JP2009029662A - Method for manufacturing nitride semiconductor substrate - Google Patents

Method for manufacturing nitride semiconductor substrate Download PDF

Info

Publication number
JP2009029662A
JP2009029662A JP2007195672A JP2007195672A JP2009029662A JP 2009029662 A JP2009029662 A JP 2009029662A JP 2007195672 A JP2007195672 A JP 2007195672A JP 2007195672 A JP2007195672 A JP 2007195672A JP 2009029662 A JP2009029662 A JP 2009029662A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
plane
crystal
substrate
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007195672A
Other languages
Japanese (ja)
Other versions
JP5045292B2 (en
Inventor
Narihiro Doi
成博 土井
Kazumasa Kiyomi
和正 清見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007195672A priority Critical patent/JP5045292B2/en
Publication of JP2009029662A publication Critical patent/JP2009029662A/en
Application granted granted Critical
Publication of JP5045292B2 publication Critical patent/JP5045292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride semiconductor substrate having a less fluctuation in the direction of a grating surface in the surface and between substrates from a curved nitride semiconductor crystal. <P>SOLUTION: A layer reformed by processing 13 is introduced into the concave surface of a curved nitride semiconductor crystal 12 grown epitaxially on a different kind of substrate by grinding with diamond abrasives or the like. By introducing the layer reformed by processing 13, the radius of curvature of the nitride semiconductor crystal 12 is enlarged and the grating surface direction [hkil] or [hkl] at each point on the surface is parallelized. From the nitride semiconductor crystal 12 in this state, a plurality of substrates 14 are cut out by slicing from the surface 12a to the back 12b. Because the angle between the surface of the substrate and a specific crystal grating surface becomes almost equal in the surface of the substrate 14 thus obtained, a plurality of substrates 14 having a uniform crystal grating surface can be cut out from the curved nitride semiconductor crystal 12. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、異種基板上にエピタキシャル成長させて得られた湾曲した窒化物半導体結晶から、結晶面方向の面内ばらつきが少ない窒化物半導体基板を得るための方法に関する。   The present invention relates to a method for obtaining a nitride semiconductor substrate with little in-plane variation in the crystal plane direction from a curved nitride semiconductor crystal obtained by epitaxial growth on a different substrate.

窒化ガリウム(GaN)をはじめとする窒化物半導体結晶は、青色発光素子と蛍光体との組み合わせにより白色を得る光源などの半導体装置に用いられる材料として盛んな研究が行われてきている。窒化物半導体結晶は主に、有機金属気相成長法(MOCVD法)や分子線エピタキシ法(MBE法)あるいはハイドライド気相成長法(HVPE法)といったエピタキシャル成長の手法により、異種基板上に育成される。   Nitride semiconductor crystals such as gallium nitride (GaN) have been actively studied as materials used in semiconductor devices such as a light source that obtains white color by combining a blue light emitting element and a phosphor. Nitride semiconductor crystals are grown on heterogeneous substrates mainly by epitaxial growth techniques such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), or hydride vapor deposition (HVPE). .

ところで、異種基板上にエピタキシャル成長させて得られる窒化物半導体結晶は、下地基板との熱膨張率の違いや格子不整合により内部応力が生じて結晶成長中に反りを生じ易く、特に、厚膜に結晶成長させて得られた窒化物半導体結晶は下地基板を除去した単独膜の状態でも大きく反ったものとなる。   By the way, a nitride semiconductor crystal obtained by epitaxial growth on a heterogeneous substrate is likely to be warped during crystal growth due to a difference in thermal expansion coefficient from a base substrate or lattice mismatch, and is likely to be warped during crystal growth. The nitride semiconductor crystal obtained by crystal growth is greatly warped even in the state of a single film with the base substrate removed.

このような湾曲した窒化物半導体単独膜の反りを低減させる手法として、凹型に反った方の面にダイヤモンド砥石を用いた研削によって加工変質層を形成して平坦化するという手法が報告されている(特許文献1:特開2005−136167号公報)。そしてこの手法によれば、窒化物半導体結晶の基板としての幾何学的な反りは、例えば±40μm〜±100μm程度から+30μm〜−20μm程度へと低減されるとされる。   As a technique for reducing the curvature of such a curved nitride semiconductor single film, a technique has been reported in which a work-affected layer is formed and flattened by grinding using a diamond grindstone on the surface warped in a concave shape. (Patent Document 1: Japanese Patent Application Laid-Open No. 2005-136167). According to this technique, the geometrical warpage of the nitride semiconductor crystal as a substrate is reduced, for example, from about ± 40 μm to ± 100 μm to about +30 μm to −20 μm.

このような基板の幾何学的な反りの低減は、当該基板上に素子を形成する際のデバイスプロセス上の要求に応え得るものである。しかし、歩留まり良く半導体素子を作製するという観点からは、基板を幾何学的に平坦なものとするだけでは、十分とはいえない。その理由は、半導体素子としての特性を設計どおりのものとするためには、基板の面内で、結晶面方向のばらつきが少ないことが求められるところ、基板が幾何学的に平坦であることは必ずしも、基板の面内で結晶面方向のばらつきが少ないことを意味しないからである。   Such reduction of the geometrical warpage of the substrate can meet the demands on the device process when forming elements on the substrate. However, from the viewpoint of manufacturing a semiconductor element with a high yield, it is not sufficient to make the substrate geometrically flat. The reason is that in order to achieve the characteristics of the semiconductor device as designed, it is required that the variation in the crystal plane direction is small within the plane of the substrate. However, the substrate is geometrically flat. This is because it does not necessarily mean that there is little variation in the crystal plane direction within the plane of the substrate.

例えば、比較的大型の窒化物半導体結晶を育成しておいてその結晶から複数の基板を切り出す場合、結晶の中心部と周辺部とで結晶面方向が異なる場合には、当該結晶から切り出されて得られた基板の内での結晶面方向のばらつきが無視できないのみならず、基板間での結晶面方向ばらつきも大きくなり、半導体素子の製造歩留まりは下がることとなる。   For example, when a relatively large nitride semiconductor crystal is grown and a plurality of substrates are cut out from the crystal, if the crystal plane direction is different between the central portion and the peripheral portion of the crystal, the substrate is cut out from the crystal. The variation in crystal plane direction among the obtained substrates cannot be ignored but also the crystal plane direction variation between the substrates increases, and the manufacturing yield of semiconductor elements decreases.

