JP2009032791A - 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法 - Google Patents

飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
JP2009032791A
JP2009032791A JP2007193346A JP2007193346A JP2009032791A JP 2009032791 A JP2009032791 A JP 2009032791A JP 2007193346 A JP2007193346 A JP 2007193346A JP 2007193346 A JP2007193346 A JP 2007193346A JP 2009032791 A JP2009032791 A JP 2009032791A
Authority
JP
Japan
Prior art keywords
scattered
particles
optical system
charged
charged particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007193346A
Other languages
English (en)
Other versions
JP5104095B2 (ja
Inventor
Atsushi Yamada
篤志 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007193346A priority Critical patent/JP5104095B2/ja
Publication of JP2009032791A publication Critical patent/JP2009032791A/ja
Application granted granted Critical
Publication of JP5104095B2 publication Critical patent/JP5104095B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】 EUV光の光量を低下させることなく、飛散粒子を効率良く除去する。
【解決手段】 EUV光の通る光路内に荷電粒子を照射して、飛散粒子を低減する飛散粒子除去装置において、所定の立体角で荷電粒子を射出し、光路内における荷電粒子の照射領域を拡大させる射出部と、照射された荷電粒子によって帯電した飛散粒子を回収する回収部と、を備える。
【選択図】 図2

Description

本発明はターゲット材料をプラズマ化したときに生じるデブリ(debris)と呼ばれる飛散粒子を除去する飛散粒子除去装置及び飛散粒子の低減方法、並びに飛散粒子除去装置を備えた光源装置、露光装置、及び電子デバイスの製造方法に関する。
従来、半導体プロセスの微細化に伴う光リソグラフィー技術に対する要求が高まってきている。周知のように、光リソグラフィー技術は、マスクに形成された回路パターンをレジストが塗布されたウェハ基板に露光する技術であり、このような光リソグラフィー技術に用いられる光源としてEUV(Extreme Ultra Violet)光源が挙げられる。最近では、EUV光源を用いた露光装置が提案されている(特許文献1など)。
EUV光源としては、真空中でレーザ光をターゲット材料に照射することで生成されるプラズマを利用するレーザ励起型の光源や、放電によって生成されるプラズマを利用する放電型の光源などが挙げられる。特に、レーザ励起型の光源の場合には、プラズマ密度を大きくすることで極めて高い輝度が得られ、また、用いるターゲット材料の種類によって必要な波長帯の発光を行うことができるなどの利点がある。
特許第3696163号公報
このような利点があるものの、レーザ励起型の光源の場合には、プラズマを生成する際に汚染物質分子、イオンなどの飛散粒子が発生してしまうことから、これら飛散粒子がマスクを傷つける、又はEUV光源とマスクとの間に配置された光学系に付着して光学系の性能を低下させるなどの問題がある。このような問題を解決する方法としては、例えば真空中に流入させたガスを吸引することで飛散粒子を除去することが考えられるが、流入したガスの吸引時に飛散粒子を効率良く除去することができない上に、プラズマから発生されるEUV光が流入されたガスに吸収されてしまうため、EUV光の光量を低下させてしまうという問題がある。
本発明は、このような問題を解決するために発明されたものであり、EUV光の光量を低下させることなく、飛散粒子を効率良く除去する又は低減することができるようにした飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法を提供することを目的とする。
本発明の飛散粒子除去装置は、EUV光の通る光路内に荷電粒子を照射して、飛散粒子を低減させる飛散粒子除去装置において、所定の立体角で前記荷電粒子を射出し、前記光路内における前記荷電粒子の照射領域を拡大させる射出部と、照射された前記荷電粒子によって帯電した前記飛散粒子を回収する回収部と、を備えることを特徴とする。
