes expensive. Further, although not particularly described in Patent Document 2, it is necessary to consider the propagation delay time of the surge waveform information in the optical fiber at the time of localization.

また、事故有無の判定に複数サイクルの商用周波波形データが必要であるということは商用周波の1サイクル分の時間×複数のサイクル数相当の時間が必要であるということであり、サージ波形情報が数十μsec前後で届いてから更に数十msec間待たなければならないが、その間もサージ波形は散発的に発生しうる上、反射波サージも到達し得るので先頭サージ情報を正しく識別し保持するための工夫が必要である。 In addition, the fact that multiple cycles of commercial frequency waveform data is required to determine the presence or absence of an accident means that the time equivalent to one cycle of the commercial frequency x the time equivalent to the number of multiple cycles is required, and the surge waveform information is available. It is necessary to wait for several tens of msec after it arrives in about several tens of μsec, but during that time, surge waveforms can occur sporadically and reflected wave surges can also reach, so in order to correctly identify and retain the leading surge information. It is necessary to devise.

以上を要約すると、サージ到達時間差型故障点標定方式は当たれば誤差は少ないが、十分な振幅のサージが発生していない場合、区間外事故の場合、遮断器の開閉サージの様に非事故時に発生したサージによって標定した場合、など誤標定することが多く、外れれば誤差は非常に大きい。 To summarize the above, the error is small if the surge arrival time difference type failure point identification method is applied, but when a surge with sufficient amplitude does not occur, in the case of an out-of-section accident, in the case of a non-accident such as a circuit breaker opening / closing surge. When it is localized by the surge that has occurred, it is often misidentified, and if it deviates, the error is very large.

一方、従来のインピーダンス型故障点標定方式では誤差の大きな標定結果にはなりにくいが、大地帰路抵抗値の様に正確には設定できないパラメータもあるため、常に一定の誤差が含まれ得るという欠点がある。また、送電線の分岐によって受電端の数が増えると標定演算が複雑になる。 On the other hand, although it is difficult to obtain a large error in the conventional impedance type failure point calibration method, there is a drawback that a constant error can always be included because there are some parameters such as the ground return resistance value that cannot be set accurately. is there. In addition, if the number of receiving ends increases due to the branching of the transmission line, the localization calculation becomes complicated.

特許文献1の発明により、サージ到達時間差型故障点標定方式での非事故時の誤標定は避けることができたが、その他の上記問題は残ったままである。また、特許文献2の発明により区間外事故での誤標定は避けられるが、上記サージが発生していない場合の誤標定は避けられない。また、特許文献2の方法では低圧系架空送電線のように受電側が中性点非接地方式の単回線送電線の場合は使えない。 According to the invention of Patent Document 1, it was possible to avoid erroneous localization at the time of non-accident in the surge arrival time difference type failure point identification method, but the other problems described above remain. Further, according to the invention of Patent Document 2, erroneous localization in an accident outside the section can be avoided, but erroneous localization in the case where the above surge does not occur is unavoidable. Further, the method of Patent Document 2 cannot be used in the case of a single-line transmission line in which the power receiving side is a neutral point non-grounded type such as a low-voltage overhead transmission line.

特許第 4044489号Patent No. 40444489 特許第 5991840号Patent No. 5991840 特許第 3756026号Patent No. 3756026

こういった点に鑑みて、本願が解決すべき課題は、高精度な標定結果が得られるサージ到達時間差型故障点標定方式の特徴を生かしつつ、標定対象区間外事故での誤標定やサージが発生していない事故の場合の誤標定を防ぎ、かつ受電端が中性点非接地の架空送電線系統でも使用できる故障点標定システムを低コストで提供することにある。 In view of these points, the problem to be solved by the present application is that while taking advantage of the characteristics of the surge arrival time difference type failure point grounding method that can obtain highly accurate grounding results, erroneous grounding and surges in accidents outside the target section of the grounding occur. The purpose is to provide a fault point positioning system at low cost that can be used even in an overhead transmission line system in which the power receiving end is not grounded at the neutral point, while preventing erroneous positioning in the case of an accident that has not occurred.

本願の発明者は従来の故障点標定装置が地絡事故や短絡事故の発生位置を求めることのみに注力し、事故状況を把握することに重点を置いていなかったために区間外事故や非事故時にも標定を行い、誤った結果を表示していたという点に鑑み、事故状況を正確に把握し、地絡事故か短絡事故か、事故はどの相で発生したかを見極め、その後に事故位置を計算すべきであると考えた。 The inventor of the present application focused only on finding the position where a ground fault accident or a short circuit accident occurred, and did not focus on grasping the accident situation, so that in the case of an out-of-section accident or a non-accident. In view of the fact that the accident was accurately grasped and the accident situation was determined, whether it was a ground fault or a short circuit accident, and in which phase the accident occurred, and then the location of the accident was determined. I thought it should be calculated.

そこで本願の発明者は、図4−1の起動検出部フロー図のようにサージ波形や商用周波波形の変化を検出するとそれらを保存させ、サージ波形の到達時刻および商用周波波形の変化の検出時刻を記録するとともに、商用周波波形データから各相の電圧値、電流値、位相の各情報、および事故の有無、事故状況を示す事故様相(A相一線地絡とかAB相二線短絡のような事故相名と事故種別から成る事故状況を示す用語)を自動的に算出および判定し、地絡事故、または短絡事故判定を行なった場合に、図4−2の標定部フロー図のようにサージ波形が設定閾値を超える十分な振幅で検出できていて波形データが保存されていることを確認した上で、送受電端へのサージ波形到達時間差から事故位置を特定することとし、サージ波形の振幅が不十分で、データが記録されていないか記録されていてもその到達時刻が不明確な場合は商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定することとしたのである。 Therefore, the inventor of the present application saves the changes in the surge waveform and the commercial frequency waveform when they are detected as shown in the flow diagram of the activation detection unit in FIG. 4-1. The arrival time of the surge waveform and the detection time of the change in the commercial frequency waveform. From the commercial frequency waveform data, the voltage value, current value, and phase information of each phase, as well as the presence or absence of an accident and the accident situation indicating the accident situation (such as A-phase one-line ground fault or AB-phase two-wire short circuit) When a ground fault or short-circuit accident is determined by automatically calculating and determining (a term indicating the accident situation consisting of the accident phase name and the accident type), a surge is performed as shown in the control flow diagram of FIG. 4-2. After confirming that the waveform can be detected with a sufficient amplitude exceeding the set threshold and the waveform data is saved, the accident position is specified from the difference in the arrival time of the surge waveform to the power transmission / reception end, and the amplitude of the surge waveform. If the data is not recorded or the arrival time is unclear even if the data is recorded, the failure point is determined from the voltage value, current value, and phase information of each phase calculated from the commercial frequency waveform data. It was decided to standardize.