また、半導体素子によっては、結晶成長面にではなく、これと特定の角度をなす特殊な結晶面に作製することとなるが、結晶部位によって結晶面方向が異なる場合には、そのような特殊な結晶面を主面とする基板を切り出すための高精度な方位合わせも困難である。
特開2005−136167号公報
In addition, some semiconductor devices are manufactured not on the crystal growth plane but on a special crystal plane that forms a specific angle with the crystal growth plane. It is also difficult to align the orientation with high precision for cutting out a substrate having a crystal plane as a main surface.
JP 2005-136167 A

本発明は、このような問題に鑑みてなされたもので、その目的とするところは、異種基板上にエピタキシャル成長させて得られた湾曲した窒化物半導体結晶から、面内および基板間で結晶面方向(格子面方向)のばらつきが少ない複数の窒化物半導体基板を得る方法を提供することにある。   The present invention has been made in view of such problems. The object of the present invention is to provide a crystal plane direction in a plane and between substrates from a curved nitride semiconductor crystal obtained by epitaxial growth on a heterogeneous substrate. An object of the present invention is to provide a method for obtaining a plurality of nitride semiconductor substrates with less variation in (lattice plane direction).

このような課題を解決するために、本発明の窒化物半導体基板の製造方法は、異種基板上にエピタキシャル成長させて得られた窒化物半導体結晶の面内各点での格子面方向[hkil]若しくは[hkl]が互いに平行となるように前記窒化物半導体結晶の少なくとも一方主面に加工変質層を形成し、その後前記窒化物半導体結晶を切断することを特徴とする。   In order to solve such a problem, the method for manufacturing a nitride semiconductor substrate according to the present invention includes a lattice plane direction [hkil] at each point in the plane of a nitride semiconductor crystal obtained by epitaxial growth on a heterogeneous substrate, or A work-affected layer is formed on at least one main surface of the nitride semiconductor crystal so that [hkl] are parallel to each other, and then the nitride semiconductor crystal is cut.

好ましくは、前記切断はワイヤーソーを使用し、平行に一度に複数分割される。   Preferably, the cutting uses a wire saw and is divided into a plurality of parts at a time in parallel.

前記切断される結晶面は、例えば、C面(極性面)、A面またはM面(非極性面)、若しくはC面に対して傾斜する半極性面である。   The crystal plane to be cut is, for example, a C plane (polar plane), an A plane or an M plane (nonpolar plane), or a semipolar plane inclined with respect to the C plane.

本発明において、好ましくは、前記格子面方向[hkil]若しくは[hkl]の結晶面内での平行度は1度以内である。   In the present invention, preferably, the parallelism in the crystal plane in the lattice plane direction [hkil] or [hkl] is within 1 degree.

また、本発明において、前記窒化物半導体基板から前記加工変質層を取り除く工程を更に備えるようにしてもよい。   The present invention may further include a step of removing the work-affected layer from the nitride semiconductor substrate.

前記窒化物半導体結晶は、例えば、窒化ガリウム系結晶である。   The nitride semiconductor crystal is, for example, a gallium nitride based crystal.

本発明の窒化物半導体ウエーハは、平板状でない窒化物半導体ウエーハにおいて、面内各点での格子面方向[hkil]若しくは[hkl]が使用面と直交することを特徴とする。   The nitride semiconductor wafer of the present invention is characterized in that, in a nitride semiconductor wafer that is not flat, the lattice plane direction [hkil] or [hkl] at each point in the plane is orthogonal to the use surface.

本発明の窒化物半導体ウエーハは、少なくとも端面の一部に加工変質層が形成されているものとすることができる。   The nitride semiconductor wafer of the present invention may have a work-affected layer formed on at least a part of the end face.

本発明は、窒化物半導体結晶の湾曲を加工変質層の導入により制御し、面内各点での格子面方向[hkil]若しくは[hkl]を平行化した状態の窒化物半導体結晶から基板を切り出すこととしたので、基板表面と特定の結晶格子面とが成す角度が基板の面内で略同じとなる。このため、湾曲した窒化物半導体結晶から、結晶格子面が揃った複数の基板を切り出すことが可能となる。   The present invention controls the curvature of a nitride semiconductor crystal by introducing a work-affected layer, and cuts the substrate from the nitride semiconductor crystal in a state in which the lattice plane direction [hkil] or [hkl] is parallelized at each point in the plane. As a result, the angle formed by the substrate surface and the specific crystal lattice plane is substantially the same in the plane of the substrate. For this reason, it is possible to cut out a plurality of substrates having a uniform crystal lattice plane from a curved nitride semiconductor crystal.

また、窒化物半導体結晶の面内各点での格子面方向[hkil]若しくは[hkl]が平行だと、ワイヤーソーで一度に平行に複数切断すると、結晶格子面が揃った基板を同時に多数切り出せるので、生産効率を向上させることができる。   In addition, if the lattice plane direction [hkil] or [hkl] at each point in the plane of the nitride semiconductor crystal is parallel, a plurality of substrates with aligned crystal lattice planes can be simultaneously cut by cutting multiple pieces in parallel with a wire saw. Production efficiency can be improved.

更に、加工変質層を形成した窒化物半導体結晶から同時に多数の基板を切り出した後は、必要に応じて加工変質層を除去してもよく、この場合、切り出された多数の基板は再び反る方向に変形してしまうが、切り出された各基板は略同じように変形するため、切り出された各基板の面内での結晶面方向のばらつきは、湾曲した窒化物半導体結晶をそのままの状態で一度に平行に複数スライスして多数の基板を切り出した場合に比べて、少なくできる。   Furthermore, after a large number of substrates are simultaneously cut out from the nitride semiconductor crystal on which the work-affected layer is formed, the work-affected layer may be removed as necessary. In this case, the cut many substrates are warped again. However, since each cut substrate deforms in substantially the same manner, the variation in crystal plane direction within the cut substrate surface remains unchanged in the curved nitride semiconductor crystal. Compared to a case where a large number of substrates are cut out by slicing a plurality of parallel portions at once, the number can be reduced.

通常窒化物半導体結晶は、ある程度大きい状態にエピタキシャル成長で作られ、次に薄いウエーハにスライスされ、その後この薄いウエーハを細かく分割して多数の半導体素子を製造するのに用いられることが多い。   In general, nitride semiconductor crystals are often epitaxially grown to a certain size, then sliced into thin wafers, and then used to manufacture a large number of semiconductor devices by finely dividing the thin wafer.

上述の窒化物半導体結晶に加工変質層を形成して面内各点での格子面方向[hkil]若しくは[hkl]を平行化した後にワイヤーソーで一度に平行に複数切断する方法で、薄いウエーハ状に切り出し、研磨やエッチングなどの半導体ウエーハに対し通常行われる表面仕上げ方法により加工変質層を除去して窒化物半導体ウエーハを作ると、この窒化物半導体ウエーハは上記のように再び反る方向に変形してしまうが、窒化物半導体ウエーハの切断面と共に内部の結晶構造も変形するため、切断面の面内各点で格子面方向[hkil]若しくは[hkl]と切断面との交わる角度は同一となる。   A thin wafer is formed by forming a work-affected layer on the above-mentioned nitride semiconductor crystal and parallelizing the lattice plane direction [hkil] or [hkl] at each point in the plane, and then cutting a plurality of pieces in parallel with a wire saw. When the nitride semiconductor wafer is made by removing the work-affected layer by a surface finishing method usually performed on a semiconductor wafer such as polishing or etching, the nitride semiconductor wafer is warped again as described above. However, since the internal crystal structure is also deformed together with the cut surface of the nitride semiconductor wafer, the angle at which the lattice plane direction [hkil] or [hkl] and the cut surface intersect is the same at each point in the cut surface. It becomes.