また、前記EUV光の光路内に射出される前記荷電粒子の照射領域を拡大させる第1の電子光学系を備えたことを特徴とする。
また、前記第1の電子光学系は、電磁レンズ又は静電レンズのいずれか一方を備えていることを特徴とする。
また、前記第1の電子光学系は、静電偏向器又は電磁偏向器のいずれか一方を備えていることを特徴とする。
また、帯電した前記飛散粒子を偏向させる第2の電子光学系を備えていることを特徴とする。
また、前記第2の電子光学系は、電磁レンズ又は静電レンズのいずれか一方を備えていることを特徴とする。
また、前記第2の電子光学系は、静電偏向器又は電磁偏向器のいずれか一方を備えていることを特徴とする。
また、前記回収部は、前記第2の電子光学系の近傍に配置されることを特徴とする。
また、前記回収部は、前記飛散粒子を前記EUV光の光路外へ回収する回収機構を有することを特徴とする。
本発明の飛散粒子の低減方法は、EUV光の通る光路内に荷電粒子を照射して、飛散粒子を低減する方法において、前記光路内に所定の立体角で前記荷電粒子を射出するステップと、照射された前記荷電粒子によって帯電した前記飛散粒子を回収するステップと、を備えることを特徴とする。
また、前記光路内に射出される前記荷電粒子の照射領域を拡大させるステップを備えたことを特徴とする。
また、前記荷電粒子によって帯電した前記飛散粒子を偏向させるステップをさらに備えたことを特徴とする。
本発明の光源装置は、上記記載の飛散粒子除去装置を備えるとともに、ターゲット材料を供給する供給部と、前記ターゲット材料からプラズマを生成し、当該プラズマから発生するEUV光を放出するプラズマ生成部と、を備えたことを特徴とする。
本発明の露光装置は、上記記載の飛散粒子除去装置を備えるとともに、ターゲットをプラズマ化し、生成されたプラズマからEUV光を放射する光源部と、前記光源部から放射されるEUV光を被照射面に照射する照明光学系と、前記被照射面を介した前記EUV光を感光性基板に露光転写する投影光学系と、を備えたことを特徴とする。
本発明の電子デバイスの製造方法は、リソグラフィー工程を含む電子デバイスの製造方法であって、前記リソグラフィー工程において、上記記載の露光装置を用いるものである。
本発明の飛散粒子除去装置及び光源装置によれば、荷電粒子をEUV光の光路内に広範囲で照射することで、EUV光の光量を低下させることなく、光路内に飛散する飛散粒子を効率良く回収することができる。
また、本発明の光源装置を用いた露光装置では、プラズマの生成時に発生する飛散粒子を、照明光学系や投影光学系に付着させずに済むことから、これら光学系に付着する飛散粒子の影響を低減させる、或いは抑止することができる。ひいては、露光装置のスループットを向上させることができる。
図1は、露光装置10の構成の概略を示している。この露光装置10は、真空チャンバ11と、この真空チャンバ11に取り付けられる光源装置12を備えている。この真空チャンバ11の内部には、レチクルステージ15及びウェハステージ16などが配置されている。光源装置12で発生したEUV光は、真空チャンバ11の内部に設けられた照明光学系17に入射された後、レチクルステージ15の下部に配置されるレチクル18に導かれる。レチクル18で反射されたEUV光は、投影光学系19を介してウェハステージ16の上面に載置されたウェハなどの感光性基板20に照射される。これにより、レチクル18に形成されたパターンが感光性基板20に露光される。このような露光装置10においては、レチクルステージ15及びウェハステージ16を移動させてスキャン露光が実行される。なお、符号21は制御装置であり、この制御装置21によって露光装置10が制御される。
光源装置12は、ターゲット材料40からプラズマを生成し、生成されたプラズマから得られるEUV光を真空チャンバ11に向けて照射する。ターゲット材料40としては、例えば液体、気体或いは固体のXe、SnやSn化合物などが挙げられる。本実施形態では、ターゲット材料40として液化Xeを用いた場合について説明する。ここで、本実施形態におけるEUV光とは、概ね5nm〜50nmの波長を有する光をいう。
この光源装置12は、レーザ装置30、レーザ光学系31、プラズマ生成部32を有している。レーザ装置30は例えばYAGレーザ光を発生させる。レーザ光学系31は、例えば2枚の反射ミラー35,36とレンズ37とから構成される。レーザ装置30からのレーザ光は、反射ミラー35,36により反射された後、レンズ37により集光され、後述する真空チャンバ45に導かれる。
プラズマ生成部32は、ターゲット材料40をプラズマ化し、EUV光を発生させる。このプラズマ生成部32は、真空チャンバ45を備えている。この真空チャンバ45は、その内部が真空状態に維持される。
