JP2019007812A - Distribution line fault point locating system - Google Patents

Distribution line fault point locating system Download PDF

Info

Publication number
JP2019007812A
JP2019007812A JP2017123016A JP2017123016A JP2019007812A JP 2019007812 A JP2019007812 A JP 2019007812A JP 2017123016 A JP2017123016 A JP 2017123016A JP 2017123016 A JP2017123016 A JP 2017123016A JP 2019007812 A JP2019007812 A JP 2019007812A
Authority
JP
Japan
Prior art keywords
surge
electric field
waveform
current
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017123016A
Other languages
Japanese (ja)
Other versions
JP6624165B2 (en
Inventor
洋 于
Yang Yu
洋 于
成章 辻
Nariaki Tsuji
成章 辻
山口 保孝
Yasutaka Yamaguchi
保孝 山口
大橋 善和
Yoshikazu Ohashi
善和 大橋
大浦 好文
Yoshifumi Oura
好文 大浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2017123016A priority Critical patent/JP6624165B2/en
Publication of JP2019007812A publication Critical patent/JP2019007812A/en
Application granted granted Critical
Publication of JP6624165B2 publication Critical patent/JP6624165B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

To provide a distribution line fault point locating system that can be used for detecting an accident or locating an accident position in a non-grounded power transmission line, and with which it is possible to realize the locating of a fault point position with fewer sensors.SOLUTION: By using a current surge detector at the power transmission end of a non-grounded system and a contactless surge electric field detector at the power receiving end, at a rate of one for each three-phase circuit and arranging the position of the contactless surge electric field detector at different distances for both of two phases, it is made possible to observe a surge waveform of sufficient amplitude even in the case of a short-circuit accident. Then, a commercial frequency component is cut by a band-pass filter having a frequency band on the order of 100 kHz to several MHz to detect a surge component. For the power transmission line consisting of only one circuit, surge waveform data at the power transmission end and the power receiving end at terminal of the power transmission line are used; for two or more circuits, surge waveform data at the power receiving ends at terminal of the two circuits including a faulty circuit are used, in which way the locating is made possible by a locating computation function.SELECTED DRAWING: Figure 1

Description

本発明は、配電線故障点標定システムに関し、詳しくは、配電変電所から末端の需要家までの配電用送電線において、地絡または短絡等の電気事故時のサージ電流波形を記録するサージ電流波形記録装置および、サージ電界波形を記録するサージ電界波形記録装置ならびに、それらの記録波形より電気事故時の発生位置を推定する配電線故障点標定装置により構成される配電線故障点標定システムに関する。   The present invention relates to a distribution line fault location system, and more particularly, a surge current waveform for recording a surge current waveform at the time of an electrical accident such as a ground fault or a short circuit in a distribution transmission line from a distribution substation to a terminal consumer. The present invention relates to a distribution line failure point locating system including a recording apparatus, a surge electric field waveform recording apparatus that records a surge electric field waveform, and a distribution line failure point locating apparatus that estimates an occurrence position at the time of an electrical accident from the recorded waveforms.

非接地系配電線では中性点非接地であるため地絡しても地絡電流が少なく、送電端または受電端から見た電圧・電流の実効値によるいわゆる実効値型故障点標定装置や、事故相で測定した電圧・電流値から算出される故障点までのインピーダンスによる、インピーダンス型の故障点標定装置での故障点標定は困難であった。   In non-grounded distribution lines, neutral point is not grounded, so even if there is a ground fault, there is little ground fault current, so-called effective value type fault point locating device based on the effective value of voltage / current viewed from the power transmission end or power reception end, It has been difficult to determine a fault point with an impedance type fault point locating device based on the impedance to the fault point calculated from the voltage and current values measured in the accident phase.

そのため、鉄塔や電柱に電流センサー(CT)・電圧センサー(VT)または電界センサー・電磁界センサー等を設置して系統事故時のサージ電流(もしくは電圧)波形を記録し、その各観測地点間への到達時間差から故障点を標定するもの(特許文献1〜特許文献2)が多かった。また、事故時の事故相の対地電圧実効値を複数地点で観測記録し、その値が故障点に向かって減少することを利用して故障点標定するもの(特許文献3)もあった。   Therefore, a current sensor (CT) / voltage sensor (VT) or electric field sensor / electromagnetic field sensor, etc. is installed on a steel tower or utility pole, and the surge current (or voltage) waveform at the time of a system fault is recorded. In many cases, the failure point is determined from the difference in arrival time (Patent Document 1 to Patent Document 2). In addition, there is also one that records and records the effective value of the ground voltage of the accident phase at the time of the accident at a plurality of points, and uses the fact that the value decreases toward the failure point (Patent Document 3).

特許文献1では文番号[0007]等に故障点位置標定に零相電圧および零相電流のサージ波形データを用いることが述べられており、特許文献2では文番号[0007]等に零相電圧の検出方法が述べられている。   Patent Document 1 states that the surge waveform data of zero phase voltage and zero phase current is used for fault point location in sentence number [0007] and the like and Patent Document 2 describes that zero phase voltage is used in sentence number [0007] and the like. The detection method is described.

これらは送電線の電流信号の波形または電圧信号の波形を各相毎に計測し、変換器の二次側の電圧波形から零相波形を合成し、その波形データから事故時に発生したサージ波形部分を検出し、前記サージ波形部分の到達時間差から故障点を求めるものであるが、センサーを各相毎に設置することはセンサーそのものの価格や工事費などの点でコスト的に不利である。   These measure the waveform of the current signal or voltage signal of the transmission line for each phase, synthesize the zero-phase waveform from the voltage waveform on the secondary side of the converter, and the surge waveform part generated at the time of the accident from the waveform data The failure point is obtained from the arrival time difference of the surge waveform portion, but it is disadvantageous in cost to install the sensor for each phase in terms of the price of the sensor itself and construction costs.

一般に下位系統といわれる22kV〜33kV系統の送電線ではそこから得られる収益に比してこういった監視設備に要するコストの占める割合は大きくなっており、66kV以上の高圧系統と比して設備に対するコストダウンの要求が強くなっている。特に下位系統の配電線になるほど分岐が多く、各分岐送電線の末端にはセンサー1個と波形記録器1台のみ設置して故障点標定できることが望ましい。   In general, 22 kV to 33 kV transmission lines, which are said to be subordinate systems, have a larger proportion of the cost required for such monitoring equipment than the profits obtained from them. The demand for cost reduction is increasing. In particular, the lower the distribution line, the more branches there are, and it is desirable that only one sensor and one waveform recorder be installed at the end of each branch transmission line to determine the fault location.