このようにして作られた窒化物半導体ウエーハの切断面を研磨し、デバイスを形成するための使用面とし、へき開面を基準として細かく分割すると、分割された各窒化物半導体結晶の内部の結晶構造は略同一となるため、この分割された各窒化物半導体結晶を用いて多数の半導体素子を製造すると、半導体素子の性能のばらつきを少なくすることができる。   When the cut surface of the nitride semiconductor wafer thus produced is polished and used as a use surface for forming a device, and divided finely on the basis of the cleavage plane, the internal crystal structure of each divided nitride semiconductor crystal Therefore, when a large number of semiconductor elements are manufactured using each of the divided nitride semiconductor crystals, the variation in performance of the semiconductor elements can be reduced.

しかし、窒化物半導体ウエーハの使用目的によっては、無理に加工変質層を除去する必要はない。   However, depending on the purpose of use of the nitride semiconductor wafer, it is not necessary to forcibly remove the work-affected layer.

特に、薄い窒化物半導体ウエーハにした時に加工変質層がウエーハの端面部分に来る場合には、半導体素子の製造にほとんど影響を及ぼさないので、除去する必要はない。   In particular, if the work-affected layer comes to the end face portion of the wafer when the nitride semiconductor wafer is made thin, it hardly affects the manufacture of the semiconductor element, so it is not necessary to remove it.

以下に、図面を参照して、本発明を実施するための最良の形態について説明する。なお、以下では、窒化ガリウム系などの窒化物半導体結晶の結晶型は六方晶型であるとして説明し、その格子面指数を(hkil)、格子面方向を[hkil]で示すが、窒化物半導体結晶は立方晶型をも取り得るから、その場合には格子面指数は(hkl)、格子面方向は[hkl]で表記されることとなる。   The best mode for carrying out the present invention will be described below with reference to the drawings. In the following description, it is assumed that the crystal type of a nitride semiconductor crystal such as a gallium nitride type is a hexagonal crystal type, and the lattice plane index is represented by (hkil) and the lattice plane direction is represented by [hkil]. Since the crystal can also take a cubic type, in that case, the lattice plane index is represented by (hkl) and the lattice plane direction is represented by [hkl].

図1(A)乃至(E)は、異種基板11上に窒化物半導体結晶12をエピタキシャル成長させた場合に、結晶成長につれて、窒化物半導体結晶12が湾曲してゆく様子を説明するための図で、ここでは、異種基板11は(0001)面(C面)を主面とする六方晶型のサファイア基板である(図1(A))。   FIGS. 1A to 1E are diagrams for explaining how the nitride semiconductor crystal 12 is curved as the crystal grows when the nitride semiconductor crystal 12 is epitaxially grown on the heterogeneous substrate 11. Here, the heterogeneous substrate 11 is a hexagonal sapphire substrate having a (0001) plane (C plane) as a main surface (FIG. 1A).

サファイア基板上には、基板と同じ六方晶型の窒化物半導体結晶12(ここでは、GaN結晶)がC軸方向にエピタキシャル成長するが、その膜厚が薄い場合には湾曲は生じないから、基板面内で同一の方向(図中に矢印で示した)に結晶成長が進行する(図1(B))。しかし、サファイアとGaNとは約14%の格子不整合があるから、GaNの結晶成長が進行して膜厚が増すにつれてGaN結晶内部に応力が発生し、徐々に湾曲が生じるとともに格子面方向[hkil](図中の矢印方向)が面内でばらつきはじめ(図1(C)−(D))、窒化物半導体結晶12が厚膜である場合には、サファイア基板とGaN結晶との界面に生じた応力によってサファイア基板が自然剥離する場合もある(図1(E))。   On the sapphire substrate, the same hexagonal nitride semiconductor crystal 12 (here, GaN crystal) as that of the substrate is epitaxially grown in the C-axis direction. The crystal growth proceeds in the same direction (indicated by an arrow in the figure) (FIG. 1B). However, since sapphire and GaN have a lattice mismatch of about 14%, as GaN crystal growth progresses and the film thickness increases, stress is generated inside the GaN crystal, resulting in gradual bending and lattice plane direction [ hkil] (in the direction of the arrow in the figure) begins to vary within the plane (FIGS. 1C to 1D), and when the nitride semiconductor crystal 12 is a thick film, the interface is between the sapphire substrate and the GaN crystal. The sapphire substrate may be naturally peeled off due to the generated stress (FIG. 1E).

このようなエピタキシャル成長の結果として得られた窒化物半導体結晶12は、その面内において、格子面方向[hkil]が場所ごとに異なり、湾曲の程度が大きければ大きいほど、格子面方向[hkil]の面内ばらつき(すなわち、図中に示した矢印同士が成す角度)は大きくなる。   In the nitride semiconductor crystal 12 obtained as a result of such epitaxial growth, the lattice plane direction [hkil] varies from place to place within the plane, and the greater the degree of curvature, the greater the lattice plane direction [hkil]. The in-plane variation (that is, the angle formed by the arrows shown in the figure) increases.

図2は、湾曲してエピタキシャル成長した窒化物半導体結晶12の一方の主面に加工変質層13を形成して湾曲の度合いを制御し、これによって窒化物半導体結晶12の面内における格子面方向のばらつきの程度を低減させる様子を説明するための図で、エピタキシャル成長後の湾曲した窒化物半導体結晶12(図2(A))の一方の主面(図1においてサファイア基板側であった面)に加工変質層13を形成している(図2(B)−(C))。   FIG. 2 shows that a work-affected layer 13 is formed on one main surface of the nitride semiconductor crystal 12 that is curved and epitaxially grown to control the degree of curvature, and thereby the lattice semiconductor direction in the plane of the nitride semiconductor crystal 12 is controlled. It is a figure for demonstrating a mode that the grade of dispersion | variation is reduced, and is on one main surface (surface which was the sapphire substrate side in FIG. 1) of the curved nitride semiconductor crystal 12 (FIG. 2 (A)) after epitaxial growth. A work-affected layer 13 is formed (FIGS. 2B to 2C).

エピタキシャル成長で得られた湾曲した窒化物半導体結晶12の凹面側に加工変質層13を導入すると凹面は広がり、加工変質のレベルに応じて平坦化することが知られている(特許文献1参照)。本発明では、湾曲した窒化物半導体結晶12の面内各点での格子面方向[hkil](図中では矢印で結晶成長方向であるC軸方向、すなわち[0001]方向)が互いに平行となるように窒化物半導体結晶12の凹面側に加工変質層13を導入する(図2(C))。なお、このような加工変質層13を、凹面側だけではなく凸面側にも導入するようにしてもよい。   It is known that when a work-affected layer 13 is introduced on the concave surface side of a curved nitride semiconductor crystal 12 obtained by epitaxial growth, the concave surface expands and is flattened according to the level of work deterioration (see Patent Document 1). In the present invention, the lattice plane directions [hkil] (C-axis direction, ie, the [0001] direction, which is the crystal growth direction indicated by an arrow in the drawing) at each point in the plane of the curved nitride semiconductor crystal 12 are parallel to each other. Thus, the work-affected layer 13 is introduced into the concave surface side of the nitride semiconductor crystal 12 (FIG. 2C). Such a work-affected layer 13 may be introduced not only on the concave side but also on the convex side.