この真空チャンバ45の内部には、EUV光を反射する集光ミラー46と、EUV光を検出するEUV光検出器47が配置される。真空チャンバ45の上部には、ターゲット材料40を供給するターゲット供給部50が配置される。このターゲット供給部50は、真空チャンバ45の内部に差し込まれたノズル50aを備えている。このノズル50aを介して液体のターゲット材料40が供給される。なお、このターゲット供給部50と、上述したレーザ装置30とは、光源制御装置51によって制御される。
真空チャンバ45の下部には、ターゲット材料40を回収する回収部52が設けられている。また、真空チャンバ45の側部には、レーザ光学系31によって導光されるレーザ光を真空チャンバ45の内部に導くレーザ導入窓45aが設けられている。このレーザ導入窓45aとは反対側には、集光ミラー46によって集光されたEUV光を照明光学系17に向けて導く光路45bが設けられている。この光路45bには、真空チャンバ45の内部を真空状態に維持するための真空ポンプ53が設けられている。
図2に示すように、真空チャンバ45の光路45bには、真空ポンプ53の他に、デブリ除去装置55が設けられる。このデブリ除去装置55は、ターゲット材料40にレーザ光を照射することでプラズマ化したときに発生し、真空チャンバ45の内部を浮遊するデブリ80(図5参照)を除去又は低減する装置である。
デブリ除去装置55は、真空チャンバ45の光路45bの下部に設けられる射出部60及び拡大光学系61と、光路45bの上部に設けられる縮小光学系62とを備えている。射出部60、拡大光学系61及び縮小光学系62は、例えば図2のように、EUV光の光軸L1と交差する方向にそれぞれ配置される。なお、拡大光学系61と縮小光学系62とは、例えば図2のように互いに対向させた位置に配置してもよいし、互いに対向していない位置に配置してもよい。
射出部60としては電子銃などが用いられ、この射出部60からH、H 、H 、He、等の荷電粒子65(図5参照)を射出する。また、射出部60は、荷電粒子65を発散させる程度の所定の立体角で荷電粒子65を射出可能なように構成されている。この構成により、射出部60は、光路内に照射される荷電粒子65の照射範囲を拡大させることが可能である。なお、これら射出部60、拡大光学系61、縮小光学系62は光源制御装置51によってそれぞれ制御される。
ここで、本実施形態における立体角とは、空間上での球体の中心から出た直線の周りに作られた円錐で区切られた部分をいう。例えば半径1の球体で円錐が切り取った表面積の大きさを錐面とすると、立体角は錐面で表わすことができ、全立体角は4π[sr(ステラジアン)]となる。なお、頂角の半角がθの円錐の場合、立体角Ωは、Ω=2π(1−cosθ)で表わせる。ここで、θは頂角の半角なので、θの範囲は0≦θ≦180°である。また、本実施形態においては、頂角が20°から45°程度の立体角で荷電粒子65の照射範囲を拡大させることが望ましい。ここで、頂角の半角θが10°の場合、立体角Ωは約0.03π[sr]である。さらに、頂角の半角θが22.5°の場合、立体角Ωは約0.15π[sr]である。従って、本実施形態における所定の立体角は、概ね0.03π[sr]から0.15π[sr]の範囲であることが望ましい。なお、頂角とは、三角形の底辺に対する角又は円錐の底面に対する角である。
拡大光学系61は、電磁レンズ70と電磁偏向器71とから構成される。電磁レンズ70は、例えば、コイルを巻いた磁石等の磁性体に電流を流すことによって発生する不均一な磁場により電子線を拡大させるものである。つまり、拡大光学系61は、不均一な磁場によって、荷電粒子65を光路45bに発散させ、荷電粒子の照射領域を拡大させるものである。
図3は、電磁レンズ70を用いて電子線を拡大させるときの磁束密度分布の一例を示している(電磁レンズ70を用いて荷電粒子65を発散させる場合の磁束密度分布の一例である)。この図3においては、縦軸を磁束密度B、横軸を電磁レンズ70のレンズ場X1としており、また、レンズ場X1は電子線の入射側をX1=0、電子線の出射側をX1=1としている。例えば、電磁レンズ70により電子線を4倍に拡大する場合には、X1=0.1となるときの磁束密度Bが最大となるように磁場を形成させる。このように、不均一な磁場を形成させることによって、電子線を曲げる(例えば、発散方向へ曲げる)ことができる。なお、図3では、便宜上、最大となる磁束密度BをB=1としている。
電磁偏向器71は、コイルに電流を流すことにより発生する磁場を用いて電子線を偏向させる。つまり、本実施形態では、電磁偏向器71を電磁レンズ70の下流側に配置することで、電磁レンズ70によって拡大された電子線を電磁偏向器71によって偏向する。さらにコイルに流す電流の値を変動させることで拡大された電子線の照射範囲をずらす(電子線を図5に示す点線に示す範囲から二点差線に示す範囲までの間で偏向させる)ことにより、電子線をさらに広範囲に照射する。つまり、電磁偏向器71によって、荷電粒子65は、偏向され、光路45bに広範囲に照射されることになる。
