JP6624165B2 - Distribution line fault location system - Google Patents

Distribution line fault location system Download PDF

Info

Publication number
JP6624165B2
JP6624165B2 JP2017123016A JP2017123016A JP6624165B2 JP 6624165 B2 JP6624165 B2 JP 6624165B2 JP 2017123016 A JP2017123016 A JP 2017123016A JP 2017123016 A JP2017123016 A JP 2017123016A JP 6624165 B2 JP6624165 B2 JP 6624165B2
Authority
JP
Japan
Prior art keywords
surge
electric field
waveform
current
surge electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017123016A
Other languages
Japanese (ja)
Other versions
JP2019007812A (en
Inventor
洋 于
洋 于
成章 辻
成章 辻
山口 保孝
保孝 山口
大橋 善和
善和 大橋
大浦 好文
好文 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2017123016A priority Critical patent/JP6624165B2/en
Publication of JP2019007812A publication Critical patent/JP2019007812A/en
Application granted granted Critical
Publication of JP6624165B2 publication Critical patent/JP6624165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Description

本発明は、配電線故障点標定システムに関し、詳しくは、配電変電所から末端の需要家までの配電用送電線において、地絡または短絡等の電気事故時のサージ電流波形を記録するサージ電流波形記録装置および、サージ電界波形を記録するサージ電界波形記録装置ならびに、それらの記録波形より電気事故時の発生位置を推定する配電線故障点標定装置により構成される配電線故障点標定システムに関する。   The present invention relates to a distribution line fault point locating system, and more specifically, a surge current waveform for recording a surge current waveform at the time of an electrical accident such as a ground fault or a short circuit in a distribution transmission line from a distribution substation to a terminal customer. The present invention relates to a recording apparatus, a surge electric field waveform recording apparatus for recording a surge electric field waveform, and a distribution line failure point locating system configured from the recorded waveforms and a distribution line failure point locating apparatus for estimating an occurrence position of an electric accident.

非接地系配電線では中性点非接地であるため地絡しても地絡電流が少なく、送電端または受電端から見た電圧・電流の実効値によるいわゆる実効値型故障点標定装置や、事故相で測定した電圧・電流値から算出される故障点までのインピーダンスによる、インピーダンス型の故障点標定装置での故障点標定は困難であった。   In the case of ungrounded distribution lines, the neutral point is not grounded, so even if there is a ground fault, the ground fault current is small, so-called effective value type fault point locating device based on the effective value of voltage and current viewed from the transmitting end or receiving end, It has been difficult to locate a fault using an impedance-type fault location device based on the impedance to the fault calculated from the voltage and current values measured in the accident phase.

そのため、鉄塔や電柱に電流センサー(CT)・電圧センサー(VT)または電界センサー・電磁界センサー等を設置して系統事故時のサージ電流(もしくは電圧)波形を記録し、その各観測地点間への到達時間差から故障点を標定するもの(特許文献1〜特許文献2)が多かった。また、事故時の事故相の対地電圧実効値を複数地点で観測記録し、その値が故障点に向かって減少することを利用して故障点標定するもの(特許文献3)もあった。   For this reason, a current sensor (CT) / voltage sensor (VT) or an electric field sensor / electromagnetic field sensor is installed on a steel tower or pole to record the surge current (or voltage) waveform at the time of a system accident, and to transfer between the observation points. In many cases, a failure point is located based on the arrival time difference (Patent Documents 1 and 2). In addition, there is a method of observing and recording the effective value of the ground voltage of an accident phase at an accident at a plurality of points at the time of an accident, and using the fact that the value decreases toward a failure point to locate a failure point (Patent Document 3).

特許文献1では文番号[0007]等に故障点位置標定に零相電圧および零相電流のサージ波形データを用いることが述べられており、特許文献2では文番号[0007]等に零相電圧の検出方法が述べられている。   Patent Document 1 describes the use of zero-phase voltage and zero-phase current surge waveform data for fault location in Document No. [0007] and the like. Patent Document 2 describes the zero-sequence voltage in Document No. [0007] and the like. Is described.

これらは送電線の電流信号の波形または電圧信号の波形を各相毎に計測し、変換器の二次側の電圧波形から零相波形を合成し、その波形データから事故時に発生したサージ波形部分を検出し、前記サージ波形部分の到達時間差から故障点を求めるものであるが、センサーを各相毎に設置することはセンサーそのものの価格や工事費などの点でコスト的に不利である。   These measures the current signal waveform or voltage signal waveform of the transmission line for each phase, synthesizes a zero-phase waveform from the voltage waveform on the secondary side of the converter, and uses the waveform data to determine the surge waveform generated during the accident. Is detected, and a failure point is obtained from the arrival time difference of the surge waveform portion. However, installing a sensor for each phase is disadvantageous in terms of cost of the sensor itself and construction costs.

一般に下位系統といわれる22kV〜33kV系統の送電線ではそこから得られる収益に比してこういった監視設備に要するコストの占める割合は大きくなっており、66kV以上の高圧系統と比して設備に対するコストダウンの要求が強くなっている。特に下位系統の配電線になるほど分岐が多く、各分岐送電線の末端にはセンサー1個と波形記録器1台のみ設置して故障点標定できることが望ましい。   In the case of transmission lines of 22 kV to 33 kV systems, which are generally referred to as lower systems, the ratio of the cost required for such monitoring equipment is larger than the profits obtained therefrom. The demand for cost reduction is increasing. In particular, the lower the distribution line, the more branches there are, and it is desirable that only one sensor and one waveform recorder be installed at the end of each branch transmission line so that fault points can be located.

特許文献5には送電線が幹線線路と分岐線線路から成る場合にサージの到達時間差から故障点を算出する方法が書かれており、一回線の送電線(分岐を含む)の場合の故障点位置標定はほとんどの場合、この方法で実施できる。   Patent Document 5 describes a method of calculating a fault point from a difference in arrival time of a surge when a transmission line is composed of a main line and a branch line, and a failure point in the case of a single transmission line (including a branch). Positioning can in most cases be performed in this way.