図3は、加工変質層13を導入して面内各点での格子面方向[hkil]を平行化した窒化物半導体結晶12から基板を切り出す様子を説明するための図で、図3(A)は窒化物半導体結晶12の側面図、図3(B)は加工変質層13導入後の窒化物半導体結晶12の表面12aから裏面12bに向かって垂直に(すなわち、格子面方向[0001]に平行に)スライスして複数の基板14を得た様子を示す図、そして、図3(C)は得られた基板14の斜視図である。   FIG. 3 is a view for explaining a state in which the substrate is cut out from the nitride semiconductor crystal 12 in which the work-affected layer 13 is introduced and the lattice plane direction [hkil] at each point in the plane is parallelized. ) Is a side view of the nitride semiconductor crystal 12, and FIG. 3B is perpendicular to the front surface 12a to the back surface 12b of the nitride semiconductor crystal 12 after the work-affected layer 13 is introduced (that is, in the lattice plane direction [0001]). The figure which shows a mode that the some board | substrate 14 was obtained by slicing (in parallel), and FIG.3 (C) is a perspective view of the obtained board | substrate 14. FIG.

なお、窒化物半導体結晶12は直径は例えば60mm程度、厚さは5mm程度であり、この結晶から切り出される基板の厚さは例えば0.5mm程度である。このような場合、切り出された基板14は、長さLが60mm、幅Hが5mm、厚さtが0.5mmなどとなる。図3(B)の場合、加工変質層13は基板14の端面部分にあるので、加工変質層13は特には除去しないで、角部の研削、表面の研磨及びエッチングなどの工程により基板14を仕上げる。但し、必要がある場合には、加工変質層13は除去してもよい。   The nitride semiconductor crystal 12 has a diameter of, for example, about 60 mm and a thickness of about 5 mm, and the thickness of the substrate cut out from this crystal is, for example, about 0.5 mm. In such a case, the cut substrate 14 has a length L of 60 mm, a width H of 5 mm, and a thickness t of 0.5 mm. In the case of FIG. 3B, since the work-affected layer 13 is at the end face portion of the substrate 14, the work-affected layer 13 is not particularly removed, and the substrate 14 is removed by processes such as corner grinding, surface polishing and etching. Finish. However, if necessary, the work-affected layer 13 may be removed.

その後、デバイス機能を有する層を積層して、基板14を例えば基板14のへき開面を基準面として0.2mm角に分割して半導体素子の製造に用いる。分割する手段としては、スライス、劈開などの方法がある。   Thereafter, layers having a device function are stacked, and the substrate 14 is divided into 0.2 mm square using, for example, the cleavage plane of the substrate 14 as a reference plane, and used for manufacturing a semiconductor element. As means for dividing, there are methods such as slicing and cleavage.

図3では、スライスされて得られる基板面はC面に垂直な格子面とされているが、窒化物半導体結晶12の結晶成長面がどの格子面であり、切り出して得られた基板14の表面15にどのような素子を形成するかにより、切断される結晶面として、極性面であるC面、非極性面であるA面(すなわち、(11−20)面)またはM面(すなわち、(1−100)面)、若しくはC面に対して傾斜する半極性面などが選択されることとなる。   In FIG. 3, the substrate surface obtained by slicing is a lattice plane perpendicular to the C plane, but the lattice growth surface of the nitride semiconductor crystal 12 is the surface of the substrate 14 obtained by cutting. Depending on what element is formed in 15, the crystal plane to be cut includes a C plane that is a polar plane, an A plane that is a nonpolar plane (that is, a (11-20) plane), or an M plane (that is, ( 1-100) plane), or a semipolar plane inclined with respect to the C plane.

窒化物半導体結晶12を切る方法としては、例えばX線回折法を用いて結晶の方位を調べて切る方向を決め、ワイヤーソーで一度に平行に複数スライスすると、製造効率が向上するので望ましい。勿論、必要に応じて他の方法でスライスしてもかまわない。また、図3(A)では一つの面にのみ加工変質層13を形成しているが、必要に応じて、対向する側の面にも加工変質層13を形成してもかまわない。   As a method of cutting the nitride semiconductor crystal 12, for example, the crystal orientation is examined by using an X-ray diffraction method, and the cutting direction is determined, and a plurality of slices in parallel with a wire saw is preferable because the manufacturing efficiency is improved. Of course, you may slice by another method as needed. Further, in FIG. 3A, the work-affected layer 13 is formed only on one surface, but the work-affected layer 13 may be formed on the opposite surface as necessary.

図4は、加工変質層13を導入して面内各点での格子面方向[hkil]を平行化した窒化物半導体結晶12からウエーハ状の基板を切り出す様子を説明するための図で、図4(A)は窒化物半導体結晶12の側面図、図4(B)は加工変質層13導入後の窒化物半導体結晶12の側面の一方端12cから他方端12dに沿って(すなわち、格子面方向[0001]に垂直に)同時に切断して4枚のウエーハ14を得た様子を示す図、そして、図4(C)は得られたウエーハ14の斜視図である。   FIG. 4 is a diagram for explaining a state in which a wafer-like substrate is cut out from the nitride semiconductor crystal 12 in which the work-affected layer 13 is introduced and the lattice plane direction [hkil] is parallelized at each point in the plane. 4 (A) is a side view of the nitride semiconductor crystal 12, and FIG. 4 (B) is a view from one end 12c to the other end 12d of the side surface of the nitride semiconductor crystal 12 after the work-affected layer 13 is introduced (that is, a lattice plane). FIG. 4C shows a state in which four wafers 14 are obtained by cutting at the same time (perpendicular to the direction [0001]), and FIG. 4C is a perspective view of the obtained wafers 14.

ウエーハ14の厚さは例えば0.5mm程度であるから、切り出されたウエーハ14は、直径Dが60mm、厚さtが0.5mmなどであり、この後、角部の研削、表面の研磨及びエッチングなどの工程により、加工変質層13を除去されてウエーハ14は仕上げられる。そして、デバイス機能を有する層を積層して、ウエーハ14を例えばウエーハ14のへき開面を基準面として0.2mm角に分割して半導体素子の製造に用いられることとなる。図4(A)の場合も、一つの面にのみ加工変質層13を形成しているが、必要に応じて、対向する側の面にも加工変質層13を形成してもかまわない。   Since the thickness of the wafer 14 is, for example, about 0.5 mm, the cut wafer 14 has a diameter D of 60 mm, a thickness t of 0.5 mm, and the like. The process-affected layer 13 is removed by a process such as etching, and the wafer 14 is finished. Then, a layer having a device function is laminated, and the wafer 14 is divided into 0.2 mm square using, for example, the cleaved surface of the wafer 14 as a reference plane, and used for manufacturing semiconductor elements. Also in the case of FIG. 4A, the work-affected layer 13 is formed only on one surface, but the work-affected layer 13 may be formed on the opposite surface as necessary.