縮小光学系62は、静電レンズ75と静電偏向器76とから構成され、光路45bに照射された電子線が衝突することで励起されたデブリ80を偏向又は集束させる。この縮小光学系62としては、例えば一対の電極を2組有する静電レンズ75が用いられる。この静電レンズ75は、電極に電圧を印加する(電極に電位差を発生させる)ことで電界を発生させ、この発生された電界によって励起されたデブリ80を偏向又は集束させる。なお、図2では、図の煩雑さを解消するために、一対の電極を1組のみ示している。また、一対の電極の組数を3組以上備えた静電レンズであってもよい。
静電偏向器76は、電極間に生じる電位差から電界を発生させて電子線を偏向させる。本実施形態においては、静電偏向器76によって、電子線を静電レンズ75又は後述する回収部85へ偏向させる。
図4は、一対の電極を2組有する静電レンズ75を用いて電子線を偏向又は集束させる場合の電位分布の一例を示す(静電レンズ75を用いて荷電粒子65を集束させる場合の電位分布の一例である)。この図4においては、縦軸を電位V、横軸を静電レンズのレンズ場X2としており、また、レンズ場X2は電子線の入射側をX2=0、電子線の出射側をX2=1としている。例えば0<X2<0.8の範囲が1組目の電極における電位を示し、0.8<X2<1の範囲が2組目の電極における電位を示している。また、それぞれの電極間の電位差を(V1−V2)となるように、それぞれの電極に電圧を印加することで、この静電レンズ75を通過する電子線は1/4に偏向又は集束される。つまり、縮小光学系62は、光路45bに照射された荷電粒子65によって励起されたデブリ80を偏向又は集束させるものである。
図2に戻って、縮小光学系62の下流側には、デブリ80を回収する回収部85が設けられている。この回収部85には、真空ポンプ53の排気口86が設けられており、縮小光学系62によって偏向又は集束されたデブリ80が回収部85に向けて移動する。なお、回収部85に真空ポンプ53の排気口86が設けられることで、デブリ80は回収部85の側壁面に付着するか、排気口86を介して回収される。これにより、デブリ80が除去される。なお、回収部85は、縮小光学系62に近接して配置されることが望ましいが、EUV光に影響しない位置に設けられていればよい。
上述した露光装置10では、ターゲット供給部50のノズル50aの先端から例えば液化Xeなどのターゲット材料40を間歇的に噴出させる。噴出されたターゲット材料40が所定の位置(集光ミラーの焦点)に到達したときに、レーザ装置30からレーザ光が出射される。出射されたレーザ光は、レーザ光学系31のレンズ37によって集光され、ターゲット材料40に照射される。レーザ光がターゲット材料40に照射されることで、ターゲット材料40をプラズマ化する。
プラズマ90から放出されたEUV光は集光ミラー46により集光され、真空チャンバ11の内部に配置された照明光学系17に導かれる。照明光学系17から出射されたEUV光は、レチクルステージ15に設けられたレチクル18に入射して反射される。レチクル18からの反射光は、投影光学系19に入射され、レジストが塗布されたウェハなどの感光性基板20上に結像する。
上述したように、ターゲット供給部50から噴出されたターゲット材料40は、レーザ光によってプラズマ化される。このプラズマ化されるときに、デブリ80が発生する。このデブリ80は、回収部52にてターゲット材料40とともに回収されるか、真空チャンバ45の内部を浮遊する。
光源制御装置51は、ターゲット供給部50、レーザ装置30を制御する際に、デブリ除去装置55を制御している。つまり、ターゲット材料40をプラズマ化しているとき(露光装置10が作動しているとき)には、射出装置60から荷電粒子65が放出されている。放出された荷電粒子65は拡大光学系61によって発散、及び偏向される。さらに拡大光学系61の電磁偏向器71に流す電流値を変動させて、荷電粒子65の偏向量を変動させることで、荷電粒子65は真空チャンバ45の光路45bに広範囲で照射される。
上述したように、真空チャンバ45にはデブリ80が浮遊していることから、照射される荷電粒子65はデブリ80に衝突し、デブリ80を励起させる。縮小光学系62の集束レンズ75は電界を発生させていることから、励起されたデブリ80は集束レンズ75に向けて移動する。これら励起したデブリ80は、収束レンズ75を通過する過程で偏向又は集束された後、回収部85の側壁面に付着するか、排気口86を介して回収される。これにより、荷電粒子65を広範囲で照射することによって多くのデブリ80を励起させることができ、また、励起したデブリ80を確実に偏向又は集束させることで真空チャンバ45の内部に浮遊するデブリ80を効率良く回収することができる。このようにデブリ80を効率良く回収することで、デブリ80が照明光学系17に付着することを抑止でき、デブリ80の付着に起因する照明光学系17の光学性能の低下を防止することができる。
以下、本発明に係る電子デバイスの製造方法の実施の形態の例を説明する。図6は、本発明の電子デバイス製造方法の一例を示すフローチャートである。この例の製造工程は以下の各主工程を含む。