ところで、実際には非接地系統において負荷電流100A程度の配電線でも地絡時の電流は1〜2A程度であり、変流器(電流センサーまたはCTともいう)の誤差が1%程度であれば地絡電流値は誤差に埋もれて認識することが困難な場合も多い。   By the way, in a non-grounded system, even if the distribution line has a load current of about 100 A, the current at the time of ground fault is about 1 to 2 A, and if the error of the current transformer (also called a current sensor or CT) is about 1%, The ground fault current value is often buried in an error and difficult to recognize.

また、非接地系統の場合、地絡電流は送電線と対地間の静電容量によって流れるのであるから、地絡点では電流最大ながら、送電端や負荷端に行くほど地絡電流値は小さくなり、最末端では零となる。これは商用周波数の波形のみならずサージ電流波形においても同様で、対地インピーダンスの高い末端では地絡電流は殆ど流れない。そのため、地絡電流の測定は必ず送電区間の中程で行なう必要(特許文献1の図1)が有り、電流サージ波形の到達時間差で故障点標定する場合、電流センサーから送電線の末端までの区間では標定できなかった。 In the case of an ungrounded system, the ground fault current flows due to the capacitance between the transmission line and the ground.Therefore, while the current is maximum at the ground fault point, the value of the ground fault current decreases toward the transmission end or load end. , At the very end, it is zero. This is the same not only in the waveform of the commercial frequency but also in the surge current waveform. At the terminal having a high impedance to the ground, the ground fault current hardly flows. Therefore, it is necessary to always measure the ground fault current in the middle of the power transmission section (Fig. 1 of Patent Document 1). When the fault point is located based on the arrival time difference of the current surge waveform, the distance from the current sensor to the end of the transmission line is required. No section could be located.

一方、末端では零相電圧値が最大となる。これは送電線の各部分において[単位長当たりの電圧値] (=[単位長当たりのインピーダンス]×[地絡電流値])による増分が累積し、末端ではそれが最大になることから明らかである。 On the other hand, at the end, the zero-phase voltage value becomes maximum. This is evident from the fact that the increments due to [voltage per unit length] (= [impedance per unit length] x [ground fault current value]) accumulate in each part of the transmission line, and that they increase at the end. is there.

ここで、末端と言うのは受電端を言う。送電端は変電所の母線であるが、これには通常複数の配電線路が接続されており、ある配電線で発生したサージ電流は変電所の母線を経由してそれに接続された他の配電線路に流れ込む。よって、母線は地絡点で発生したサージ電流の流れる先としては単なる中継点に過ぎない。   Here, the term “terminal” refers to the power receiving end. The transmission end is the substation bus, which is usually connected to multiple distribution lines, and the surge current generated in one distribution line is connected to the other distribution line via the substation bus. Flow into Therefore, the bus is merely a relay point as a destination of the surge current generated at the ground fault point.

ところで、サージ波形はセンサーから波形記録装置までのケーブルの特性等の影響でその立ち上がりが訛って観測される場合が多い。全く同じ規格のセンサーやケーブル、波形記録器間ではその訛り方が同じであるので比較しやすいが、例えば一方は地絡時のサージ電圧波形であって、他方はサージ電流波形である場合、一般には故障点で発生したサージ電流波形が線路上を伝播する間に積分されたものが送電線両端の電圧センサーによって電圧サージ波形として認識されるのであるから基本的に波形が異なる。
立ち上がりが急峻な波形の場合は良いが、立ち上がりがなだらかな波形の場合は、サージ有りと判定する判定レベルの閾値が変わると、検出時点も変化するのでそれが誤差要因となる。そのためサージ波形の到達時間差で故障点標定を行なう場合はなるべく電流波形同士、または電圧波形同士でのサージ波形の到達時間差の比較になるようにすることが望ましい。
By the way, the surge waveform is often observed with its rising rising affected by the characteristics of the cable from the sensor to the waveform recording device. Sensors, cables, and waveform recorders of exactly the same standard have the same accent, so it is easy to compare.For example, if one is a surge voltage waveform at the time of ground fault and the other is a surge current waveform, generally Is fundamentally different because the voltage sensor at both ends of the transmission line recognizes a surge current waveform generated at the fault point during propagation on the line as a voltage surge waveform.
A waveform with a steep rise is good, but a waveform with a gentle rise changes the threshold of the determination level for determining that there is a surge, so that the detection time also changes, which is an error factor. Therefore, when locating a fault using the arrival time difference of the surge waveform, it is desirable to compare the arrival time difference of the surge waveform between current waveforms or voltage waveforms as much as possible.

特許第3689078号Patent No. 3689078 特許第4919592号Patent No. 4919592 特許第5161930号Patent No. 5161930 特許第4790050号Patent No. 4790050 特許第4044489号Japanese Patent No. 4444489

こういった点に鑑みて、本願が解決すべき課題は、負荷電流に対して事故電流がその数%程度以下となるような非接地系統の送電線においても事故検出やその事故位置標定に使用でき、地絡時に地絡電流が殆ど流れない配電用送電線の末端においても事故検出や事故位置標定が可能となり、かつ既存の装置より少ないセンサーで故障点位置標定が実現できる配電線故障点標定システムを提供することにある。   In view of these points, the problem to be solved by the present application is to use for fault detection and fault location even in ungrounded transmission lines where the fault current is about several percent or less of the load current. Fault detection and location, even at the end of the distribution transmission line where almost no ground fault current flows at the time of ground fault, and fault location for distribution lines that can achieve fault location with fewer sensors than existing equipment It is to provide a system.

本願の発明者は当初配電用変電所の母線に接続された各線路の各相にサージ電流センサーを設置し、末端の受電端には各相にサージ電圧センサーを設置していたが、多数のデータ収集の結果から短絡および地絡事故時はどの相にも全く同一のタイミングでサージ波形が到達していることに気付いた。これはサージ到達時間差による故障点標定を行う上において、3相ともデータ収集するのは無駄であり、一相のみで良いことを示していた。また、地絡しても送電線の末端では地絡電流が流れないので、電流サージよりむしろ電圧サージを観測したほうが良いことも判った。   The inventor of the present application initially installed a surge current sensor in each phase of each line connected to the bus of the distribution substation, and installed a surge voltage sensor in each phase at the terminal receiving end, but a large number of From the results of data collection, we noticed that the surge waveform arrived at exactly the same timing in all phases during a short circuit and ground fault. This indicates that it is useless to collect data for all three phases in performing the fault point localization based on the surge arrival time difference, and that only one phase is sufficient. It was also found that a voltage surge rather than a current surge should be observed because a ground fault current does not flow at the end of the transmission line even if a ground fault occurs.