特許文献5には送電線が幹線線路と分岐線線路から成る場合にサージの到達時間差から故障点を算出する方法が書かれており、一回線の送電線(分岐を含む)の場合の故障点位置標定はほとんどの場合、この方法で実施できる。   Patent Document 5 describes a method of calculating a failure point from a difference in arrival time of surges when a transmission line is composed of a main line and a branch line, and a failure point in the case of a single transmission line (including a branch). In most cases, positioning can be performed by this method.

ところで、実際には非接地系統において負荷電流100A程度の配電線でも地絡時の電流は1〜2A程度であり、変流器(電流センサーまたはCTともいう)の誤差が1%程度であれば地絡電流値は誤差に埋もれて認識することが困難な場合も多い。   By the way, in actuality, even in a distribution line with a load current of about 100 A in a non-grounded system, the current at the time of ground fault is about 1 to 2 A, and the error of the current transformer (also called current sensor or CT) is about 1%. In many cases, the ground fault current value is buried in an error and difficult to recognize.

また、非接地系統の場合、地絡電流は送電線と対地間の静電容量によって流れるのであるから、地絡点では電流最大ながら、送電端や負荷端に行くほど地絡電流値は小さくなり、最末端では零となる。これは商用周波数の波形のみならずサージ電流波形においても同様で、対地インピーダンスの高い末端では地絡電流は殆ど流れない。そのため、地絡電流の測定は必ず送電区間の中程で行なう必要(特許文献1の図1)が有り、電流サージ波形の到達時間差で故障点標定する場合、電流センサーから送電線の末端までの区間では標定できなかった。 In the case of a non-grounded system, since the ground fault current flows due to the capacitance between the transmission line and the ground, the ground fault current value decreases as it goes to the power transmission end or the load end while the current is maximum at the ground fault point. , Zero at the end. This is the same not only in the waveform of the commercial frequency but also in the surge current waveform, and the ground fault current hardly flows at the terminal having a high ground impedance. Therefore, it is necessary to measure the ground fault current in the middle of the transmission section (Fig. 1 of Patent Document 1). When fault location is determined by the arrival time difference of the current surge waveform, it is necessary to measure from the current sensor to the end of the transmission line. It could not be standardized in the section.

一方、末端では零相電圧値が最大となる。これは送電線の各部分において[単位長当たりの電圧値] (=[単位長当たりのインピーダンス]×[地絡電流値])による増分が累積し、末端ではそれが最大になることから明らかである。 On the other hand, the zero-phase voltage value is maximized at the end. This is evident from the fact that increments due to [voltage value per unit length] (= [impedance per unit length] x [ground fault current value]) accumulate at each part of the transmission line, and become maximum at the end. is there.

ここで、末端と言うのは受電端を言う。送電端は変電所の母線であるが、これには通常複数の配電線路が接続されており、ある配電線で発生したサージ電流は変電所の母線を経由してそれに接続された他の配電線路に流れ込む。よって、母線は地絡点で発生したサージ電流の流れる先としては単なる中継点に過ぎない。   Here, the term “terminal” refers to the power receiving end. The transmission end is the bus of the substation, but usually multiple distribution lines are connected to this, and the surge current generated in one distribution line is connected to other distribution lines via the bus of the substation. Flow into. Therefore, the bus is only a relay point as a destination of surge current generated at the ground fault point.

ところで、サージ波形はセンサーから波形記録装置までのケーブルの特性等の影響でその立ち上がりが訛って観測される場合が多い。全く同じ規格のセンサーやケーブル、波形記録器間ではその訛り方が同じであるので比較しやすいが、例えば一方は地絡時のサージ電圧波形であって、他方はサージ電流波形である場合、一般には故障点で発生したサージ電流波形が線路上を伝播する間に積分されたものが送電線両端の電圧センサーによって電圧サージ波形として認識されるのであるから基本的に波形が異なる。
立ち上がりが急峻な波形の場合は良いが、立ち上がりがなだらかな波形の場合は、サージ有りと判定する判定レベルの閾値が変わると、検出時点も変化するのでそれが誤差要因となる。そのためサージ波形の到達時間差で故障点標定を行なう場合はなるべく電流波形同士、または電圧波形同士でのサージ波形の到達時間差の比較になるようにすることが望ましい。
By the way, the surge waveform is often observed with a rising edge due to the influence of the characteristics of the cable from the sensor to the waveform recording device. It is easy to compare between sensors, cables, and waveform recorders of the same standard because the method of turning is the same.For example, if one is a surge voltage waveform at ground fault and the other is a surge current waveform, The waveform is basically different because the surge current waveform generated at the point of failure is integrated while propagating on the line, and is recognized as a voltage surge waveform by the voltage sensors at both ends of the transmission line.
A waveform having a sharp rise is good, but in the case of a gentle rise, if the threshold of the determination level for determining that there is a surge is changed, the detection time also changes, which is an error factor. Therefore, when fault location is determined based on the arrival time difference between surge waveforms, it is desirable to compare the arrival time difference between surge waveforms between current waveforms or voltage waveforms as much as possible.

特許第3689078号Japanese Patent No. 3689078 特許第4919592号Japanese Patent No. 4919592 特許第5161930号Japanese Patent No. 5161930 特許第4790050号Patent No. 4790050 特許第4044489号Patent No. 4044489

こういった点に鑑みて、本願が解決すべき課題は、負荷電流に対して事故電流がその数%程度以下となるような非接地系統の送電線においても事故検出やその事故位置標定に使用でき、地絡時に地絡電流が殆ど流れない配電用送電線の末端においても事故検出や事故位置標定が可能となり、かつ既存の装置より少ないセンサーで故障点位置標定が実現できる配電線故障点標定システムを提供することにある。   In view of these points, the problem to be solved by the present application is that it can be used for accident detection and fault location on ungrounded transmission lines where the fault current is less than a few percent of the load current. Distribution line fault location that enables fault detection and fault location even at the end of a distribution transmission line where ground fault current hardly flows in the event of a ground fault, and can realize fault location with fewer sensors than existing equipment To provide a system.

本願の発明者は当初配電用変電所の母線に接続された各線路の各相にサージ電流センサーを設置し、末端の受電端には各相にサージ電圧センサーを設置していたが、多数のデータ収集の結果から短絡および地絡事故時はどの相にも全く同一のタイミングでサージ波形が到達していることに気付いた。これはサージ到達時間差による故障点標定を行う上において、3相ともデータ収集するのは無駄であり、一相のみで良いことを示していた。また、地絡しても送電線の末端では地絡電流が流れないので、電流サージよりむしろ電圧サージを観測したほうが良いことも判った。   The inventor of the present application initially installed a surge current sensor in each phase of each line connected to the bus of the distribution substation, and installed a surge voltage sensor in each phase at the terminal receiving end. From the results of data collection, we noticed that surge waveforms arrived at exactly the same timing in all phases during a short circuit and ground fault. This indicates that it is useless to collect data for all three phases, and only one phase is necessary, in determining the fault location due to the difference in surge arrival time. It was also found that it is better to observe a voltage surge rather than a current surge because a ground fault does not flow at the end of the transmission line even if a ground fault occurs.

