JP2009027805A - Power conversion device and its manufacturing method - Google Patents

Power conversion device and its manufacturing method Download PDF

Info

Publication number
JP2009027805A
JP2009027805A JP2007186782A JP2007186782A JP2009027805A JP 2009027805 A JP2009027805 A JP 2009027805A JP 2007186782 A JP2007186782 A JP 2007186782A JP 2007186782 A JP2007186782 A JP 2007186782A JP 2009027805 A JP2009027805 A JP 2009027805A
Authority
JP
Japan
Prior art keywords
support
spring member
spring
semiconductor
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007186782A
Other languages
Japanese (ja)
Other versions
JP5211568B2 (en
Inventor
Hidehiko Yasui
秀彦 保井
Takahisa Kaneko
高久 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007186782A priority Critical patent/JP5211568B2/en
Publication of JP2009027805A publication Critical patent/JP2009027805A/en
Application granted granted Critical
Publication of JP5211568B2 publication Critical patent/JP5211568B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power conversion device excellent in manufacturing cost and manufacturing efficiency, in which a pressurizing member for pressurizing a semiconductor stacked unit can be easily arranged with a small force, and also to provide its production method. <P>SOLUTION: There is disclosed a manufacturing method for a power conversion device 1 having a semiconductor stacked unit 2 obtained by alternately stacking a semiconductor module 21 and a cooling pipe 22. After the semiconductor stacked unit 2 is arranged on the housing 11 of the power conversion device 1, a pressurizing member 3 with an abutting plate 31 and a spring member 32 is arranged at one end in the stacking direction of the semiconductor stacked unit 2. The spring member 32 has a press part 321 and a support part 322. A press tool 4 is abutted on a pair of spring ends 323 further outside than the support part 322 of the spring member 32 to push the spring end 323 in the abutting plate 31 side to arrange a pair of support bodies (support pines 13) with the spring member 32 elastically deformed. Then, the press tool 4 is retreated to support the support part 322 with the support body. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却管とを交互に積層してなる半導体積層ユニットを有する電力変換装置及びその製造方法に関する。   The present invention relates to a power conversion device having a semiconductor stacked unit in which semiconductor modules constituting a part of a power conversion circuit and cooling pipes for cooling the semiconductor modules are alternately stacked, and a method for manufacturing the same.

従来より、DC−DCコンバータ回路やインバータ回路等の電力変換回路は、例えば、電気自動車やハイブリッド自動車等の動力源である交流モータに通電する駆動電流の生成に用いられることがある。
一般に、電気自動車やハイブリッド自動車等では、交流モータから大きな駆動トルクを確保するため大きな駆動電流が必要となってきている。それ故、その交流モータ向けの駆動電流を生成する上記電力変換回路においては、該電力変換回路を構成するIGBT等の電力用半導体素子を含む半導体モジュールからの発熱が大きくなる傾向にある。
Conventionally, a power conversion circuit such as a DC-DC converter circuit or an inverter circuit is sometimes used to generate a drive current for energizing an AC motor that is a power source of an electric vehicle or a hybrid vehicle.
In general, in an electric vehicle, a hybrid vehicle, and the like, a large driving current is required to secure a large driving torque from an AC motor. Therefore, in the power conversion circuit that generates the drive current for the AC motor, heat generated from the semiconductor module including the power semiconductor element such as IGBT constituting the power conversion circuit tends to increase.

そこで、図15に示すごとく、電力変換回路を構成する複数の半導体モジュール921を均一に冷却することができるように、冷却媒体の供給及び排出を担う一対のヘッダ923の間に多数の冷却管922が配置されている電力変換装置9が提案されている(特許文献1、2参照)。そして、該電力変換装置9は、冷却管922の間に半導体モジュール921を挟持した半導体積層ユニット92と、該半導体積層ユニット92の積層方向の端部に半導体積層ユニット92を積層方向に加圧するばね部材932とを有する。   Therefore, as shown in FIG. 15, a large number of cooling pipes 922 are interposed between a pair of headers 923 that supply and discharge the cooling medium so that the plurality of semiconductor modules 921 constituting the power conversion circuit can be uniformly cooled. Has been proposed (see Patent Documents 1 and 2). The power conversion device 9 includes a semiconductor laminated unit 92 having a semiconductor module 921 sandwiched between cooling pipes 922, and a spring that pressurizes the semiconductor laminated unit 92 in the lamination direction at an end portion of the semiconductor laminated unit 92 in the lamination direction. Member 932.

ばね部材932は、半導体積層ユニット92側に凸の状態で湾曲した押圧部934と、該押圧部934の両端に形成された支承部933とを有する。支承部933は電力変換装置9の筐体911内に配された支承ピン913に係止させてあり、ばね部材932は、押圧部934において冷却管922と半導体モジュール921とを積層方向に押圧するように付勢された状態で配設されている。支承ピン913は、筐体911の内壁912とばね部材932の支承部933との間に挟持された状態で配設されている。   The spring member 932 includes a pressing portion 934 that is curved in a convex state toward the semiconductor multilayer unit 92, and support portions 933 formed at both ends of the pressing portion 934. The support portion 933 is locked to a support pin 913 disposed in the housing 911 of the power conversion device 9, and the spring member 932 presses the cooling pipe 922 and the semiconductor module 921 in the stacking direction at the pressing portion 934. It is arranged in such a biased state. The support pin 913 is disposed in a state of being sandwiched between the inner wall 912 of the casing 911 and the support portion 933 of the spring member 932.