(1)ウェハを製造するウェハ製造工程(又はウェハを準備するウェハ準備工程)
(2)露光に使用するマスクを制作するマスク製造工程(又はマスクを準備するマスク準備工程)
(3)ウェハに必要な加工処理を行うウェハプロセッシング工程
(4)ウェハ上に形成されたチップを1個ずつ切り出し、動作可能にならしめるチップ組立工程
(5)チップを検査するチップ検査工程
なお、それぞれの工程はさらにいくつかのサブ工程からなっている。
これらの主工程の中で、半導体デバイスの性能に決定的な影響を及ぼす主工程がウェハプロセッシング工程である。この工程では設計された回路パターンをウェ波状に順次積層し、メモリやMPUとして動作するチップを多数形成する。このウェハプロセッシング工程は、以下の各工程を含む。
(1)絶縁層となる誘電体薄膜や、配線部、あるいは電極部を形成する金属薄膜等を形成する薄膜形成工程(CVDやスパッタリングなどを用いる)
(2)この薄膜層やウェハ基板を酸化する酸化工程
(3)薄膜層やウェハ基板などを選択的に加工するためにマスク(レクチル)を用いてレジストのパターンを形成するリソグラフィー工程
(4)レジストパターンに従って薄膜層や基板を加工するエッチング工程
(例えばドライエッチング技術を用いる)
(5)イオン・不純物注入拡散工程
(6)レジスト薄利工程
(7)さらに加工されたウェハを検査する検査工程
なお、ウェハプロセッシング工程は必要な層数だけ繰り返し行い、設計通り動作する電子デバイスを製造する。
本実施の形態である電子デバイスの製造方法においては、リソグラフィー工程に本発明の実施形態である露光装置を使用している。よって、微細な線幅のパターンの露光を行うことができると同時に、高スループットで露光を行うことができ、効率良く電子デバイスを製造することができる。
本実施形態では、デブリ除去装置55は、図2のようにEUV光の進行方向と交差する方向に配置されているが、EUV光の進行方向と逆方向に交差する方向に配置されてもよい。つまり、デブリ80の移動方向に概ね対向する方向に荷電粒子65を照射するように配置してもよい。さらに、デブリ除去装置55は、EUV光の進行方向と略垂直方向に配置されてもよい。
また、本実施形態では、デブリ除去装置55を、光路45bの下部に射出部60と拡大光学系61を、光路45bの上部に縮小光学系62及び回収部85をそれぞれ配置しているが、これに限定される必要はなく、図3において紙面の前後方向にデブリ除去装置55を構成する各部を配置することも可能である。
なお、本実施形態において、射出部60から射出される荷電粒子65は、拡大光学系61によって発散方向に偏向され、さらに平行に偏向されて照射領域が拡大されてEUV光の通る光路内に照射される。すなわち、EUV光の通る光路内において、荷電粒子65の照射領域が拡大されて照射されていればよく、荷電粒子65は発散方向に照射されてもよいし、荷電粒子65の照射領域が拡大されていれば、荷電粒子65は平行方向又は集束方向に照射されてもよい。
なお、本実施形態における所定の立体角は、上述のように概ね0.03π[sr]から0.15π[sr]の範囲が望ましいが、上述のように全立体角を4π[sr]とすると、その立体角は0≦Ω≦2π[sr]の範囲でもよい。
本実施形態におけるデブリ除去装置55は、荷電粒子65の照射領域を拡大させるために、所定の立体角で荷電粒子65を射出可能な射出部60と、拡大光学系61とを備えているが、射出部60のみで荷電粒子65の照射領域を拡大させてもよいし、拡大光学系61のみで荷電粒子65の照射領域を拡大させてもよいし、射出部60と拡大光学系61との組合せでもよい。また、拡大光学系61のみで荷電粒子65の照射領域を拡大させる場合、射出部60は、上述の立体角に限定されないが、EUV光の光路内に向けて荷電粒子65を射出することが望ましい。
本実施形態では、拡大光学系として、電磁レンズと電磁偏向器との組み合わせとしているが、電磁レンズ単体としても良いし、電磁偏向器単体としても良い。また、拡大光学系の構成は、電磁レンズと電磁偏向器との組み合わせの他に、静電レンズと静電偏向器との組み合わせ、或いは、静電レンズ単体であってもよいし、静電偏向器単体であってもよい。さらに、電磁レンズと電極間に生じる電位差から電界を発生させて電子線を偏向させる、所謂静電偏向器との組み合わせや、静電レンズと電磁偏向器との組み合わせから拡大光学系を構成することも可能である。
本実施形態では、縮小光学系として静電レンズと静電偏向器との組み合わせとしているが、静電レンズ単体としても良いし、静電偏向器単体としても良い。また、縮小光学系の構成は、静電レンズと静電偏向器との組み合わせの他に、電磁レンズと電磁偏向器との組み合わせ、或いは、電磁レンズ単体であってもよいし、電磁偏向器単体であってもよい。さらに、電磁レンズと静電偏向器との組み合わせや、静電レンズと電磁偏向器との組み合わせから縮小光学系を構成することも可能である。
本実施形態では、レーザ光をターゲット材料に照射することでプラズマを発生させるレーザ励起型の光源装置としているが、これに限定されるものではなく、放電を用いてプラズマを発生させる放電型の光源装置を用いることも可能である。