一般にサージ波形を正しく観測するには送電線付近に専用のセンサーを設置し、得られたサージ波形データを変換モジュールで電圧/周波数変換(またはV/F変換ともいう)などを行い、さらに光ファイバー等で事故点標定装置の設置場所まで伝送する必要があった。 Generally, in order to observe the surge waveform correctly, a dedicated sensor is installed near the transmission line, and the obtained surge waveform data is subjected to voltage / frequency conversion (or V / F conversion) with a conversion module, and then optical fiber, etc. It was necessary to transmit to the installation location of the accident point locator.

しかしながら、変電所の送電線付近にセンサーを設置したり、波形データ伝送専用の光ファイバーを設置したりするには相当なコストがかかってしまうというデメリットがあり、それはサージ波形到達時間差型事故点標定装置の導入が進まない理由にもなっていた。 However, there is a demerit that it costs a considerable amount to install a sensor near the transmission line of a substation or an optical fiber dedicated to waveform data transmission, which is a surge waveform arrival time difference type accident point locator. It was also the reason why the introduction of

しかるに、変電所には地絡事故や短絡事故などの事故現象を観測し、記録するための波形記録器が送電線下の電圧変換器(PD,PTまたはVTという)や電流変成器(CTという)の二次側回路に既設の設備として必ず設けてある。 However, at substations, waveform recorders for observing and recording accident phenomena such as ground faults and short-circuit accidents are voltage converters (PD, PT or VT) and current transformers (CT) under transmission lines. ) Is always installed as an existing facility in the secondary circuit.

本願では上記波形記録器に高周波サージ波形も記録させてその到達時間差から事故点を標定できないか検証した。中でも特によく使用されている電圧変換器PD等の一次側回路のサージ波形と二次側回路のサージ波形を比較した。 In the present application, a high-frequency surge waveform is also recorded by the waveform recorder, and it is verified whether the accident point can be determined from the arrival time difference. Among them, the surge waveform of the primary side circuit such as the voltage converter PD, which is often used, and the surge waveform of the secondary side circuit were compared.

その結果、図5のように二次側回路の波形は一次側回路の波形に比べて余計な振動成分がノイズとして混入したりするものの、サージ波形の立ち上がりのタイミングはよく一致していることが解った。 As a result, as shown in FIG. 5, although the waveform of the secondary circuit contains an extra vibration component as noise compared to the waveform of the primary circuit, the rising timing of the surge waveform is well matched. I understand.

よって変電所に通常設置されている送電線の電圧電流波形記録器に高周波サージ波形を記録する機能等を追加するだけで、サージ到達時間差方式では充分な精度で事故点標定ができ、送電線近傍に新たに電圧・電流センサーを設置する必要の無いことが判明した。 Therefore, by simply adding a function to record a high-frequency surge waveform to the voltage / current waveform recorder of the transmission line normally installed in the substation, the surge arrival time difference method can determine the accident point with sufficient accuracy, and the vicinity of the transmission line. It turned out that there is no need to install a new voltage / current sensor.

これは、従来サージ波形の到達タイミングの測定において、サージ波形は現場に専用のサージセンサーを設置して電圧光変換などを行って専用の光ファイバーで記録装置までケーブル接続し、データを伝送するのでなければ正確なサージ波形の測定はできないとの常識を覆すものであり、大きなコストを掛けることなくサージ波形と商用周波波形の双方の観測結果から故障点標定する装置を提供できる本願発明の要因となった。 This is because in the conventional measurement of the arrival timing of the surge waveform, the surge waveform must be transmitted by installing a dedicated surge sensor at the site, performing voltage-optical conversion, etc., and connecting the cable to the recording device with a dedicated optical fiber. This overturns the common wisdom that accurate surge waveform measurement is not possible, and is a factor in the present invention that can provide an apparatus for determining failure points from observation results of both surge waveforms and commercial frequency waveforms without incurring a large cost. It was.

上記の内容を踏まえて、本願装置の構成は既存の商用周波波形記録器にサージ波形記録機能を追加した構成とした。
すなはち、電圧または電流波形を入力し、商用周波数の数十倍から数百倍程度の比較的低速なサンプリング周波数でサンプリングしA/D変換する低速A/D変換部を有する商用周波波形入力部と、
商用周波数成分や高調波および高周波ノイズ成分を除いたサージ波形成分のみを入力し、数MHz程度以上の比較的高速なサンプリング周波数でサンプリングしA/D変換する高速A/D変換部を有するサージ波形入力部と、を有し、
さらに、A/D変換された波形を記憶する事故前波形メモリーと、
低速サンプリングデータで電圧低下や過電流などの事故を検出する起動検出部と、
起動検出時に記憶されていた低速および高速サンプリングされた波形データを記憶している各々の事故前波形メモリーの内容とその後の一定時間観測して得られる波形データとを各々の主メモリーに転送記憶するサージ波形記録部および商用周波波形記録部と、
外部から要求があると記憶しているデータを伝送するデータ伝送部とを有する波形記録装置および、前記波形記録装置に要求を出して事故検出時に記憶された波形データを集めて故障点を解析する解析装置と、
前記解析装置による解析結果を表示するモニター装置と、を備えたものとした。
Based on the above contents, the configuration of the device of the present application is a configuration in which a surge waveform recording function is added to the existing commercial frequency waveform recorder.
That is, a commercial frequency waveform input having a low-speed A / D converter that inputs a voltage or current waveform, samples at a relatively low sampling frequency of several tens to several hundred times the commercial frequency, and performs A / D conversion. Department and
A surge waveform having a high-speed A / D converter that inputs only the surge waveform component excluding commercial frequency components, harmonics, and high-frequency noise components, samples at a relatively high sampling frequency of several MHz or higher, and performs A / D conversion. Has an input section,
Furthermore, a pre-accident waveform memory that stores A / D-converted waveforms and
A start detector that detects accidents such as voltage drop and overcurrent with low-speed sampling data,
The contents of each pre-accident waveform memory that stores the low-speed and high-speed sampled waveform data that was stored at the time of activation detection and the waveform data obtained by observing for a certain period of time after that are transferred and stored in each main memory. Surge waveform recording unit, commercial frequency waveform recording unit, and
A waveform recording device having a data transmission unit that transmits data stored as a request from the outside and a waveform data stored at the time of accident detection by issuing a request to the waveform recording device are collected and a failure point is analyzed. Analytical device and
It is provided with a monitor device for displaying the analysis result by the analysis device.