本願の発明者は通常各相に1個設置するサージセンサーを3相一回路毎に1個にしてもサージ到達タイミングの測定には何ら問題ないことに気付き、末端の受電端に非接触型電界センサーを三相一回路に付き一個用いることとしたのである。   The inventor of the present application has noticed that there is no problem in measuring the surge arrival timing even if one surge sensor is normally installed for each phase for each three-phase circuit. They decided to use one sensor per three-phase one-circuit.

この非接触型電界センサーは対送電線間および対大地間との静電容量によって送電線対大地間に印加されている電圧を分圧した電圧波形を検出することができるものである。これにより地絡事故の場合は送電線対大地間のサージ電圧波形を観測することができる。   This non-contact type electric field sensor can detect a voltage waveform obtained by dividing a voltage applied between the transmission line and the ground by the capacitance between the transmission line and the ground. Thus, in the case of a ground fault, the surge voltage waveform between the transmission line and the ground can be observed.

一方、2線短絡事故の場合は3相の内2相に略同じ大きさの事故電流が流れるものの逆位相となるので周囲に発生する電界ベクトルは互いに打ち消し合って検出が困難である。そこで、本願の発明者は送電線に対して非接触なサージ電界検出器(以後サージ電界検出器またはサージ電界検出用アンテナもしくは単にアンテナという)[図4−1]を[図4−2]のように3相の送電線から異なる距離となるように配置することで短絡事故時にも検出可能な程度に十分な振幅のサージ電圧波形を検出することができると考えた。 On the other hand, in the case of a two-wire short-circuit fault, although fault currents of substantially the same magnitude flow in two of the three phases, they are in opposite phases, so that electric field vectors generated in the surroundings cancel each other out, making detection difficult. Therefore, the inventor of the present application has changed a surge electric field detector (hereinafter referred to as a surge electric field detector or a surge electric field detection antenna or simply an antenna) [FIG. By arranging them so as to be at different distances from the three-phase transmission line, it is considered that a surge voltage waveform having a sufficient amplitude that can be detected even in the event of a short circuit can be detected.

ところで、サージ電圧波形は送電線の近隣に落雷するいわゆる誘導雷と言われる現象のような場合や末端の受電端に接続された変圧器の二次側(いわゆる負荷端と言われる)以降において何らかの急激な負荷変動(大口需要家の工場の電源投入等)が発生した場合にも観測される。   By the way, the surge voltage waveform may be generated in the case of a phenomenon called so-called induced lightning that strikes near the transmission line, or after the secondary side of the transformer connected to the receiving end at the end (called the load end). It is also observed when a sudden load change (such as turning on the power of a large consumer factory) occurs.

そのため本願では送電側となる上記配電用変電所においては、母線に接続された各送電線の各相に電流センサーを配置し、ここで交流電流波形を常時監視し、事故の有無を判断して事故発生検出時は事故直前のサージ波形を抽出するための時刻データを記録し、そのデータを用いて送電線末端の電界センサーで検出されたサージ波形が実事故時のものか非事故時のノイズなのかを判断している。   Therefore, in the present application, in the distribution substation on the power transmission side, a current sensor is arranged in each phase of each transmission line connected to the bus, where the AC current waveform is constantly monitored to determine whether there is an accident. When an accident is detected, the time data for extracting the surge waveform immediately before the accident is recorded, and the surge waveform detected by the electric field sensor at the end of the transmission line using the data is the actual or non-accident noise. I'm judging what it is.

ところで、特許文献1ではその明細書の文番号[0020]にも書かれているように、送電線末端に電圧センサーだけではなく電流センサーも取り付けて事故検出しようとしている。しかしながら、非接地系の場合、末端の受電端では対地間非接地であるため途中の送電線で地絡事故が発生しても対地間電流(以後零相電流という)は殆ど流れないので十分な振幅の波形データを得ることが難しい。そこで本願の発明者は送電線の末端には非接触型電界センサーのみを配置することとしたのである。 By the way, in Patent Document 1, as described in the sentence number [0020] of the specification, not only a voltage sensor but also a current sensor is attached to the end of a transmission line to detect an accident. However, in the case of a non-grounded system, the ground receiving terminal is not grounded at the terminal receiving end, so that even if a ground fault occurs on the transmission line on the way, the ground-to-ground current (hereinafter referred to as zero-phase current) hardly flows, so it is sufficient. It is difficult to obtain amplitude waveform data. Therefore, the inventor of the present application has arranged only the non-contact type electric field sensor at the end of the transmission line.

一方、回線に1個の電界センサーのみでは短絡事故の場合、2相間を流れる事故電流が互いに打ち消しあうため電界センサーによって検出される事故サージ波形が小さくなってしまう可能性が有る。実際には僅かな回路の非対称性によって完全に打ち消しあうことが無いことや、短絡事故時は地絡事故時に比して大きな事故電流が流れるため電界センサーによるサージ波形の検出は全く不可能という訳ではないが、本願ではセンサーの位置をどの2相間も異なる距離に配置することで充分なサージ波形の振幅を観測することを原理的に可能としている。これが本願第一の発明の特徴である。   On the other hand, in the case of a short circuit fault with only one electric field sensor on the line, the fault surge waveform detected by the electric field sensor may be small because fault currents flowing between the two phases cancel each other. In fact, it is not possible to completely cancel each other due to the slight asymmetry of the circuit, and it is impossible to detect a surge waveform with an electric field sensor at all in the event of a short circuit because a large fault current flows compared to a ground fault fault. However, in the present application, it is possible in principle to observe a sufficient amplitude of the surge waveform by arranging the position of the sensor at a different distance between any two phases. This is the feature of the first invention of the present application.

