JP3844757B2 - Feeder fault location system - Google Patents

Feeder fault location system Download PDF

Info

Publication number
JP3844757B2
JP3844757B2 JP2003374638A JP2003374638A JP3844757B2 JP 3844757 B2 JP3844757 B2 JP 3844757B2 JP 2003374638 A JP2003374638 A JP 2003374638A JP 2003374638 A JP2003374638 A JP 2003374638A JP 3844757 B2 JP3844757 B2 JP 3844757B2
Authority
JP
Japan
Prior art keywords
feeder
accident
waveform data
voltage
failure point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003374638A
Other languages
Japanese (ja)
Other versions
JP2005140541A (en
Inventor
有恒 徐
通孝 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinkei System Corp
Original Assignee
Kinkei System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinkei System Corp filed Critical Kinkei System Corp
Priority to JP2003374638A priority Critical patent/JP3844757B2/en
Publication of JP2005140541A publication Critical patent/JP2005140541A/en
Application granted granted Critical
Publication of JP3844757B2 publication Critical patent/JP3844757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Locating Faults (AREA)

Description

この発明は、き電線故障点標定システムに関し、電気化鉄道におけるき(饋)電線に短絡事故や地絡事故によって発生する事故電圧サージに基づいて事故発生点を標定するき電線故障点標定システムに関する。   The present invention relates to a feeder failure point locating system, and to a feeder failure point locating system for locating an accident occurrence point on the basis of an accident voltage surge caused by a short circuit accident or a ground fault in an electric railway. .

電気鉄道の電化方式には、直流電化方式と交流電化方式があり、新幹線などでは、高電圧で高い電気エネルギーを供給可能な交流電化方式が採用されている。さらに、その交流電化方式には、線路に沿って所定間隔ごとに単巻変圧器を配置されたATき電方式がある。   There are two types of electrification methods for electric railways: DC electrification method and AC electrification method, and the Shinkansen has adopted AC electrification method that can supply high electric energy at high voltage. Further, as the AC electrification method, there is an AT feeding method in which autotransformers are arranged at predetermined intervals along the line.

従来、き電線故障点標定システムとしては、上記ATき電方式のき電線のレールとトロリー線との間の短絡事故、または、レールとき電線との間の短絡事故に対して、AT吸上げ電流比という方式を用いて故障点を標定し、トロリー線とき電線との間の短絡事故に対してインピーダンス距離リレーの原理(リアクタンス計測法)を用いて故障点を標定するものがある(例えば、特開2003−72431号公報(特許文献1)参照)。   Conventionally, as a feeder failure point locating system, an AT suction current for a short circuit accident between a rail and a trolley wire of the above-mentioned AT feeder system or a short circuit between a rail and a wire is used. A fault point is determined using the ratio method, and the fault point is determined using the principle of the impedance distance relay (reactance measurement method) against a short-circuit accident between the trolley wire and the wire (for example, No. 2003-72431 (Patent Document 1)).

上記AT吸上げ電流比のき電線故障点標定システムは、かなり有効でかつ安定な地絡事故の故障点検出方法であることが実証されているが、トロリー線とき電線との間の短絡事故の故障点標定用のインピーダンス距離リレー法は、き電線のインピーダンス距離分布が一様でないので、標定精度が満足できないという問題がある。   The above-mentioned AT fault current ratio feeder fault location system has been proven to be a fairly effective and stable fault detection method for ground faults. The impedance distance relay method for fault location has a problem that the impedance accuracy cannot be satisfied because the impedance distance distribution of the feeder is not uniform.

そこで、この問題を解決するために、AT吸上げ電流比方式との併用によりインピーダンス距離リレー法の精度を改善する方法が提案されている。ただし、二つの方式の併用により装置の回路が複雑でコストが高くつくという欠点がある。   Therefore, in order to solve this problem, a method for improving the accuracy of the impedance distance relay method by using in combination with the AT suction current ratio method has been proposed. However, the combined use of the two methods has the disadvantage that the circuit of the apparatus is complicated and expensive.

また、電力送電線のサージ受信時間差による故障点標定では、専用サージ受信センサーを用いてサージ波形のデータ収集を行うことが一般であるが、これらの専用サージセンサーが高価で、高電圧設備への取り付け工事を必要とする。   Also, in fault location due to surge reception time differences of power transmission lines, it is common to collect data on surge waveforms using dedicated surge reception sensors, but these dedicated surge sensors are expensive and can be used for high voltage equipment. Requires installation work.

上記き電線故障点標定システムでは、次のような幾つかの精度とコスト上の問題点がある。   The above-mentioned feeder failure point locating system has some problems in accuracy and cost as follows.

(1) ATき電線のインピーダンス分布が一様でないので、以上の方式でのトロリー線とき電線との間の短絡事故の故障点標定精度が低い。   (1) Since the impedance distribution of AT feeders is not uniform, the fault location accuracy of short-circuit accidents between trolley wires and wires in the above method is low.

(2) レールとトロリー線との間、または、レールとき電線との間の短絡事故の標定原理がトロリー線TFとき電線との間の短絡事故の標定原理と違うので、それぞれ別の標定装置を必要とし、これが装置のコストアップの原因となる。   (2) The principle of short circuit accident between rail and trolley wire or between rail and electric wire is different from the principle of short circuit accident between trolley wire TF and electric wire. Necessary and this increases the cost of the device.

(3) AT吸上げ電流比標定原理を使うと、すべての単巻変圧器(AT)に吸上げ電流を計測する計測装置を付けなければならないので、複数の装置が必要になりトータルコストが高くなる。   (3) When using the AT suction current ratio standardization principle, all auto-transformers (AT) must be equipped with a measuring device that measures the suction current, so multiple devices are required and the total cost is high. Become.

(4) また、補助き電区分所に電圧補償装置が設置される場合、電圧補償装置の運用状態により系統構成が変わるので、故障点標定アルゴリズムの系統構成への対応が煩雑である。
特開2003−72431号公報
(4) When a voltage compensator is installed at an auxiliary feeder section, the system configuration changes depending on the operating state of the voltage compensator, and therefore it is complicated to cope with the system configuration of the fault location algorithm.
JP 2003-72431 A

そこで、この発明の目的は、レールとトロリー線との間の短絡事故、レールとき電線との間の短絡事故およびトロリー線とき電線との間の短絡事故の故障点を簡単な構成で低コストにかつ高精度に標定することができるき電線故障点標定システムを提供することにある。   Therefore, the object of the present invention is to reduce the cost of failure of a short circuit accident between the rail and the trolley wire, a short circuit accident between the rail and the electric wire, and a short circuit accident between the trolley wire and the electric wire with a simple configuration. Another object of the present invention is to provide a feeder failure point locating system capable of locating with high accuracy.