また、本願の第一の発明は上記構成の故障点標定システムであって、前記サージ波形成分の立ち上がり時刻の時間差から故障点までの距離を求める故障点標定機能および、商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定する故障点標定機能を有し、サージの発生が認められた事故時には前記サージ波形成分到達時間差から故障点までの距離を求め、サージの発生が認められない事故時には前記商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定することを特徴とする故障点標定システムである。 Further, the first invention of the present application is a failure point determination system having the above configuration, which is calculated from a failure point identification function for obtaining a distance from a time difference of the rise time of the surge waveform component to a failure point, and commercial frequency waveform data. It has a failure point identification function that determines the failure point from each phase voltage value, current value, and phase information, and when a surge is found to occur, the distance from the surge waveform component arrival time difference to the failure point is obtained. In the event of an accident in which no surge is observed, the failure point determination system is characterized in that the failure point is determined from the voltage value, current value, and phase information of each phase calculated from the commercial frequency waveform data.

また、本願の第二の発明は上記構成の故障点標定システムであって、サージの発生が認められる事故時には上記商用周波波形入力部によりサンプリングされた波形データの商用周波数成分の電圧実効値または電流の実効値を起動検出部により求め、上記起動検出部により求められた相電圧の実効値が別途設定された電圧値以下(および抵抗接地系統の場合は零相電圧の実効値が別途設定された電圧値以上)、または上記起動検出部により求められたライン電流(もしくは線間電流)の実効値が別途設定された電流値以上であるとき、起動検出部により事故を検出したと判別し、直前にサージ波形入力部に入力されたサージ波形データを有効な事故サージ波形データであると判断して前記サージ波形成分の立ち上がり時刻の時間差から故障点までの距離を求めることを特徴とする故障点標定システムである。 Further, the second invention of the present application is a failure point determination system having the above configuration, and in the event of an accident in which the occurrence of a surge is recognized, the effective voltage value or current of the commercial frequency component of the waveform data sampled by the commercial frequency waveform input unit. The effective value of the phase voltage obtained by the start-up detection unit is obtained by the start-up detection unit, and the effective value of the phase voltage obtained by the above-mentioned start-up detection unit is less than or equal to the voltage value set separately (and in the case of the resistance ground system, the effective value of the zero-phase voltage is set separately. When the effective value of the line current (or line-to-line current) obtained by the start detection unit is equal to or higher than the voltage value), it is determined that the start detection unit has detected an accident, and immediately before Failure point identification is characterized in that the surge waveform data input to the surge waveform input unit is determined to be valid accident surge waveform data, and the distance from the time difference of the rise time of the surge waveform component to the failure point is obtained. It is a system.

また、本願の第三の発明は上記構成の故障点標定システムであって、商用周波数の数十倍から数百倍程度の比較的低速なサンプリング周波数でサンプリングして得られたデータ(以後低速サンプリングデータという)で電圧低下や過電流を検出した時点において、検出した相または線間で上記低速サンプリングデータの電流波形からその交流波形としてのベクトル量(実効値と位相角)を求め、上記電流の実効値と位相角の値を基に送電端から受電端に向かって流れる電流ベクトル量(送電端から受電端に向かって流れる場合を正極性とする)、および受電端から送電端に向かって流れる電流ベクトル量(受電端から送電端に向かって流れる場合を正極性とする)を算出し、その電流ベクトル和が有意にゼロでない(誤差の範囲を超えてゼロはない)ことが認識できる場合、送電端から受電端までの範囲内に電流の流出する事故点があるとして、故障点標定することを特徴とする故障点標定システムである。 Further, the third invention of the present application is a fault point determination system having the above configuration, and data obtained by sampling at a relatively low sampling frequency of about several tens to several hundreds times a commercial frequency (hereinafter, low-speed sampling). When a voltage drop or overcurrent is detected in (referred to as data), the vector amount (effective value and phase angle) as the AC waveform is obtained from the current waveform of the low-speed sampling data between the detected phases or lines, and the current is Based on the effective value and the phase angle value, the amount of current vector flowing from the transmitting end to the receiving end (the case where the current flows from the transmitting end to the receiving end is considered to be positive), and the current flowing from the receiving end to the transmitting end. When the amount of current vector (the case where the current flows from the receiving end to the transmitting end is regarded as positive) is calculated, and it can be recognized that the sum of the current vectors is not significantly zero (there is no zero beyond the range of error). It is a failure point locating system characterized by locating a failure point assuming that there is an accident point where current flows out within the range from the power transmission end to the power reception end.

また、本願の第四の発明は上記構成の故障点標定システムであって、上記低速サンプリングデータで相電圧の電圧低下や零相電圧の上昇、ならびにライン電流の過電流を検出した時点において、検出した相または線間で上記低速サンプリングデータの電圧波形、および電流波形からその交流波形としてのベクトル量(実効値と位相角)を求め、上記電圧及び電流の実効値と位相角の値を基に送電端から受電端側を見たインピーダンスベクトル量(相インピーダンス複素数ベクトルZa、Zb,Zcおよび線間インピーダンス複素数ベクトルZab,Zbc,Zca)、を算出し、上記インピーダンス複素数ベクトル量(以後インピーダンスベクトルと略す)が図のインピーダンス平面上で判定領域を示す四角形の内部にあれば、当該相が事故相であると判定する機能を有し、上記事故相のデータを用いて故障点標定することを特徴とする故障点標定システムである。
Further, the fourth invention of the present application is a failure point determination system having the above configuration, and is detected when a decrease in phase voltage, an increase in zero-phase voltage, and an overcurrent of line current are detected in the low-speed sampling data. Obtain the vector amount (effective value and phase angle) as the AC waveform from the voltage waveform and current waveform of the low-speed sampling data between the phases or lines, and based on the effective value and phase angle value of the voltage and current. The impedance vector amount (phase impedance complex number vectors Za, Zb, Zc and line impedance complex number vector Zab, Zbc, Zca) seen from the power transmission end to the power receiving end side is calculated, and the impedance complex number vector amount (hereinafter abbreviated as impedance vector) is calculated. ) Is inside the quadrangle indicating the determination region on the impedance plane of FIG. 3 , it has a function of determining that the phase is the accident phase, and it is characterized in that the failure point is determined using the data of the accident phase. It is a failure point determination system.