ところで、送電側の変電所端の電流データでは非接地系統の地絡事故にもかかわらず十分な振幅で商用周波数成分やサージ成分の波形データが得られる。これは配電変電所が配電線側から見て末端ではなく同一母線に接続された他の送電線路の対地静電容量によって地絡電流成分がその送電線路に流れ込み、電流波形として観測されるからである。   By the way, in the current data at the substation end on the transmission side, the waveform data of the commercial frequency component and the surge component can be obtained with sufficient amplitude despite the ground fault of the ungrounded system. This is because the distribution substation is not observed at the distribution line side but at the other end of the transmission line connected to the same bus instead of at the end, and the ground fault current component flows into the transmission line and is observed as a current waveform. is there.

このようにして本願の発明者は送電端の各回線の各相毎に1個の電流センサー、受電端には各回線毎に1個の非接触電界センサーを配置することで、非接地系統においてより少ないセンサーで効率良く確実に故障点標定できるシステムを構築した。   In this way, the inventor of the present application arranges one current sensor for each phase of each line at the power transmission end and one non-contact electric field sensor for each line at the power reception end, so that in a non-grounded system, We constructed a system that can efficiently and reliably locate a fault point with fewer sensors.

これらの特徴を有する前記サージ電界波形記録装置はサージ電界検出用アンテナと、前記サージ電界検出用アンテナの出力を受ける高インピーダンス入力アンプと、前記高インピーダンス入力アンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電界瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電界瞬時値データの絶対値が別途設定された値を超えたことを検出するトリガー検出部と、前記検出時に、前記トリガー前メモリー内の前記サージ電界瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータをデータ通信用アンテナに出力する伝送部と、前記データ通信用アンテナとから成る。   The surge electric field waveform recording device having these features is a surge electric field detection antenna, a high impedance input amplifier receiving an output of the surge electric field detection antenna, and extracting a surge component by receiving an output of the high impedance input amplifier. A band-pass filter having a frequency band of about 100 kHz to several MHz, a high-speed sampling A / D converter for receiving the output of the band-pass filter and A / D converting the output at a sampling frequency of about several MHz; A pre-trigger memory that stores the converted surge electric field instantaneous value data for a fixed number of samples, a trigger detection unit that detects that the absolute value of the surge electric field instantaneous value data exceeds a separately set value, and at the time of the detection. Storing the surge electric field instantaneous value data in the pre-trigger memory for a predetermined time. A main memory, a transmission unit for outputting data of the main in-memory data communication antenna, consisting of the data communication antenna.

一方、前記サージ電流波形記録装置は前記送電端側の送電線の各相毎に設置した変流器と、前記変成器二次側のシャント抵抗と、シャント抵抗両端の電圧波形を受ける入力アンプと、そのアンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電流瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電流瞬時値データの絶対値が別途設定された値を超えたことを検出するトリガー検出部と、前記検出時、前記トリガー前メモリー内の前記サージ電流瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータをデータ通信用アンテナに出力する伝送部と、前記データ通信用アンテナとから成る。   On the other hand, the surge current waveform recording device includes a current transformer installed for each phase of the transmission line on the power transmission end side, a shunt resistor on the transformer secondary side, and an input amplifier for receiving a voltage waveform across the shunt resistor. A band-pass filter having a frequency band of about 100 kHz to several MHz receiving the output of the amplifier and extracting a surge component, and receiving the output of the band-pass filter and performing A / D conversion at a sampling frequency of about several MHz. High-speed sampling A / D converter, a pre-trigger memory for storing A / D-converted instantaneous surge current data for a fixed number of samples, and an absolute value of the surge current instantaneous value data exceeding a separately set value. A trigger detection unit for detecting that the surge current has occurred, and a main memory for storing the surge current instantaneous value data in the pre-trigger memory for a predetermined time at the time of the detection. And Lee, a transmission unit for outputting the main data in memory in a data communication antenna, consisting of the data communication antenna.

一方、前記故障点標定装置は演算機能を有するパソコンまたはサーバー装置等であって、通信回線に接続されおり、前記サージ電界波形記録装置およびサージ電流波形記録装置が出力した波形データを受信し、故障点標定演算を行いその結果を表示または保存する。このような装置で構成されたシステムは本願の第二の発明の特徴である。   On the other hand, the fault point locating device is a personal computer or a server device having an arithmetic function, is connected to a communication line, receives the waveform data output by the surge electric field waveform recording device and the surge current waveform recording device, and generates a fault. Performs point location calculations and displays or saves the results. The system constituted by such a device is a feature of the second invention of the present application.

また、この故障点標定演算は前記サージ電界波形データと前記サージ電流波形データの各々における波形の立ち上がり(もしくは立下り)点の時刻をT1[sec]およびT2[sec]、サージの伝播速度をν[km/ sec]、送電端から末端までの線路長をL[km]としたとき送電端からサージ発生点までの距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することを特徴とする。これは本願の第三の発明の特徴である。 In this fault point location calculation, the time of the rising (or falling) point of the waveform in each of the surge electric field waveform data and the surge current waveform data is T1 [sec] and T2 [sec], and the surge propagation speed is ν. [km / sec], and assuming that the line length from the transmitting end to the terminal is L [km], the distance λ [km] from the transmitting end to the surge occurrence point is λ = {L + ν · (T2−T1)} / 2. It is characterized in that it is calculated. This is a feature of the third invention of the present application.

一方、上記サージ電流波形データによって地絡事故の存在は検出できたにも拘らず、そのサージ電流波形の立ち上がり(もしくは立下り)点を明確に検出できない場合が多い。それは非接地系送電線の場合、地絡しても地絡電流が負荷電流の数%程度の場合が多く、波形の立ち上がり時点が負荷電流のノイズ等に埋もれて検出困難となる場合があるためである。 On the other hand, although the presence of a ground fault has been detected by the surge current waveform data, the rising (or falling) point of the surge current waveform cannot often be clearly detected. In the case of an ungrounded transmission line, even if a ground fault occurs, the ground fault current is often about several percent of the load current, and the rise time of the waveform may be buried in the noise of the load current, making it difficult to detect. It is.