つまり、湾曲した窒化物半導体結晶12の面内各点での格子面方向(この図ではC軸方向、すなわち[0001]方向)が互いに平行となるように窒化物半導体結晶12の凹面側に加工変質層13を導入しておき、この状態で、複数のウエーハを同時に切り出すことで基板を得るのである。   That is, processing is performed on the concave surface side of the nitride semiconductor crystal 12 so that the lattice plane directions at each point in the plane of the curved nitride semiconductor crystal 12 (in this figure, the C-axis direction, that is, the [0001] direction) are parallel to each other. The altered layer 13 is introduced, and a substrate is obtained by cutting out a plurality of wafers simultaneously in this state.

ここで、窒化物半導体結晶12から複数のウエーハを同時に切り出すのは、結晶が湾曲しようとする効果は窒化物半導体結晶12の厚さに依存して変化するため、ウエーハを1枚ずつ切り出した場合には、加工変質層13による凹面を広げる効果と上記結晶が湾曲しようとする効果のバランスが崩れ、ウエーハを切り出す工程中に窒化物半導体結晶12の面内各点での格子面方向の平行性が低下してしまうためである。   Here, a plurality of wafers are simultaneously cut out from the nitride semiconductor crystal 12 because the effect of the crystals being curved changes depending on the thickness of the nitride semiconductor crystal 12, so that the wafers are cut out one by one. In this case, the balance between the effect of expanding the concave surface due to the work-affected layer 13 and the effect of the crystal attempting to bend is lost, and the parallelism in the lattice plane direction at each point in the plane of the nitride semiconductor crystal 12 during the process of cutting the wafer. This is because of the decrease.

本発明において、格子面方向[hkil](若しくは[hkl])の結晶面内での平行度は、1度以内であることが好ましい。この程度の平行度であれば、切り出されたウエーハ上にデバイス機能を有する複数層を例えばHVPE法やMOVPE法などで積層したときに、容易に各層の界面を平坦に形成することができる。しかし、上記平行度が1度を超えると、各層の界面を平坦に形成することが急激に困難となり、界面に凹凸ができやすく例えば発光素子とした場合、発光強度の低下の原因となる。また、切り出されたウエーハの上記平行度が1度を超えると、ウエーハ上に形成した層の結晶構造自体にも影響が及び、層形成時に層内部に混入されるドーパント物質の混入量にも偏りを生じ、同様に発光素子とした際に輝度むらを生じてしまう。   In the present invention, the parallelism in the crystal plane in the lattice plane direction [hkil] (or [hkl]) is preferably within 1 degree. With this degree of parallelism, when a plurality of layers having a device function are laminated on the cut wafer by, for example, the HVPE method or the MOVPE method, the interface between the layers can be easily formed flat. However, when the parallelism exceeds 1 degree, it becomes difficult to form the interface of each layer flatly, and unevenness is easily formed on the interface. For example, when a light emitting element is used, the emission intensity is lowered. Further, if the parallelism of the cut wafer exceeds 1 degree, the crystal structure itself of the layer formed on the wafer is affected, and the amount of dopant substance mixed in the layer at the time of layer formation is biased. Similarly, luminance unevenness occurs when a light emitting element is used.

また、窒化物半導体基板を得た後に、当該基板に残存している加工変質層部分を取り除くこととしてもよい。基板を得た後に加工変質層部分を除去した場合には、当該基板(従って素子形成面も)が幾何学的に湾曲を生じる可能性はあるが、仮にそのような湾曲が生じたとしても格子面は基板表面と同じ湾曲状態にあるため、局所的にみた場合の基板表面と格子面との関係は、基板面内において概ね一定の関係に保たれることとなるからである。   Further, after obtaining the nitride semiconductor substrate, the work-affected layer portion remaining on the substrate may be removed. If the work-affected layer portion is removed after obtaining the substrate, the substrate (and thus the element formation surface) may be geometrically curved, but even if such a curvature occurs, the lattice This is because the surface is in the same curved state as the substrate surface, and the relationship between the substrate surface and the lattice plane when viewed locally is maintained in a substantially constant relationship within the substrate surface.

以下に、実施例により本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

C面を主面とする直径60mmのサファイア基板を用い、GaN結晶をC軸方向にエピタキシャル成長させて厚さ約5mmの結晶を得た。この基板はC面側が凹状に湾曲しており、X線回折法によって評価したところ、曲率半径は約3mであった。このGaN結晶の凹状に湾曲している側の面の全面に、粒径30〜40μmのダイアモンド砥粒により、深さ0.05mmの研削を行って加工変質層を導入した。研削加工した結晶表面には、深さ数μmから十数μmの無数の微細なクラックが形成されており、GaN結晶の湾曲度は緩和されて曲率半径は約5mとなった。つまり、格子面方向[0001]の結晶面内での平行度は、約0.7度となった。   Using a sapphire substrate having a diameter of 60 mm with the C-plane as the main surface, a GaN crystal was epitaxially grown in the C-axis direction to obtain a crystal having a thickness of about 5 mm. This substrate had a C-shaped side curved in a concave shape, and its curvature radius was about 3 m as evaluated by X-ray diffraction. A work-affected layer was introduced by grinding the entire surface of the GaN crystal on the concave curved side with a diamond abrasive having a grain size of 30 to 40 μm to a depth of 0.05 mm. An infinite number of fine cracks having a depth of several μm to several tens of μm were formed on the ground crystal surface, and the curvature of the GaN crystal was relaxed to a radius of curvature of about 5 m. That is, the parallelism in the crystal plane in the lattice plane direction [0001] was about 0.7 degrees.

この状態の結晶から、M面の表面をもつ基板を切り出した。具体的には、X線回折法によって結晶の方位を合わせ、結晶の表面と裏面を横切るように、ワイヤーソーで5枚の基板を一度でスライスし、その表面を研磨加工した。   A substrate having an M-plane surface was cut out from the crystal in this state. Specifically, the orientation of the crystal was adjusted by X-ray diffraction, and five substrates were sliced at once with a wire saw so as to cross the front and back surfaces of the crystal, and the surface was polished.