上記目的を達成するため、この発明のき電線故障点標定システムは、ATき電方式のき電線路の両端に設置され、上記き電線路のき電設備の保護リレー用電圧変成器または計器用電圧変成器の2次側電圧の波形データを時刻情報に対応づけて収集する波形データ収集手段と、レールとトロリー線との間の短絡事故、または、レールとき電線との間の短絡事故、または、トロリー線とき電線との間の短絡事故が発生したとき、その事故発生前後の上記波形データ収集手段により収集された上記き電線路の両端の時刻情報を含む波形データを記録する記録手段と、上記波形データ収集手段に記録された上記き電線路の両端の事故発生前後の時刻情報を含む波形データから事故電圧サージの周波数成分を周波数バンド毎に抽出するサブバンドフィルタと、上記サブバンドフィルタを用いて周波数バンド別に抽出された上記き電線路の両端の事故電圧サージの複数の周波数成分のうち、同一周波数バンドでかつ振幅レベルの両方の絶対値が所定の検出レベルを超える周波数成分を、識別可能な上記き電線路の両端の事故電圧サージの周波数成分であると判断して、上記き電線路の両端の事故発生前後の波形データに含まれる時刻情報および上記識別可能な上記き電線路の両端の事故電圧サージの周波数成分に基づいて、上記き電線路の両端の事故電圧サージの受信時刻を検出する受信時刻検出手段と上記受信時刻検出手段により検出された上記き電線路の両端における事故電圧サージの受信時刻に基づいて、上記き電線路の故障点を標定する故障点標定手段と
を備えたことを特徴とする。ここで、き電線路の両端とは、き電線路におけるき電変電所とそれに隣接するき電区分所などである。
In order to achieve the above object, the feeder failure point locating system of the present invention is installed at both ends of an AT feeder feeder, and is used for a voltage transformer or a meter for a protective relay of the feeder feeder of the feeder. A waveform data collecting means for collecting waveform data of the secondary side voltage of the voltage transformer in association with time information and a short circuit accident between the rail and the trolley wire, or a short circuit accident between the rail and the electric wire, or Recording means for recording waveform data including time information at both ends of the feeder line collected by the waveform data collecting means before and after the occurrence of the short circuit accident between the trolley wire and the electric wire; and A subband filter for extracting frequency components of an accident voltage surge for each frequency band from waveform data including time information before and after the occurrence of an accident at both ends of the feeder line recorded in the waveform data collecting means When, among the plurality of frequency components of the accident voltage surges across the-out electric lines extracted for each frequency band using the sub-band filter, the same frequency band is and the absolute value of the predetermined detection level in both amplitude levels Is determined to be a frequency component of an accident voltage surge at both ends of the feeder line, and the time information included in the waveform data before and after the occurrence of the accident at both ends of the feeder line and the identification Based on the frequency components of the accident voltage surge at both ends of the feeder line, the reception time detecting means for detecting the reception time of the accident voltage surge at both ends of the feeder line, and the detection time detected by the reception time detecting means And a failure point locating means for locating the failure point of the feeder line based on the reception time of the accident voltage surge at both ends of the feeder line. Here, both ends of the feeder line are a feeder substation in the feeder line and a feeder section adjacent to the feeder substation.

上記き電線故障点標定システムによれば、ATき電方式のき電線路の両端に設置された波形データ収集手段により、上記き電線路のき電設備の保護リレー用電圧変成器または計器用電圧変成器の2次側電圧の波形データを時刻情報に対応づけて収集する。そして、レールとトロリー線との間の短絡事故、または、レールとき電線との間の短絡事故、または、トロリー線とき電線との間の短絡事故が発生したとき、その事故発生前後の波形データ収集手段により収集されたき電線路の両端の時刻情報を含む波形データを上記記録手段に記録する。上記き電線路の両端の事故発生前後の波形データに含まれる時刻情報およびサブバンドフィルタにより抽出されたき電線路の両端の事故電圧サージに基づいて、故障点標定手段によってき電線路における短絡事故の故障点を標定する。したがって、レールとトロリー線との間の短絡事故、レールとき電線との間の短絡事故およびトロリー線とき電線との間の短絡事故の故障点を簡単な構成で低コストにかつ高精度に標定することができる。   According to the feeder failure point locating system, the voltage data collecting means installed at both ends of the feeder line of the AT feeder system, the voltage transformer for the protective relay or the instrument voltage of the feeder facility of the feeder line Waveform data of the secondary side voltage of the transformer is collected in association with time information. And when a short-circuit accident between the rail and the trolley wire, a short-circuit accident between the rail and the electric wire, or a short-circuit accident between the trolley wire and the electric wire, waveform data collection before and after the occurrence of the accident Waveform data including time information at both ends of the feeder line collected by the means is recorded in the recording means. Based on the time information included in the waveform data before and after the occurrence of the accident at both ends of the feeder line and the accident voltage surge at both ends of the feeder line extracted by the subband filter, the fault location means detects the short-circuit accident in the feeder line. Locate the point of failure. Therefore, the failure point of the short-circuit accident between the rail and the trolley wire, the short-circuit accident between the rail and the electric wire and the short-circuit accident between the trolley wire and the electric wire can be determined with a simple configuration at low cost and with high accuracy. be able to.

また、上記き電線路の両端の事故発生前後の波形データに含まれる時刻情報およびサブバンドフィルタを用いて周波数バンド別に抽出されたき電線路の両端の事故電圧サージの複数の周波数成分のうちの同一周波数バンドでかつ高周波側の識別可能な周波数成分に基づいて、上記受信時刻検出手段によりき電線路の両端の事故電圧サージの受信時刻を検出する。例えば、周波数バンド別に抽出された事故電圧サージの複数の周波数成分を高周波端から低周波端に走査し、同一周波数バンドで、かつ、最初の周波数成分の振幅レベルの両方向の絶対値が所定の検出レベルを超える周波数成分を識別可能な周波数成分としてその周波数成分からき電線路の両端の事故電圧サージの受信時刻を検出する。そうして検出されたき電線路の両端における事故電圧サージの受信時刻に基づいて、上記故障点標定手段によりき電線路の故障点を標定する。 In addition , the time information included in the waveform data before and after the occurrence of the accident at both ends of the feeder line and the same of the frequency components of the accident voltage surge at both ends of the feeder line extracted by frequency band using the subband filter Based on a frequency component that is identifiable on the high frequency side in the frequency band, the reception time detection means detects the reception time of the fault voltage surge at both ends of the feeder line. For example, multiple frequency components of accident voltage surges extracted for each frequency band are scanned from the high frequency end to the low frequency end, and the absolute value in both directions of the same frequency band and the amplitude level of the first frequency component is detected in a predetermined manner. The frequency component exceeding the level is identified as a frequency component, and the reception time of the accident voltage surge at both ends of the feeder line is detected from the frequency component. Based on the reception time of the fault voltage surge at both ends of the feeder line thus detected, the failure point of the feeder line is located by the failure point locating means.

また、一実施形態のき電線故障点標定システムは、上記故障点標定手段は、上記波形データ収集手段が配置された上記き電線路の両端の一方をA端とし、他方をB端とし、上記受信時刻検出手段により検出されたB端の事故電圧サージの受信時刻tBとし、A端の事故電圧サージの受信時刻tAとするとき、

Figure 0003844757
(ただし、xはA端からの故障点距離、Lは区間距離、vcは伝播速度)
により故障点を標定することを特徴とする。 Also, in the feeder fault location system according to an embodiment, the fault location means has one end of the feeder line where the waveform data collecting means is disposed as an A end and the other as a B end. When the reception time t B of the fault voltage surge at the B end detected by the reception time detection means is set as the reception time t A of the fault voltage surge at the A end,
Figure 0003844757
(Where, x is a fault point distance from the end A, L is the interval distance, v c is the propagation speed)
The failure point is determined by

上記実施形態のき電線故障点標定システムによれば、き電線路の両端の事故電圧サージの受信時刻の差に基づいて、簡単な演算によりき電線路の一端から故障点までの距離が得られる。したがって、レールとトロリー線との間の短絡事故およびレールとき電線との間の短絡事故の故障点標定と、トロリー線とき電線との間の短絡事故の故障点標定を一つのアルゴリズムで統一して行うことによって、装置のコストを大幅削減することができる。   According to the feeder failure point locating system of the above embodiment, the distance from one end of the feeder line to the failure point can be obtained by simple calculation based on the difference in the reception time of the accident voltage surge at both ends of the feeder line. . Therefore, a single algorithm is used to unify fault location for short-circuit accidents between rails and trolley wires, short-circuit accidents between rails and wires, and fault location for trolley wires and wires. By doing so, the cost of the device can be greatly reduced.