電力変換装置9を組み立てるに当たっては、電力変換装置9の筐体911内に半導体積層ユニット92を配置した後、ばね部材932を半導体積層ユニット92の積層方向の端部に配置する。次いで、ばね部材932を変位(弾性変形)させつつ、ばね部材932の押圧部934において半導体積層ユニット92を積層方向に押圧する。そして、ばね部材932の支承部933の後方位置における筐体911内に支承ピン913を配置する。
次いで、ばね部材932を減圧方向に復元させながら、ばね部材932の支承部933を支承ピン913に支承させる。これにより、ばね部材932は、所定の変位において、所定の押圧力を半導体積層ユニット92に与えた状態で落ち着く。
In assembling the power conversion device 9, the semiconductor stacked unit 92 is disposed in the housing 911 of the power conversion device 9, and then the spring member 932 is disposed at the end of the semiconductor stacked unit 92 in the stacking direction. Next, the semiconductor stacked unit 92 is pressed in the stacking direction at the pressing portion 934 of the spring member 932 while the spring member 932 is displaced (elastically deformed). And the support pin 913 is arrange | positioned in the housing | casing 911 in the back position of the support part 933 of the spring member 932. FIG.
Next, the support member 933 of the spring member 932 is supported by the support pin 913 while restoring the spring member 932 in the pressure reducing direction. Thereby, the spring member 932 is settled in a state where a predetermined pressing force is applied to the semiconductor lamination unit 92 at a predetermined displacement.

ここで、上記ばね部材932を弾性変形させるに当っては、図16に示すごとく、一対の支承部933の内側における後面に押圧治具40を当接させて、半導体積層ユニット92側へ押圧治具40を押し込む。そして、一対の支承ピン913を、一対の支承部933の後方かつ押圧治具40の両側方において、筐体911内に配置する。つまり、押圧治具40によってばね部材932を押圧している状態で、筐体911に支承ピン913を配設する必要があるため、押圧治具40は、その内側、すなわち支承部933の内側においてばね部材932に当接させるのである。   Here, when the spring member 932 is elastically deformed, as shown in FIG. 16, the pressing jig 40 is brought into contact with the rear surfaces inside the pair of support portions 933 to press the spring member 932 toward the semiconductor laminated unit 92 side. Push the tool 40 in. Then, the pair of support pins 913 are arranged in the housing 911 behind the pair of support portions 933 and on both sides of the pressing jig 40. That is, since it is necessary to dispose the support pin 913 on the housing 911 while the spring member 932 is being pressed by the pressing jig 40, the pressing jig 40 is disposed inside thereof, that is, inside the support portion 933. It is brought into contact with the spring member 932.

しかしながら、押圧治具40を支承部933の内側においてばね部材932に当接させて、ばね部材932を弾性変形させようとすると、支承部933における荷重よりも大きい荷重をかける必要がある。その結果、このばね部材932を配設する工程において、半導体積層ユニット92に過大な荷重がかかってしまい、場合によっては、冷却管922が変形してしまったり、半導体モジュール921が破損してしまったりするおそれがある。また、ばね部材932の配設工程において、押圧治具40を押圧する際に用いられるロードセルやサーボモータなどに高いスペックが要求されるという問題もある。   However, if the pressing jig 40 is brought into contact with the spring member 932 inside the support portion 933 to elastically deform the spring member 932, it is necessary to apply a load larger than the load at the support portion 933. As a result, in the step of disposing the spring member 932, an excessive load is applied to the semiconductor laminated unit 92, and in some cases, the cooling pipe 922 is deformed or the semiconductor module 921 is damaged. There is a risk. In addition, in the step of arranging the spring member 932, there is a problem that a high specification is required for a load cell, a servo motor, or the like used when pressing the pressing jig 40.

また、半導体積層ユニット92は、複数の半導体モジュール921と複数の冷却管922とを交互に積層してなるため、その積層方向の寸法公差(積層公差)は、各半導体モジュール921の寸法公差と各冷却管922の寸法公差との積算値となり、大きな値となることがある。そこで、この積層公差内におけるあらゆる半導体積層ユニット91に対して、ばね部材932によって適切な押圧力を与えることができるようにする必要がある。   In addition, since the semiconductor lamination unit 92 is formed by alternately laminating a plurality of semiconductor modules 921 and a plurality of cooling pipes 922, the dimensional tolerance (lamination tolerance) in the laminating direction is the same as the dimensional tolerance of each semiconductor module 921. This is an integrated value with the dimensional tolerance of the cooling pipe 922 and may be a large value. Therefore, it is necessary to apply an appropriate pressing force by the spring member 932 to any semiconductor lamination unit 91 within the lamination tolerance.