本願発明により、サージの殆ど発生しない事故の場合の誤標定を避けることができる上、非事故時の誤標定も避けることができる。また、標定対象区間外の事故での誤標定も避けることができる。本願発明を用いれば交流波形のベクトル量の分析結果から事故相を特定でき、その事故相のサージ波形データを用いて標定できるので、サージを検出すればどの相のデータでも無条件に標定を行っていた場合より標定精度が向上する。また、変電所既設の波形記録器に機能を付加してサージ波形記録を行わせるので、送電線直下に専用のサージセンサーを設置したり、光ファイバー等の専用の通信手段の設置をしたりすることが不要となり、低コストでサージ波形・商用周波波形併用型事故点(もしくは故障点)標定装置を提供できる。 According to the present invention, it is possible to avoid erroneous localization in the case of an accident in which almost no surge occurs, and it is also possible to avoid erroneous localization in the case of non-accident. In addition, erroneous marking due to an accident outside the target section can be avoided. According to the present invention, the accident phase can be identified from the analysis result of the vector amount of the AC waveform, and the surge waveform data of the accident phase can be used for standardization. Therefore, if a surge is detected, the data of any phase can be unconditionally standardized. Positioning accuracy is improved compared to the case where it was used. In addition, since a function is added to the existing waveform recorder at the substation to record surge waveforms, a dedicated surge sensor may be installed directly under the transmission line, or a dedicated communication means such as an optical fiber may be installed. It is possible to provide a surge waveform / commercial frequency waveform combined accident point (or failure point) locating device at low cost.

システム全体のブロック図Block diagram of the entire system 標定対象の系統の単線結線図例Example of single-line connection diagram of the system to be mapped 事故相および事故様相判定用インピーダンス画面Impedance screen for accident phase and accident phase determination 起動検出フロー図Start detection flow diagram 標定演算フロー図Positioning calculation flow chart 電圧変換器(PDもしくはPT)の一次側回路および二次側回路のサージ波形例Surge waveform example of primary side circuit and secondary side circuit of voltage converter (PD or PT) インピーダンス方式による標定演算方式例Example of localization calculation method by impedance method

以下に本願の実施形態を詳細に説明する。図1は本願のシステム全体を示す概念図である。 The embodiments of the present application will be described in detail below. FIG. 1 is a conceptual diagram showing the entire system of the present application.

図1に示す通り、本実施の形態の故障点標定システムは、送電線10のA端とB端に設けられた波形記録装置100−1,100−2と、通信ネットワーク400を介して配置された解析装置200と、モニター装置300とから構成されている。 As shown in FIG. 1, the failure point determination system of the present embodiment is arranged via the waveform recording devices 100-1 and 100-2 provided at the A end and the B end of the transmission line 10 and the communication network 400. It is composed of an analysis device 200 and a monitor device 300.

波形記録装置100−1、100−2は、送電線10の両端に設置され、電圧または電流波形をそのまま、またはアンチエリアジングフィルター102を経由して入力し、商用周波数の数十倍から数百倍程度の比較的低速なサンプリング周波数でサンプリングしA/ D変換する低速A/D変換部110aを有する商用周波波形入力部170と、商用周波数成分や高周波ノイズ成分を除いたサージ波形成分のみを入力し、数MHz程度以上の比較的高速なサンプリング周波数でサンプリングしA/D変換する高速A/D変換部110bを有するサージ波形入力部180と、を有し、A/D変換された波形を記憶する事故前波形メモリー120と、低速サンプリングデータで電圧低下や過電流などの事故を検出する起動検出部130と、起動検出時に記憶されていた低速および高速サンプリングされた波形データを記憶している事故前波形メモリー120の内容とその後の一定時間観測して得られる波形データとを主メモリー140に転送記憶するサージ波形記録部181および商用周波波形記録部171と、外部から要求があると記憶しているデータを送信し、起動判定閾値データの受信を行うデータ伝送部160とを有するものである。
尚、送電線10のB端に配置される波形記録装置100−2の構成は、上記の波形記録 装置100−1と同じであるので、その説明は省略する。
The waveform recording devices 100-1 and 100-2 are installed at both ends of the transmission line 10 and input the voltage or current waveform as it is or via the anti-aliasing filter 102, and are tens to hundreds of commercial frequencies. Only the commercial frequency waveform input unit 170 having a low-speed A / D conversion unit 110a that samples at a relatively low sampling frequency of about twice and performs A / D conversion, and the surge waveform component excluding the commercial frequency component and high-frequency noise component are input. It also has a surge waveform input unit 180 having a high-speed A / D conversion unit 110b that samples at a relatively high-speed sampling frequency of about several MHz or more and performs A / D conversion, and stores the A / D-converted waveform. Pre-accident waveform memory 120, activation detection unit 130 that detects accidents such as voltage drop and overcurrent with low-speed sampling data, and accidents that store low-speed and high-speed sampled waveform data stored at the time of activation detection. The surge waveform recording unit 181 and the commercial frequency waveform recording unit 171 that transfer and store the contents of the previous waveform memory 120 and the waveform data obtained by observing for a certain period of time thereafter to the main memory 140, and store that there is an external request. It has a data transmission unit 160 that transmits the data and receives the activation determination threshold data.
Since the configuration of the waveform recording device 100-2 arranged at the B end of the transmission line 10 is the same as that of the waveform recording device 100-1 described above, the description thereof will be omitted.

また、解析装置200(サーバー装置とも呼ぶ)は波形記録装置100−1,100− 2に要求を出して事故検出時に記憶された波形データを集めて故障点を解析するものである。(図1参照)一方、モニター装置300(クライアント装置とも呼ぶ)は解析装置200からデータを受け取って画面に表示し、また解析装置200および解析装置200を経由して波形記 録装置100−1,100−2にコマンドを発行してデータを選択し、要求するマンマシンインターフェースである。 Further, the analysis device 200 (also referred to as a server device) issues a request to the waveform recording devices 100-1 and 100-2, collects the waveform data stored at the time of accident detection, and analyzes the failure point. (See FIG. 1) On the other hand, the monitoring device 300 (also referred to as a client device) receives data from the analysis device 200 and displays the data on the screen, and also passes through the analysis device 200 and the analysis device 200 to record the waveform 100-1, It is a man-machine interface that issues a command to 100-2 to select data and request it.

尚、これらの各装置は通信ネットワーク400を通じて接続されて、故障点標定システムを構築しているが、通信ネットワーク400を介さずに、これら各装置の機能を一つの故障点標定装置にまとめて構成しても良い。 Although each of these devices is connected through the communication network 400 to construct a failure point locating system, the functions of each of these devices are integrated into one failure point locating device without going through the communication network 400. You may.

また、解析装置200は、波形記録装置100−1,100−2から受け取った波形データに対してその中のサージ波形成分の立ち上がり(または立下り)時刻の時間差から故障点を求める故障点標定装置または故障点標定システムを構成する一構成要素である。 Further, the analysis device 200 is a failure point locating device that obtains a failure point from the time difference of the rising (or falling) time of the surge waveform component in the waveform data received from the waveform recording devices 100-1 and 100-2. Alternatively, it is a component that constitutes a failure point determination system.