図5は、得られた基板の面内での基板表面と特定の結晶格子面(本実施例ではM面)との成す角度のばらつきの程度をX線回折法で調べた結果を説明するための図で、図5(A)に示したように、基板の面内(研磨面)の中心点(a)と基板周辺の点(b,c,d,e)の計5点について、M面(図では(hkil)と表示)と研磨面(S)が成す角度(図5(B)中のθ)を微小部X線回折の手法で調べた。   FIG. 5 is a graph for explaining the result of examining the degree of variation in angle between the substrate surface and a specific crystal lattice plane (M plane in the present embodiment) in the plane of the obtained substrate by the X-ray diffraction method. 5A, as shown in FIG. 5A, for a total of five points, the center point (a) of the in-plane (polished surface) of the substrate and the points (b, c, d, e) around the substrate, M The angle (θ in FIG. 5B) formed by the surface (indicated as (hkil) in the figure) and the polished surface (S) was examined by a micro X-ray diffraction technique.

本実施例で得られた基板の場合、M面と研磨面が成す角度の最大値は0.5°であった。これに対して、加工変質層を導入することなく切り出した基板の場合は、M面と研磨面が成す角度の最大値は1.0°であった。   In the case of the substrate obtained in this example, the maximum angle formed by the M surface and the polished surface was 0.5 °. On the other hand, in the case of the substrate cut out without introducing the work-affected layer, the maximum value of the angle formed by the M surface and the polished surface was 1.0 °.

実施例1とは成長条件を変えて、曲率半径約15mの、直径60mmで厚さ約5mmのC軸方向にエピタキシャル成長したGaN結晶を得た。なお、用いた基板は実施例1と同様に、C面を主面とする直径60mmのサファイア基板である。このGaN結晶の凹状に湾曲している側の面(C面)の全面に、粒径30〜40μmのダイアモンド砥粒により、深さ0.05mmの研削を行って加工変質層を導入した。   The growth conditions were changed from those in Example 1 to obtain a GaN crystal epitaxially grown in the C-axis direction having a radius of curvature of about 15 m, a diameter of 60 mm, and a thickness of about 5 mm. The substrate used was a sapphire substrate having a diameter of 60 mm with the C surface as the main surface, as in Example 1. A work-affected layer was introduced by grinding the entire surface of the concavely curved surface (C surface) of this GaN crystal with a diamond abrasive grain having a grain size of 30 to 40 μm to a depth of 0.05 mm.

研削加工した結晶表面には、深さ数μmから十数μmの無数の微細なクラックが形成され、結晶はクラックが形成された側の面(C面)が広がる方向に変形し、凹状であったC面側が凸状となった。この湾曲をX線回折法によって測定したところ、約15mであった曲率半径が、反対側の向きに約25mとなった。   An infinite number of fine cracks having a depth of several μm to several tens of μm are formed on the ground crystal surface, and the crystal is deformed in a direction in which the surface on which the crack is formed (C surface) is widened, and is concave. The C surface side became convex. When this curvature was measured by an X-ray diffraction method, the radius of curvature, which was about 15 m, became about 25 m in the opposite direction.

次に、上記結晶面と反対側の面(−C面)の全面に、粒径3〜5μmのダイアモンド砥粒により、深さ0.02mm研削を行って加工変質層を導入した。この処理により結晶は再び変形した、C面の湾曲を再度X線回折法で測定したところ、曲率半径は約45mであった。つまり、格子面方向[0001]の結晶面内での平行度は、約0.1度となった。   Next, a work-affected layer was introduced by grinding 0.02 mm in depth with diamond abrasive grains having a particle size of 3 to 5 μm on the entire surface opposite to the crystal plane (the −C plane). The crystal was deformed again by this treatment, and the curvature of the C plane was measured again by the X-ray diffraction method. The radius of curvature was about 45 m. That is, the parallelism in the crystal plane in the lattice plane direction [0001] was about 0.1 degree.

この状態の結晶からA面の表面をもつ基板を切り出した。具体的には、X線回折法によって結晶の方位を合わせ、結晶の表面と裏面を横切るように、ワイヤーソーで5枚の基板を一度でスライスし、その表面を研磨加工した。   A substrate having an A-plane surface was cut out from the crystal in this state. Specifically, the orientation of the crystal was adjusted by X-ray diffraction, and five substrates were sliced at once with a wire saw so as to cross the front and back surfaces of the crystal, and the surface was polished.

そして、上述した手法により、基板表面とA面との成す角度のばらつきの程度をX線回折法で調べた結果、本実施例で得られた基板の場合、M面と研磨面が成す角度の最大値は0.1°であった。これに対して、加工変質層を導入することなく切り出した基板の場合は、M面と研磨面が成す角度の最大値は0.3°であった。   As a result of examining the degree of variation in the angle between the substrate surface and the A surface by the X-ray diffraction method by the above-described method, in the case of the substrate obtained in this example, the angle formed by the M surface and the polished surface is The maximum value was 0.1 °. On the other hand, in the case of the substrate cut out without introducing the work-affected layer, the maximum value of the angle formed by the M surface and the polished surface was 0.3 °.

実施例1および2とは成長条件を変えて、曲率半径約10mの、直径60mmで厚さ約5mmのC軸方向にエピタキシャル成長したGaN結晶を得た。なお、用いた基板は実施例1および2と同様に、C面を主面とする直径60mmのサファイア基板である。このGaN結晶の凹状に湾曲している側の面(C面)の全面に、粒径30〜40μmのダイアモンド砥粒により、深さ0.05mmの研削を行って加工変質層を導入した。   The growth conditions were changed from those in Examples 1 and 2, and a GaN crystal having a radius of curvature of about 10 m and epitaxially grown in the C-axis direction having a diameter of 60 mm and a thickness of about 5 mm was obtained. The substrate used was a sapphire substrate having a diameter of 60 mm with the C surface as the main surface, as in Examples 1 and 2. A work-affected layer was introduced by grinding the entire surface of the concavely curved surface (C surface) of this GaN crystal with a diamond abrasive grain having a grain size of 30 to 40 μm to a depth of 0.05 mm.

研削加工した結晶表面には、深さ数μmから十数μmの無数の微細なクラックが形成され、結晶はクラックが形成された側の面(C面)が広がる方向に変形し、湾曲をX線回折法によって測定したところ、約10mであった曲率半径が約45mとなった。   An infinite number of fine cracks having a depth of several μm to several tens of μm are formed on the ground crystal surface, and the crystal is deformed in a direction in which the surface on which the crack is formed (C surface) is widened, and the curvature becomes X When measured by the line diffraction method, the radius of curvature, which was about 10 m, was about 45 m.

この結晶の一方端から他方端にわたって、研削面(C面)に沿ってワイヤーソーで1度に5枚スライスして複数のウエーハを得た。これらのウエーハのうち、加工変質層が導入されたままのウエーハから加工変質層を取り除く研磨加工を施したところ、C面側の表面の湾曲状態は結晶成長直後の状態に戻った。このとき、C面側の表面の湾曲に伴って、GaN結晶内部の結晶格子面の湾曲状態も成長直後の状態に戻り、C面側の表面と特定の結晶格子面とが成す角度は、C面側の全面で略同じとなった。   A plurality of wafers were obtained by slicing 5 pieces at a time with a wire saw along the grinding surface (C surface) from one end to the other end of the crystal. Among these wafers, when polishing was performed to remove the work-affected layer from the wafer in which the work-affected layer was introduced, the curved state of the surface on the C plane returned to the state immediately after crystal growth. At this time, along with the curvature of the surface on the C-plane side, the curved state of the crystal lattice plane inside the GaN crystal also returns to the state immediately after growth, and the angle formed by the surface on the C-plane side and the specific crystal lattice plane is C It became almost the same on the entire surface.