ところが、上記のごとく、押圧治具40を支承部933の内側においてばね部材932に当接させて、ばね部材932を弾性変形させようとすると、押圧治具40による荷重の変化に対するばね部材932の変位量が小さいため、上記半導体積層ユニット92の積層公差が大きいと、適切な押圧力を半導体積層ユニット92に付与することが困難となる。その結果、半導体積層ユニット92の積層方向の寸法に応じて、ばね部材932の支承部932を支承する支承ピン913として、直径の異なる多種類の支承ピン913を用意する必要がある。それ故、製造コストが高くなると共に、生産効率が低下するという問題がある。   However, as described above, when the pressing jig 40 is brought into contact with the spring member 932 on the inner side of the support portion 933 and the spring member 932 is elastically deformed, the spring member 932 has a resistance against a change in load caused by the pressing jig 40. Since the displacement amount is small, if the stacking tolerance of the semiconductor stack unit 92 is large, it becomes difficult to apply an appropriate pressing force to the semiconductor stack unit 92. As a result, it is necessary to prepare various types of support pins 913 having different diameters as the support pins 913 for supporting the support portions 932 of the spring members 932 according to the dimensions of the semiconductor stack unit 92 in the stacking direction. Therefore, there are problems that the manufacturing cost increases and the production efficiency decreases.

特開2005−143244号公報JP 2005-143244 A 特開2007−166819号公報JP 2007-166819 A

本発明は、かかる従来の問題点に鑑みてなされたもので、半導体積層ユニットを加圧する加圧部材の配設を小さい力で容易に行うことができると共に、製造コスト、生産効率に優れた電力変換装置及びその製造方法を提供しようとするものである。   The present invention has been made in view of such conventional problems, and can easily dispose the pressurizing member for pressurizing the semiconductor laminated unit with a small force, and has excellent manufacturing cost and production efficiency. It is an object of the present invention to provide a conversion device and a manufacturing method thereof.

第1の発明は、電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却管とを交互に積層してなる半導体積層ユニットを有する電力変換装置を製造する方法であって、
上記電力変換装置の筐体に上記半導体積層ユニットを配置した後、
上記半導体積層ユニットの積層方向の一方の端部に、上記冷却管の主面に当接する当接面を有する当接プレートと、該当接プレートにおける上記当接面と反対側の面に配されたばね部材とを有する加圧部材を配置し、
上記ばね部材は、上記当接プレート側に凸の状態で湾曲した押圧部と、該押圧部の両端に形成された支承部とを有し、
上記ばね部材における上記支承部よりも外側の一対のばね端部に押圧治具を当接させて上記ばね端部を上記当接プレート側へ押し込むことにより上記ばね部材を弾性変形させた状態で、上記一対の支承部の後方位置において上記筐体内に一対の支承体を配設し、
次いで、上記押圧治具を後退させて上記ばね部材が復元する方向に上記一対の支承部を変位させることにより、該支承部と上記筐体の内壁との間に上記支承体が挟持される状態で、上記支承部を上記支承体に支承させることを特徴とする電力変換装置の製造方法にある(請求項1)。
1st invention is the method of manufacturing the power converter device which has a semiconductor lamination unit which laminates | stacks alternately the semiconductor module which comprises some power conversion circuits, and the cooling pipe which cools this semiconductor module, ,
After arranging the semiconductor laminated unit in the casing of the power converter,
A contact plate having a contact surface that contacts the main surface of the cooling pipe at one end in the stacking direction of the semiconductor stacked unit, and a spring disposed on a surface of the contact plate opposite to the contact surface A pressure member having a member,
The spring member has a pressing portion curved in a convex state toward the contact plate side, and support portions formed at both ends of the pressing portion,
In a state where the spring member is elastically deformed by bringing a pressing jig into contact with a pair of spring end portions outside the support portion of the spring member and pushing the spring end portion toward the contact plate. A pair of support bodies are disposed in the housing at a rear position of the pair of support parts,
Next, the support body is sandwiched between the support portion and the inner wall of the housing by moving the pair of support portions in a direction in which the spring member is restored by retracting the pressing jig. In the method of manufacturing a power converter, the support portion is supported by the support body (claim 1).

次に、本発明の作用効果につき説明する。
上記電力変換装置の製造方法においては、上記加圧部材を筐体に取付ける際に、上記ばね部材における上記支承部よりも外側の一対のばね端部に押圧治具を当接させて上記ばね端部を上記当接プレート側へ押し込むことにより上記ばね部材を弾性変形させる。すなわち、ばね端部を押圧治具によって押圧することにより、ばね部材を弾性変形させる。これにより、比較的小さい荷重でばね部材を大きく弾性変形させることができる。つまり、支承部よりも内側の部分において押圧する場合に比べて、小さい荷重でばね部材を大きく弾性変形させることができる。
Next, the effects of the present invention will be described.
In the method for manufacturing the power conversion device, when the pressure member is attached to the casing, a pressing jig is brought into contact with a pair of spring end portions outside the support portion of the spring member, and the spring end The spring member is elastically deformed by pushing the portion toward the contact plate. That is, the spring member is elastically deformed by pressing the spring end with a pressing jig. Thereby, the spring member can be greatly elastically deformed with a relatively small load. That is, the spring member can be greatly elastically deformed with a small load as compared with a case where the pressing is performed at a portion inside the support portion.