送電線10の電圧、電流波形は変電所20内の電圧変換器21(PD、PTまたはVT という)および電流変換器22(CTという)によって(63.5Vや5Aといった)測定器に入力可能な値に変換されて変電所内の各機器に入力される。本願の波形記録装置100−1,100−2はその機器の一つである。 The voltage and current waveforms of the transmission line 10 can be input to the measuring instrument (such as 63.5V or 5A) by the voltage converter 21 (referred to as PD, PT or VT) and the current converter 22 (referred to as CT) in the substation 20. It is converted into a value and input to each device in the substation. The waveform recording devices 100-1 and 100-2 of the present application are one of the devices.

波形記録装置100−1,100−2内においては通常その電圧、電流信号を5Vrms程度の交流に変換してA/D変換器に入力する。本願の装置ではその信号をハイパスフィルター101によってハイパスフィルタリングし、商用周波数の交流波形成分や、その 数十次程度までの高調波成分を除去した100kHz〜1MHzの周波数成分波形を数MHz程度のサンプリング周波数でA/D変換するサージ波形入力部180と、アンチエリアジングフィルター102によってローパスフィルタリングしたあと商用周波数の交流波形成分を数kHz程度のサンプリング周波数でA/D変換する商用周波波形入力部170とを有している。 In the waveform recording devices 100-1 and 100-2, the voltage and current signals are usually converted into alternating current of about 5 Vrms and input to the A / D converter. In the device of the present application, the signal is high-pass filtered by the high-pass filter 101, and the AC waveform component of the commercial frequency and the harmonic component up to several tens of orders are removed, and the frequency component waveform of 100 kHz to 1 MHz is sampled at a sampling frequency of about several MHz. The surge waveform input unit 180 for A / D conversion and the commercial frequency waveform input unit 170 for A / D conversion of the AC waveform component of the commercial frequency at a sampling frequency of about several kHz after low-pass filtering by the anti-aliasing filter 102. Have.

送電線10の両端(A端、B端)における波形データは波形記録装置100−1,100−2から通信ネットワーク400を経由して解析装置200(サーバー装置)に送られて、解析装置200により故障点標定演算が行なわれる。 Waveform data at both ends (A end, B end) of the transmission line 10 is sent from the waveform recording devices 100-1 and 100-2 to the analysis device 200 (server device) via the communication network 400, and is sent by the analysis device 200. The fault point localization calculation is performed.

本実施の形態の故障点標定システムによれば、解析装置200が、故障点標定し、出力手段によりその結果をモニター装置に出力する。 According to the failure point locating system of the present embodiment, the analysis device 200 determines the failure point, and the output means outputs the result to the monitoring device.

解析装置での故障点標定は図4−2のフローに沿って行われる。このフロー図について以下に説明する。 The failure point determination by the analyzer is performed according to the flow of FIG. 4-2. This flow chart will be described below.

まず、送電端、受電端とも商用周波波形入力部170における低速サンプリング波形データが収録されていれば、双方の各相の電流データを比較して送受端間で電流の漏れが無いかチェックし、漏れが有ればその相が事故相でかつ標定対象区間内に事故があると判定する。また、電流の漏れが無ければ事故は無かったと判定する。 First, if low-speed sampling waveform data in the commercial frequency waveform input unit 170 is recorded at both the power transmission end and the power reception end, the current data of both phases are compared to check if there is any current leakage between the transmission and reception ends. If there is a leak, it is determined that the phase is the accident phase and there is an accident within the target section. If there is no current leakage, it is determined that there was no accident.

送電端では上記低速サンプリング波形データが収録されているものの、受電端のデータが全受電端とも収録されていない場合は送電端から見た各相、または各線間のインピーダンス値から事故相・事故区間を判定する。 Although the above low-speed sampling waveform data is recorded at the power transmission end, if the data at the power reception end is not recorded at all power reception ends, the accident phase / accident section is based on the impedance value of each phase or line between the power transmission ends. To judge.

標定対象区間内に事故があると判定した場合は送受電端ともサージ波形データが収録されていればサージ波形の到達時間差で標定し、一か所でもサージ波形データが収録されていなければ低速サンプリングデータによるインピーダンス値を用いて故障点標定する。 If it is determined that there is an accident in the section subject to localization, if surge waveform data is recorded at both the power transmission and reception ends, it is standardized by the arrival time difference of the surge waveform, and if surge waveform data is not recorded even in one place, low-speed sampling is performed. The fault point is defined using the impedance value based on the data.

サージ到達時間差による具体的な標定計算手法を次に示す。 The specific orientation calculation method based on the surge arrival time difference is shown below.

例えば、標定対象送電線の単線結線図が図2の様に分岐回線を一本持つ代表的な送電線モデルであったとする。(分岐回線が複数の場合も同様の考え方で標定可能である。) For example, suppose that the single-line connection diagram of the transmission line to be positioned is a typical transmission line model having one branch line as shown in FIG. (If there are multiple branch lines, it can be defined in the same way.)

今、C変電所への分岐線で事故があり、分岐点から事故点までの距離をΔX[km]とし、A変電所へのサージ到達時間をt1[sec]、B変電所へのサージ到達時間をt2[sec]、C変電所へのサージ到達時間をt3[sec]、分岐線でのサージ伝搬速度をVx[km/s]、幹線のサージ伝搬時間をTAB[sec]とする。 Now, there is an accident at the branch line to the C substation, the distance from the branch point to the accident point is ΔX [km], the surge arrival time to the A substation is t 1 [sec], and the surge to the B substation. The arrival time is t 2 [sec], the surge arrival time at the C substation is t 3 [sec], the surge propagation speed at the branch line is V x [km / s], and the surge propagation time at the trunk line is T AB [sec]. ].