本願の発明者は通常各相に1個設置するサージセンサーを3相一回路毎に1個にしてもサージ到達タイミングの測定には何ら問題ないことに気付き、末端の受電端に非接触型電界センサーを三相一回路に付き一個用いることとしたのである。   The inventor of the present application notices that there is no problem in measuring the surge arrival timing even if one surge sensor is usually installed for each phase for each three-phase circuit, and a contactless electric field is applied to the terminal receiving end. One sensor is used per three-phase one circuit.

この非接触型電界センサーは対送電線間および対大地間との静電容量によって送電線対大地間に印加されている電圧を分圧した電圧波形を検出することができるものである。これにより地絡事故の場合は送電線対大地間のサージ電圧波形を観測することができる。   This non-contact type electric field sensor can detect a voltage waveform obtained by dividing the voltage applied between the transmission line and the ground by the electrostatic capacitance between the transmission line and the ground. As a result, in the case of a ground fault, the surge voltage waveform between the transmission line and the ground can be observed.

一方、2線短絡事故の場合は3相の内2相に略同じ大きさの事故電流が流れるものの逆位相となるので周囲に発生する電界ベクトルは互いに打ち消し合って検出が困難である。そこで、本願の発明者は送電線に対して非接触なサージ電界検出器(以後サージ電界検出器またはサージ電界検出用アンテナもしくは単にアンテナという)[図4−1]を[図4−2]のように3相の送電線から異なる距離となるように配置することで短絡事故時にも検出可能な程度に十分な振幅のサージ電圧波形を検出することができると考えた。 On the other hand, in the case of a two-wire short-circuit accident, an accident current of approximately the same magnitude flows in two of the three phases, but the phases are opposite, so the electric field vectors generated around each other cancel each other and are difficult to detect. Therefore, the inventor of the present application replaces a surge electric field detector (hereinafter referred to as a surge electric field detector, a surge electric field detection antenna or simply an antenna) [FIG. 4-1] in [FIG. 4-2]. Thus, it was considered that a surge voltage waveform having a sufficient amplitude to be detectable even in the case of a short-circuit accident can be detected by arranging it at different distances from the three-phase transmission line.

ところで、サージ電圧波形は送電線の近隣に落雷するいわゆる誘導雷と言われる現象のような場合や末端の受電端に接続された変圧器の二次側(いわゆる負荷端と言われる)以降において何らかの急激な負荷変動(大口需要家の工場の電源投入等)が発生した場合にも観測される。   By the way, the surge voltage waveform is something like a phenomenon called so-called induced lightning that strikes in the vicinity of the transmission line, or after the secondary side of the transformer connected to the terminal receiving end (so-called load end). It is also observed when sudden load fluctuations occur (such as turning on power to a large consumer factory).

そのため本願では送電側となる上記配電用変電所においては、母線に接続された各送電線の各相に電流センサーを配置し、ここで交流電流波形を常時監視し、事故の有無を判断して事故発生検出時は事故直前のサージ波形を抽出するための時刻データを記録し、そのデータを用いて送電線末端の電界センサーで検出されたサージ波形が実事故時のものか非事故時のノイズなのかを判断している。   Therefore, in this distribution substation on the power transmission side in this application, a current sensor is arranged in each phase of each transmission line connected to the bus, and the AC current waveform is constantly monitored here to determine whether there is an accident. When the occurrence of an accident is detected, time data for extracting the surge waveform immediately before the accident is recorded, and using that data, the surge waveform detected by the electric field sensor at the end of the transmission line is the actual accident or noise at the time of non-accident Judging what it is.

ところで、特許文献1ではその明細書の文番号[0020]にも書かれているように、送電線末端に電圧センサーだけではなく電流センサーも取り付けて事故検出しようとしている。しかしながら、非接地系の場合、末端の受電端では対地間非接地であるため途中の送電線で地絡事故が発生しても対地間電流(以後零相電流という)は殆ど流れないので十分な振幅の波形データを得ることが難しい。そこで本願の発明者は送電線の末端には非接触型電界センサーのみを配置することとしたのである。 By the way, in Patent Document 1, as described in the sentence number [0020] of the specification, an accident is detected by attaching not only a voltage sensor but also a current sensor to the end of the transmission line. However, in the case of a non-grounded system, the terminal receiving end is not grounded to the ground, so even if a ground fault occurs on the transmission line in the middle, the ground-to-ground current (hereinafter referred to as zero-phase current) hardly flows. It is difficult to obtain amplitude waveform data. Therefore, the inventor of the present application decided to arrange only a non-contact type electric field sensor at the end of the transmission line.

一方、回線に1個の電界センサーのみでは短絡事故の場合、2相間を流れる事故電流が互いに打ち消しあうため電界センサーによって検出される事故サージ波形が小さくなってしまう可能性が有る。実際には僅かな回路の非対称性によって完全に打ち消しあうことが無いことや、短絡事故時は地絡事故時に比して大きな事故電流が流れるため電界センサーによるサージ波形の検出は全く不可能という訳ではないが、本願ではセンサーの位置をどの2相間も異なる距離に配置することで充分なサージ波形の振幅を観測することを原理的に可能としている。これが本願第一の発明の特徴である。   On the other hand, in the case of a short circuit accident with only one electric field sensor per line, the accident surge waveform detected by the electric field sensor may be small because the accident currents flowing between the two phases cancel each other. Actually, it is not possible to completely cancel each other due to a slight asymmetry of the circuit, and it is impossible to detect a surge waveform by an electric field sensor at the time of a short-circuit accident because a large accident current flows compared to a ground fault accident. However, in this application, it is possible in principle to observe a sufficient surge waveform amplitude by arranging the sensor positions at different distances between any two phases. This is a feature of the first invention of the present application.

ところで、送電側の変電所端の電流データでは非接地系統の地絡事故にもかかわらず十分な振幅で商用周波数成分やサージ成分の波形データが得られる。これは配電変電所が配電線側から見て末端ではなく同一母線に接続された他の送電線路の対地静電容量によって地絡電流成分がその送電線路に流れ込み、電流波形として観測されるからである。   By the way, in the current data at the substation end on the power transmission side, the waveform data of the commercial frequency component and the surge component can be obtained with sufficient amplitude regardless of the ground fault of the ungrounded system. This is because the distribution substation is observed as a current waveform due to the ground fault current flowing into the transmission line due to the ground capacitance of the other transmission line connected to the same bus instead of the terminal when viewed from the distribution line side. is there.