本実施形態では、回収部に真空ポンプの排気口を設けている実施形態としているが、これに限定される必要はなく、回収部とは別に真空ポンプの排気口を設けることも可能である。
本発明の露光装置を示す概略図である。 真空チャンバに設けられたデブリ除去装置の構成を示す説明図である。 電磁レンズを拡大レンズとして用いる場合の電磁レンズの磁束密度分布を示す説明図である。 静電レンズを縮小レンズとして用いる場合の静電レンズの電位の分布を示す説明図である。 デブリ除去装置によるデブリの除去の過程を示す説明図である。 電子デバイスの製造方法の流れを示すフローチャートである。
符号の説明
10…露光装置,12…光源装置,32…プラズマ生成部,50…ターゲット供給部,53…真空ポンプ,55…デブリ除去装置,60…射出部,61…拡大光学系,62…縮小光学系,65…荷電粒子,70…電磁レンズ,71…電磁偏向器,75…静電レンズ,76…静電偏向器,80…デブリ,85…回収部,86…排気口

Claims (15)

  1. EUV光の通る光路内に荷電粒子を照射して、飛散粒子を低減させる飛散粒子除去装置において、
    所定の立体角で前記荷電粒子を射出し、前記光路内における前記荷電粒子の照射領域を拡大させる射出部と、
    照射された前記荷電粒子によって帯電した前記飛散粒子を回収する回収部と、
    を備えることを特徴とする飛散粒子除去装置。
  2. 請求項1記載の飛散粒子除去装置において、
    前記光路内に射出される前記荷電粒子の照射領域を拡大させる第1の電子光学系を備えたことを特徴とする飛散粒子除去装置。
  3. 請求項2記載の飛散粒子除去装置において、
    前記第1の電子光学系は、電磁レンズ又は静電レンズのいずれか一方を備えていることを特徴とする飛散粒子除去装置。
  4. 請求項2又は3記載の飛散粒子除去装置において、
    前記第1の電子光学系は、静電偏向器又は電磁偏向器のいずれか一方を備えていることを特徴とする飛散粒子除去装置。
  5. 請求項1〜4のいずれか1項に記載の飛散粒子除去装置において、
    帯電した前記飛散粒子を偏向させる第2の電子光学系を備えていることを特徴とする飛散粒子除去装置。
  6. 請求項5に記載の飛散粒子除去装置において、
    前記第2の電子光学系は、電磁レンズ又は静電レンズのいずれか一方を備えていることを特徴とする飛散粒子除去装置。
  7. 請求項5又は6記載の飛散粒子除去装置において、
    前記第2の電子光学系は、静電偏光器又は電磁偏光器のいずれか一方を備えていることを特徴とする飛散粒子除去装置。
  8. 請求項5〜7のいずれか1項に記載の飛散粒子除去装置において、
    前記回収部は、前記第2の電子光学系の近傍に配置されることを特徴とする飛散粒子除去装置。
  9. 請求項1〜8のいずれか1項に記載の飛散粒子除去装置において、
    前記回収部は、前記飛散粒子を前記EUV光の光路外へ回収する回収機構を有することを特徴とする飛散粒子除去装置。
  10. EUV光の通る光路内に荷電粒子を照射して、飛散粒子を低減する方法において、
    所定の立体角で前記荷電粒子を射出するステップと、
    照射された前記荷電粒子によって帯電した前記飛散粒子を回収する回収部と、
    を備えることを特徴とする飛散粒子の低減方法。
  11. 請求項10記載の飛散粒子の低減方法において、
    前記光路内に射出される前記荷電粒子の照射領域を拡大させるステップを備えたことを特徴とする飛散粒子の低減方法。
  12. 請求項10又は11記載の飛散粒子の低減方法において、
    前記荷電粒子によって帯電した前記飛散粒子を偏向させるステップをさらに備えたことを特徴とする飛散粒子の低減方法。
  13. 請求項1〜9のいずれか1項に記載の飛散粒子除去装置を備えるとともに、
    ターゲット材料を供給する供給部と、
    前記ターゲット材料からプラズマを生成し、当該プラズマから発生するEUV光を放出するプラズマ生成部と、
    を備えたことを特徴とする光源装置。
  14. 請求項1〜9のいずれか1項に記載の飛散粒子除去装置を備えるとともに、
    ターゲット材料をプラズマ化し、生成されたプラズマからEUV光を放射させる光源部と、
    前記光源部から放射されるEUV光を被照射面に照射する照明光学系と、
    前記被照射面を介したEUV光を感光性基板に露光転写する投影光学系と、
    を備えたことを特徴とする露光装置。
  15. リソグラフィー工程を含む電子デバイスの製造方法であって、
    前記リソグラフィー工程において、請求項14に記載の露光装置を用いる電子デバイスの製造方法。