すると、(t1+t2)の値はサージがΔXの部分を通過するのに必要な時間の2倍と幹線を端から端までサージが通過するのに必要な時間の和に等しいことが解る。

+t=2×(ΔX/V)+TAB (1)
Then, it can be seen that the value of (t1 + t2) is equal to twice the time required for the surge to pass through the part of ΔX and the sum of the time required for the surge to pass through the trunk line from end to end.

t 1 + t 2 = 2 x (ΔX / V x ) + T AB (1)

C変電所について、(2)が成り立つので、この2倍を(1)式の辺々から引いて、
(3)式が得られる。
=(L−ΔX)/V (2)
(t−t)+(t−t)=2×(2×ΔX−L)/V+TAB (3)

これより、
ΔX={(t−t)+(t−t)―TAB}×V/4+Lx/2 (4)

ところで、C変電所への分岐線路のサージ伝搬速度VxはB変電所からC変電所へおよび、C変電所からA変電所へのサージ通過時間をそれぞれTBCおよびTCAとすれば、

=2×L/(TBC+TCA−TAB) (5)

なので、これを(4)式に代入することでC変電所への分岐点から分岐線上の事故点までの距離ΔXが判明する。
For the C substation, (2) holds, so subtract this double from the sides of equation (1).
Equation (3) is obtained.
t 3 = (L x − ΔX) / V x (2)
(t 1 −t 3 ) + (t 2 −t 3 ) = 2 × (2 × ΔX−L × ) / V x + T AB (3)

Than this,
ΔX = {(t 1 − t 3 ) + (t 2 −t 3 ) −T AB } × V x / 4 + Lx / 2 (4)

Incidentally, the surge propagation velocity V x of the branch line to the C substations from and B substation to C substation, if the surge passage time to the A substation respectively T BC and T CA from C substation,

V x = 2 x L x / (T BC + T CA- T AB ) (5)

Therefore, by substituting this into Eq. (4), the distance ΔX from the branch point to the C substation to the accident point on the branch line can be found.

一方、商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定する場合には商用周波の波形データから、地絡事故ならば送電端から故障点を見た送電線対接地間のインピーダンス値、短絡事故ならば送電端から故障点を見た送電線間のインピーダンス値を算出し、その値と送電線の全亘長のインピーダンス値などから事故点までの距離を求めることができる。 On the other hand, when defining the failure point from the voltage value, current value, and phase information of each phase calculated from the commercial frequency waveform data, the failure point is viewed from the commercial frequency waveform data, and in the case of a ground fault, the failure point is viewed from the transmission end. Calculate the impedance value between the transmission line and the ground, and in the case of a short-circuit accident, the impedance value between the transmission lines from the transmission end to the failure point, and from that value and the impedance value of the entire length of the transmission line to the accident point. You can find the distance.

その演算方式の例を図6に示す。商用周波波形データから算出した各相の電圧値、電流値、位相角の情報等から故障点を標定する方式は多数存在し、図6はその1例である。これ以外の方式を用いても良い。
図6において、
:送電端における事故相の非事故時の複素ライン電流(送電方向を正極性とする。)
:受電端における事故相の非事故時の複素ライン電流(受電方向を負極性とする。)
i’:送電端における事故相の事故時の複素ライン電流(送電方向を正極性とする。)
i’:受電端における事故相の事故時の複素ライン電流(受電方向を負極性とする。)
Δi:事故時に付加される送電端における複素事故電流(送電方向を正極性とする。)
Δi:事故時に付加される受電端における複素事故電流(受電方向を負極性とする。)
:事故点における複素事故電流(流出方向を正極性とする。)
v’:送電端における事故相の非事故時の複素電圧(大地基準で送電線路側を正極性とする。)
v’:受電端における事故相の非事故時の複素電圧(大地基準で送電線路側を正極性とする。)
v’:送電端における事故相の非事故時の複素電圧(大地基準で送電線路側を正極性とする。)
v’:受電端における事故相の非事故時の複素電圧(大地基準で送電線路側を正極性とする。)
:事故点抵抗値
:事故点複素電圧(大地を基準として送電線路側を正極性とする。)
Z:事故相の全亘長に渡る線路複素インピーダンス
R:事故相の全亘長に渡る線路抵抗
X:事故相の全亘長に渡る線路リアクタンス
L:全亘長
k:送電端から事故点(もしくは故障点)までの距離を全亘長Lで除した値
kL:送電端から事故点(もしくは故障点)までの距離
arg(Z):複素数Zの偏角
Imag(z):複素数Zの虚部
:複素数Zの共役複素数

分岐線路があり受電端が複数存在する場合は特許文献3の方法を適用すると良いが線路定数等の数も増え、標定演算は複雑なものとなる。
An example of the calculation method is shown in FIG. There are many methods for determining the failure point from the voltage value, current value, phase angle information, etc. of each phase calculated from the commercial frequency waveform data, and FIG. 6 is an example thereof. Other methods may be used.
In FIG. 6,
i s: complex line current during the non-fault accident phase in the sending end (the transmission direction as positive.)
ir : Complex line current at the power receiving end when the accident phase is non-accident (the power receiving direction is the negative electrode)
i 's: complex line current at the time of the accident of the accident phase in the sending end (the transmission direction as positive.)
i'r : Complex line current at the time of the accident in the accident phase at the power receiving end (the power receiving direction is the negative electrode)
.Delta.i s: complex fault current at the sending end which is added during the accident (the power transmission direction is positive.)
.Delta.i r: complex fault current at the receiving end to be added at the time of the accident (the power receiving direction is negative.)
if : Complex accident current at the accident point (outflow direction is positive)
v 's: complex voltage during non fault accident phase in the sending end (the power transmission line side is positive polarity ground reference.)
v'r : Complex voltage at the time of non-accident phase at the power receiving end (the transmission line side is positive based on the ground)
v 's: complex voltage during non fault accident phase in the sending end (the power transmission line side is positive polarity ground reference.)
v'r : Complex voltage at the time of non-accident phase at the power receiving end (the transmission line side is positive based on the ground)
r f : Accident point resistance value v f : Accident point complex voltage (The transmission line side is positive with respect to the ground)
Z: Line complex impedance over the entire length of the accident phase R: Line resistance over the entire length of the accident phase X: Line reactance over the entire length of the accident phase L: Overall length k: Accident point from the transmission end ( Or the value obtained by dividing the distance to the fault point by the total length L kL: The distance from the transmission end to the accident point (or fault point)
arg (Z): Argument of complex number Z
Imag (z): imaginary part Z of complex number Z * : conjugate complex number of complex number Z

When there are branch lines and there are a plurality of power receiving ends, the method of Patent Document 3 may be applied, but the number of line constants and the like increases, and the localization calculation becomes complicated.