それ故、加圧部材を配設する工程において、押圧治具による押圧力を低減して、半導体積層ユニットに過大な荷重がかかることを防ぎ、冷却管の変形や、半導体モジュールの破損のおそれを排除することができる。また、ばね部材の配設工程において、押圧治具を押圧する際に用いられるロードセルやサーボモータなどにも特に高いスペックが要求されなくなるという利点もある。   Therefore, in the process of disposing the pressure member, the pressing force by the pressing jig is reduced to prevent an excessive load from being applied to the semiconductor laminated unit, and there is a risk of deformation of the cooling pipe or damage of the semiconductor module. Can be eliminated. Also, there is an advantage that a particularly high specification is not required for a load cell, a servo motor, or the like used when pressing the pressing jig in the spring member arranging step.

また、半導体積層ユニットは、複数の半導体モジュールと複数の冷却管とを交互に積層してなるため、その積層方向の寸法公差(積層公差)は、各半導体モジュールの寸法公差と各冷却管の寸法公差との積算値となり、大きな値となることがある。そこで、この積層公差内におけるあらゆる半導体積層ユニットに対して、ばね部材によって適切な押圧力を与えることができるようにする必要がある。   In addition, since the semiconductor lamination unit is formed by alternately laminating a plurality of semiconductor modules and a plurality of cooling pipes, the dimensional tolerance in the lamination direction (lamination tolerance) is the dimensional tolerance of each semiconductor module and the dimension of each cooling pipe. It becomes an integrated value with tolerance and may be large. Therefore, it is necessary to allow an appropriate pressing force to be applied by a spring member to any semiconductor laminated unit within this lamination tolerance.

本発明においては、上記のごとく、押圧治具を支承部の外側のばね端部に当接して、ばね部材を弾性変形させるため、押圧治具による荷重の変化に対するばね部材の変位量を大きくすることができる。そのため、上記半導体積層ユニットの積層公差が大きくても、適切な押圧力を半導体積層ユニットに付与することが容易となる。すなわち、半導体積層ユニットの積層方向の寸法が小さいときには、ばね部材へ付与する押圧力を比較的小さくして、ばね部材の弾性変形の変位量を小さくする。一方、半導体積層ユニットの積層方向の寸法が大きいときには、ばね部材へ付与する押圧力を比較的大きくして、ばね部材の弾性変形の変位量を大きくする。このとき、ばね部材の弾性力が小さくなりすぎず、また、押圧治具による押圧力が大きくなりすぎることを防ぐことができる。   In the present invention, as described above, the pressing jig is brought into contact with the spring end on the outer side of the support portion, and the spring member is elastically deformed. Therefore, the amount of displacement of the spring member with respect to the change in load by the pressing jig is increased. be able to. Therefore, even if the stacking tolerance of the semiconductor stacked unit is large, it becomes easy to apply an appropriate pressing force to the semiconductor stacked unit. That is, when the dimension in the stacking direction of the semiconductor stacked unit is small, the pressing force applied to the spring member is made relatively small, and the amount of elastic deformation of the spring member is reduced. On the other hand, when the dimension in the stacking direction of the semiconductor stacked unit is large, the pressing force applied to the spring member is made relatively large to increase the amount of elastic deformation of the spring member. At this time, the elastic force of the spring member does not become too small, and the pressing force by the pressing jig can be prevented from becoming too large.

その結果、半導体積層ユニットの積層方向の寸法に応じて、ばね部材の支承部を支承する支承体として、大きさの異なる支承体を多種類用意する必要がなくなる。すなわち、少ない種類の支承体によって、半導体積層ユニットの積層方向の寸法に対応することができる。それ故、製造コストを低減し、生産効率を向上させることができる。   As a result, it is not necessary to prepare many types of support bodies having different sizes as support bodies for supporting the support portions of the spring members in accordance with the dimensions in the stacking direction of the semiconductor stacked units. That is, it is possible to cope with the dimension in the stacking direction of the semiconductor stacked unit by using a small number of support bodies. Therefore, the manufacturing cost can be reduced and the production efficiency can be improved.

以上のごとく、本発明によれば、半導体積層ユニットを加圧する加圧部材の配設を小さい力で容易に行うことができると共に、製造コスト、生産効率に優れた電力変換装置の製造方法を提供することができる。   As described above, according to the present invention, it is possible to easily dispose the pressurizing member that pressurizes the semiconductor lamination unit with a small force, and to provide a method for manufacturing a power conversion device that is excellent in manufacturing cost and production efficiency. can do.