JP2007193346A 2007-07-25 2007-07-25 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法 Active JP5104095B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193346A JP5104095B2 (ja) 2007-07-25 2007-07-25 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193346A JP5104095B2 (ja) 2007-07-25 2007-07-25 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法

Publications (2)

Publication Number Publication Date
JP2009032791A true JP2009032791A (ja) 2009-02-12
JP5104095B2 JP5104095B2 (ja) 2012-12-19

Family

ID=40403026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193346A Active JP5104095B2 (ja) 2007-07-25 2007-07-25 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP5104095B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192989A (ja) * 2010-03-12 2011-09-29 Asml Netherlands Bv 放射源装置、リソグラフィ装置、放射発生および送出方法、およびデバイス製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226394A (ja) * 1994-02-15 1995-08-22 Mitsubishi Electric Corp 半導体処理方法および半導体処理装置
JPH11150080A (ja) * 1997-11-18 1999-06-02 Denso Corp 半導体基板の製造方法および半導体基板の製造装置
JP2006079868A (ja) * 2004-09-08 2006-03-23 Casio Comput Co Ltd 電子顕微鏡
JP2006080255A (ja) * 2004-09-09 2006-03-23 Komatsu Ltd 極端紫外光源装置
JP2006186373A (ja) * 2004-12-27 2006-07-13 Asml Netherlands Bv リソグラフィ装置、照明システム、およびデブリ粒子を抑制するための方法
JP2006191057A (ja) * 2004-12-28 2006-07-20 Asml Netherlands Bv デブリ粒子を抑制するための放射線源装置、リソグラフィ装置、照明システム、および方法
JP2007517396A (ja) * 2003-12-30 2007-06-28 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、及びデブリ軽減システムを備える放射源、並びにリソグラフィ装置におけるデブリ粒子を軽減する方法
JP2008277481A (ja) * 2007-04-27 2008-11-13 Komatsu Ltd 極端紫外光源装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226394A (ja) * 1994-02-15 1995-08-22 Mitsubishi Electric Corp 半導体処理方法および半導体処理装置
JPH11150080A (ja) * 1997-11-18 1999-06-02 Denso Corp 半導体基板の製造方法および半導体基板の製造装置
JP2007517396A (ja) * 2003-12-30 2007-06-28 エーエスエムエル ネザーランズ ビー.ブイ. リソグラフィ装置、及びデブリ軽減システムを備える放射源、並びにリソグラフィ装置におけるデブリ粒子を軽減する方法
JP2006079868A (ja) * 2004-09-08 2006-03-23 Casio Comput Co Ltd 電子顕微鏡
JP2006080255A (ja) * 2004-09-09 2006-03-23 Komatsu Ltd 極端紫外光源装置
JP2006186373A (ja) * 2004-12-27 2006-07-13 Asml Netherlands Bv リソグラフィ装置、照明システム、およびデブリ粒子を抑制するための方法
JP2006191057A (ja) * 2004-12-28 2006-07-20 Asml Netherlands Bv デブリ粒子を抑制するための放射線源装置、リソグラフィ装置、照明システム、および方法