また、一実施形態のき電線故障点標定システムは、上記き電線路の両端のき電変電所とき電区分所との間に補助き電区分所を有するき電線路において、上記き電変電所と上記き電区分所に上記波形データ収集手段を配置することを特徴とする。   In addition, the feeder fault location system according to one embodiment includes the feeder substation in a feeder line having an auxiliary feeder section between the feeder substation and the feeder section at both ends of the feeder line. And the waveform data collecting means is arranged at the feeder section.

上記実施形態のき電線故障点標定システムによれば、上記き電線路の両端のき電変電所とき電区分所との間に補助き電区分所にある昇圧変圧器により電気的に分離される場合でも、き電線路の両端にそれぞれに波形データ収集手段を設置することによって、き電線路のレールとき電線との間およびトロリー線とき電線との間の任意様相の短絡事故の故障点を標定することができる。これにより、従来のAT吸上げ電流比を用いた故障点標定方法では電気隔離区分を跨るき電線路間の短絡事故の故障点標定ができないという問題を解決することができる。   According to the feeder failure point locating system of the above embodiment, it is electrically separated by the step-up transformer in the auxiliary feeder section between the feeder substation and the feeder section at both ends of the feeder line. Even in such a case, by installing waveform data collection means at both ends of the feeder cable track, the failure point of any kind of short-circuit accident between the rail track and the wire and the trolley wire and the wire can be determined. can do. Thereby, it is possible to solve the problem that the failure point locating method of the short-circuit accident between the feeder lines across the electric isolation section cannot be performed by the conventional failure locating method using the AT suction current ratio.

また、一実施形態のき電線故障点標定システムは、上記第記録手段に記録された上記事故発生前後の時刻情報を含む波形データを送信する送信手段と、上記送信手段からの上記事故発生前後の時刻情報を含む波形データを受信する受信手段とを備え、上記サブバンドフィルタは、上記受信手段により受信された上記事故発生前後の時刻情報を含む波形データから事故電圧サージを周波数バンド毎に抽出することを特徴とする。   Further, the feeder failure point locating system according to an embodiment includes a transmission means for transmitting waveform data including time information before and after the occurrence of the accident recorded in the first recording means, and before and after the occurrence of the accident from the transmission means. Receiving means for receiving waveform data including time information, and the subband filter extracts an accident voltage surge from the waveform data including time information before and after the occurrence of the accident received by the receiving means for each frequency band. It is characterized by that.

上記実施形態のき電線故障点標定システムによれば、上記き電線路の一端に、上記波形データ収集手段と記録手段および送信手段を配置し、上記き電線路の他端に、上記波形データ収集手段と記録手段とサブバンドフィルタと故障点標定手段および受信手段を配置して、き電線路の両端の離れた2箇所に装置を設置しても、上記き電線路の一端側の送信手段からき電線路の他端側の受信手段にき電線路の両端の事故発生前後の時刻情報を含む波形データが送信される。これにより、き電線路の他端のサブバンドフィルタによって、き電線路の両端の事故発生前後の時刻情報を含む波形データから事故電圧サージを周波数バンド毎に抽出して、抽出された事故電圧サージに基づいて、故障点標定手段によりき電線路における短絡事故の故障点を標定することができる。   According to the feeder failure point locating system of the embodiment, the waveform data collecting means, the recording means and the transmitting means are arranged at one end of the feeder line, and the waveform data collecting is arranged at the other end of the feeder line. Even if the device, the recording means, the subband filter, the failure point locating means, and the receiving means are arranged, and the device is installed at two positions away from both ends of the feeder line, the transmission means on the one end side of the feeder line is connected. Waveform data including time information before and after the occurrence of the accident at both ends of the feeder line is transmitted to the receiving means on the other end side of the electrical line. Thus, the accident voltage surge is extracted for each frequency band from the waveform data including time information before and after the occurrence of the accident at both ends of the feeder line by the subband filter at the other end of the feeder line. Based on the above, the failure point of the short circuit accident in the feeder line can be determined by the failure point locating means.

以上より明らかなように、この発明のき電線故障点標定システムによれば、既存き電設備を利用して事故電圧サージを検出することが可能となり、高価な専用サージセンサーの費用を節約できる。   As apparent from the above, according to the feeder failure point locating system of the present invention, it is possible to detect an accident voltage surge using an existing feeder, and the cost of an expensive dedicated surge sensor can be saved.

また、故障点距離や、系統条件による事故電圧サージ波形の歪みの影響を避けることができる。事故電圧サージの伝播は伝播距離の増加により立ち上がりが鈍る現象や、周波数領域では高周波数成分が減衰される現象がある。同じ周波数バンドの事故電圧サージの受信時刻を検出することによって、両端受信した事故電圧サージの立ち上がり時間差による受信時刻の検出誤差を低減することができる。   Further, it is possible to avoid the influence of the fault voltage surge waveform distortion due to the failure point distance and system conditions. The propagation of the accident voltage surge has a phenomenon that the rise is slowed by an increase in the propagation distance and a phenomenon that a high frequency component is attenuated in the frequency domain. By detecting the reception time of the accident voltage surge in the same frequency band, it is possible to reduce the reception time detection error due to the rise time difference of the accident voltage surge received at both ends.

また、レールとトロリー線との間の短絡事故およびレールとき電線との間の短絡事故の故障点標定と、トロリー線とき電線との間の短絡事故の故障点標定を同一方法で統一することによって、装置のコストを大幅削減することができる。   Also, by unifying the fault location of the short-circuit accident between the rail and the trolley wire and the short-circuit accident between the rail and the electric wire and the fault location of the short-circuit accident between the trolley wire and the electric wire in the same way The cost of the device can be greatly reduced.

また、トロリー線とき電線との間の短絡事故の高精度な故障点標定ができ、従来のインピーダンス距離リレー方式の標定精度の低い問題を解決でき、より正確な故障点標定結果を得ることができる。   In addition, high-accuracy fault location of short-circuit accidents between the trolley wire and the electric wire can be performed, the problem of low location accuracy of the conventional impedance distance relay method can be solved, and more accurate fault location results can be obtained. .

また、レールとトロリー線との間、レールとき電線との間の短絡事故、及びトロリー線とき電線との間の短絡事故の故障点標定を一つの装置で行えることが可能となり、設置場所の節約、運用管理上にもメリットがある。   In addition, it is possible to determine the fault location of the short-circuit accident between the rail and the trolley wire, between the rail and the electric wire, and the short-circuit accident between the trolley wire and the electric wire with a single device, saving installation space. There are also advantages in terms of operation management.

また、より少ない装置コストで、き電線路の故障点標定を同一のアルゴリズムで行うことができ、補助き電区分所の系統構成に対するアルゴリズム対応が不要なので信頼性の高い故障点標定ができる。   Moreover, the failure point location of feeder lines can be performed with the same algorithm with less equipment cost, and the failure point location with high reliability can be achieved because the algorithm correspondence to the system configuration of the auxiliary feeder section is unnecessary.