第2の発明は、電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却管とを交互に積層してなる半導体積層ユニットを有する電力変換装置であって、
上記半導体積層ユニットの積層方向の一方の端部には、該半導体積層ユニットを積層方向に加圧する加圧部材が配されており、
該加圧部材は、上記冷却管の主面に当接する当接面を有する当接プレートと、該当接プレートにおける上記当接面と反対側の面に配されたばね部材とを有し、
上記ばね部材は、上記当接プレート側に凸の状態で湾曲した押圧部と、該押圧部の両端に形成された支承部とを有し、
上記ばね部材は、上記電力変換装置の筐体の内壁と上記支承部との間に介在される一対の支承体に上記支承部を支承させると共に上記当接プレートに上記押圧部を当接させて、上記当接プレートを上記支承体から離れる方向に押圧するように付勢された状態で配設されており、
上記ばね部材は、一対のばね端部を上記支承体よりも外方に配置しており、
自然長における上記一対のばね端部の間の距離をAとし、自然長における上記一対の支承部の間の距離をBとしたとき、A≧1.22Bを満たすことを特徴とする電力変換装置にある(請求項4)。
A second invention is a power conversion device having a semiconductor lamination unit in which a semiconductor module constituting a part of a power conversion circuit and a cooling pipe for cooling the semiconductor module are alternately laminated,
A pressure member that pressurizes the semiconductor lamination unit in the lamination direction is disposed at one end in the lamination direction of the semiconductor lamination unit,
The pressurizing member includes a contact plate having a contact surface that contacts the main surface of the cooling pipe, and a spring member disposed on a surface of the contact plate opposite to the contact surface,
The spring member has a pressing portion curved in a convex state toward the contact plate side, and support portions formed at both ends of the pressing portion,
The spring member is configured such that the support portion is supported by a pair of support bodies interposed between an inner wall of the casing of the power converter and the support portion, and the pressing portion is contacted by the contact plate. , Arranged in a biased state so as to press the contact plate in a direction away from the support body,
The spring member has a pair of spring ends arranged outside the support body,
A power conversion device satisfying A ≧ 1.22B, where A is a distance between the pair of spring ends in the natural length and B is a distance between the pair of support portions in the natural length. (Claim 4).

次に、本発明の作用効果につき説明する。
上記ばね部材は、一対のばね端部を上記支承体よりも外方に配置している。そして、上記一対のばね端部の間の距離Aと、上記一対の支承部の間の距離Bとは、A≧1.22Bを満たす。そのため、上記一対のばね端部は、上記支承体の配設位置よりも充分に外側に配置される。これにより、半導体積層ユニットの一端に加圧部材を配置して押圧する際に、多少の寸法公差や配置のずれが生じても、支承体に干渉することなく、一対のばね端部に押圧治具を確実に当接させることができる。これにより、押圧治具によって上記一対のばね端部を上記当接プレート側へ確実に押圧することができる。
Next, the effects of the present invention will be described.
The said spring member has arrange | positioned a pair of spring edge part outside the said support body. The distance A between the pair of spring end portions and the distance B between the pair of support portions satisfy A ≧ 1.22B. For this reason, the pair of spring end portions are arranged sufficiently outside the arrangement position of the support body. As a result, when a pressure member is disposed and pressed at one end of the semiconductor laminated unit, even if some dimensional tolerance or misalignment occurs, the pair of spring ends are pressed against each other without interfering with the support body. A tool can be made to contact reliably. Accordingly, the pair of spring end portions can be reliably pressed toward the contact plate by the pressing jig.

それ故、上述したごとく、加圧部材を配設する工程において、押圧治具による押圧力を低減して、半導体積層ユニットに過大な荷重がかかることを防ぎ、冷却管の変形や、半導体モジュールの破損のおそれを排除することができる。また、ばね部材の配設工程において、押圧治具を押圧する際に用いられるロードセルやサーボモータなどにも特に高いスペックが要求されなくなるという利点もある。
さらに、半導体積層ユニットの積層方向の寸法に応じて、ばね部材の支承部を支承する支承体として、直径の異なる支承体を多種類用意する必要がなくなり、製造コストを低減し、生産効率を向上させることができる。
Therefore, as described above, in the step of disposing the pressure member, the pressing force by the pressing jig is reduced to prevent an excessive load from being applied to the semiconductor laminated unit, and the deformation of the cooling pipe and the semiconductor module The risk of damage can be eliminated. Also, there is an advantage that a particularly high specification is not required for a load cell, a servo motor, or the like used when pressing the pressing jig in the spring member arranging step.
Furthermore, there is no need to prepare multiple types of bearings with different diameters as the bearings for supporting the spring member bearings according to the dimensions of the semiconductor lamination unit in the direction of lamination, reducing manufacturing costs and improving production efficiency. Can be made.

以上のごとく、本発明によれば、半導体積層ユニットを加圧する加圧部材の配設を小さい力で容易に行うことができると共に、製造コスト、生産効率に優れた電力変換装置を提供することができる。   As described above, according to the present invention, it is possible to easily dispose the pressurizing member that pressurizes the semiconductor lamination unit with a small force, and to provide a power conversion device that is excellent in manufacturing cost and production efficiency. it can.