なお、スライスにより加工変質層と切り離されて得られた他のウエーハのC面側の湾曲状態も成長直後の状態へと戻っており、C面側の表面と特定の結晶格子面とが成す角度はC面側の全面で略同じとなっていた。   In addition, the curved state on the C-plane side of another wafer obtained by slicing the work-affected layer by slicing has also returned to the state immediately after growth, and the angle formed by the surface on the C-plane side and the specific crystal lattice plane Was substantially the same on the entire C side.

このようにして得られたウエーハに半導体素子を形成し、劈開や結晶軸基準のスライスにより0.2mm角に分割してチップとした。得られたチップは、表面と特定の結晶格子面とが成す角度の関係は何れも略同じであり、作製された半導体素子の性能のばらつきも殆どなかった。   A semiconductor element was formed on the wafer thus obtained, and divided into 0.2 mm squares by cleaving or slicing based on the crystal axis to obtain chips. The obtained chips had substantially the same angle relationship between the surface and the specific crystal lattice plane, and there was almost no variation in the performance of the manufactured semiconductor elements.

なお、上記実施例は何れも、C軸方向にエピタキシャル成長させたGaN結晶を用いたものであったが、M軸方向、A軸方向、或いは−C軸方向に成長させたGaN結晶にも、本発明は適用できる。また、GaN結晶以外にも、AlN結晶やInN結晶などの窒化物半導体結晶でも同様の効果を得ることができる。更に、オフ角を有する窒化物半導体基板の作製にも、本発明は適用可能である。   In each of the above examples, a GaN crystal epitaxially grown in the C-axis direction was used. However, the present invention can be applied to a GaN crystal grown in the M-axis direction, the A-axis direction, or the -C-axis direction. The invention is applicable. In addition to the GaN crystal, a similar effect can be obtained with a nitride semiconductor crystal such as an AlN crystal or InN crystal. Furthermore, the present invention is applicable to the production of a nitride semiconductor substrate having an off angle.

本発明により、異種基板上にエピタキシャル成長させて得られた湾曲した窒化物半導体結晶から、面内および基板間で結晶面方向(格子面方向)のばらつきが少ない複数の窒化物半導体基板を得る方法が提供される。   According to the present invention, there is provided a method for obtaining a plurality of nitride semiconductor substrates having little variation in crystal plane direction (lattice plane direction) within a plane and between substrates, from curved nitride semiconductor crystals obtained by epitaxial growth on different substrates. Provided.

異種基板上に窒化物半導体結晶をエピタキシャル成長させた場合に、結晶成長につれて、窒化物半導体結晶が湾曲してゆく様子を説明するための図である。It is a figure for demonstrating a mode that a nitride semiconductor crystal curves as crystal growth, when a nitride semiconductor crystal is epitaxially grown on a dissimilar substrate. 湾曲してエピタキシャル成長した窒化物半導体結晶の一方の主面に導入した加工変質層によって窒化物半導体結晶の面内における格子面方向のばらつきの程度を低減させる様子を説明するための図である。It is a figure for demonstrating a mode that the grade of the dispersion | variation in the lattice plane direction in the surface of a nitride semiconductor crystal is reduced by the work-affected layer introduced into one main surface of the nitride semiconductor crystal curved and epitaxially grown. 加工変質層を導入して面内各点での格子面方向[hkil]を平行化した窒化物半導体結晶から基板を切り出す様子を説明するための図である。It is a figure for demonstrating a mode that a board | substrate is cut out from the nitride semiconductor crystal which introduce | transduced the work-affected layer and parallelized the lattice plane direction [hkil] in each point in the surface. 加工変質層を導入して面内各点での格子面方向[hkil]を平行化した窒化物半導体結晶からウエーハ状の基板を切り出す様子を説明するための図である。It is a figure for demonstrating a mode that a wafer-like board | substrate is cut out from the nitride semiconductor crystal which introduce | transduced the work-affected layer and parallelized the lattice plane direction [hkil] at each point in the surface. 基板の面内での基板表面と特定の結晶格子面との成す角度のばらつきの程度をX線回折法で調べた結果を説明するための図である。It is a figure for demonstrating the result of having investigated the extent of the dispersion | variation in the angle which the board | substrate surface and specific crystal lattice plane make in the surface of a board | substrate by the X ray diffraction method.

符号の説明Explanation of symbols

11 異種基板
12 窒化物半導体結晶
13 加工変質層
14 窒化物半導体基板
15 基板表面
11 Dissimilar substrate 12 Nitride semiconductor crystal 13 Worked layer 14 Nitride semiconductor substrate 15 Substrate surface

Claims (8)

異種基板上にエピタキシャル成長させて得られた窒化物半導体結晶の面内各点での格子面方向[hkil]若しくは[hkl]が互いに平行となるように前記窒化物半導体結晶の少なくとも一方主面に加工変質層を形成し、その後前記窒化物半導体結晶を切断することを特徴とする窒化物半導体基板の製造方法。 Processing is performed on at least one main surface of the nitride semiconductor crystal so that the lattice plane directions [hkil] or [hkl] at each point in the plane of the nitride semiconductor crystal obtained by epitaxial growth on a different substrate are parallel to each other. A method for producing a nitride semiconductor substrate, comprising forming a deteriorated layer and then cutting the nitride semiconductor crystal. 前記切断はワイヤーソーを使用し、平行に一度に複数分割することを特徴とする請求項1に記載の窒化物半導体基板の製造方法。 The method of manufacturing a nitride semiconductor substrate according to claim 1, wherein the cutting uses a wire saw and divides a plurality of parts at a time in parallel. 前記切断される結晶面は、C面(極性面)、A面またはM面(非極性面)、若しくはC面に対して傾斜する半極性面である請求項1又は2に記載の窒化物半導体基板の製造方法。 The nitride semiconductor according to claim 1, wherein the crystal plane to be cut is a C plane (polar plane), an A plane or an M plane (nonpolar plane), or a semipolar plane inclined with respect to the C plane. A method for manufacturing a substrate. 前記格子面方向[hkil]若しくは[hkl]の結晶面内での平行度が1度以内である請求項1乃至3の何れか1項に記載の窒化物半導体基板の製造方法。 4. The method for manufacturing a nitride semiconductor substrate according to claim 1, wherein the parallelism in the crystal plane of the lattice plane direction [hkil] or [hkl] is within 1 degree. 前記窒化物半導体基板から前記加工変質層を取り除く工程を更に備えている請求項1乃至4の何れか1項に記載の窒化物半導体基板の製造方法。 The method for manufacturing a nitride semiconductor substrate according to claim 1, further comprising a step of removing the work-affected layer from the nitride semiconductor substrate. 前記窒化物半導体結晶は窒化ガリウム系結晶である請求項1乃至5に記載の窒化物半導体基板の製造方法。 The method for manufacturing a nitride semiconductor substrate according to claim 1, wherein the nitride semiconductor crystal is a gallium nitride-based crystal. 平板状でない窒化物半導体ウエーハにおいて、面内各点での格子面方向[hkil]若しくは[hkl]が使用面と直交することを特徴とする窒化物半導体ウエーハ。 A nitride semiconductor wafer having a lattice plane direction [hkil] or [hkl] at each point in the plane orthogonal to a use plane in a nitride semiconductor wafer that is not flat. 少なくとも端面の一部に加工変質層が形成されていることを特徴とする請求項7に記載の窒化物半導体ウエーハ。 The nitride semiconductor wafer according to claim 7, wherein a work-affected layer is formed on at least a part of the end face.
JP2007195672A 2007-07-27 2007-07-27 Manufacturing method of nitride semiconductor substrate Active JP5045292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007195672A JP5045292B2 (en) 2007-07-27 2007-07-27 Manufacturing method of nitride semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007195672A JP5045292B2 (en) 2007-07-27 2007-07-27 Manufacturing method of nitride semiconductor substrate