本発明は、電気化鉄道のき電線に短絡事故が発生したときの事故電圧サージをき電線区間の両端に受信し、事故電圧サージの受信時刻を検出し、その事故電圧サージの両端受信時刻差を用いて短絡事故の故障点を標定するき電線故障点標定システムである。   The present invention receives an accident voltage surge at both ends of a feeder section when a short-circuit accident occurs in a feeder line of an electric railway, detects the reception time of the accident voltage surge, and detects the difference in reception time between both ends of the accident voltage surge. This is a feeder fault location system that locates the fault point of a short-circuit accident using.

以下、この発明のそれを用いたき電線故障点標定システムを図示の実施の形態により詳細に説明する。   Hereinafter, a feeder failure point locating system using that of the present invention will be described in detail with reference to embodiments shown in the drawings.

図1は、ATき電線回路に設置されたき電線故障点標定システムの全体構成の概要を示す構成図である。   FIG. 1 is a configuration diagram showing an outline of the overall configuration of a feeder failure point locating system installed in an AT feeder circuit.

上記ATき電線回路は、図1に示すように、トロリー線TFと、き電線AFと、レールRと、き電変電所側のき電変圧器Trと、き電変電所側の単巻変圧器AT1と、き電区分所側の単巻変圧器AT2を備え、上記き電変電所とき電区分所との間の補助き電区分所に単巻変圧器AT3を備えている。上記単巻変圧器AT1,AT2,AT3の中性点がレールRに夫々接続されている。電車10は、トロリー線TFから電力の供給を受けながらレールR上を走行する。   As shown in FIG. 1, the AT feeder circuit includes a trolley wire TF, feeder AF, rail R, feeder transformer Tr on the feeder substation side, and a single transformer on the feeder substation side. A power supply AT1 and a power transformer AT2 on the power feeding section side are provided, and a power transformer AT3 is provided in the auxiliary power feeding section between the power feeding substation and the power section. The neutral points of the autotransformers AT1, AT2, AT3 are connected to the rail R, respectively. The train 10 travels on the rail R while receiving power from the trolley line TF.

上記き電変電所側のき電変圧器Trの2次側(線路側)両端に、トロリー線TFとき電線AFとの間の電圧を検出するための電圧変成器PT1を接続している。この電圧変成器PT1は、き電設備の保護リレー用である。上記電圧変成器PT1の2次側電圧の信号を受けるサージ受信ユニット1aと、受信手段の一例としての通信ユニット1bと、上記サージ受信ユニット1a,1bが受けた信号に基づいて故障点を標定する故障点標定ユニット1cでサージ受信故障点標定装置1を構成している。   A voltage transformer PT1 for detecting a voltage between the trolley wire TF and the electric wire AF is connected to both ends (line side) of the feeder transformer Tr on the feeder substation side. This voltage transformer PT1 is for a protective relay of a feeding facility. The surge receiver unit 1a that receives the signal of the secondary side voltage of the voltage transformer PT1, the communication unit 1b as an example of the receiving means, and the failure point are determined based on the signals received by the surge receiver units 1a and 1b. The failure point locating unit 1c constitutes the surge reception failure point locating device 1.

また、上記き電区分所側の単巻変圧器AT2の中性点とトロリー線TF側との間に、トロリー線TFとレールRとの間の電圧を検出するための電圧変成器PT2を接続している。この電圧変成器PT2は、き電設備の計器用である。上記電圧変成器PT2の2次側電圧の信号を受けるサージ受信ユニット2aと、送信手段の一例としての通信ユニット2bでサージ受信装置2を構成している。   In addition, a voltage transformer PT2 for detecting a voltage between the trolley line TF and the rail R is connected between the neutral point of the autotransformer AT2 on the feeder section side and the trolley line TF side. is doing. This voltage transformer PT2 is used for a meter of feeding equipment. The surge receiving device 2 is composed of a surge receiving unit 2a that receives the secondary voltage signal of the voltage transformer PT2 and a communication unit 2b as an example of a transmitting means.

上記電圧変成器PT1,PT2とサージ受信故障点標定装置1およびサージ受信装置2で、き電線故障点標定システムを構成している。   The voltage transformers PT1, PT2, the surge reception failure point locating device 1 and the surge reception device 2 constitute a feeder failure point locating system.

図2は上記サージ受信ユニット1a,2aのブロック図を示しており、GPSアンテナ21と、GPSアンテナ21からのGPS信号を受けるGPS受信機22と、GPS受信機22からの時刻信号を受ける同期制御回路23と、同期制御回路23に基づいてサンプリングが制御されるA/D変換器24と、同期制御回路23に基づいてA/D変換器24によりサンプリングされた電圧波形データを記憶する記憶手段の一例としてのメモリ25と、上記メモリ25に記憶された電圧波形データを通信ユニット1b(または2b)に出力するインターフェース26を有している。上記GPS受信機22と同期制御回路23とA/D変換器24で波形データ収集手段を構成している。上記同期制御回路23は、GPS受信機22からの時刻情報の例えば1秒パルスに同期させたサンプリング周波数を生成し、そのサンプリング周波数に基づいてA/D変換器24がアナログ信号である電圧信号をデジタル信号の電圧波形データに変換する。上記メモリ25には、電圧波形データの各サンプリング時刻が特定できるように、時刻情報に対応づけて電圧波形データを記憶する。なお、上記サージ受信ユニット1a,2aは、リングメモリなどを用いて常時所定時間前の電圧波形データを記録しており、事故発生時、事故電圧サージを検出して、メモリ25に事故発生前後の電圧波形データを時刻情報に対応づけてメモリ25に記憶する。   FIG. 2 is a block diagram of the surge receiving units 1a and 2a. The GPS antenna 21, the GPS receiver 22 that receives the GPS signal from the GPS antenna 21, and the synchronous control that receives the time signal from the GPS receiver 22. Circuit 23, A / D converter 24 whose sampling is controlled based on synchronization control circuit 23, and storage means for storing voltage waveform data sampled by A / D converter 24 based on synchronization control circuit 23 The memory 25 as an example and an interface 26 that outputs the voltage waveform data stored in the memory 25 to the communication unit 1b (or 2b) are provided. The GPS receiver 22, the synchronization control circuit 23, and the A / D converter 24 constitute waveform data collection means. The synchronization control circuit 23 generates a sampling frequency synchronized with, for example, a 1-second pulse of time information from the GPS receiver 22, and the A / D converter 24 generates a voltage signal that is an analog signal based on the sampling frequency. Convert to digital signal voltage waveform data. The memory 25 stores voltage waveform data in association with time information so that each sampling time of the voltage waveform data can be specified. The surge receiving units 1a and 2a always record voltage waveform data of a predetermined time before using a ring memory or the like, detect an accident voltage surge at the occurrence of an accident, and store in the memory 25 before and after the occurrence of the accident. The voltage waveform data is stored in the memory 25 in association with the time information.