JP2008277481A (ja) * 2007-04-27 2008-11-13 Komatsu Ltd 極端紫外光源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192989A (ja) * 2010-03-12 2011-09-29 Asml Netherlands Bv 放射源装置、リソグラフィ装置、放射発生および送出方法、およびデバイス製造方法
US9298110B2 (en) 2010-03-12 2016-03-29 Asml Netherlands B.V. Radiation source apparatus, lithographic apparatus, method of generating and delivering radiation and method for manufacturing a device

Also Published As

Publication number Publication date
JP5104095B2 (ja) 2012-12-19

Similar Documents

Publication Publication Date Title
JP5241195B2 (ja) 荷電粒子露光装置
US7256405B2 (en) Sample repairing apparatus, a sample repairing method and a device manufacturing method using the same method
JP4440938B2 (ja) デブリ軽減システムを有するリソグラフィ装置、デブリ軽減システムを有するeuv放射線発生源、及びデブリを軽減させる方法
JP2002033275A (ja) 荷電粒子リソグラフィ装置用の照明システム
JP2009260019A (ja) Euv光発生装置におけるイオン回収装置および方法
US6469310B1 (en) Radiation source for extreme ultraviolet radiation, e.g. for use in lithographic projection apparatus
KR100434241B1 (ko) 하전 빔 노광 장치
JP4943554B2 (ja) プラズマ放射源を有する装置、放射ビームを形成する方法、およびリソグラフィ装置
JP5701095B2 (ja) 多反射モードを有する電子反射板
JP2005129345A (ja) 荷電ビーム装置および荷電粒子検出方法
JP2006032814A (ja) 露光方法、パターン寸法調整方法及び焦点ぼかし量取得方法
JP2007517396A (ja) リソグラフィ装置、及びデブリ軽減システムを備える放射源、並びにリソグラフィ装置におけるデブリ粒子を軽減する方法
JP2007258069A (ja) 極端紫外光源装置
KR20230054859A (ko) 레티클 및 펠리클 어셈블리를 처리하기 위한 장치 및 방법
JP6927728B2 (ja) 電子ビーム照射装置及び電子ビームのダイナミックフォーカス調整方法
JP5104095B2 (ja) 飛散粒子除去装置、飛散粒子の低減方法、光源装置、露光装置及び電子デバイスの製造方法
JP4920741B2 (ja) リソグラフィ装置およびデバイス製造方法
US7005659B2 (en) Charged particle beam exposure apparatus, charged particle beam exposure method, and device manufacturing method using the same apparatus
US7109501B2 (en) Charged particle beam lithography system, pattern drawing method, and method of manufacturing semiconductor device
US20050006603A1 (en) Charged particle beam exposure method, charged particle beam exposure apparatus, and device manufacturing method
JP2009070982A (ja) 飛散粒子除去装置、飛散粒子の低減方法、光源装置、照明光学装置、露光装置及び電子デバイスの製造方法
JP4494734B2 (ja) 荷電粒子線描画方法、荷電粒子線露光装置及びデバイス製造方法
JP2005032480A (ja) 荷電粒子線露光装置および該装置を用いたデバイス製造方法
JP4387262B2 (ja) 荷電粒子線装置及びマイクロデバイスの製造方法
WO2024099673A1 (en) Contamination control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5104095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250