このようにして本願の発明者は送電端の各回線の各相毎に1個の電流センサー、受電端には各回線毎に1個の非接触電界センサーを配置することで、非接地系統においてより少ないセンサーで効率良く確実に故障点標定できるシステムを構築した。   In this way, the inventor of the present application arranges one current sensor for each phase of each line at the power transmission end, and one non-contact electric field sensor for each line at the power receiving end, so that in a non-ground system. A system that can efficiently and reliably determine the fault location with fewer sensors was constructed.

これらの特徴を有する前記サージ電界波形記録装置はサージ電界検出用アンテナと、前記サージ電界検出用アンテナの出力を受ける高インピーダンス入力アンプと、前記高インピーダンス入力アンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電界瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電界瞬時値データの絶対値が別途設定された値を超えたことを検出するトリガー検出部と、前記検出時に、前記トリガー前メモリー内の前記サージ電界瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータをデータ通信用アンテナに出力する伝送部と、前記データ通信用アンテナとから成る。   The surge electric field waveform recording apparatus having these characteristics is a surge electric field detection antenna, a high impedance input amplifier that receives the output of the surge electric field detection antenna, and an output of the high impedance input amplifier that extracts a surge component. A band-pass filter having a frequency band of about 100 kHz to several MHz, a high-speed sampling A / D converter that receives the output of the band-pass filter and A / D-converts it at a sampling frequency of about several MHz, and an A / D Pre-trigger memory for storing the converted surge electric field instantaneous value data for a certain number of samples, a trigger detection unit for detecting that the absolute value of the surge electric field instantaneous value data exceeds a separately set value, and at the time of the detection , Storing the surge electric field instantaneous value data in the pre-trigger memory for a certain period of time A main memory, a transmission unit for outputting data of the main in-memory data communication antenna, consisting of the data communication antenna.

一方、前記サージ電流波形記録装置は前記送電端側の送電線の各相毎に設置した変流器と、前記変成器二次側のシャント抵抗と、シャント抵抗両端の電圧波形を受ける入力アンプと、そのアンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電流瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電流瞬時値データの絶対値が別途設定された値を超えたことを検出するトリガー検出部と、前記検出時、前記トリガー前メモリー内の前記サージ電流瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータをデータ通信用アンテナに出力する伝送部と、前記データ通信用アンテナとから成る。   On the other hand, the surge current waveform recording device includes a current transformer installed for each phase of the transmission line on the power transmission end side, a shunt resistance on the secondary side of the transformer, and an input amplifier that receives a voltage waveform across the shunt resistance. A band pass filter with a frequency band of about 100 kHz to several MHz that extracts the surge component by receiving the output of the amplifier, and an A / D conversion at the sampling frequency of about several MHz by receiving the output of the band pass filter High-speed sampling A / D converter, pre-trigger memory for storing A / D converted surge current instantaneous value data for a certain number of samples, and the absolute value of the surge current instantaneous value data exceeds a separately set value A trigger detection unit for detecting the occurrence of the surge current, and a main memory for storing the surge current instantaneous value data in the pre-trigger memory for a predetermined time at the time of the detection. And Lee, a transmission unit for outputting the main data in memory in a data communication antenna, consisting of the data communication antenna.

一方、前記故障点標定装置は演算機能を有するパソコンまたはサーバー装置等であって、通信回線に接続されおり、前記サージ電界波形記録装置およびサージ電流波形記録装置が出力した波形データを受信し、故障点標定演算を行いその結果を表示または保存する。このような装置で構成されたシステムは本願の第二の発明の特徴である。   On the other hand, the failure point locating device is a personal computer or server device having an arithmetic function, and is connected to a communication line, receives waveform data output from the surge electric field waveform recording device and the surge current waveform recording device, Perform point location calculation and display or save the result. A system including such an apparatus is a feature of the second invention of the present application.

また、この故障点標定演算は前記サージ電界波形データと前記サージ電流波形データの各々における波形の立ち上がり(もしくは立下り)点の時刻をT1[sec]およびT2[sec]、サージの伝播速度をν[km/ sec]、送電端から末端までの線路長をL[km]としたとき送電端からサージ発生点までの距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することを特徴とする。これは本願の第三の発明の特徴である。 Further, the fault location calculation calculates the time of the rising (or falling) point of the waveform in each of the surge electric field waveform data and the surge current waveform data as T1 [sec] and T2 [sec], and the surge propagation speed as ν. [km / sec] When the line length from the power transmission end to the terminal is L [km], the distance λ [km] from the power transmission end to the surge occurrence point is set as λ = {L + ν · (T2−T1)} / 2 It is characterized by calculating. This is a feature of the third invention of the present application.

一方、上記サージ電流波形データによって地絡事故の存在は検出できたにも拘らず、そのサージ電流波形の立ち上がり(もしくは立下り)点を明確に検出できない場合が多い。それは非接地系送電線の場合、地絡しても地絡電流が負荷電流の数%程度の場合が多く、波形の立ち上がり時点が負荷電流のノイズ等に埋もれて検出困難となる場合があるためである。 On the other hand, although the presence of a ground fault can be detected from the surge current waveform data, the rising (or falling) point of the surge current waveform cannot be clearly detected in many cases. In the case of a non-grounded transmission line, ground fault current is often about several percent of the load current even if a ground fault occurs, and the rise of the waveform may be buried in the noise of the load current, making detection difficult. It is.

そのような場合には、上記変電所の同一母線に接続された他の分岐送電線(フィーダーともいう)の末端に設置された第二のサージ電界検出器から得られた上記サージ電界波形の立ち上がり(もしくは立下り)点の時刻をT2[sec]、サージの伝播速度をν[km/ sec]、とし、二つのサージ電界検出器間の総線路長をL[km]として上記第二のサージ電界検出器設置点からサージ発生点までの送電線に沿った距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することが本願第四の発明の特徴である。 In such a case, the rise of the surge electric field waveform obtained from the second surge electric field detector installed at the end of another branch transmission line (also called a feeder) connected to the same bus of the substation. The time of the (or falling) point is T2 [sec], the propagation speed of the surge is ν [km / sec], and the total line length between the two surge electric field detectors is L [km]. It is a feature of the fourth invention of the present application that the distance λ [km] along the transmission line from the electric field detector installation point to the surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2.

本願発明により、従来故障点の標定には非接地系送電線の少なくとも2箇所に電流センサーを各々3個要していたものが送電端に電流センサー3個、受電端に非接触型電界センサー1個で済むこととなり、コスト的に有利である。また、非接地系送電端において地絡電流の値が小さすぎてその立ち上がり時点が検出できない場合でも受電端の電界センサー同士のサージ波形到達時間差による故障点標定が可能である。   According to the present invention, the conventional location of the fault point requires three current sensors at at least two locations on the non-grounded transmission line. Three current sensors at the power transmission end and a non-contact type electric field sensor 1 at the power reception end. This is advantageous in terms of cost. Further, even when the value of the ground fault current is too small at the non-grounded power transmission end and the rising point cannot be detected, the fault location can be determined by the difference in arrival time of surge waveforms between the electric field sensors at the power receiving end.