また、図3は上記故障点標定ユニット1cのブロック図を示しており、A端のサージ受信ユニット1aからの電圧波形データを周波数バンド別に分離するサブバンドフィルタ31Aと、B端のサージ受信ユニット2aからの電圧波形データを周波数バンド別に分離するサブバンドフィルタ31Bと、上記サブバンドフィルタ31A,31Bからの周波数バンド別に分離された複数の周波数成分の波形データに基づいて事故電圧サージ受信時刻を検出する受信時刻検出手段の一例としての事故電圧サージ受信時刻検出部32と、上記事故電圧サージ受信時刻検出部32により検出されたA端,B端の事故電圧サージ受信時刻の差を検出するサージ受信時刻差検出部33と、上記サージ受信時刻差検出部33により検出されたA端,B端の事故電圧サージ受信時刻差に基づいて故障点を計算する故障点計算部34と、上記故障点計算部34により計算された故障点の情報を表示する故障点表示部35とを有している。上記サージ受信時刻差検出部33と故障点計算部34で故障点標定手段を構成している。なお、故障点を表示する故障点表示部35の代わりに故障点の情報を送信する送信部を用いてもよい。   FIG. 3 is a block diagram of the fault location unit 1c. The subband filter 31A for separating the voltage waveform data from the A-side surge receiving unit 1a by frequency band and the B-side surge receiving unit 2a. A sub-band filter 31B that separates the voltage waveform data from each of the frequency bands, and an accident voltage surge reception time based on the waveform data of a plurality of frequency components separated from each of the frequency bands from the sub-band filters 31A and 31B. Accident voltage surge reception time detection unit 32 as an example of reception time detection means, and a surge reception time for detecting the difference between the A- and B-end accident voltage surge reception times detected by the accident voltage surge reception time detection unit 32 When an accident voltage surge is received at the A and B ends detected by the difference detector 33 and the surge reception time difference detector 33. A failure point calculation unit 34 that calculates a failure point based on the time difference and a failure point display unit 35 that displays information on the failure point calculated by the failure point calculation unit 34 are provided. The surge reception time difference detection unit 33 and the failure point calculation unit 34 constitute failure point locating means. Instead of the failure point display unit 35 that displays the failure point, a transmission unit that transmits information on the failure point may be used.

上記構成のき電線故障点標定システムにおいて、レールRとトロリー線TFとの間で短絡事故が発生した場合、故障点で電圧が下がり、この電圧変化は、事故電圧サージとしてレールRとトロリー線TFに沿ってき電線路の両端に伝播されていく。また、レールRとき電線AFとの間の短絡事故が発生した場合、故障点で電圧が下がり、この電圧変化は、事故電圧サージとしてレールRとき電線AFに沿ってき電線路の両端に伝播されていく。そして、上記事故電圧サージが単巻変圧器AT1,AT2を通るとき、この電圧変化が単巻変圧器AT1,AT2の入力両端(き電線入力とトロリー線入力)に結合され、そこから、き電線AFとトロリー線TFに沿ってき電線路の両端に伝播していく。   When a short circuit accident occurs between the rail R and the trolley wire TF in the feeder fault location system having the above configuration, the voltage drops at the failure point, and this voltage change is caused by the rail R and the trolley wire TF as an accident voltage surge. And propagates to both ends of the electric wire. In addition, when a short circuit accident occurs between the rail R and the electric wire AF, the voltage drops at the failure point, and this voltage change is propagated along the electric wire AF at the rail R and propagated to both ends of the electric wire as an accident voltage surge. Go. When the accident voltage surge passes through the autotransformers AT1 and AT2, this voltage change is coupled to both ends of the autotransformers AT1 and AT2 (the feeder input and the trolley wire input). It propagates along the AF and trolley line TF and propagates to both ends of the electric line.

また、き電線AFとトロリー線TFとの間に短絡事故が発生した場合、故障点で電圧が下がり、この電圧変化は、事故電圧サージとしてトロリー線TFとき電線AFに沿ってき電線路の両端に伝播されていく。そして、上記事故電圧サージが単巻変圧器AT1,AT2を通るとき、この電圧変化が単巻変圧器ATの出力両端(レールとトロリー線出力)に結合され、そこから、レールRとトロリー線TFに沿ってき電線路の両端に伝播していく。   In addition, when a short circuit accident occurs between the feeder line AF and the trolley wire TF, the voltage drops at the failure point, and this voltage change is caused along the trolley wire TF as the accident voltage surge along the wire AF and at both ends of the wire path. Propagated. When the accident voltage surge passes through the autotransformers AT1 and AT2, this voltage change is coupled to both ends of the output of the autotransformer AT (rail and trolley wire output), and from there, the rail R and trolley wire TF. And then propagates to both ends of the wireway.

一般に、き電線路の故障点標定では、事故電圧サージを受信するために、き電線路の両端(変電所とき電区分所)のトロリー線TF対レールR間に電圧サージ感知用のセンサーを設置する。しかしながら、この発明の実施の形態では、コストの理由で、変電所側に有するき電設備と線路用のトロリー線TFとき電線AFとの間に跨るリレー保護回路PT1から事故電圧サージを受信し、き電区分所側に有するトロリー線TFとレールRとの間に跨る電圧変成器PT2から事故電圧サージを受信する方法を採用する。   In general, fault location on feeder lines installs a sensor for detecting voltage surges between trolley wire TF and rail R at both ends of the feeder line (substation and substation) in order to receive accident voltage surges. To do. However, in the embodiment of the present invention, due to cost reasons, an accident voltage surge is received from the relay protection circuit PT1 straddling between the feeder facility on the substation side and the trolley wire TF for the line and the electric wire AF, A method is adopted in which an accident voltage surge is received from the voltage transformer PT2 straddling between the trolley wire TF and the rail R provided on the feeder section side.

図1において、き電線路の両端に設置するサージ受信ユニット1a,2aは、レールRとトロリー線TFとの間の短絡故障、レールRとき電線AFとの間の短絡故障、トロリー線TFとき電線AFとの間の短絡故障のいずれかを感知し、その故障時刻前後の電圧波形データを同期させて時刻情報と共に記録し、記録した時刻情報を含む電圧波形データを通信ユニット1bと通信回線11および通信ユニット2bを介して故障点標定ユニット1cにそのまま送信する。上記サージ受信故障点標定装置1の故障点標定ユニット1cにおいて、電圧波形データがサブバンドフィルタ31A,31B(図3に示す)によって周波数バンド別に分離されて、周波数バンドの高い側から識別可能な両端事故電圧サージを探る。   In FIG. 1, surge receiving units 1a and 2a installed at both ends of a feeder line are short-circuit faults between the rail R and the trolley wire TF, short-circuit faults between the rail R and the electric wire AF, and electric wires at the time of the trolley wire TF. Any one of the short-circuit faults with the AF is detected, voltage waveform data before and after the failure time is synchronized and recorded together with time information, and voltage waveform data including the recorded time information is transmitted to the communication unit 1b, the communication line 11 and It transmits to the fault location unit 1c as it is via the communication unit 2b. In the failure point locating unit 1c of the surge receiving failure point locating device 1, the voltage waveform data is separated for each frequency band by the subband filters 31A and 31B (shown in FIG. 3), and both ends that can be identified from the higher frequency band side. Look for accident voltage surges.

ここで、図5は上記サブバンドフィルタ31A,31B(図3に示す)を説明するための図であり、時系列の電圧波形データを第1〜第5周波数バンドに分離するため、直列に接続されたローパスフィルタL1〜L4と、上記ローパスフィルタL1の前段に接続されたハイパスフィルタH1と、上記ローパスフィルタL1〜L3の後段に夫々接続されたハイパスフィルタH2〜H4とを備えている。   FIG. 5 is a diagram for explaining the subband filters 31A and 31B (shown in FIG. 3). In order to separate the time series voltage waveform data into the first to fifth frequency bands, they are connected in series. Low-pass filters L1 to L4, a high-pass filter H1 connected upstream of the low-pass filter L1, and high-pass filters H2 to H4 connected downstream of the low-pass filters L1 to L3, respectively.