第1の発明(請求項1)及び第2の発明(請求項4)において、上記電力変換装置としては、例えば、DC−DCコンバータやインバータ等がある。また、上記電力変換装置は、例えば、電気自動車やハイブリッド自動車等の動力源である交流モータに通電する駆動電流の生成に用いることができる。
なお、上記半導体モジュールと上記冷却管とは、直接密着していてもよいし、絶縁材等を介して密着していてもよい。
また、本明細書において、特に断らない限り、半導体積層ユニットを押圧する方向を前方、その反対を後方として説明する。
In the first invention (invention 1) and the second invention (invention 4), examples of the power converter include a DC-DC converter and an inverter. Moreover, the said power converter device can be used for the production | generation of the drive current which supplies with electricity to the alternating current motor which is motive power sources, such as an electric vehicle and a hybrid vehicle, for example.
In addition, the said semiconductor module and the said cooling pipe may be closely_contact | adhered directly, and may be closely_contact | adhered via an insulating material etc.
Further, in the present specification, unless otherwise specified, the direction in which the semiconductor stacked unit is pressed will be described as the front, and the opposite will be described as the rear.

また、上記ばね部材は、上記ばね端部における上記支承体側の面と端面との間の角部に、曲面を設けてなることが好ましい(請求項2、5)。
この場合には、上記押圧治具を上記ばね端部に安定して当接させることができ、より確実にばね部材を弾性変形させることができる。
Moreover, it is preferable that the said spring member provides a curved surface in the corner | angular part between the said bearing body side surface and end surface in the said spring end part (Claim 2, 5).
In this case, the pressing jig can be stably brought into contact with the spring end, and the spring member can be elastically deformed more reliably.

また、上記ばね部材は、上記支承部と上記ばね端部との間に、上記支承体側に凸となるように屈曲した屈曲部を設けてなることが好ましい(請求項3、6)。
この場合にも、上記押圧治具を上記ばね端部に安定して当接させることができ、より確実にばね部材を弾性変形させることができる。
Preferably, the spring member is provided with a bent portion that is bent so as to protrude toward the support body between the support portion and the spring end portion (claims 3 and 6).
Also in this case, the pressing jig can be stably brought into contact with the spring end portion, and the spring member can be elastically deformed more reliably.

(実施例1)
本発明の実施例にかかる電力変換装置及びその製造方法につき、図1〜図12を用いて説明する。
本例の電力変換装置1は、図3に示すごとく、電力変換回路の一部を構成する半導体モジュール21と、該半導体モジュール21を冷却する冷却管22とを交互に積層してなる半導体積層ユニット2を有する。
Example 1
A power converter according to an embodiment of the present invention and a manufacturing method thereof will be described with reference to FIGS.
As shown in FIG. 3, the power conversion device 1 of this example is a semiconductor stacked unit formed by alternately stacking semiconductor modules 21 constituting a part of a power conversion circuit and cooling pipes 22 for cooling the semiconductor modules 21. 2

半導体積層ユニット2の積層方向の一方の端部には、該半導体積層ユニット2を積層方向に加圧する加圧部材3が配されている。
該加圧部材3は、冷却管22の主面に当接する当接面311を有する当接プレート31と、該当接プレート31における当接面311と反対側の面に配されたばね部材32とを有する。
A pressure member 3 that pressurizes the semiconductor multilayer unit 2 in the stacking direction is disposed at one end of the semiconductor stack unit 2 in the stacking direction.
The pressurizing member 3 includes a contact plate 31 having a contact surface 311 that contacts the main surface of the cooling pipe 22, and a spring member 32 disposed on the surface of the contact plate 31 opposite to the contact surface 311. Have.

ばね部材32は、図2〜図4に示すごとく、当接プレート31側に凸の状態で湾曲した押圧部321と、該押圧部321の両端に形成された支承部322とを有する。
図3、図4に示すごとく、ばね部材32は、電力変換装置1の筐体11の内壁111との間に介在される一対の支承体としての支承ピン13に支承部322を支承させると共に当接プレート31に押圧部321を当接させて、当接プレート31を支承ピン13から離れる方向に押圧するように付勢された状態で配設されている。
ばね部材32は、一対のばね端部323を支承ピン13よりも外方に配置している。
As shown in FIGS. 2 to 4, the spring member 32 includes a pressing portion 321 that is curved in a convex state toward the contact plate 31, and support portions 322 formed at both ends of the pressing portion 321.
As shown in FIGS. 3 and 4, the spring member 32 supports the support portion 322 on a support pin 13 as a pair of support bodies interposed between the inner wall 111 of the casing 11 of the power conversion device 1 and the spring member 32. The pressing portion 321 is brought into contact with the contact plate 31 and is arranged in a state of being urged so as to press the contact plate 31 in a direction away from the support pin 13.
The spring member 32 has a pair of spring end portions 323 arranged outside the support pin 13.

そして、図4に示すごとく、自然長における一対のばね端部323の間の距離をAとし、自然長における一対の支承部322の間の距離をBとしたとき、A≧1.22Bを満たす。ここで、一対の支承部322の間の距離Bは、支承ピン13と支承部322との接触部の中心同士の間の距離をいうものとする。なお、図4に記載した寸法A、Bは、ばね部材32に荷重をかけていない自由状態における長さを示している。後述する図12における寸法A、Bについても同様である。
また、上記一対の支承ピン13は円柱形状を有する。
As shown in FIG. 4, when A is the distance between the pair of spring ends 323 in the natural length and B is the distance between the pair of support portions 322 in the natural length, A ≧ 1.22B is satisfied. . Here, the distance B between the pair of support portions 322 refers to the distance between the centers of the contact portions of the support pin 13 and the support portion 322. Note that the dimensions A and B described in FIG. 4 indicate the length in a free state where no load is applied to the spring member 32. The same applies to dimensions A and B in FIG.
The pair of support pins 13 has a cylindrical shape.