10 送電線
20 送電線の変電所内設備
21 電圧変換器PT,PDまたはVT
22 電流変換器CT
100−1,100−2 波形記録装置
101 ハイパスフィルター
102 アンチエリアジングフィルター
110a 低速A/D変換器
110b 高速A/D変換器
120 事故前波形メモリー
130 起動検出部
140 主メモリー
160 伝送部
200 解析装置
300 モニター装置
400 通信ネットワーク
10 Transmission line 20 Equipment in the substation of the transmission line 21 Voltage converter PT, PD or VT
22 Current converter CT
100-1, 100-2 Waveform recording device 101 High-pass filter 102 Anti-aliasing filter 110a Low-speed A / D converter 110b High-speed A / D converter 120 Pre-accident waveform memory 130 Start detection unit 140 Main memory 160 Transmission unit 200 Analyzer 300 Monitor device 400 Communication network

Claims (4)

電圧または電流波形を入力し、商用周波数の数十倍から数百倍程度の比較的低速なサンプリング周波数でサンプリングしA/D変換する低速A/D変換部を有する商用周波波形入力部と、
商用周波数成分や高調波および高周波ノイズ成分を除いたサージ波形成分のみを入力し、数MHz程度以上の比較的高速なサンプリング周波数でサンプリングしA/D変換する高速A/D変換部を有するサージ 波形入力部と、
を有し、さらに、A/D変換された波形を記憶する事故前波形メモリーと、
低速サンプリングデータで電圧低下や過電流の事故を検出する起動検出部と、
起動検出時に記憶されていた低速および高速サンプリングされた波形データを記憶している各々の事故前波形メモリーの内容とその後の一定時間観測して得られる波形データとを各々の主メモリーに転送記憶するサージ波形記録部および商用周波波形記録部と、
外部から要求があると記憶しているデータを伝送するデータ伝送部とを有する波形記録装置および、
前記波形記録装置に要求を出して事故検出時に記憶された波形データを集めて故障点を 解析する解析装置と、前記解析装置による解析結果を表示するモニター装置とを備え、
前記サージ波形成分の立ち上がり時刻の時間差から故障点までの距離を求める故障点標定機能および、商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定する故障点標定機能を有し、サージの発生が認められた場合は前記サージ波形成分到達時間差から故障点までの距離を求め、サージの発生が認められない事故時には前記商用周波波形データから算出した各相の電圧値、電流値、位相の各情報から故障点を標定することを特徴とする故障点標定システム。
A commercial frequency waveform input unit having a low-speed A / D converter that inputs a voltage or current waveform, samples at a relatively low sampling frequency of several tens to several hundred times the commercial frequency, and performs A / D conversion.
A surge waveform having a high-speed A / D converter that inputs only the surge waveform component excluding commercial frequency components, harmonics, and high-frequency noise components, samples at a relatively high sampling frequency of several MHz or higher, and performs A / D conversion. Input section and
A pre-accident waveform memory that stores A / D-converted waveforms, and
A start detector that detects voltage drop and overcurrent accidents with low-speed sampling data,
The contents of each pre-accident waveform memory that stores the low-speed and high-speed sampled waveform data that was stored at the time of activation detection and the waveform data obtained by observing for a certain period of time after that are transferred and stored in each main memory. Surge waveform recording unit, commercial frequency waveform recording unit, and
A waveform recording device having a data transmission unit that transmits data stored as a request from the outside, and a waveform recording device.
It is provided with an analysis device that issues a request to the waveform recording device, collects waveform data stored at the time of accident detection, and analyzes a failure point, and a monitor device that displays the analysis result by the analysis device.
A failure point identification function that obtains the distance from the rise time of the surge waveform component to the failure point, and a failure that determines the failure point from the voltage value, current value, and phase information of each phase calculated from commercial frequency waveform data. It has a point localization function, and when a surge is found, the distance from the surge waveform component arrival time difference to the failure point is calculated, and when a surge is not found, each phase is calculated from the commercial frequency waveform data. A fault point locating system characterized by locating a fault point from each of the voltage value, current value, and phase information of.
請求項1に記載の故障点標定システムであって、サージの発生が認められる事故時には上記商用周波波形入力部によりサンプリングされた波形データの商用周波数成分の電圧実効値またはライン電流の実効値を求め、上記起動検出部により求められた相電圧の実効値が別途設定された電圧値以下(および抵抗接地系統の場合は零相電圧の実効値が別途設定された電圧値以上)、またはライン電流(もしくは線間電流)の実効値が別途設定された電流値以上であるとき、起動検出部により事故を検出したと判別し、直前にサージ波形入力部に入力されたサージ波形データを有効な事故サージ波形データであると判断して前記サージ波形成分の立ち上がり時刻の時間差から故障点までの距離を求めることを特徴とする故障点標定システム。 In the fault point determination system according to claim 1, in the event of an accident in which a surge is observed, the effective voltage value or line current of the commercial frequency component of the waveform data sampled by the commercial frequency waveform input unit is obtained. , The effective value of the phase voltage obtained by the above start detector is less than or equal to the separately set voltage value (and in the case of a resistor ground system, the effective value of the zero phase voltage is more than or equal to the separately set voltage value), or the line current ( Alternatively, when the effective value of (line current) is equal to or greater than the separately set current value, the start detection unit determines that an accident has been detected, and the surge waveform data input to the surge waveform input unit immediately before is used as an effective accident surge. A failure point locating system characterized in that it determines that it is waveform data and obtains the distance from the failure point from the time difference of the rise time of the surge waveform component. 請求項1に記載の故障点標定システムであって、商用周波数の数十倍から数百倍程度の比較的低速なサンプリング周波数でサンプリングして得られたデータ(以下低速サンプリングデータという)で電圧低下や過電流を検出した時点において、検出した相または線間で上記低速サンプリングデータの電流波形からその交流波形としてのベクトル量(実効値と位相角)を求め、上記電流の実効値と位相角の値を基に送電端から受電端に向かって流れる電流ベクトル量、および受電端から送電端に向かって流れる電流ベクトル量を算出し、前記電流ベクトル和が有意にゼロでない(誤差の範囲を超えてゼロはない)ことが認識できる場合、送電端から受電端までの範囲内に事故点があるとして事故を検出する機能を付加したことを特徴とする起動検出部を有することを特徴とする請求項1に記載の故障点標定システム。 The failure point identification system according to claim 1, wherein the voltage is lowered by the data obtained by sampling at a relatively low sampling frequency of about several tens to several hundred times the commercial frequency (hereinafter referred to as low-speed sampling data). At the time when or overcurrent is detected, the vector amount (effective value and phase angle) as the AC waveform is obtained from the current waveform of the low-speed sampling data between the detected phases or lines, and the effective value and phase angle of the current are calculated. Based on the values, the amount of current vector flowing from the transmitting end to the receiving end and the amount of current vector flowing from the receiving end to the transmitting end are calculated, and the sum of the current vectors is not significantly zero (beyond the error range). A claim characterized by having a start-up detection unit characterized by adding a function of detecting an accident as if there is an accident point within the range from the power transmission end to the power reception end when it can be recognized that there is no zero). The failure point identification system according to 1. 請求項1に記載の故障点標定システムであって、上記低速サンプリングデータで相電圧の電圧低下や零相電圧の上昇、ならびにライン電流の過電流を検出した時点において、検出した相または線間で上記低速サンプリングデータの電圧波形、および電流波形からその交流波形としてのベクトル量(実効値と位相角)を求め、上記電圧及び電流の実効値と位相角の値を基に送電端から受電端側を見たインピーダンスベクトル量を算出し、そのインピーダンスベクトル量がインピーダンス平面上で判定領域を示す四角形の内部(PT,CTの二次側換算値で算出した送電端より事故点を見たインピーダンス値の内、リアクタンスについては標定対象の送電線によって生ずるリアクタンス値の2倍以下の領域で、かつ、抵抗値についてはCT二次定格値の2倍相当の電流が流れるに相当する抵抗値にマイナス1を乗じた値以上の領域であって、かつインピーダンス平面において原点を通って実軸の正の方向から反時計回りに150度の傾きを有する直線の上部の領域であって、かつ実軸上でCT二次定格値の2倍相当の電流が流れるに相当する抵抗値に相当する点を通って実軸の正の方向から反時計回りに75度の傾きを有する直線の上部の領域)にあれば、当該相が事故相であると判定する機能を有し、上記事故相のデータを用いて故障点標定することを特徴とする故障点標定システム。
In the failure point determination system according to claim 1, when a decrease in phase voltage, an increase in zero-phase voltage, and an overcurrent of line current are detected in the low-speed sampling data, between the detected phases or lines. Obtain the vector amount (effective value and phase angle) as the AC waveform from the voltage waveform and current waveform of the low-speed sampling data, and based on the effective value and phase angle value of the voltage and current, from the power transmission end to the power receiving end side. calculating the impedance vector quantity viewed, the impedance vector quantity harm impedance inside the rectangle indicating the determination area on a plane (PT, impedance values viewed fault point from the sending end which is calculated in the secondary conversion value CT Of these, the impedance is in the region less than twice the impedance value generated by the power transmission line to be positioned, and the resistance value is minus 1 to the resistance value equivalent to the flow of a current equivalent to twice the CT secondary rated value. The region above the value multiplied by, and the region above the straight line that has an inclination of 150 degrees counterclockwise from the positive direction of the real axis through the origin in the impedance plane, and on the real axis. The area above the straight line that has an inclination of 75 degrees counterclockwise from the positive direction of the actual axis through the point corresponding to the resistance value corresponding to the flow of current equivalent to twice the CT secondary rated value) . For example, a failure point locating system having a function of determining that the phase is an accident phase and locating a failure point using the data of the accident phase.
JP2019011401A 2019-01-25 2019-01-25 Single point of failure indicator Active JP6817521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011401A JP6817521B2 (en) 2019-01-25 2019-01-25 Single point of failure indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011401A JP6817521B2 (en) 2019-01-25 2019-01-25 Single point of failure indicator