図6は上記ハイパスフィルタH1〜H4の出力データおよびローパスフィルタL4の出力データの各周波数バンドを示している。すなわち、図6に示すように、0〜1kHzを第5周波数バンド、1kHz〜10kHzを第4周波数バンド、10kHz〜100kHzを第3周波数バンド、100kHz〜1MHzを第2周波数バンド、1MHz〜5MHzを第1周波数バンドである。   FIG. 6 shows each frequency band of the output data of the high-pass filters H1 to H4 and the output data of the low-pass filter L4. That is, as shown in FIG. 6, 0 to 1 kHz is the fifth frequency band, 1 kHz to 10 kHz is the fourth frequency band, 10 kHz to 100 kHz is the third frequency band, 100 kHz to 1 MHz is the second frequency band, and 1 MHz to 5 MHz is the first frequency band. One frequency band.

図7はバンド別の出力サージ波形の例を示しており、図7(a)はき電線路の一端(図7ではA端サージ)の電圧波形データの周波数成分(H1,H2,H3,H4,L4)、図7(b)はき電線路の他端(図7ではB端サージ)の電圧波形データの周波数成分(H1,H2,H3,H4,L4)、図7(c)はサージ検出結果を示している。ここで、H1は第1周波数バンドの周波数成分、H2は第2周波数バンドの周波数成分、H3は第3周波数バンドの周波数成分、H4は第4周波数バンドの周波数成分、L4は第5周波数バンドの周波数成分である。   FIG. 7 shows an example of output surge waveforms for each band. FIG. 7A shows frequency components (H1, H2, H3, H4) of voltage waveform data at one end of the feeder line (A-end surge in FIG. 7). , L4), FIG. 7 (b) is the frequency component (H1, H2, H3, H4, L4) of the voltage waveform data at the other end of the feeder line (B surge in FIG. 7), and FIG. 7 (c) is the surge The detection result is shown. Here, H1 is the frequency component of the first frequency band, H2 is the frequency component of the second frequency band, H3 is the frequency component of the third frequency band, H4 is the frequency component of the fourth frequency band, and L4 is the frequency component of the fifth frequency band. It is a frequency component.

例えば、図7では、第2周波数バンドH2において、き電線路の両端の電圧波形データの周波数成分の振幅レベルの両方向の絶対値が所定の検出レベルを超えており、この第2周波数バンドH2の周波数成分が識別可能であると判断する。   For example, in FIG. 7, in the second frequency band H2, the absolute value in both directions of the amplitude level of the frequency component of the voltage waveform data at both ends of the feeder line exceeds a predetermined detection level. It is determined that the frequency component can be identified.

そうして同一周波数バンドで見つかった識別可能な事故電圧サージの周波数成分から、事故電圧サージ受信時刻検出部32によって、き電線路の一端の変電所側の事故電圧サージの受信時刻tAおよびき電線路の他端のき電区分所側の事故電圧サージの受信時刻tBを検出する。 Thus, the accident voltage surge reception time detector 32 detects the accident voltage surge reception time t A on the substation side at one end of the feeder line from the frequency components of the identifiable accident voltage surge found in the same frequency band. An accident voltage surge reception time t B at the feeding section at the other end of the electric line is detected.

さらに、サージ受信時刻差検出部33によって、事故電圧サージの受信時刻tA,tBを用いて、き電線路の両端の事故電圧サージ受信時刻差(tB−tA)を算出する。 Further, the surge reception time difference detector 33 calculates the accident voltage surge reception time difference (t B −t A ) at both ends of the feeder line using the accident voltage surge reception times t A and t B.

そして、故障点計算部34は、この事故電圧サージの受信時刻差(tB−tA)のとき電線路のサージ伝播速度vcを用いて、

Figure 0003844757
により、き電線路の変電所から故障点までの故障点距離xを算出する。 Then, the failure point calculation unit 34 uses the surge propagation velocity v c of the electric wire line at the time of reception time difference (t B −t A ) of the accident voltage surge,
Figure 0003844757
The failure point distance x from the substation on the feeder line to the failure point is calculated.

こうして標定された故障点距離xとその他の情報は、故障点標定ユニット1cの故障点表示部35に表示させたり、他の装置に送信したりするが、その処理は、本発明の要旨外であるので詳細な説明を省略する。   The failure point distance x thus determined and other information are displayed on the failure point display unit 35 of the failure point locating unit 1c or transmitted to another device, but the processing is outside the scope of the present invention. Since there is, detailed explanation is omitted.

このように、上記き電線故障点標定システムによれば、ATき電方式のき電線路の両端に設置されたサージ受信ユニット1a,2aにおいて、き電線路のき電設備の保護リレー用PT1または計器用PT2の2次側電圧の波形データを時刻情報に対応づけて収集し、き電線路の両端の事故発生前後の時刻情報を含む波形データをメモリ25に記録し、き電線路の両端の事故発生前後の波形データに含まれる時刻情報およびサブバンドフィルタに31A,32Bより抽出されたき電線路の両端の事故電圧サージの周波数成分に基づいて、故障点標定ユニット1cによってき電線路における短絡事故の故障点を標定する。したがって、レールRとトロリー線TFとの間の短絡事故、レールRとき電線AFとの間の短絡事故およびトロリー線TFとき電線AFとの間の短絡事故の故障点を簡単な構成で低コストにかつ高精度に標定することができる。   Thus, according to the feeder failure point locating system, in the surge receiving units 1a and 2a installed at both ends of the AT feeder feeder, PT1 for protective relay of feeder feeder of feeder feeder or The waveform data of the secondary side voltage of the PT2 for the instrument is collected in association with the time information, and the waveform data including the time information before and after the occurrence of the accident at both ends of the feeder line is recorded in the memory 25. Based on the time information contained in the waveform data before and after the occurrence of the accident and the frequency components of the accident voltage surge at both ends of the feeder line extracted from the subband filters 31A and 32B, the fault location unit 1c causes a short circuit accident in the feeder line. Locate the failure point. Therefore, the short-circuit accident between the rail R and the trolley wire TF, the short-circuit accident between the rail R and the electric wire AF and the short-circuit accident between the trolley wire TF and the electric wire AF can be reduced in cost with a simple configuration. And it can be standardized with high accuracy.

また、上記事故電圧サージ受信時刻検出部32により、周波数バンド別に抽出された事故電圧サージの複数の周波数成分を高周波端から低周波端に走査し、同一周波数バンドで、かつ、最初の周波数成分の振幅レベルの両方向の絶対値が所定の検出レベルを超える周波数成分を、識別可能な周波数成分としてその周波数成分からき電線路の両端の事故電圧サージの受信時刻を検出するので、事故電圧サージの立ち上がり時間差による受信時刻の検出誤差を低減することができる。   The accident voltage surge reception time detection unit 32 scans a plurality of frequency components of the accident voltage surge extracted for each frequency band from the high frequency end to the low frequency end, and in the same frequency band and the first frequency component. Since the frequency component whose absolute value in both directions of the amplitude level exceeds the predetermined detection level is detected as the identifiable frequency component, the reception time of the accident voltage surge at both ends of the electrical line is detected, so the rise time difference of the accident voltage surge The detection error of the reception time due to can be reduced.