そのような場合には、上記変電所の同一母線に接続された他の分岐送電線(フィーダーともいう)の末端に設置された第二のサージ電界検出器から得られた上記サージ電界波形の立ち上がり(もしくは立下り)点の時刻をT2[sec]、サージの伝播速度をν[km/ sec]、とし、二つのサージ電界検出器間の総線路長をL[km]として上記第二のサージ電界検出器設置点からサージ発生点までの送電線に沿った距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することが本願第四の発明の特徴である。 In such a case, the rise of the surge electric field waveform obtained from the second surge electric field detector installed at the end of another branch transmission line (also referred to as a feeder) connected to the same bus of the substation The time at the (or falling) point is T2 [sec], the propagation speed of the surge is ν [km / sec], and the total line length between the two surge electric field detectors is L [km]. It is a feature of the fourth invention that the distance λ [km] along the transmission line from the electric field detector installation point to the surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2.

本願発明により、従来故障点の標定には非接地系送電線の少なくとも2箇所に電流センサーを各々3個要していたものが送電端に電流センサー3個、受電端に非接触型電界センサー1個で済むこととなり、コスト的に有利である。また、非接地系送電端において地絡電流の値が小さすぎてその立ち上がり時点が検出できない場合でも受電端の電界センサー同士のサージ波形到達時間差による故障点標定が可能である。   According to the present invention, three current sensors are required at least at two places of a non-grounded transmission line in the prior art for locating a failure point. However, three current sensors are provided at a transmitting end and a non-contact electric field sensor 1 is provided at a receiving end. It is necessary to use only one piece, which is advantageous in terms of cost. Further, even when the value of the ground fault current is too small at the power transmission end of the non-grounding system to detect the rise time, the failure point can be located by the difference in the arrival time of the surge waveform between the electric field sensors at the power reception end.

非接地系統の場合、そもそも末端には地絡電流は流れてこないので電流センサーは末端付近に設置しても意味が無く、従って故障点標定が可能な区間も限られていたが、本願の手法では非接地系送電線の全区間に渡って標定可能である。
また、地絡事故のみならず短絡事故の場合も全く同じ装置構成で事故検出および故障点標定が可能である。
In the case of an ungrounded system, since a ground fault current does not flow to the terminal in the first place, there is no point in installing the current sensor near the terminal, and therefore the section where the fault point can be located was limited, but the method of the present application Can be located over the entire section of the ungrounded transmission line.
Further, in the case of a short-circuit accident as well as a ground-fault accident, it is possible to detect an accident and locate a fault point with exactly the same device configuration.

配電用送電線回路および本願システム全体の概念図Conceptual diagram of power transmission line circuit and overall system サージ電界波形記録装置とサージ電界検出アンテナの設置例の図Figure of installation example of surge electric field waveform recorder and surge electric field detection antenna [図2]を上から見下ろしたところの図(上面図)Figure of [Figure 2] looking down from above (top view) アンテナの位置説明図1Illustration of antenna position 1 アンテナの位置説明図2Illustration of antenna position 2 [図4−1]においてアンテナから等距離の2送電線A相、B相間の短絡事故時のアンテナ電圧波形例In FIG. 4-1, an example of an antenna voltage waveform at the time of a short circuit accident between two phases A and B of two transmission lines equidistant from the antenna. [図4−2]のようにアンテナから等距離でない2送電線A相、B相間の短絡事故時のアンテナ電圧波形例Example of antenna voltage waveform at the time of short circuit accident between two transmission lines A phase and B phase not equidistant from antenna as shown in [Fig. 4-2] サージ電界波形記録装置のブロック図Block diagram of surge electric field waveform recorder サージ電流波形記録装置のブロック図Block diagram of surge current waveform recorder 系統モデルと本願システム(2フィーダーの場合)System model and application system (in case of 2 feeders)

以下に本願の実施形態を詳細に説明する。[図1]は本願のシステム全体を示す概念図である。配電変電所の母線3に接続された配電用送電線4の各相にCTセンサー5を取り付け、また前記配電用送電線4の末端にサージ電界波形記録装置を設置する。事故が発生すると電流サージ波形記録装置に接続されたCTセンサーおよびサージ電界波形記録装置に接続された電界検出アンテナで事故サージ電流波形および事故サージ電界波形がピックアップされそれぞれの波形記録器でデータとして保存される。電流サージ波形記録器は特許文献4の自動オシログラフにおいてデータサンプリング周波数が10MHz程度の波形記録機能を付加したものである。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a conceptual diagram showing the entire system of the present application. A CT sensor 5 is attached to each phase of the distribution transmission line 4 connected to the bus 3 of the distribution substation, and a surge electric field waveform recording device is installed at an end of the distribution transmission line 4. When an accident occurs, the accident surge current waveform and accident surge electric field waveform are picked up by the CT sensor connected to the current surge waveform recorder and the electric field detection antenna connected to the surge electric field waveform recorder, and saved as data by the respective waveform recorders. Is done. The current surge waveform recorder has a function of adding a waveform recording function of a data sampling frequency of about 10 MHz in the automatic oscillograph of Patent Document 4.

一方サージ電界検出アンテナおよびサージ電界波形記録装置は送電鉄塔や配電線に直接取り付けられるものであってその外観は[図2]に示されている通りである。   On the other hand, the surge electric field detection antenna and the surge electric field waveform recording device are directly attached to a power transmission tower or a distribution line, and their appearance is as shown in FIG.

[図3]は配電線の電柱に本願装置を取り付けて上から見た図である。   FIG. 3 is a view of the apparatus of the present invention attached to a power pole of a distribution line, as viewed from above.