また、図2、図4に示すごとく、ばね部材32は、複数枚の板ばねを積層してなる。即ち、ばね部材32は、当接プレート31に当接する前方板ばね33と、該前方板ばね33の後方に配された後方板ばね34とからなる。前方板ばね33は、少なくとも前方板ばね33の両端部331において後方板ばね34に接触している。また、前方板ばね33と後方板ばね34とは、互いにリベット(図示略)によって留め付けられている。   2 and 4, the spring member 32 is formed by laminating a plurality of leaf springs. That is, the spring member 32 includes a front leaf spring 33 that abuts against the abutment plate 31 and a rear leaf spring 34 disposed behind the front leaf spring 33. The front leaf spring 33 is in contact with the rear leaf spring 34 at least at both end portions 331 of the front leaf spring 33. The front leaf spring 33 and the rear leaf spring 34 are fastened to each other by rivets (not shown).

後方板ばね34は、中央部が大きな円弧状に湾曲してなると共に、長さ方向の両端部が小さな円弧状に湾曲してなる。また、前方板ばね33は、円弧状に湾曲してなり、その曲率半径は、上記後方板ばね34の中央部における円弧の曲率半径よりも若干小さい。そして、前方板ばね33は、後方板ばね34の中央部の前方に重ね合わせるように配置されている。これにより、前方板ばね33は、その両端部331において後方板ばね34に当接する。   The rear leaf spring 34 is curved in a large arc shape at the center, and both end portions in the length direction are curved in a small arc shape. The front leaf spring 33 is curved in an arc shape, and its radius of curvature is slightly smaller than the radius of curvature of the arc at the center of the rear leaf spring 34. And the front leaf | plate spring 33 is arrange | positioned so that it may overlap with the front of the center part of the back leaf | plate spring 34. FIG. As a result, the front leaf spring 33 abuts against the rear leaf spring 34 at both end portions 331 thereof.

また、当接プレート31は、半導体積層ユニット2の積層方向の端部に配された冷却管22の主面に面接触できるような平坦な当接面311を有する。
そして、当接プレート31及びばね部材32は、いずれも、炭素工具鋼(SK85、旧SK5)等の金属からなる。
Further, the contact plate 31 has a flat contact surface 311 that can come into surface contact with the main surface of the cooling pipe 22 disposed at the end of the semiconductor stacking unit 2 in the stacking direction.
The contact plate 31 and the spring member 32 are both made of a metal such as carbon tool steel (SK85, old SK5).

また、加圧部材3は、図3に示すごとく、ばね部材32の中央の押圧部321を当接プレート31に当接させ、当接プレート31の当接面311を半導体積層ユニット2に当接させた状態で電力変換装置1内に組み付けられる。また、ばね部材32の支承部322を電力変換装置1の筐体11内に配された2個の支承ピン13に係止させている。支承ピン13はばね部材32の支承部322と筐体11の内壁111との間に挟持されている。そして、ばね部材32は、中央部の押圧部321において、当接プレート31を介して半導体積層ユニット2を積層方向に押圧するように付勢された状態で配設されている。   Further, as shown in FIG. 3, the pressing member 3 causes the central pressing portion 321 of the spring member 32 to contact the contact plate 31, and the contact surface 311 of the contact plate 31 contacts the semiconductor stacked unit 2. In this state, it is assembled in the power conversion device 1. In addition, the support portion 322 of the spring member 32 is locked to the two support pins 13 arranged in the housing 11 of the power conversion device 1. The support pin 13 is sandwiched between the support portion 322 of the spring member 32 and the inner wall 111 of the housing 11. And the spring member 32 is arrange | positioned in the press part 321 of the center part in the state urged | biased so that the semiconductor lamination unit 2 may be pressed in the lamination direction via the contact plate 31. FIG.

また、図3に示すごとく、半導体積層ユニット2は、半導体モジュール21を両面から挟持するように冷却管22を複数配設してなる。即ち、冷却管22と半導体モジュール21とが交互に積層されている。各冷却管22は、内部に冷媒流路(図示略)を設けてなる扁平形状の管である。この冷媒流路に、例えば水やアンモニア等の自然冷媒、エチレングリコール系の不凍液を混入した水、フロリナート等のフッ化炭素系冷媒、HCFC123、HFC134a等のフロン系冷媒、メタノール、アルコール等のアルコール系冷媒、アセトン等のケトン系冷媒等の冷却媒体を流通させることができるよう構成してある。   In addition, as shown in FIG. 3, the semiconductor laminated unit 2 includes a plurality of cooling pipes 22 so as to sandwich the semiconductor module 21 from both sides. That is, the cooling pipes 22 and the semiconductor modules 21 are alternately stacked. Each cooling pipe 22 is a flat pipe having a coolant channel (not shown) provided therein. For example, natural refrigerants such as water and ammonia, water mixed with ethylene glycol antifreeze, fluorocarbon refrigerants such as fluorinate, chlorofluorocarbon refrigerants such as HCFC123 and HFC134a, and alcohols such as methanol and alcohol. A cooling medium such as a refrigerant and a ketone-based refrigerant such as acetone can be circulated.