また、上記サージ受信時刻差検出部33により、き電線路の両端の事故電圧サージの受信時刻の差に基づいて、簡単な演算(式1)によりき電線路の変電所から故障点までの距離が得られるので、レールRとトロリー線TFとの間の短絡事故およびレールRとき電線AFとの間の短絡事故の故障点標定と、トロリー線TFとき電線AFとの間の短絡事故の故障点標定を一つのアルゴリズムで統一して行うことによって、装置のコストを大幅削減することができる。   Also, the distance from the substation of the feeder line to the failure point is calculated by a simple calculation (Equation 1) based on the difference in the reception time of the fault voltage surge at both ends of the feeder line by the surge reception time difference detection unit 33. Therefore, the fault location of the short-circuit accident between the rail R and the trolley wire TF and the short-circuit accident between the rail R and the electric wire AF and the failure point of the short-circuit accident between the trolley wire TF and the electric wire AF are obtained. By standardizing the orientation with one algorithm, the cost of the apparatus can be greatly reduced.

また、上記き電線路の両端のき電変電所とき電区分所との間に補助き電区分所にある昇圧変圧器により電気的に分離される場合でも、き電線路の両端にサージ受信ユニット1a,2aをそれぞれ設置することによって、き電線路のレールRとき電線AFとの間およびトロリー線TFとき電線AFとの間の任意様相の短絡事故の故障点を標定することができる。これにより、従来のAT吸上げ電流比を用いた故障点標定方法では電気隔離区分を跨るき電線路間の短絡事故の故障点標定ができないという問題を解決することができる。   In addition, even if the feeder substation at both ends of the feeder line is electrically separated by the step-up transformer in the auxiliary feeder section, the surge receiving unit is installed at both ends of the feeder line. By installing 1a and 2a respectively, it is possible to determine the failure point of an arbitrary short circuit accident between the rail R of the feeder line and the electric wire AF and between the trolley wire TF and the electric wire AF. Thereby, it is possible to solve the problem that the failure point locating method of the short-circuit accident between the feeder lines across the electric isolation section cannot be performed by the conventional failure locating method using the AT suction current ratio.

なお、図4に示すように、変電所41とき電区分所42との間の補助き電区分所43に交流き電電圧補償装置44が設置された場合、従来のAT吸上げ電流方式が適用できなくなるが、事故電圧サージが交流き電電圧補償装置44を通して伝播するので、変電所およびき電区分所に本発明のき電線故障点標定システムのサージ受信故障点標定装置1とサージ受信装置2を図4のように設置することによって、き電線路の故障点標定を実現することが可能である。   As shown in FIG. 4, when an AC feeding voltage compensator 44 is installed at an auxiliary feeder section 43 between the substation 41 and the feeder section 42, the conventional AT suction current method is applied. Although it becomes impossible, since the accident voltage surge propagates through the AC feeder voltage compensator 44, the surge receiving fault location device 1 and surge receiver 2 of the feeder fault location system of the present invention are applied to the substation and feeder section. Is installed as shown in FIG. 4, it is possible to realize fault location of feeder lines.

上記実施の形態では、サージ受信ユニット1aと、通信ユニット1bと、故障点標定ユニット1cでサージ受信故障点標定装置1を構成していたが、サージ受信ユニットとサージ受信故障点標定装置とは別体であってもよい。   In the above embodiment, the surge receiving failure point locating device 1 is configured by the surge receiving unit 1a, the communication unit 1b, and the failure point locating unit 1c, but the surge receiving unit and the surge receiving failure point locating device are different. It may be a body.

また、上記実施の形態では、サージ受信ユニット1a,2aは、事故発生前後の波形データを故障点標定ユニット1で受けて、それぞれの受信時刻を検出したが、サージ受信ユニットにサブバンドフィルタと受信時刻検出手段を備えて、サージ受信ユニットから事故電圧サージの受信時刻を故障点標定ユニットに送信してもよい。この場合、故障点標定ユニットは、サージ受信ユニットからの事故電圧サージの受信時刻に基づいて故障点の標定を行う。   In the above embodiment, the surge receiving units 1a and 2a receive the waveform data before and after the accident by the failure location unit 1 and detect the respective reception times. A time detection means may be provided, and the reception time of the accident voltage surge may be transmitted from the surge receiving unit to the fault location unit. In this case, the failure point locating unit determines the failure point based on the reception time of the accident voltage surge from the surge receiving unit.

図1はこの発明の実施の一形態のき電線故障点標定システムの図である。FIG. 1 is a diagram of a feeder failure point locating system according to an embodiment of the present invention. 図2は上記き電線故障点標定システムのサージ受信ユニットのブロック図である。FIG. 2 is a block diagram of a surge receiving unit of the feeder fault location system. 図3は上記き電線故障点標定システムの故障点標定ユニットのブロック図である。FIG. 3 is a block diagram of a fault location unit of the feeder fault location system. 図4は上記き電線故障点標定システムの全体を示す構成図である。FIG. 4 is a block diagram showing the whole feeder line fault location system. 図5は上記き電線故障点標定システムのサブバンドフィルタを説明するための図である。FIG. 5 is a diagram for explaining a subband filter of the feeder fault location system. 図6は上記サブバンドフィルタの周波数バンドを示す図である。FIG. 6 is a diagram showing the frequency band of the subband filter. 図7は周波数バンド別の周波数成分を示す図である。FIG. 7 is a diagram showing frequency components for each frequency band.

符号の説明Explanation of symbols

1…サージ受信故障点標定装置、
1a,2a…サージ受信ユニット、
1b,2b…通信ユニット、
1c…故障点標定ユニット、
2…サージ受信装置、
10…電車、
11…通信回線、
21…GPSアンテナ、
22…GPS受信機、
23…同期制御回路、
24…A/D変換器、
25…メモリ、
26…インターフェース、
31A,31B…サブバンドフィルタ、
32…事故電圧サージ受信時刻検出部、
33…サージ受信時刻差検出部、
34…故障点計算部、
35…故障点表示部、
41…変電所、
42…き電区分所、
43…補助き電区分所、
43…電圧補償装置。
1 ... Surge reception fault location device
1a, 2a ... Surge receiving unit,
1b, 2b ... communication unit,
1c: Fault location unit,
2 ... Surge receiver,
10 ... Train,
11 ... communication line,
21 ... GPS antenna,
22 ... GPS receiver,
23 ... synchronization control circuit,
24 ... A / D converter,
25 ... Memory,
26 ... Interface,
31A, 31B ... subband filters,
32 ... Accident voltage surge reception time detector,
33 ... Surge reception time difference detection unit,
34 ... failure point calculation unit,
35 ... failure point display section,
41 ... Substation,
42 ... Feeding station,
43 ... Auxiliary feeder section,
43: Voltage compensator.

Claims (4)