このサージ電界波形記録装置は、[図6−1]のブロック図のように、高インピーダンス入力アンプ43、バンドパスフィルター44、高速サンプリングA/D変換器45、トリガー検出部50、トリガー前メモリー46、主メモリー47、伝送部48などからなり、受電端側の上記電界検出用アンテナ42からの信号は高インピーダンス入力アンプ43で電力増幅され、低インピーダンス出力に変換された後、更に100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルター44を用いてサージ波形成分が抽出され、高速サンプリングA/D変換器45(サンプリング周波数10MHz程度)によってA/D変換することで電界サージ波形データが抽出され、トリガー前メモリー46に転送される。その転送はメモリーを上書きしつつ常時行なわれており、その瞬時値の絶対値が別途設定された値を超えた時、トリガー前メモリー46を通じて一定時間分の電界サージ波形データが主メモリー47に転送記憶され、伝送部48、データ通信用アンテナ49を通じてサーバーに送られる。
また、本願特許申請の範囲ではないため[図6−1]では省略しているが、正確なサンプリング時刻を得るためのGPS時刻同期部や太陽光パネルから電気エネルギーを得るための電源装置部も実際には実装している。
This surge electric field waveform recording apparatus has a high impedance input amplifier 43, a band pass filter 44, a high-speed sampling A / D converter 45, a trigger detection unit 50, a pre-trigger memory 46 as shown in the block diagram of FIG. The signal from the electric field detecting antenna 42 on the power receiving end side is amplified by a high impedance input amplifier 43 and converted to a low impedance output, and then further 100 kHz to several MHz. A surge waveform component is extracted by using a band-pass filter 44 having a frequency band of the order, and A / D conversion is performed by a high-speed sampling A / D converter 45 (sampling frequency of about 10 MHz) to extract electric field surge waveform data. Are transferred to the pre-trigger memory 46. The transfer is always performed while overwriting the memory, and when the absolute value of the instantaneous value exceeds a separately set value, the electric field surge waveform data for a certain time is transferred to the main memory 47 through the memory 46 before the trigger. It is stored and sent to the server through the transmission unit 48 and the data communication antenna 49.
Although not shown in FIG. 6-1 because it is not the scope of the patent application of the present application, a GPS time synchronization unit for obtaining an accurate sampling time and a power supply unit for obtaining electric energy from a solar panel are also provided. Actually implemented.

また、[図1]のサージ電流波形記録装置10は、[図6−2]のブロック図のように、入力アンプ54、バンドパスフィルター55、高速サンプリングA/D変換器56、トリガー検出部61、トリガー前メモリー57、主メモリー58、伝送部59などからなり、送電端側の送電線52に設置された変流器51およびその二次側出力間に接続されたシャント抵抗53からの信号は入力アンプ54で電力増幅された後、更に100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルター55を用いてサージ波形成分が抽出され、高速サンプリングA/D変換器56(サンプリング周波数10MHz程度)によってA/D変換することで商用周波数成分を含んだ電流サージ波形データが抽出され、トリガー前メモリー57に転送される。その転送はメモリーを上書きしつつ常時行なわれており、その瞬時値の絶対値が別途設定された値を超えた時、トリガー前メモリー57を通じて一定時間分の電流サージ波形データが主メモリー58に転送記憶され、伝送部59、データ通信用アンテナ60を通じてサーバーに送られる。   The surge current waveform recording device 10 of FIG. 1 includes an input amplifier 54, a band-pass filter 55, a high-speed sampling A / D converter 56, and a trigger detection unit 61, as shown in the block diagram of FIG. , A pre-trigger memory 57, a main memory 58, a transmission unit 59, etc., and signals from a shunt resistor 53 connected between a current transformer 51 installed on a transmission line 52 on the power transmission end side and its secondary output are After the power is amplified by the input amplifier 54, a surge waveform component is further extracted using a band-pass filter 55 having a frequency band of about 100 kHz to several MHz, and a high-speed sampling A / D converter 56 (sampling frequency of about 10 MHz). A / D conversion extracts current surge waveform data including commercial frequency components, and transfers the data to pre-trigger memory 57. That. The transfer is always performed while overwriting the memory, and when the absolute value of the instantaneous value exceeds a separately set value, current surge waveform data for a certain time is transferred to the main memory 58 through the memory 57 before the trigger. It is stored and sent to the server through the transmission unit 59 and the data communication antenna 60.

前記バンドパスフィルター55はサージ成分のみを抽出するものであるが、前記バンドパスフィルターの代わりにローパスフィルターを用いて商用周波数成分をも通過させ、前記商用周波数成分における事故電流成分の有無を検出し、得られたデータが事故か単なるノイズかを判定させても良い。また、前記バンドパスフィルターの手前に別途商用周波数成分を検出し記録するための全く別のハードウエアを設けても良い。   The band-pass filter 55 extracts only a surge component, but also passes a commercial frequency component using a low-pass filter instead of the band-pass filter, and detects the presence or absence of an accidental current component in the commercial frequency component. Alternatively, it may be determined whether the obtained data is an accident or a simple noise. Further, completely different hardware for detecting and recording the commercial frequency component may be provided before the bandpass filter.

[図7]は配電用変電所の母線に送電線路が2回線接続されている場合の例である。   [FIG. 7] shows an example in which two transmission lines are connected to a bus of a distribution substation.

実際の運用時は[図7]のように変電所の母線から分岐した各送電線路の送電端に電流サージ波形記録器78を、前記各配電用送電線66、73の末端にサージ電界波形記録装置71、72を設置して配電線の送電端における電流サージ波形データおよび配電線の末端におけるサージ電界波形データを記録する。 During actual operation, a current surge waveform recorder 78 is provided at the transmission end of each transmission line branching from the substation bus as shown in FIG. 7 and a surge electric field waveform is recorded at the end of each of the distribution transmission lines 66 and 73. The devices 71 and 72 are installed to record current surge waveform data at the transmission end of the distribution line and surge electric field waveform data at the end of the distribution line.

収録された前記電流サージ波形データおよび前記サージ電界波形データは図1のようにネットワーク14を通じてサーバー装置15に送信される。一方、変電所内にはサージ電流波形を記録するためのサージ電流波形記録装置を設置しているが、この装置から商用周波の交流波形を抽出し、収録されたサージ波形が単なるノイズかまたは実際の事故波形の一部かを判断している。   The recorded current surge waveform data and surge electric field waveform data are transmitted to the server device 15 through the network 14 as shown in FIG. On the other hand, a surge current waveform recording device for recording the surge current waveform is installed in the substation, and the AC waveform of the commercial frequency is extracted from this device, and the recorded surge waveform is simply noise or actual noise. Judgment is part of the accident waveform.