非接地系統の場合、そもそも末端には地絡電流は流れてこないので電流センサーは末端付近に設置しても意味が無く、従って故障点標定が可能な区間も限られていたが、本願の手法では非接地系送電線の全区間に渡って標定可能である。
また、地絡事故のみならず短絡事故の場合も全く同じ装置構成で事故検出および故障点標定が可能である。
In the case of a non-grounded system, ground fault current does not flow to the end in the first place, so it is meaningless to install a current sensor near the end, so the section where failure point localization is possible was limited, but the method of this application Then, it is possible to standardize over the entire section of the ungrounded transmission line.
Also, in the case of a short circuit accident as well as a ground fault, it is possible to detect an accident and locate a fault with the same device configuration.

配電用送電線回路および本願システム全体の概念図Conceptual diagram of power transmission line circuit for power distribution and the entire system of this application サージ電界波形記録装置とサージ電界検出アンテナの設置例の図Illustration of installation example of surge electric field waveform recorder and surge electric field detection antenna [図2]を上から見下ろしたところの図(上面図)View of top view of [Figure 2] (top view) アンテナの位置説明図1Explanation of antenna position 1 アンテナの位置説明図2Antenna position explanatory diagram 2 [図4−1]においてアンテナから等距離の2送電線A相、B相間の短絡事故時のアンテナ電圧波形例Example of antenna voltage waveform at the time of a short-circuit accident between two transmission lines A phase and B phase equidistant from the antenna in [Fig. 4-1] [図4−2]のようにアンテナから等距離でない2送電線A相、B相間の短絡事故時のアンテナ電圧波形例Example of the antenna voltage waveform at the time of a short circuit accident between the two transmission lines A phase and B phase that are not equidistant from the antenna as shown in FIG. サージ電界波形記録装置のブロック図Block diagram of surge electric field waveform recorder サージ電流波形記録装置のブロック図Block diagram of surge current waveform recording device 系統モデルと本願システム(2フィーダーの場合)System model and this system (in case of 2 feeders)

以下に本願の実施形態を詳細に説明する。[図1]は本願のシステム全体を示す概念図である。配電変電所の母線3に接続された配電用送電線4の各相にCTセンサー5を取り付け、また前記配電用送電線4の末端にサージ電界波形記録装置を設置する。事故が発生すると電流サージ波形記録装置に接続されたCTセンサーおよびサージ電界波形記録装置に接続された電界検出アンテナで事故サージ電流波形および事故サージ電界波形がピックアップされそれぞれの波形記録器でデータとして保存される。電流サージ波形記録器は特許文献4の自動オシログラフにおいてデータサンプリング周波数が10MHz程度の波形記録機能を付加したものである。   Hereinafter, embodiments of the present application will be described in detail. FIG. 1 is a conceptual diagram showing the entire system of the present application. A CT sensor 5 is attached to each phase of the distribution transmission line 4 connected to the bus 3 of the distribution substation, and a surge electric field waveform recording device is installed at the end of the distribution transmission line 4. When an accident occurs, the accident surge current waveform and the accident surge electric field waveform are picked up by the CT sensor connected to the current surge waveform recording device and the electric field detection antenna connected to the surge electric field waveform recording device and stored as data in each waveform recorder. Is done. The current surge waveform recorder has a waveform recording function with a data sampling frequency of about 10 MHz in the automatic oscillograph of Patent Document 4.

一方サージ電界検出アンテナおよびサージ電界波形記録装置は送電鉄塔や配電線に直接取り付けられるものであってその外観は[図2]に示されている通りである。   On the other hand, the surge electric field detection antenna and the surge electric field waveform recording device are directly attached to a power transmission tower or a distribution line, and the appearance thereof is as shown in FIG.

[図3]は配電線の電柱に本願装置を取り付けて上から見た図である。   [FIG. 3] is the figure which attached the apparatus of this application to the utility pole of a distribution line, and was seen from the top.

このサージ電界波形記録装置は、[図6−1]のブロック図のように、高インピーダンス入力アンプ43、バンドパスフィルター44、高速サンプリングA/D変換器45、トリガー検出部50、トリガー前メモリー46、主メモリー47、伝送部48などからなり、受電端側の上記電界検出用アンテナ42からの信号は高インピーダンス入力アンプ43で電力増幅され、低インピーダンス出力に変換された後、更に100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルター44を用いてサージ波形成分が抽出され、高速サンプリングA/D変換器45(サンプリング周波数10MHz程度)によってA/D変換することで電界サージ波形データが抽出され、トリガー前メモリー46に転送される。その転送はメモリーを上書きしつつ常時行なわれており、その瞬時値の絶対値が別途設定された値を超えた時、トリガー前メモリー46を通じて一定時間分の電界サージ波形データが主メモリー47に転送記憶され、伝送部48、データ通信用アンテナ49を通じてサーバーに送られる。
また、本願特許申請の範囲ではないため[図6−1]では省略しているが、正確なサンプリング時刻を得るためのGPS時刻同期部や太陽光パネルから電気エネルギーを得るための電源装置部も実際には実装している。
As shown in the block diagram in FIG. 6A, the surge electric field waveform recording apparatus includes a high-impedance input amplifier 43, a band-pass filter 44, a high-speed sampling A / D converter 45, a trigger detection unit 50, and a pre-trigger memory 46. The signal from the electric field detecting antenna 42 on the power receiving end side is amplified by a high impedance input amplifier 43 and converted into a low impedance output, and further 100 kHz to several MHz. A surge waveform component is extracted using a bandpass filter 44 having a frequency band of about, and electric field surge waveform data is extracted by A / D conversion by a high-speed sampling A / D converter 45 (sampling frequency of about 10 MHz). , And transferred to the pre-trigger memory 46. The transfer is always performed while overwriting the memory. When the absolute value of the instantaneous value exceeds a separately set value, the electric field surge waveform data for a certain time is transferred to the main memory 47 through the pre-trigger memory 46. It is stored and sent to the server through the transmission unit 48 and the data communication antenna 49.
Moreover, since it is not in the scope of patent application of the present application, it is omitted in [FIG. 6-1], but a GPS time synchronization unit for obtaining an accurate sampling time and a power supply unit for obtaining electric energy from a solar panel are also provided. Actually implemented.