ATき電方式のき電線路の両端に設置され、上記き電線路のき電設備の保護リレー用電圧変成器または計器用電圧変成器の2次側電圧の波形データを時刻情報に対応づけて収集する波形データ収集手段と、
レールとトロリー線との間の短絡事故、または、レールとき電線との間の短絡事故、または、トロリー線とき電線との間の短絡事故が発生したとき、その事故発生前後の上記波形データ収集手段により収集された上記き電線路の両端の時刻情報を含む波形データを記録する記録手段と、
上記波形データ収集手段に記録された上記き電線路の両端の事故発生前後の時刻情報を含む波形データから事故電圧サージの周波数成分を周波数バンド毎に抽出するサブバンドフィルタと、
上記サブバンドフィルタを用いて周波数バンド別に抽出された上記き電線路の両端の事故電圧サージの複数の周波数成分のうち、同一周波数バンドでかつ振幅レベルの両方の絶対値が所定の検出レベルを超える周波数成分を、識別可能な上記き電線路の両端の事故電圧サージの周波数成分であると判断して、上記き電線路の両端の事故発生前後の波形データに含まれる時刻情報および上記識別可能な上記き電線路の両端の事故電圧サージの周波数成分に基づいて、上記き電線路の両端の事故電圧サージの受信時刻を検出する受信時刻検出手段と
上記受信時刻検出手段により検出された上記き電線路の両端における事故電圧サージの受信時刻に基づいて、上記き電線路の故障点を標定する故障点標定手段と
を備えたことを特徴とするき電線故障点標定システム。
Installed at both ends of the feeder line of the AT feeder system, correlating the waveform data of the secondary voltage of the voltage transformer for the protective relay or the voltage transformer for the instrument of the feeder equipment of the feeder line with the time information Waveform data collecting means for collecting;
When the short circuit accident between the rail and the trolley wire, the short circuit accident between the rail and the electric wire, or the short circuit accident between the trolley wire and the electric wire occurs, the waveform data collecting means before and after the occurrence of the accident Recording means for recording waveform data including time information at both ends of the feeder line collected by
A subband filter for extracting frequency components of accident voltage surges for each frequency band from waveform data including time information before and after the occurrence of an accident at both ends of the feeder line recorded in the waveform data collecting means;
Among the plurality of frequency components of the accident voltage surge at both ends of the feeder line extracted by frequency band using the subband filter, the absolute value of both amplitude levels in the same frequency band exceeds a predetermined detection level. The frequency component is determined to be the frequency component of the fault voltage surge at both ends of the identifiable feeder line, and the time information included in the waveform data before and after the occurrence of the accident at both ends of the feeder line and the identifiable Receiving time detecting means for detecting the receiving time of the accident voltage surge at both ends of the feeder line based on the frequency components of the accident voltage surge at both ends of the feeder line;
And a failure point locating means for locating the failure point of the feeder line based on the reception time of the fault voltage surge at both ends of the feeder line detected by the reception time detection means. Wire fault location system.
請求項に記載のき電線故障点標定システムにおいて、
上記故障点標定手段は、上記波形データ収集手段が配置された上記き電線路の両端の一方をA端とし、他方をB端とし、上記受信時刻検出手段により検出されたB端の事故電圧サージの受信時刻tBとし、A端の事故電圧サージの受信時刻tAとするとき、
Figure 0003844757
(ただし、xはA端からの故障点距離、Lは区間距離、vcは伝播速度)
により故障点を標定することを特徴とするき電線故障点標定システム。
In the feeder failure point locating system according to claim 1 ,
The failure point locating means has one end of the feeder line on which the waveform data collecting means is disposed as an A end and the other as a B end, and an accident voltage surge at the B end detected by the reception time detecting means. and the reception time t B, when the reception time t a of accidents voltage surge a end,
Figure 0003844757
(Where, x is a fault point distance from the end A, L is the interval distance, v c is the propagation speed)
A feeder fault location system characterized by locating the failure point using
請求項1または2に記載のき電線故障点標定システムにおいて、
上記き電線路の両端のき電変電所とき電区分所との間に補助き電区分所を有するき電線路において、上記き電変電所と上記き電区分所に上記波形データ収集手段を配置することを特徴とするき電線故障点標定システム。
In the feeder failure point locating system according to claim 1 or 2 ,
Waveform data collection means are arranged at the feeder substation and feeder section in feeder lines having auxiliary feeder sections between feeder substations and feeder sections at both ends of the feeder line. A feeder failure point locating system characterized by:
請求項1乃至のいずれか1つに記載のき電線故障点標定システムにおいて、
上記第記録手段に記録された上記事故発生前後の時刻情報を含む波形データを送信する送信手段と、
上記送信手段からの上記事故発生前後の時刻情報を含む波形データを受信する受信手段とを備え、
上記サブバンドフィルタは、上記受信手段により受信された上記事故発生前後の時刻情報を含む波形データから事故電圧サージを周波数バンド毎に抽出することを特徴とするき電線故障点標定システム。
In the feeder failure point locating system according to any one of claims 1 to 3 ,
Transmitting means for transmitting waveform data including time information before and after the occurrence of the accident recorded in the first recording means;
Receiving means for receiving waveform data including time information before and after the occurrence of the accident from the transmission means,
The feeder band fault localization system, wherein the subband filter extracts an accident voltage surge for each frequency band from waveform data including time information before and after the occurrence of the accident received by the receiving means.
JP2003374638A 2003-11-04 2003-11-04 Feeder fault location system Expired - Fee Related JP3844757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003374638A JP3844757B2 (en) 2003-11-04 2003-11-04 Feeder fault location system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003374638A JP3844757B2 (en) 2003-11-04 2003-11-04 Feeder fault location system

Publications (2)

Publication Number Publication Date
JP2005140541A JP2005140541A (en) 2005-06-02
JP3844757B2 true JP3844757B2 (en) 2006-11-15

Family

ID=34686293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003374638A Expired - Fee Related JP3844757B2 (en) 2003-11-04 2003-11-04 Feeder fault location system

Country Status (1)

Country Link
JP (1) JP3844757B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103149489B (en) * 2012-09-28 2015-09-30 西南交通大学 A kind of electric railway AT Traction networks broken string method of discrimination
CN104597374B (en) * 2014-12-26 2017-06-27 中铁第四勘察设计院集团有限公司 A kind of failure judgment method for the T-shaped power supply of traction network
CN105223404B (en) * 2015-10-16 2018-07-17 广东正诚电气科技有限公司 A kind of monitoring of low-tension switch cabinet feeder line, measuring device
KR101889428B1 (en) * 2018-01-09 2018-08-20 (주)신우디엔시 Fault locator and method using transient overvoltage detection for ac railway power supply circuit
CN112924814B (en) * 2021-01-29 2021-12-10 西南交通大学 Electrified railway AT section fault type identification method

Also Published As

Publication number Publication date
JP2005140541A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
DK1807706T3 (en) PLATFORM WITH ELECTRICAL INSTRUMENTS INTENDED FOR FITTING AND REMOVING A HIGH VOLTAGE UNDER VOLTAGE
US9588168B2 (en) Fault location using traveling waves
US10802054B2 (en) High-fidelity voltage measurement using a capacitance-coupled voltage transformer
KR101044681B1 (en) Process and installation for detecting a rail break
CN103576045A (en) Directional detection of a sensitive medium-voltage earth fault by linear correlation
US7355412B1 (en) Remote fault monitoring system
CN111065932A (en) Traveling wave identification using distortion for power system protection
JP6624165B2 (en) Distribution line fault location system
JP3844757B2 (en) Feeder fault location system
KR102036456B1 (en) Apparatus and method for detecting fault of combined transmission line
JP4914306B2 (en) Fault location method and fault location system
CN115023620A (en) Traveling wave based fault localization using parameter independence of unsynchronized measurements
JP2019124629A (en) Detector detecting insulation state of power transmission line
Bo et al. Accurate fault location and protection scheme for power cable using fault generated high frequency voltage transients
JP4104341B2 (en) Accident location system
KR100592845B1 (en) Detecting device for overhead transmission line fault location
JP2580738B2 (en) Fault location device
CN108369254B (en) Method of locating a fault in a power transmission medium
Farughian et al. Technical requirements for practical implementation of fault passage indication
JP2866172B2 (en) Transmission line fault direction locating method
JPH0862277A (en) Apparatus for locating fault point of transmission line
JP3167188B2 (en) Multiple bond wire drop detector for impedance bond
JP2722789B2 (en) Overhead transmission line fault location system
JP4768971B2 (en) Surge localization system and method
JP3528544B2 (en) Method of locating insulation breakdown of power cable line

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Ref document number: 3844757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees