JP2009032460A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2009032460A
JP2009032460A JP2007193669A JP2007193669A JP2009032460A JP 2009032460 A JP2009032460 A JP 2009032460A JP 2007193669 A JP2007193669 A JP 2007193669A JP 2007193669 A JP2007193669 A JP 2007193669A JP 2009032460 A JP2009032460 A JP 2009032460A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
storage alloy
cathode
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007193669A
Other languages
English (en)
Inventor
Daigoro Mori
大五郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007193669A priority Critical patent/JP2009032460A/ja
Priority to PCT/IB2008/001906 priority patent/WO2009013595A1/en
Publication of JP2009032460A publication Critical patent/JP2009032460A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】水素吸蔵合金の軽量化を図るとともに、電気ヒータを使用しなくても、水素吸蔵合金から水素を確保することが可能な燃料電池システムを提供すること。
【解決手段】燃料電池システムSは、酸素及び水素が供給され、電解質膜を介して、酸素と水素を化学反応させて電気を発生させる燃料電池1と、この燃料電池1に水素を供給する水素吸蔵合金を含む水素吸蔵合金タンク3と、燃料電池1に酸素(空気)を供給する酸素供給手段6と、前記化学反応の際に燃料電池1から排出されるオフガスを圧縮し、当該圧縮された圧縮オフガスによって前記水素吸蔵合金を加熱するエア・コンプレッサ7とを備える。
【選択図】図1

Description

本発明は、燃料電池システムに関する。
燃料電池によって得られた電気を動力にして走行する燃料電池自動車の燃料電池システムにおいて、例えば特許文献1に記載されているような技術が周知である。
この技術は、燃料電池から排出された排ガス(以下、オフガス)で水素吸蔵合金を加熱して水素を放出させ、当該放出された水素を燃料電池に供給するという技術である。
ところで、固体高分子型燃料電池のオフガスは、その温度が60〜80℃であるのに対し、マグネシウム系の水素吸蔵合金から水素を放出させるのに必要な温度は、150〜400℃である。よって、マグネシウム系の水素吸蔵合金から水素を放出することは燃料電池のオフガスでは低温すぎてできない。
このため、特許文献2にあるように、水素吸蔵合金タンクに電気ヒータを設置して電力エネルギーを投入し、水素吸蔵合金を高温に加熱する技術が知られている。
一方、水素吸蔵合金の形成材料の研究も進み、マグネシウム系の水素吸蔵合金よりも加熱温度が低温度(150℃以下)であっても、水素を放出するアミド系などの水素吸蔵合金が用いられるようになった。
特開2000−12056号公報 特開平11−106201号公報 特開2005−129305号公報 特開2005−63715号公報
しかし、アミド系水素吸蔵合金のように比較的低温であっても水素の放出が可能な水素吸蔵合金は、その単位体積重量が大きい。よって、そのような水素吸蔵合金を用いた水素吸蔵合金タンクは重量化してしまうという問題がある。
また、電気ヒータを使用しなくても、燃料電池のオフガスで水素吸蔵合金から水素を放出することができる技術の提供が望まれていた。
本発明は、上記事情に鑑みて発明されたものである。その解決しようとする課題は、水素吸蔵合金タンクの軽量化を図るとともに、電気ヒータを使用しなくても、水素吸蔵合金から水素を放出させることが可能な燃料電池システムを提供することにある。
前記課題を解決するために、本発明では、以下の手段を採用した。
すなわち本発明の燃料電池システムは、燃料電池と、加熱されると水素を放出し、燃料電池に水素を供給する水素吸蔵合金と、燃料電池から排出されるオフガスを圧縮により温度上昇させる圧縮手段と、前記圧縮されたオフガスと前記水素吸蔵合金との間で熱交換する熱交換手段と、を備えることを特徴とする。
ここで圧縮手段とは、例えばエア・コンプレッサを挙げられる。また熱交換手段とは水
素吸蔵合金を含む水素吸蔵合金タンクを挙げられる。
圧縮手段によりオフガスが圧縮されると、ボイル・シャルルの法則により、オフガスはその温度が上昇(以下、温度が上昇することを昇温という。)する。よって、圧縮手段によりオフガスの圧縮率を調整することで、燃料電池から放出される60〜80℃程度のオフガスの温度を変更することができる。
好適には、燃料電池から放出されたオフガスを、その温度が150〜400℃の高温になるように、前記圧縮手段により圧縮する。圧縮されたオフガスのことを圧縮オフガスということにする。
圧縮オフガスの温度を150〜400℃にすれば、150〜400℃の温度範囲で水素を放出する例えばマグネシウム系の水素吸蔵合金の利用ができる。よって、使用する水素吸蔵合金をアミド系などの低温度で水素を放出するものに限定されることがない。また、マグネシウム系の水素吸蔵合金は単位体積重量が小さい。このため、単位体積重量の小さい水素吸蔵合金で水素吸蔵合金タンクを製造すれば、水素吸蔵合金タンクの軽量化を図ることができる。
また、上記高温な温度範囲の温度にされた圧縮オフガスを水素吸蔵合金に供給することで、電気ヒータがなくても水素吸蔵合金から水素を確保することができる。
前記オフガスは、前記燃料電池の電極であって燃料極として水素が供給されるアノード及び空気極として酸素が供給されるカソードのうち、空気極であるカソードに酸素を供給する際に、そこから排出されるカソード・オフガスを挙げられる。
また、前記圧縮オフガスからエネルギーを回収するタービンを本発明の燃料電池システムに用いることも考えられる。圧縮オフガスでタービンを回転し、当該回転により大量の空気を圧縮した状態で燃料電池のカソードに送り込む。このようにすることで、圧縮オフガスからタービンを回転させるエネルギーを回収することができるので、オフガスの有効利用を図れる。
本発明によれば、水素吸蔵合金タンクの軽量化を図るとともに、電気ヒータを使用しなくても、水素吸蔵合金から水素を放出させることができる。
<システムの概要>
本発明の燃料電池システムは、燃料電池によって得られた電気を動力にして走行する燃料電池自動車の燃料電池システムに適用される。
本システムでは、水素吸蔵合金タンクの水素吸蔵合金を燃料電池のオフガスで加熱し、当該加熱によって水素吸蔵合金から放出された水素を燃料電池に供給する。
前記加熱に使用されるオフガスは、圧縮手段であるエア・コンプレッサで圧縮される。圧縮によりオフガスは昇温し、当該昇温されたオフガスで、水素吸蔵合金を加熱する。
<システムの構成>
次に添付した図面を参照して、燃料電池システムSの具体的構成を説明する。なお、本システムSは、CPU(Central Processing Unit)を含む制御装置であるECU(Electric Control Unit)によって制御される
図1に示すように、本システムSは、周知のごとく、酸素及び水素が供給され、電解質膜を介して、酸素と水素を化学反応させて電気を発生させる燃料電池1を有する。また、燃料電池1に水素を供給する水素吸蔵合金からなる水素吸蔵合金タンク3と、燃料電池1に酸素(空気)を供給する酸素供給手段6と、前記化学反応の際に燃料電池1から排出されるオフガスを圧縮する圧縮手段7と、酸素や水素を流す複数の流路その他の構成部品とを有する。
<燃料電池>
燃料電池1は、周知のごとく、反応がすすむ場である電解質膜と、電解質膜の両側にそれぞれ位置し燃料の水素が供給される燃料極としてのアノードと、酸素が供給される空気極としてのカソードと、水素及び酸素を隔てる仕切り板としてのセパレータとを有するセルを複数積層して構成されるスタック(燃料電池本体)を含む。なお、電解質膜、アノード、カソード、セパレータ及びセル並びにスタックは図示を省略した。
また燃料電池1は、アノードに水素を供給する水素ガス流路14及びカソードに酸素を供給する酸素ガス流路16を有する。
水素ガス流路14は、水素吸蔵合金タンク3と接続されており、水素吸蔵合金タンク3からアノードに水素リッチな水素ガスを供給するガス流路である。
酸素ガス流路16は、酸素供給手段であるターボチャージャ6のコンプレッサ・ホイール・アセンブリ61と連結され、大気中から燃料電池1に酸素を供給するガス流路である。
燃料電池1は、アノードに水素ガスが送り込まれると、水素ガス中の水素から水素イオンを生成し(H2→2H++2e-)、カソードに酸素ガスが送り込まれると、水素イオン
と酸素とから水を生成し((1/2)O2+2H++2e-→H2O)、電気を発生する。なお、生成された水のほとんどは、燃料電池1内で発生する熱を吸収して水蒸気となり、カソード側の排ガスであるカソード・オフガス中に含まれて燃料電池1から排出される。
またアノード側の排ガスであるアノードオフガスは、アノードオフガス流路22から大気中に排出される。アノードオフガス流路22と水素ガス流路14とは、連結流路28によって連結されている。連結流路28は、ポンプ30と逆止弁34とを有する。
連結流路28に送られたアノードオフガスは、ポンプ30の作動によって水素ガス流路14に送られ、再び燃料電池1のアノードに送られて再利用される。なお、逆止弁34により、水素ガス流路14からアノードオフガス流路22に向けて水素ガスは流れない。このような循環系をアノード循環系という。
さらにアノードオフガス流路22には不純物排出弁24が接続されている。不純物排出弁24は、アノードオフガス中に占める不純物の割合が、アノード循環系をアノードオフガスが循環することで多くなった場合に開かれる。不純物排出弁24を開くことでアノードオフガスの水素ガス流路14への流れは抑制され、不純物を多く含むアノードオフガスを再利用しないようにする。
一方、前記カソード・オフガスは、燃料電池1から排出されると、カソード・オフガス流路36を経由して、水素吸蔵合金タンク3に流される。カソード・オフガス流路36は、カソード・オフガス流路36の上流側で、連結流路40を介して前記酸素ガス流路16と連結されている。
この連結流路40を経由して、カソード・オフガスの一部は、酸素ガス流路16に戻される。連結流路40には、酸素ガス流路16に戻されるカソード・オフガスの流量を調整する空気循環弁42が設けられている。このような循環系をカソード循環系という。
加えて、カソード・オフガス流路36のうち、連結流路40に分岐する箇所よりも下流箇所には、圧縮手段であるエア・コンプレッサ7が設置されている。
<エア・コンプレッサ>
エア・コンプレッサ7は、通常は、燃料電池1によって駆動し、1〜5kw程度の駆動力(定格出力)を有する。また、当該エア・コンプレッサ7によって、カソード・オフガスは圧縮されて高圧なオフガスになり、ボイル・シャルルの法則により昇温する。よってエア・コンプレッサ7は、カソード・オフガスを暖めるための加熱手段ということができる。なお、エア・コンプレッサ7により圧縮されて高圧にされたカソード・オフガスのことをカソード圧縮オフガスということにする。
燃料電池1から排出されるカソード・オフガスの圧縮率を、エア・コンプレッサ7により調整することで、カソード圧縮オフガスの温度を変更できる。カソード圧縮オフガスの温度が所定範囲になるようにカソード・オフガスは圧縮される。当該所定範囲は、マグネシウム系の水素吸蔵合金から水素を放出させるのに必要な150〜400℃である。
エア・コンプレッサ7から排出されるカソード圧縮オフガスの温度は、エア・コンプレッサ7の下流に設置されている排気温度センサ47によってモニターされる。
カソード圧縮オフガスは、カソード・オフガス流路36のうち、エア・コンプレッサ7の設置箇所よりも下流の部分36aによってさらに下流の前記水素吸蔵合金タンク3に案内される。水素吸蔵合金タンク3に案内されたカソード圧縮オフガスは、水素吸蔵合金を加熱する加熱媒体として機能する。そして、水素吸蔵合金と熱交換を行った後、大気放出路361経由で水素吸蔵合金タンク3から大気へ放出される。
よって、カソード・オフガス流路36のうち、エア・コンプレッサ7の設置箇所よりも下流の部分36aは、エア・コンプレッサ7で圧縮されることにより温度上昇したカソード圧縮オフガスを水素吸蔵合金タンク3に案内し、当該水素吸蔵合金を加熱するのに用いられるので加熱手段ということができる。
また、エア・コンプレッサ7は、既述のように、カソード・オフガスを暖めるための加熱手段である。しかし、エア・コンプレッサ7は、カソード・オフガスを暖め、当該暖められたカソード・オフガスによって水素吸蔵合金タンク3を暖めるので、エア・コンプレッサ7も水素吸蔵合金を加熱するのに用いられる加熱手段といってもよい。
なお、水素吸蔵合金の加熱にあたり、カソード圧縮オフガスは、水素吸蔵合金タンク3を間接的又は/及び直接的に暖める。間接的に暖める場合は、カソード圧縮オフガスによって水素吸蔵合金タンク3の図示しない外壁を暖め、外壁から水素吸蔵合金タンク3内に熱伝導させればよい。また、直接的に暖める場合は、カソード圧縮オフガスによって、水素吸蔵合金タンク3の内部を貫通するオフガス通路を設け、カソード圧縮オフガスを通過させればよい。
いずれの場合もカソード圧縮オフガスを水素吸蔵合金タンク3に案内する間に、カソード圧縮オフガスと水素吸蔵合金との間で熱交換する。よってこのような構成を有する水素吸蔵合金タンク3を熱交換手段といえる。
また大気放出路361には、可変調圧ノズル361nが設置されている。そして、その下流は、ターボチャージャ6のタービン・ホイール・アッセンブリ62と連結されている。したがって、大気放出路361を流れてくるカソード圧縮オフガスは、タービン・ホイール・アッセンブリ62のタービン・ホイール62aを回転し、ターボチャージャ6の駆動力となる。
また、大気放出路361を流れるカソード圧縮オフガスは、前記可変調圧ノズル361nの図示しないノズル開口を調整することにより、圧力調整が行われる。
そして、当該圧力調整によりカソード圧縮オフガスの圧力を低くすれば、高速のカソード圧縮オフガスをターボチャージャ6に供給することができる。その結果、当該カソード圧縮オフガスは、タービン・ホイール62aを高速で回転する。
<ターボチャージャ>
酸素供給手段であるターボチャージャ6は、コンプレッサ・ホイール・アッセンブリ61のコンプレッサ・ホイール61aと、タービン・ホイール・アッセンブリ62のタービン・ホイール62aとが、シャフト63によって連結されている。したがって、タービン・ホイール62aが回転するとコンプレッサ・ホイール61aも回転する。コンプレッサ・ホイール61aが回転すると、酸素ガス流路16経由で大気中の空気が吸い込まれ、かつ圧縮されて燃料電池1のカソードに送り込まれる。
なお、通常、エア・コンプレッサ7は、燃料電池1によって駆動されるようになっているが、低温時や始動直後は、燃料電池1がまだ十分に機能していないので、エア・コンプレッサ7が作動しない。従って、燃料電池が非作動時などの低温時には、自動車に積載してあるバッテリーを用いてエア・コンプレッサ7を駆動する。
<フローチャート>
次に図2のフローチャートを参照して、カソード圧縮オフガスで水素吸蔵合金タンク3の水素吸蔵合金を暖めて水素吸蔵合金から水素を放出するまでの、一連の流れを説明する。当該流れは、前記制御装置が実行する主制御プログラムの中で繰り返し実行される。
ステップ(以下S)1では、制御装置は、カソード・オフガスが燃料電池から放出されているか否かを判定する。肯定判定すれば、S2に進み、否定判定すればS1を繰り返す。
S2では、制御装置は、燃料電池が十分に作動していない低温時や始動直後か否かを判定する。肯定判定すれば、S3に進み、否定判定すればS4に進む。S2でこのような判定を行うのは、既述のように低温時や始動直後は、燃料電池1がまだ十分に機能していないので、エア・コンプレッサ7が作動しないためである。
S3では、制御装置は、自動車に積載してあるバッテリーを用いてエア・コンプレッサ7を駆動する。
S4では、制御装置は、カソード圧縮オフガスの温度が、前記所定範囲(150〜400℃)にあるか否かを排気温度センサ47によってモニターし判定する。当該所定範囲の温度になければ、マグネシウム系の水素吸蔵合金を使用することができないからである。制御装置は、S4で肯定判定すればS5に進み、否定判定すればS4を繰り返す。
S5では、制御装置は、水素吸蔵合金タンクへカソード圧縮オフガスを導入する。
S6では、制御装置は、水素吸蔵合金タンクから水素が放出されたか否かを判定する。肯定判定すれば、S4に戻り、否定判定すればS7に進む。カソード圧縮オフガスの温度が前記所定範囲にあれば、当該カソード圧縮オフガスが供給された水素吸蔵合金は、水素を放出するはずである。
しかし、水素吸蔵合金タンク3の全体が十分な温度に達していない場合が考えられる。その場合、前記所定範囲に温度があるカソード圧縮オフガスを水素吸蔵合金に供給しても水素吸蔵合金から水素が放出されない、又は放出されにくいこともあり得る。したがって、このような判定を行うことが好ましい。
S7では、制御装置は、エア・コンプレッサを調整し、カソード圧縮オフガスの圧縮率を高める。圧縮率を高めることでカソード圧縮オフガスの温度は高まる。この結果、水素吸蔵合金タンクの全体が昇温するため、水素吸蔵合金から水素が放出され易くなる。なお、カソード圧縮オフガスが許容値よりも高圧になると圧縮率を低減するようにしてもよい。またユーザによる停止の指示を受け付けて図2の処理を停止するようにしてもよい。
次に図3及び表1を参照して、カソード圧縮オフガスの温度(吐出温度)と、カソード圧縮オフガスの圧力(吐出圧力)との関係を説明する。
図3は、縦軸左側にエア・コンプレッサ7から吐出されるカソード圧縮オフガスの温度(吐出温度)を取り、縦軸右側にコンプレッサの定格出力(駆動力)を取り、横軸にエア・コンプレッサ7から吐出されるカソード圧縮オフガスの圧力(吐出圧力)を取ってなる、吐出温度・駆動力−吐出圧力線図である。また、表1は、図3に関する詳細なデータである。
Figure 2009032460
図3及び表1より、水素吸蔵合金タンク3の水素吸蔵合金から水素を放出させるのに、例えば、約400℃のカソード圧縮オフガスが必要な場合、エア・コンプレッサ7は、その吸入(入口)温度が100℃で、吐出圧力を約4barで駆動すれば良いことが判る。
そして、その時のエア・コンプレッサ7の駆動力は、空気流速が1000L/minの場合で約6.8kwであることがわかる(表1のデータ(ア)参照)。
同様に約180℃のカソード圧縮オフガスが必要な場合、エア・コンプレッサ7は、その吸入温度が60℃で、その吐出圧力を約2barで駆動すればよいことがわかる。そして、その時のエア・コンプレッサ7の駆動力は、空気流速が3000L/minの場合で約8.2kwであることがわかる(表1のデータ(イ)参照)。
<作用効果>
本システムSでは、エア・コンプレッサ7によりカソード・オフガスが圧縮されて、高圧なカソード圧縮オフガスになると、カソード圧縮オフガスは、ボイル・シャルルの法則により昇温する。このときカソード・オフガスの圧縮率を調整することで、カソード圧縮オフガスを好適な温度に変更できる。
非圧縮状態でのオフガス温度が60〜80℃であっても、カソード・オフガスの圧縮率の調整によりカソード圧縮オフガスの温度を150〜400℃にすれば、水素放出温度の低いアミド系などの水素吸蔵合金に限定されることなく、水素放出温度の高い例えばマグネシウム系の水素吸蔵合金を利用できる。
マグネシウム系の水素吸蔵合金はまた単位体積重量が小さい。よって、水素吸蔵合金タンク3の軽量化を図ることができる。なお、マグネシウム系の水素吸蔵合金の水素有効吸蔵量は、質量百分率で6.5mass%であり、アミド系などの水素吸蔵合金の水素有効吸蔵量は、2.5mass%である。よって、マグネシウム系の水素吸蔵合金を利用できれば、水素吸蔵合金タンク3から放出される水素量も増加する。
以上に述べたように、カソード・オフガスの圧縮率の調整をエア・コンプレッサ7で行うことにより、カソード圧縮オフガスの温度を高めることができる。したがって、高温度でなければ水素を放出しない、既述のようなマグネシウム系の水素吸蔵合金からでも、電気ヒータなくして、水素を放出させることができる。
そして、カソード圧縮オフガスを利用して、ターボチャージャ6を駆動させることができるので、大量の空気を圧縮状態で燃料電池1のカソードに送り込むことができる。よって圧縮オフガスの有効利用をさらに図ることができる。換言すると圧縮オフガスを利用してターボチャージャ6を駆動させるためのエネルギーの回収ができるので、吸気効率を上げ、燃費を向上させることができる。
なお、酸素ガス流路16にもエア・コンプレッサを設け、すなわち燃料電池1のカソードよりも上流にエア・コンプレッサを設けることにより、カソードへ酸素を供給することも考えられる。この場合、エア・コンプレッサが作動すると、カソードへは酸素が押し込まれるように供給される。
これに対し、既述のように、カソード・オフガス流路36上にエア・コンプレッサを設置すると、エア・コンプレッサはカソードよりも下流に設置されることになる。そして、カソード・オフガスは、エア・コンプレッサ側に吸引されるようにして燃料電池1から排出され、それに伴い、カソードに供給される酸素は、酸素ガス流路16から吸引されるようにして燃料電池1に供給されるようになる。
燃料電池に対して気体を押し込む力よりも引っぱる力の方が少なくて済む。よって、エア・コンプレッサをカソードの上流に設けるよりも下流に設けた方が、エア・コンプレッサの定格出力を小さくすることができる。
また、カソードに酸素が送り込まれると、既述のように水素イオンと酸素とから水を生成し、生成された水がカソードに貯まることが考えられる。
しかし、エア・コンプレッサをカソードの下流に設けると、カソードから吸引されることに伴って水の吸い出しがなされるようになる。この結果、カソードに水が貯まらなくなる。よって冬季において、燃料電池に水が凍結してしまうことを抑制できる。
なお、カソード・オフガスには、水蒸気が含まれているので、エア・コンプレッサ7により圧縮することで、当該水蒸気は液体になる。このため、水蒸気が液体になるときの凝縮熱(潜熱)によってカソード・オフガスの昇温に寄与することができる。
図4は、水の気液臨海線を示すため、縦軸に圧力をとり、横軸に温度をとってなる圧力−温度線図である。また図5は図4の拡大図である。さらに表2は図4に関する詳細なデータである。
Figure 2009032460
図4及び5並びに表2より、表2に示す温度で水素を放出することができる水素吸蔵合金であれば、エア・コンプレッサの圧力を約3〜8barの値に設定することで、水の凝
縮熱(2.3kJ/g)の排熱を回収可能であることがわかる。
なお、表2よりエア・コンプレッサの圧力が4.3688barの場合、水の凝縮熱の排熱温度は146.85℃であり、エア・コンプレッサの圧力が約7.33barの場合、水の凝縮熱の排熱温度は166.85℃であることがわかる。なお、区切りの良い数値として、表2の下方にエア・コンプレッサの圧力が3〜8barの場合、それぞれに対応する水の凝縮熱の排熱温度が132〜176であることを示す。
この場合、マグネシウム系の水素吸蔵合金は、水素を放出する温度が既述のように150〜400℃であるので、凝縮熱を利用してマグネシウム系の水素吸蔵合金から水素を放出させるのは少し無理がある。
しかし、アミド系の水素吸蔵合金は、水素を放出する温度が既述のように150℃以下であるので、凝縮熱を利用してアミド系の水素吸蔵合金から水素を放出させることができる。
また、燃料電池そのものを昇温できれば、カソード・オフガスの温度も自ずと上昇する。よって、その場合、カソード圧縮オフガスの昇温に一層寄与する。
なお、上記実施例に本発明の範囲が限定される趣旨でないことは勿論である。
本発明に係る燃料電池システムの全体構成図である。 カソード圧縮オフガスで、水素吸蔵合金タンクの水素吸蔵合金を暖めて、水素吸蔵合金から水素を放出するまでの一連の流れを説明するためのフローチャートである。 エア・コンプレッサの吐出温度・駆動力−吐出圧力線図である。 水の気液臨海線を示すための圧力−温度線図である。 図4の部分拡大図である。
符号の説明
1 燃料電池
3 水素吸蔵合金タンク(水素吸蔵合金,熱交換手段)
6 ターボチャージャ(タービン)
7 エア・コンプレッサ(圧縮手段)
14 水素ガス流路
16 酸素ガス流路
22 アノードオフガス流路
24 不純物排出弁
28 連結流路
30 ポンプ
34 逆止弁
36 カソード・オフガス流路(流路)
36a カソード・オフガス流路のうち、エア・コンプレッサの設置箇所よりも下流の部分
40 連結流路
42 空気循環弁
47 排気温度センサ
61 コンプレッサ・ホイール・アッセンブリ
61a コンプレッサ・ホイール
62 タービン・ホイール・アッセンブリ
62a タービン・ホイール
361 大気放出路
361n 可変調圧ノズル
S 燃料電池システム

Claims (4)

  1. 燃料電池と、
    加熱されると水素を放出し、燃料電池に水素を供給する水素吸蔵合金と、
    燃料電池から排出されるオフガスを圧縮により温度上昇させる圧縮手段と、
    前記圧縮されたオフガスと前記水素吸蔵合金との間で熱交換する熱交換手段と、
    を備えることを特徴とする燃料電池システム。
  2. 前記オフガスは、前記燃料電池の空気極であるカソードから排出されるカソード・オフガスであることを特徴とする請求項1に記載の燃料電池システム。
  3. 前記圧縮手段は、前記オフガスが150〜400℃になるように前記オフガスを圧縮することを特徴とする請求項1又は2に記載の燃料電池システム。
  4. 前記圧縮されたオフガスからエネルギーを回収するタービンを有することを特徴とする請求項1〜3のいずれか1項に記載の燃料電池システム。
JP2007193669A 2007-07-25 2007-07-25 燃料電池システム Withdrawn JP2009032460A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007193669A JP2009032460A (ja) 2007-07-25 2007-07-25 燃料電池システム