また、[図1]のサージ電流波形記録装置10は、[図6−2]のブロック図のように、入力アンプ54、バンドパスフィルター55、高速サンプリングA/D変換器56、トリガー検出部61、トリガー前メモリー57、主メモリー58、伝送部59などからなり、送電端側の送電線52に設置された変流器51およびその二次側出力間に接続されたシャント抵抗53からの信号は入力アンプ54で電力増幅された後、更に100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルター55を用いてサージ波形成分が抽出され、高速サンプリングA/D変換器56(サンプリング周波数10MHz程度)によってA/D変換することで商用周波数成分を含んだ電流サージ波形データが抽出され、トリガー前メモリー57に転送される。その転送はメモリーを上書きしつつ常時行なわれており、その瞬時値の絶対値が別途設定された値を超えた時、トリガー前メモリー57を通じて一定時間分の電流サージ波形データが主メモリー58に転送記憶され、伝送部59、データ通信用アンテナ60を通じてサーバーに送られる。   Further, the surge current waveform recording apparatus 10 in FIG. 1 includes an input amplifier 54, a band pass filter 55, a high-speed sampling A / D converter 56, and a trigger detection unit 61 as shown in the block diagram in FIG. 6-2. , A pre-trigger memory 57, a main memory 58, a transmission unit 59, etc., and a signal from a current transformer 51 installed on a power transmission line 52 on the power transmission end side and a shunt resistor 53 connected between its secondary outputs is After power amplification by the input amplifier 54, a surge waveform component is further extracted using a bandpass filter 55 having a frequency band of about 100 kHz to several MHz, and a high-speed sampling A / D converter 56 (sampling frequency of about 10 MHz) The current surge waveform data including the commercial frequency component is extracted by A / D conversion using the above and transferred to the pre-trigger memory 57. That. The transfer is always performed while overwriting the memory. When the absolute value of the instantaneous value exceeds the value set separately, current surge waveform data for a certain time is transferred to the main memory 58 through the pre-trigger memory 57. The data is stored and sent to the server through the transmission unit 59 and the data communication antenna 60.

前記バンドパスフィルター55はサージ成分のみを抽出するものであるが、前記バンドパスフィルターの代わりにローパスフィルターを用いて商用周波数成分をも通過させ、前記商用周波数成分における事故電流成分の有無を検出し、得られたデータが事故か単なるノイズかを判定させても良い。また、前記バンドパスフィルターの手前に別途商用周波数成分を検出し記録するための全く別のハードウエアを設けても良い。   The band-pass filter 55 extracts only a surge component, but also passes a commercial frequency component using a low-pass filter instead of the band-pass filter, and detects the presence or absence of an accident current component in the commercial frequency component. It may be determined whether the obtained data is an accident or just noise. Further, completely separate hardware for detecting and recording a commercial frequency component may be provided before the band pass filter.

[図7]は配電用変電所の母線に送電線路が2回線接続されている場合の例である。   [FIG. 7] is an example in which two power transmission lines are connected to the bus of the distribution substation.

実際の運用時は[図7]のように変電所の母線から分岐した各送電線路の送電端に電流サージ波形記録器78を、前記各配電用送電線66、73の末端にサージ電界波形記録装置71、72を設置して配電線の送電端における電流サージ波形データおよび配電線の末端におけるサージ電界波形データを記録する。 During actual operation, a current surge waveform recorder 78 is recorded at the transmission end of each transmission line branched from the bus of the substation as shown in FIG. 7, and a surge electric field waveform is recorded at the ends of the distribution transmission lines 66 and 73. The devices 71 and 72 are installed to record current surge waveform data at the power transmission end of the distribution line and surge field waveform data at the end of the distribution line.

収録された前記電流サージ波形データおよび前記サージ電界波形データは図1のようにネットワーク14を通じてサーバー装置15に送信される。一方、変電所内にはサージ電流波形を記録するためのサージ電流波形記録装置を設置しているが、この装置から商用周波の交流波形を抽出し、収録されたサージ波形が単なるノイズかまたは実際の事故波形の一部かを判断している。   The recorded current surge waveform data and the surge electric field waveform data are transmitted to the server device 15 through the network 14 as shown in FIG. On the other hand, a surge current waveform recording device for recording the surge current waveform is installed in the substation. The AC waveform of the commercial frequency is extracted from this device, and the recorded surge waveform is just noise or actual Judging whether it is a part of the accident waveform.

1 送電端
2 受電端
3 配電変電所母線
4 配電用送電線
5 CTセンサー
6 事故点
7 サージ電界検出アンテナ
8 データ通信用アンテナ
9 データ通信用アンテナ
10 サージ電流波形記録装置
11 サージ電界波形記録装置
12 柱上変圧器
13 ネットワーク基地局
14 ネットワーク
15 サーバー
16 クライアントパソコン
17 サージ電界検出用アンテナ
18 電柱
19 サージ電界波形記録装置
20 腕金
21 サージ電界検出用アンテナ
22 送電線
23 サージ電界波形記録装置
24 碍子
25 電柱取り付けバンド
26 電柱
27 C相送電線
28 B相送電線
29 A相送電線
30 碍子
31 腕金
32 サージ電界検出用アンテナ
33 電柱
34 C相送電線
35 B相送電線
36 A相送電線
37 碍子
38 腕金
39 サージ電界検出用アンテナ
40 電柱
41 サージ電界波形記録装置
42 サージ電界検出用アンテナ
43 高インピーダンス入力アンプ
44 バンドパスフィルター
45 高速サンプリングA/D変換器
46 トリガー前メモリー
47 主メモリー
48 伝送部
49 データ通信用アンテナ
50 トリガー検出部
51 変流器
52 送電線
53 シャント抵抗
54 入力アンプ
55 バンドパスフィルター
56 高速サンプリングA/D変換器
57 トリガー前メモリー
58 主メモリー
59 伝送部
60 データ通信用アンテナ
61 トリガー検出部
62 サージ電流波形記録装置
63 送電端
64 受電端1
65 配電変電所母線
66 配電用送電線1
67 CTセンサー1
68 事故点
69 サージ電界検出用アンテナ1
70 データ通信用アンテナ1
71 サージ電界波形記録装置1
72 受電端2
73 配電用送電線2
74 CTセンサー2
75 サージ電界検出用アンテナ2
76 データ通信用アンテナ2
77 サージ電界波形記録装置2
78 サージ電流波形記録装置
79 データ通信用アンテナ
1 Transmission end
2 Power receiving end
3 Distribution substation bus
4 Power transmission lines
5 CT sensor
6 Accident points
7 Surge electric field detection antenna
8 Data communication antenna
9 Data communication antenna
10 Surge current waveform recorder
11 Surge electric field waveform recorder
12 pole transformer
13 Network base station
14 network
15 servers
16 Client PC
17 Antenna for surge electric field detection
18 Utility pole
19 Surge electric field waveform recorder
20 Arms
21 Surge electric field detection antenna
22 Transmission line
23 Surge electric field waveform recorder
24 Choshi
25 Telephone pole mounting band
26 Utility pole
27 Phase C transmission line
28 Phase B transmission line
29 Phase A transmission line
30 Choshi
31 Arms
32 Surge electric field detection antenna
33 Utility pole
34 Phase C transmission line
35 Phase B transmission line
36 Phase A transmission line
37 Choshi
38 Armor
39 Surge electric field detection antenna
40 Utility pole
41 Surge electric field waveform recorder
42 Antenna for surge electric field detection
43 High impedance input amplifier
44 Bandpass filter
45 High-speed sampling A / D converter
46 Pre-trigger memory
47 Main memory
48 Transmitter
49 Antenna for data communication
50 Trigger detector
51 Current transformer
52 Transmission line
53 Shunt resistor
54 Input amplifier
55 Bandpass filter
56 High-speed sampling A / D converter
57 Pre-trigger memory
58 Main memory
59 Transmitter
60 Antenna for data communication
61 Trigger detector
62 Surge current waveform recorder
63 Transmission end
64 Power receiving end 1
65 Distribution substation bus
66 Transmission line 1
67 CT sensor 1
68 Accident point
69 Surge electric field detection antenna 1
70 Antenna for data communication 1
71 Surge electric field waveform recorder 1
72 Power receiving end 2
73 Transmission line 2
74 CT sensor 2
75 Surge electric field detection antenna 2
76 Antenna for data communication 2
77 Surge electric field waveform recorder 2
78 Surge current waveform recorder
79 Antenna for data communication