1 送電端
2 受電端
3 配電変電所母線
4 配電用送電線
5 CTセンサー
6 事故点
7 サージ電界検出アンテナ
8 データ通信用アンテナ
9 データ通信用アンテナ
10 サージ電流波形記録装置
11 サージ電界波形記録装置
12 柱上変圧器
13 ネットワーク基地局
14 ネットワーク
15 サーバー
16 クライアントパソコン
17 サージ電界検出用アンテナ
18 電柱
19 サージ電界波形記録装置
20 腕金
21 サージ電界検出用アンテナ
22 送電線
23 サージ電界波形記録装置
24 碍子
25 電柱取り付けバンド
26 電柱
27 C相送電線
28 B相送電線
29 A相送電線
30 碍子
31 腕金
32 サージ電界検出用アンテナ
33 電柱
34 C相送電線
35 B相送電線
36 A相送電線
37 碍子
38 腕金
39 サージ電界検出用アンテナ
40 電柱
41 サージ電界波形記録装置
42 サージ電界検出用アンテナ
43 高インピーダンス入力アンプ
44 バンドパスフィルター
45 高速サンプリングA/D変換器
46 トリガー前メモリー
47 主メモリー
48 伝送部
49 データ通信用アンテナ
50 トリガー検出部
51 変流器
52 送電線
53 シャント抵抗
54 入力アンプ
55 バンドパスフィルター
56 高速サンプリングA/D変換器
57 トリガー前メモリー
58 主メモリー
59 伝送部
60 データ通信用アンテナ
61 トリガー検出部
62 サージ電流波形記録装置
63 送電端
64 受電端1
65 配電変電所母線
66 配電用送電線1
67 CTセンサー1
68 事故点
69 サージ電界検出用アンテナ1
70 データ通信用アンテナ1
71 サージ電界波形記録装置1
72 受電端2
73 配電用送電線2
74 CTセンサー2
75 サージ電界検出用アンテナ2
76 データ通信用アンテナ2
77 サージ電界波形記録装置2
78 サージ電流波形記録装置
79 データ通信用アンテナ
1 Transmission end
2 Power receiving end
3 Distribution substation bus
4 Power transmission lines
5 CT sensor
6 Accident points
7 Surge electric field detection antenna
8 Data communication antenna
9 Data communication antenna
10 Surge current waveform recorder
11 Surge electric field waveform recorder
12 pole transformer
13 network base stations
14 Network
15 servers
16 client computers
17 Surge electric field detection antenna
18 telephone pole
19 Surge electric field waveform recorder
20 Arms
21 Surge electric field detection antenna
22 Transmission line
23 Surge electric field waveform recorder
24 insulator
25 telephone pole mounting band
26 telephone pole
27 C phase transmission line
28 B phase transmission line
29 A phase transmission line
30 insulator
31 arm
32 Surge electric field detection antenna
33 telephone pole
34 C phase transmission line
35 B phase transmission line
36 A phase transmission line
37 insulator
38 Arms
39 Surge electric field detection antenna
40 telephone pole
41 Surge electric field waveform recorder
42 Surge electric field detection antenna
43 High impedance input amplifier
44 Band Pass Filter
45 High-speed sampling A / D converter
46 pre-trigger memory
47 main memory
48 Transmission section
49 Data Communication Antenna
50 Trigger detector
51 Current transformer
52 Transmission line
53 Shunt resistor
54 input amplifier
55 bandpass filter
56 High-speed sampling A / D converter
57 Pre-trigger memory
58 main memory
59 Transmission section
60 Data communication antenna
61 Trigger detector
62 Surge current waveform recorder
63 Transmission end
64 Power receiving end 1
65 Distribution Substation Bus
66 Distribution line 1
67 CT sensor 1
68 Accident point
69 Surge electric field detection antenna 1
70 Data Communication Antenna 1
71 Surge electric field waveform recorder 1
72 Power receiving end 2
73 Power Transmission Line 2
74 CT sensor 2
75 Surge electric field detection antenna 2
76 Data Communication Antenna 2
77 Surge electric field waveform recorder 2
78 Surge current waveform recorder
79 Data Communication Antenna

Claims (2)

サージ電界波形記録装置と、サージ電流波形記録装置と、故障点標定装置とからなる配電線故障点標定システムであって、
前記サージ電界波形記録装置はサージ電界検出用アンテナと、前記サージ電界検出用アンテナの出力を受ける高インピーダンス入力アンプと、前記高インピーダンス入力アンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の通過周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度以上でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電界瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電界瞬時値データの絶対値が別途設定された値を超えた時、前記トリガー前メモリー内の前記サージ電界瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータを通信回線に出力する伝送部とから成り、
一方、前記サージ電流波形記録装置は送電端側の送電線の各相毎に設置した変流器と、前記変流器二次側のシャント抵抗と、シャント抵抗両端の電圧波形を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電流瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電流瞬時値データの絶対値が別途設定された値を超えた時、前記トリガー前メモリー内の前記サージ電流瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータを通信回線に出力する伝送部とから成り、
一方、前記故障点標定装置は演算機能を有する装置であって、通信回線に接続されており、前記サージ電界波形記録装置およびサージ電流波形記録装置が出力した波形データを受信し、故障点標定を行うことを特徴とし、
前記配電線故障点標定システムは非接地系統の配電線において、その末端の受電端に上記サージ電界波形記録装置を受電端1箇所に付き1組設置したことを特徴とし、前記サージ電界波形記録装置は送電線の各相と平行で空間を隔てて非接触な前記サージ電界検出用アンテナをセンサーとして用い、更に前記サージ電界検出用アンテナは送電線の各相のラインに平行な平面上に設置された1枚の金属板もしくは電気的に接続された数本の金属棒であることを特徴とし、各相の送電線の内のいずれの2本ともその間の静電容量が等しく無い位置に設置したことを特徴とする配電線故障点標定システム。
A surge electric field waveform recording device, a surge current waveform recording device, and a distribution line failure point location system including a failure point location device,
The surge electric field waveform recording device includes a surge electric field detection antenna , a high impedance input amplifier receiving an output of the surge electric field detection antenna, and a surge component of about 100 kHz to several MHz receiving an output of the high impedance input amplifier. A high-speed sampling A / D converter that receives the output of the band-pass filter and A / D-converts it at a sampling frequency of about several MHz or more, The pre-trigger memory that stores the surge electric field instantaneous value data for a fixed number of samples, and when the absolute value of the surge electric field instantaneous value data exceeds a separately set value, the surge electric field instantaneous value data in the pre-trigger memory. Main memory for storing for a certain period of time and data in the main memory Consists of a transmission unit that,
On the other hand, the surge current waveform recording device receives a current transformer installed for each phase of the transmission line on the transmission end side, a shunt resistor on the secondary side of the current transformer, and a voltage waveform at both ends of the shunt resistor. A band-pass filter having a frequency band of about 100 kHz to several MHz, a high-speed sampling A / D converter for receiving the output of the band-pass filter and performing A / D conversion at a sampling frequency of about several MHz; A pre-trigger memory for storing the A / D-converted surge current instantaneous value data for a fixed number of samples, and a memory in the pre-trigger memory when the absolute value of the surge current instantaneous value data exceeds a separately set value. A main memory that stores the surge current instantaneous value data for a certain period of time, and a transmission unit that outputs data in the main memory to a communication line;
On the other hand, the fault point locating device is a device having an arithmetic function, is connected to a communication line, receives the waveform data output by the surge electric field waveform recording device and the surge current waveform recording device, and performs fault locating. It is characterized by doing
The distribution line fault point locating system is characterized in that in a distribution line of an ungrounded system, one set of the surge electric field waveform recording device is provided at one end of a power receiving end of the terminal, and the surge electric field waveform recording device is provided. Uses the antenna for detecting the surge electric field which is parallel to each phase of the transmission line and is not in contact with a space, as a sensor, and the antenna for detecting the surge electric field is installed on a plane parallel to the line of each phase of the transmission line. It is characterized by one metal plate or several metal rods electrically connected, and installed in a position where the capacitance between any two of the transmission lines of each phase is not equal A distribution line fault point locating system, characterized in that:
請求項1に記載の配電線故障点標定システムにおいて、上記サージ電界波形データと上記サージ電流波形データの各々における波形の立ち上がり、もしくは立下り点の時刻をT1およびT2、サージの伝播速度をν[km/s]、送電端から末端までの線路長をL[m]としたとき送電端からサージ発生点までの距離λをλ={L+ν・(T2−T1)}/2として算出することを特徴とした配電線故障点標定システムであって、
非接地系送電端において地絡電流の値が小さすぎてその立ち上がり時点が検出できない場合、上記送電端に接続された他の分岐送電線の末端に設置された第二のサージ電界検出器から得られた上記サージ電界波形の立ち上がり、もしくは立下り点の時刻をT2[sec]とし、二つのサージ電界検出器間の総線路長をL[km]として上記第二のサージ電界検出器設置点からサージ発生点までの送電線に沿った距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することを特徴とした配電線故障点標定システム。