Publications (2)

Publication Number Publication Date
JP2009029662A true JP2009029662A (en) 2009-02-12
JP5045292B2 JP5045292B2 (en) 2012-10-10

Family

ID=40400587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007195672A Active JP5045292B2 (en) 2007-07-27 2007-07-27 Manufacturing method of nitride semiconductor substrate

Country Status (1)

Country Link
JP (1) JP5045292B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element
JP2012151503A (en) * 2012-04-06 2012-08-09 Sharp Corp Method of manufacturing nitride semiconductor
JP2015013791A (en) * 2013-06-06 2015-01-22 三菱化学株式会社 Production method of nitride semiconductor crystal of group 13 metal in periodic table, and nitride semiconductor crystal of group 13 metal in periodic table
KR101568133B1 (en) 2014-06-02 2015-11-11 한국광기술원 Nitride substrate with large size using GaN fragments and a fabrication method thereof
JP2017210396A (en) * 2016-05-27 2017-11-30 株式会社リコー Production method of crystal substrate
WO2023127454A1 (en) * 2021-12-27 2023-07-06 株式会社トクヤマ Method for producing group iii nitride single crystal substrate and aluminum nitride single crystal substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
JP2005136167A (en) * 2003-10-30 2005-05-26 Sumitomo Electric Ind Ltd Nitride semiconductor substrate and manufacturing method thereof
JP2007161534A (en) * 2005-12-14 2007-06-28 Sumitomo Electric Ind Ltd Method for manufacturing nitride semiconductor crystal substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029897A (en) * 2000-07-10 2002-01-29 Sumitomo Electric Ind Ltd PRODUCTION PROCESS OF SINGLE CRYSTAL GaN SUBSTRATE AND SINGLE CRYSTAL GaN SUBSTRATE
JP2005136167A (en) * 2003-10-30 2005-05-26 Sumitomo Electric Ind Ltd Nitride semiconductor substrate and manufacturing method thereof
JP2007161534A (en) * 2005-12-14 2007-06-28 Sumitomo Electric Ind Ltd Method for manufacturing nitride semiconductor crystal substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061063A (en) * 2009-09-11 2011-03-24 Sharp Corp Method of manufacturing aluminum-containing nitride intermediate layer, method of manufacturing nitride layer, and method of manufacturing nitride semiconductor element
JP2012151503A (en) * 2012-04-06 2012-08-09 Sharp Corp Method of manufacturing nitride semiconductor
JP2015013791A (en) * 2013-06-06 2015-01-22 三菱化学株式会社 Production method of nitride semiconductor crystal of group 13 metal in periodic table, and nitride semiconductor crystal of group 13 metal in periodic table
JP2015013790A (en) * 2013-06-06 2015-01-22 三菱化学株式会社 Group 13 metal nitride crystal
KR101568133B1 (en) 2014-06-02 2015-11-11 한국광기술원 Nitride substrate with large size using GaN fragments and a fabrication method thereof
JP2017210396A (en) * 2016-05-27 2017-11-30 株式会社リコー Production method of crystal substrate
US10325793B2 (en) 2016-05-27 2019-06-18 Sciocs Company Limited Method for producing crystal substrate
WO2023127454A1 (en) * 2021-12-27 2023-07-06 株式会社トクヤマ Method for producing group iii nitride single crystal substrate and aluminum nitride single crystal substrate

Also Published As

Publication number Publication date
JP5045292B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4915128B2 (en) Nitride semiconductor wafer and method for manufacturing the same
JP5104830B2 (en) substrate
KR101172549B1 (en) Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
JP4691911B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
JP5638198B2 (en) Laser diode orientation on miscut substrates
JP5045292B2 (en) Manufacturing method of nitride semiconductor substrate
JP6704387B2 (en) Substrate for growing nitride semiconductor, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP4380294B2 (en) Group III-V nitride semiconductor substrate
JP2011077325A (en) Method of manufacturing group iii nitride semiconductor substrate
JP5830973B2 (en) GaN free-standing substrate and method for manufacturing semiconductor light-emitting device
JP6292080B2 (en) Nonpolar or semipolar GaN substrate
JP5065625B2 (en) Manufacturing method of GaN single crystal substrate
JP2008028259A (en) Method for manufacturing monocrystal garium-nitride substrate
WO2020158571A1 (en) Nitride semiconductor substrate, laminated structure, and method for manufacturing nitride semiconductor substrate
JP2010168273A (en) Method for producing group iii nitride semiconductor, and template substrate
JP5446945B2 (en) Nitride semiconductor single crystal and method for manufacturing nitride semiconductor substrate
JP5120285B2 (en) III-V nitride semiconductor free-standing substrate manufacturing method
KR20070082842A (en) Gallium nitride crystal substrate and method of producing same
JP2010168274A (en) Method for producing group iii nitride semiconductor, and template substrate
WO2016013259A1 (en) Gallium nitride substrate
JP2013075791A (en) Method for producing group iii nitride semiconductor crystal, group iii nitride semiconductor substrate, and group iii nitride semiconductor crystal
JP6595677B1 (en) Nitride semiconductor substrate manufacturing method, nitride semiconductor substrate, and laminated structure
JP6595678B1 (en) Nitride semiconductor substrate, nitride semiconductor substrate manufacturing method, and laminated structure
JP6934802B2 (en) Method for manufacturing group III nitride semiconductor substrate and group III nitride semiconductor substrate
JP4811325B2 (en) III-V nitride semiconductor substrate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350