Claims (4)

非接地系統の配電線において、その末端の受電端にサージ電界波形記録装置を受電端1箇所に付き1組設置したことを特徴とする配電線故障点標定システムであって、上記サージ電界波形記録装置は送電線の各相と平行で空間を隔てて非接触なサージ電界検出器(以後サージ電界検出用アンテナという)をセンサーとして用い、更に上記サージ電界検出用アンテナは送電線の各相のラインに平行な平面上に設置された1枚の金属板もしくは電気的に接続された数本の金属棒であることを特徴とし、各相の送電線の内のいずれの2本ともその間の静電容量が等しく無い位置に設置したことを特徴とする配電線故障点標定システム。 A distribution line fault locating system, characterized in that a surge electric field waveform recording device is installed at one end of a receiving end of a distribution line of an ungrounded system, and the surge electric field waveform recording is performed. The apparatus uses a surge electric field detector (hereinafter referred to as a surge electric field detection antenna) that is parallel to each phase of the power transmission line and is separated from the space as a sensor, and the surge electric field detection antenna is a line for each phase of the transmission line. It is a single metal plate or several electrically connected metal rods installed on a plane parallel to each other, and any two of the transmission lines of each phase are electrostatic Distribution line fault locating system, characterized in that it is installed at a location where the capacity is not equal. 請求項1に記載のサージ電界波形記録装置と、サージ電流波形記録装置と、故障点標定装置とからなり、さらに前記サージ電界波形記録装置はサージ電界検出用アンテナと、前記サージ電界検出用アンテナの出力を受ける高インピーダンス入力アンプと、前記高インピーダンス入力アンプの出力を受けてサージ成分を抽出する100kHz〜数MHz程度の通過周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度以上でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電界瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電界瞬時値データの絶対値が別途設定された値を超えた時、前記トリガー前メモリー内の前記サージ電界瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータを通信回線に出力する伝送部とから成り、
一方、前記サージ電流波形記録装置は前記送電端側の送電線の各相毎に設置した変流器と、前記変流器二次側のシャント抵抗と、シャント抵抗両端の電圧波形を受けてサージ成分を抽出する100kHz〜数MHz程度の周波数帯域を持ったバンドパスフィルターと、前記バンドパスフィルターの出力を受けてこれをサンプリング周波数数MHz程度でA/D変換する高速サンプリングA/D変換器と、A/D変換されたサージ電流瞬時値データを一定サンプル数分記憶するトリガー前メモリーと、前記サージ電流瞬時値データの絶対値が別途設定された値を超えた時、前記トリガー前メモリー内の前記サージ電流瞬時値データを一定時間分記憶する主メモリーと、前記主メモリー内のデータを通信回線に出力する伝送部とから成り、
一方、前記故障点標定装置は演算機能を有するパソコンまたはサーバー装置等であって、通信回線に接続されており、前記サージ電界波形記録装置およびサージ電流波形記録装置が出力した波形データを受信し、故障点標定を行うことを特徴とした配電線故障点標定システム。
The surge electric field waveform recording device according to claim 1, a surge current waveform recording device, and a fault location device, wherein the surge electric field waveform recording device includes a surge electric field detection antenna and a surge electric field detection antenna. A high-impedance input amplifier that receives the output, a band-pass filter having a pass frequency band of about 100 kHz to several MHz that receives the output of the high-impedance input amplifier and extracts a surge component, and an output of the band-pass filter A high-speed sampling A / D converter that performs A / D conversion at a sampling frequency of about several MHz, a pre-trigger memory that stores A / D converted surge field instantaneous value data for a certain number of samples, and the surge field instantaneous When the absolute value of the value data exceeds the value set separately, Consists of a main memory for a certain time period stores the surge field instantaneous values, a transmission unit for outputting data in the main in memory to a communication line,
On the other hand, the surge current waveform recording device receives a current transformer installed in each phase of the transmission line on the power transmission end side, a shunt resistance on the secondary side of the current transformer, and a voltage waveform at both ends of the shunt resistance to generate a surge. A band-pass filter having a frequency band of about 100 kHz to several MHz for extracting components, and a high-speed sampling A / D converter for receiving the output of the band-pass filter and A / D-converting the output at a sampling frequency of about several MHz; , A pre-trigger memory for storing A / D converted surge current instantaneous value data for a certain number of samples, and when the absolute value of the surge current instantaneous value data exceeds a separately set value, The main memory that stores the surge current instantaneous value data for a predetermined time, and a transmission unit that outputs the data in the main memory to a communication line,
On the other hand, the failure point locating device is a personal computer or a server device having a calculation function, and is connected to a communication line, and receives the waveform data output from the surge electric field waveform recording device and the surge current waveform recording device, Distribution line fault location system characterized by fault location.
請求項2に記載の配電線故障点標定システムにおいて、上記サージ電界波形データと上記サージ電流波形データの各々における波形の立ち上がり(もしくは立下り)点の時刻をT1およびT2、サージの伝播速度をν[km/s]、送電端から末端までの線路長をL[m]としたとき送電端からサージ発生点までの距離λをλ={L+ν・(T2−T1)}/2として算出することを特徴とした配電線故障点標定システム。 The distribution line failure point locating system according to claim 2, wherein times of rising (or falling) points of the waveforms in the surge electric field waveform data and the surge current waveform data are T1 and T2, and a surge propagation speed is ν. [km / s] When the line length from the power transmission end to the terminal is L [m], the distance λ from the power transmission end to the surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2. Distribution line fault location system characterized by 請求項2における配電線故障点標定システムであって、上記変電所の同一母線に接続された他の分岐送電線(フィーダーともいう)の末端に設置された第二のサージ電界検出器から得られた上記サージ電界波形の立ち上がり(もしくは立下り)点の時刻をT2[sec]とし、二つのサージ電界検出器間の総線路長をL[km]として上記第二のサージ電界検出器設置点からサージ発生点までの送電線に沿った距離λ[km]をλ={L+ν・(T2−T1)}/2として算出することを特徴とした配電線故障点標定システム。 A distribution line fault location system according to claim 2, obtained from a second surge electric field detector installed at the end of another branch transmission line (also called a feeder) connected to the same bus of the substation. From the second surge electric field detector installation point, the time of the rising (or falling) point of the surge electric field waveform is T2 [sec], and the total line length between the two surge electric field detectors is L [km]. A distribution line fault locating system characterized in that a distance λ [km] along a transmission line to a surge occurrence point is calculated as λ = {L + ν · (T2−T1)} / 2.
JP2017123016A 2017-06-23 2017-06-23 Distribution line fault location system Active JP6624165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017123016A JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017123016A JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Publications (2)