Publications (2)

Publication Number Publication Date
JP2020118602A JP2020118602A (en) 2020-08-06
JP6817521B2 true JP6817521B2 (en) 2021-01-20

Family

ID=71890572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011401A Active JP6817521B2 (en) 2019-01-25 2019-01-25 Single point of failure indicator

Country Status (1)

Country Link
JP (1) JP6817521B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112180290B (en) * 2020-09-29 2024-03-08 西安热工研究院有限公司 Positioning method for generator stator ground fault
CN113834987A (en) * 2021-09-03 2021-12-24 广州智光电气股份有限公司 Converter fault recording method and converter
CN116191400B (en) * 2022-12-13 2024-01-12 广东工业大学 Fault restarting control method, device and system and storage medium

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828934B2 (en) * 1984-07-31 1996-03-21 株式会社東芝 Protection control device
JP2597556B2 (en) * 1985-11-07 1997-04-09 株式会社東芝 Power system information data output device
JPH0227272A (en) * 1988-07-18 1990-01-30 Kyushu Electric Power Co Inc Apparatus for detecting earth of transmission/ distribution line
JPH0670448A (en) * 1991-03-07 1994-03-11 Shikoku Sogo Kenkyusho:Kk Method of detecting grounded phase and grounded feeder
JPH0862277A (en) * 1994-08-19 1996-03-08 Tokyo Electric Power Co Inc:The Apparatus for locating fault point of transmission line
JPH0989975A (en) * 1995-09-20 1997-04-04 Hitachi Ltd Accident point identifying device for multiple-port transmission line
JPH1019965A (en) * 1996-06-28 1998-01-23 Toshiba Corp Faulty point locating equipment
JP5646696B1 (en) * 2013-06-19 2014-12-24 株式会社近計システム Fault location system
US9594112B2 (en) * 2014-09-16 2017-03-14 Schweitzer Engineering Laboratories, Inc. Fault detection in electric power delivery systems using underreach, directional, and traveling wave elements
JP6315829B2 (en) * 2015-12-16 2018-04-25 関西電力株式会社 Disconnection section identification system and disconnection section identification method

Also Published As

Publication number Publication date
JP2020118602A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP6817521B2 (en) Single point of failure indicator
US10976357B2 (en) Method and device for determining a fault location of a ground fault relating to a line of a three-phase electrical energy supply network having a neutral point without low-resistance grounding
US10746779B2 (en) Fault location detection and distance protection apparatus and associated method
CN103852691B (en) The oriented detection of failure in the network of compensation or the earthed system for the neutral point that insulate
CN101120259B (en) Drain current circuit breaker and method
CN107015119B (en) A kind of signal cable Circuit fault diagnosis device and method
CN104204824A (en) Fault location in power distribution systems
CN107561393A (en) A kind of arrester early defect live testing system and method based on total current harmonic wave vector
CN106338237A (en) Transformer winding deformation detection method based on frequency response impedance method
EP0936469B1 (en) Loop resistance tester (LRT) for cable shield integrity monitoring
CN111065932A (en) Traveling wave identification using distortion for power system protection
US20100010761A1 (en) Method and device for monitoring a system
CN109387733A (en) A kind of distribution circuit single-phase earth fault localization method and system
CN106841914B (en) Fault distance measuring device of distribution line
CN111095007A (en) Safe travelling wave distance protection in an electric power transmission system
JP6624165B2 (en) Distribution line fault location system
JP4914306B2 (en) Fault location method and fault location system
JP4398198B2 (en) Insulation degradation region diagnosis system and method for electric wire or cable
CN207408505U (en) A kind of arrester early defect live testing system based on total current harmonic wave vector
CN114755603A (en) Portable cable grounding circulation testing and fault diagnosis method and device
KR20130031106A (en) Leakage current checking apparatus and method thereof
CN114397532A (en) Fault on-line positioning method and device for cable overhead hybrid line
CN115356585A (en) Hybrid line fault location method and system based on traveling wave location
Fantoni et al. Wire system aging assessment and condition monitoring using line resonance analysis (LIRA)
CN109342889A (en) A kind of method for rapidly positioning of online high-tension cable breakdown fault

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201207

R150 Certificate of patent or registration of utility model

Ref document number: 6817521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250