2. The distribution line fault point locating system according to claim 1, wherein the rising or falling time of each of the surge electric field waveform data and the surge current waveform data is T1 and T2, and the surge propagation speed is ν [ km / s], and when the line length from the transmitting end to the end is L [m], the distance λ from the transmitting end to the surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2. A distribution line fault point location system characterized by :
If the value of the ground fault current at the ungrounded power transmission end is too small to detect the rise time, it is obtained from the second surge electric field detector installed at the end of another branch transmission line connected to the power transmission end. The time of the rising or falling point of the surge electric field waveform obtained is T2 [sec], and the total line length between the two surge electric field detectors is L [km] from the second surge electric field detector installation point. A distribution line fault point locating system, wherein a distance λ [km] along a transmission line to a surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2 .

JP2017123016A 2017-06-23 2017-06-23 Distribution line fault location system Active JP6624165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123016A JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123016A JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Publications (2)

Publication Number Publication Date
JP2019007812A JP2019007812A (en) 2019-01-17
JP6624165B2 true JP6624165B2 (en) 2019-12-25

Family

ID=65026882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123016A Active JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Country Status (1)

Country Link
JP (1) JP6624165B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505475B (en) * 2020-11-10 2023-09-12 广西电网有限责任公司河池供电局 Low-cost non-contact type overhead transmission line fault interval positioning method and system
CN112798906A (en) * 2021-03-11 2021-05-14 国网新疆电力有限公司乌鲁木齐供电公司 System for identifying and positioning short-circuit fault of high-voltage line based on low-voltage power distribution
CN113009281B (en) * 2021-03-15 2021-12-03 国网江苏省电力有限公司南通供电分公司 Single-phase disconnection fault diagnosis method for medium-voltage distribution network

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100558A (en) * 1974-01-07 1975-08-09
JPH06109798A (en) * 1992-09-28 1994-04-22 Sumitomo Electric Ind Ltd Accident zone detecting system for transmission line
JP3345751B2 (en) * 1999-10-14 2002-11-18 中部電力株式会社 Distribution line fault direction locating method, locating device
JP4069192B2 (en) * 2002-10-08 2008-04-02 日本高圧電気株式会社 Fault location method and fault location system
US7750646B2 (en) * 2008-01-10 2010-07-06 General Electric Company Detector for precursive detection of electrical arc
JP5646696B1 (en) * 2013-06-19 2014-12-24 株式会社近計システム Fault location system
JP6129719B2 (en) * 2013-11-13 2017-05-17 東北電力株式会社 Transmission line lightning fault location method and system

Also Published As

Publication number Publication date
JP2019007812A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
AU2012323949B2 (en) Fault location using traveling waves
US9823637B2 (en) Fault detection and isolation using a common reference clock
US8861155B2 (en) High-impedance fault detection and isolation system
US20180278048A1 (en) Time-domain distance line protection of electric power delivery systems
US10126348B2 (en) Combined on-line bushing monitoring and geo-magnetic induced current monitoring system
US20170082675A1 (en) Time-domain directional line protection of electric power delivery systems
CN103852691B (en) The oriented detection of failure in the network of compensation or the earthed system for the neutral point that insulate
RU2583452C2 (en) Directed detection of resistive ground fault and rupture of conductor of medium voltage
US10802054B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
JP6624165B2 (en) Distribution line fault location system
US10345363B2 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
AU2014271281B2 (en) Fault location using traveling waves
CN111065932A (en) Traveling wave identification using distortion for power system protection
US11137436B2 (en) Secure traveling wave distance protection in an electric power delivery system
US20230194580A1 (en) System and method for management of electric grid
US11105832B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
US10474142B2 (en) Detection of cross-country faults
JP7341070B2 (en) Ground fault location system and method
Saha et al. Fault location–Basic concept and characteristic of methods
Mansour et al. A NEW DISTANCE PROTECTION SCHEME BASED ON COMBINATION OF IMPEDANCE AND TRAVELLING WAVE MEASUREMENTS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250