Publication Number Publication Date
JP2019007812A true JP2019007812A (en) 2019-01-17
JP6624165B2 JP6624165B2 (en) 2019-12-25

Family

ID=65026882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017123016A Active JP6624165B2 (en) 2017-06-23 2017-06-23 Distribution line fault location system

Country Status (1)

Country Link
JP (1) JP6624165B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505475A (en) * 2020-11-10 2021-03-16 广西电网有限责任公司河池供电局 Low-cost non-contact overhead transmission line fault section positioning method and system
CN112798906A (en) * 2021-03-11 2021-05-14 国网新疆电力有限公司乌鲁木齐供电公司 System for identifying and positioning short-circuit fault of high-voltage line based on low-voltage power distribution
CN113009281A (en) * 2021-03-15 2021-06-22 国网江苏省电力有限公司南通供电分公司 Single-phase disconnection fault diagnosis method for medium-voltage distribution network

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100558A (en) * 1974-01-07 1975-08-09
JPH06109798A (en) * 1992-09-28 1994-04-22 Sumitomo Electric Ind Ltd Accident zone detecting system for transmission line
JP2001116792A (en) * 1999-10-14 2001-04-27 Chubu Electric Power Co Inc Method and apparatus for locating fault direction of power distribution line, and electric field and magnetic field sensors
JP2004132746A (en) * 2002-10-08 2004-04-30 Nippon Kouatsu Electric Co Fault locating method and fault locating system
US20090180233A1 (en) * 2008-01-10 2009-07-16 Sandip Maity Detector for precursive detection of electrical arc
JP2015004531A (en) * 2013-06-19 2015-01-08 株式会社近計システム Failure point locating system
JP2015094685A (en) * 2013-11-13 2015-05-18 東北電力株式会社 Method and system for locating power transmission line lighting failure point

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50100558A (en) * 1974-01-07 1975-08-09
JPH06109798A (en) * 1992-09-28 1994-04-22 Sumitomo Electric Ind Ltd Accident zone detecting system for transmission line
JP2001116792A (en) * 1999-10-14 2001-04-27 Chubu Electric Power Co Inc Method and apparatus for locating fault direction of power distribution line, and electric field and magnetic field sensors
JP2004132746A (en) * 2002-10-08 2004-04-30 Nippon Kouatsu Electric Co Fault locating method and fault locating system
US20090180233A1 (en) * 2008-01-10 2009-07-16 Sandip Maity Detector for precursive detection of electrical arc
JP2015004531A (en) * 2013-06-19 2015-01-08 株式会社近計システム Failure point locating system
JP2015094685A (en) * 2013-11-13 2015-05-18 東北電力株式会社 Method and system for locating power transmission line lighting failure point

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505475A (en) * 2020-11-10 2021-03-16 广西电网有限责任公司河池供电局 Low-cost non-contact overhead transmission line fault section positioning method and system
CN112505475B (en) * 2020-11-10 2023-09-12 广西电网有限责任公司河池供电局 Low-cost non-contact type overhead transmission line fault interval positioning method and system
CN112798906A (en) * 2021-03-11 2021-05-14 国网新疆电力有限公司乌鲁木齐供电公司 System for identifying and positioning short-circuit fault of high-voltage line based on low-voltage power distribution
CN113009281A (en) * 2021-03-15 2021-06-22 国网江苏省电力有限公司南通供电分公司 Single-phase disconnection fault diagnosis method for medium-voltage distribution network

Also Published As

Publication number Publication date
JP6624165B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
Farughian et al. Review of methodologies for earth fault indication and location in compensated and unearthed MV distribution networks
US8861155B2 (en) High-impedance fault detection and isolation system
US9823637B2 (en) Fault detection and isolation using a common reference clock
CA2850834C (en) Fault location using traveling waves
Saha et al. Fault location on power networks
US10126348B2 (en) Combined on-line bushing monitoring and geo-magnetic induced current monitoring system
CN103852691A (en) Directional detection of a fault in a network of a grounding system with compensated or insulated neutral point
CN101706527A (en) Method for detecting arc faults based on time-frequency characteristics of high-frequency current component
JP6624165B2 (en) Distribution line fault location system
US10345363B2 (en) High-fidelity voltage measurement using resistive divider in a capacitance-coupled voltage transformer
CN112698103B (en) Method for improving judgment accuracy of high-transition-resistance ground fault
AU2014271281B2 (en) Fault location using traveling waves
US20230194580A1 (en) System and method for management of electric grid
US20240044965A1 (en) Parameter independent traveling wave-based fault location using unsynchronized measurements
WO2019060706A2 (en) Secure traveling wave distance protection in an electric power delivery system
US10474142B2 (en) Detection of cross-country faults
CN110865279A (en) Single-phase earth fault positioning method based on neutral point earth current starting
JP7341070B2 (en) Ground fault location system and method
Saha et al. Fault location–Basic concept and characteristic of methods
Mansour et al. A NEW DISTANCE PROTECTION SCHEME BASED ON COMBINATION OF IMPEDANCE AND TRAVELLING WAVE MEASUREMENTS
Abdel-Fattah et al. A probabilistic-based technique using transient RMS currents for earth fault detection in medium voltage distribution networks
Isa et al. Comparative study of on-line three phase PD monitoring systems for overhead covered conductor distribution lines
CN104569604A (en) System for detecting low resistance of equipotential device without mounting and dismounting
Xu et al. Single-line-to-ground fault location in the compensated distribution network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6624165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250