PCT/IB2008/001906 WO2009013595A1 (en) 2007-07-25 2008-07-23 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193669A JP2009032460A (ja) 2007-07-25 2007-07-25 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2009032460A true JP2009032460A (ja) 2009-02-12

Family

ID=39940574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193669A Withdrawn JP2009032460A (ja) 2007-07-25 2007-07-25 燃料電池システム

Country Status (2)

Country Link
JP (1) JP2009032460A (ja)
WO (1) WO2009013595A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111725543B (zh) * 2020-06-30 2021-09-24 上海捷氢科技有限公司 一种氢燃料电池及其控制方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131038B2 (ja) * 1998-06-26 2008-08-13 株式会社エクォス・リサーチ 燃料電池システム
JP4575551B2 (ja) * 2000-05-30 2010-11-04 本田技研工業株式会社 燃料電池用ガス供給装置
JP4843147B2 (ja) * 2000-05-30 2011-12-21 本田技研工業株式会社 燃料電池暖機システム
US20020112479A1 (en) * 2001-01-09 2002-08-22 Keefer Bowie G. Power plant with energy recovery from fuel storage
JP3918757B2 (ja) * 2003-03-27 2007-05-23 日産自動車株式会社 燃料電池システム

Also Published As

Publication number Publication date
WO2009013595A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP2007242280A (ja) 燃料電池システム
JP4632055B2 (ja) 燃料電池システム及びその液体排出方法
JP2010020924A (ja) 燃料電池システム
JP5215582B2 (ja) 燃料電池システム
US11715838B2 (en) Fuel cell startup/shutdown degradation mitigation by removal of oxygen ad/absorption media
JP2008522367A (ja) 停止工程中に作動可能な燃料電池システムによって動力を与えられるリアクタント用空気ポンプによる水の除去
JP2009032460A (ja) 燃料電池システム
JP2014203723A (ja) 燃料電池システムおよび燃料電池システムの制御方法
JP2010009855A (ja) 燃料電池装置
JP2007053015A (ja) 燃料電池システム
JP2009117139A (ja) 燃料電池システム
JP2008215175A (ja) コンプレッサ及びこれを備えた燃料電池システム
JP2006331822A (ja) 燃料電池システム
JP2012221657A (ja) 燃料電池システム
JP6726393B2 (ja) 燃料電池システム
JP2008130236A (ja) 燃料電池システム
JP2009004169A (ja) 燃料電池システム
JP2007311270A (ja) 燃料電池システム、および燃料電池システムを搭載した車両
JP2007073292A (ja) 燃料電池システム
JP3561659B2 (ja) 燃料電池システム
JP2008226676A (ja) 燃料電池システム
JP2008016217A (ja) 燃料電池システム
JP2019033046A (ja) 燃料電池システム
JP2013051096A (ja) 燃料電池システム及びオフガスの処理方法
US20230072408A1 (en) Fuel cell system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20101005