また、冷却器220は、複数の冷却管22の両端をそれぞれ連結パイプ222によって連結して、2箇所のヘッダ部223を形成してなる。また、該2箇所のヘッダ部223の端部には、半導体積層ユニット2の一方の端部に配された冷却管22に接続された、冷媒導入口224と冷媒排出口225とがそれぞれ設けてある。   The cooler 220 is formed by connecting the both ends of a plurality of cooling pipes 22 with connecting pipes 222 to form two header portions 223. In addition, a refrigerant inlet 224 and a refrigerant outlet 225 connected to the cooling pipe 22 disposed at one end of the semiconductor laminated unit 2 are provided at the ends of the two header portions 223, respectively. is there.

これらの冷却管22と連結パイプ222と冷媒導入口224と冷媒排出口225とによって、アルミニウム製の冷却器220が構成されている。
そして、半導体モジュール21は、冷却器220における隣り合う冷却管22の間に2個づつ並列配置された状態で挟持されている。半導体モジュール21は両面に放熱板を露出させており、この放熱板と扁平形状の上記冷却管22の主面221とを密着させることにより、両者の間で熱交換を行うことができるよう構成されている。
なお、冷却器220においては、例えば連結パイプ222を蛇腹状にしたり、連結パイプ222と冷却管22との取付部にダイヤフラム部を設けたりすることにより、隣り合う冷却管22の間の間隔をある程度変化させることができるよう構成してある。
The cooling pipe 22, the connecting pipe 222, the refrigerant inlet 224 and the refrigerant outlet 225 constitute an aluminum cooler 220.
The semiconductor modules 21 are sandwiched between two adjacent cooling pipes 22 in the cooler 220 in a state where two semiconductor modules 21 are arranged in parallel. The semiconductor module 21 has heat radiating plates exposed on both surfaces, and the heat radiating plate and the main surface 221 of the flat cooling pipe 22 are brought into close contact with each other so that heat can be exchanged between them. ing.
In the cooler 220, for example, the connection pipe 222 is formed in a bellows shape, or a diaphragm portion is provided in an attachment portion between the connection pipe 222 and the cooling pipe 22, so that the interval between the adjacent cooling pipes 22 is increased to some extent. It is configured so that it can be changed.

次に、本例の電力変換装置の製造方法につき説明する。
まず、電力変換装置1の筐体11に半導体積層ユニット2を配置する。
次いで、図1に示すごとく、半導体積層ユニット2の積層方向の一方の端部に、当接プレート31とばね部材32とを有する加圧部材3を配置する。
Next, a method for manufacturing the power conversion device of this example will be described.
First, the semiconductor multilayer unit 2 is arranged in the housing 11 of the power conversion device 1.
Next, as shown in FIG. 1, a pressure member 3 having a contact plate 31 and a spring member 32 is disposed at one end in the stacking direction of the semiconductor stacked unit 2.

次いで、ばね部材32における一対のばね端部323に押圧治具4を当接させてばね端部323を当接プレート31側へ押し込む。これによりばね部材32を弾性変形させた状態で、一対の支承部322の後方位置において筐体11内に一対の支承ピン13を配置する。
次いで、押圧治具4を後退させてばね部材32が復元する方向に一対の支承部322を変位させることにより、該支承部322と筐体11の内壁111との間に支承ピン13が挟持される状態で支承ピン13に支承させる。
以上により、図1に示すごとく、半導体積層ユニット2が加圧部材3によって積層方向に加圧された電力変換装置1を得る。
Next, the pressing jig 4 is brought into contact with the pair of spring end portions 323 in the spring member 32, and the spring end portion 323 is pushed into the contact plate 31 side. Thus, the pair of support pins 13 is disposed in the housing 11 at a position behind the pair of support portions 322 with the spring member 32 elastically deformed.
Next, the pressing pin 4 is moved backward to displace the pair of support portions 322 in the direction in which the spring member 32 is restored, whereby the support pin 13 is sandwiched between the support portion 322 and the inner wall 111 of the housing 11. In this state, the bearing pins 13 are supported.
As described above, as shown in FIG. 1, the power conversion device 1 in which the semiconductor lamination unit 2 is pressurized in the lamination direction by the pressure member 3 is obtained.

図1に示すごとく、押圧治具4は、一対の押圧凸部41を設けてなる。そして、これら一対の押圧凸部41を、筐体11の内側においてばね部材32のばね端部323の後方に挿入する。そして、一対の押圧凸部41を一対のばね端部323に当接させて押圧する。押圧治具4によってばね部材32を弾性変形させた状態で、支承部322の後方位置であって押圧凸部41の内側において、一対の支承ピン13を筐体11に配置する。   As shown in FIG. 1, the pressing jig 4 is provided with a pair of pressing convex portions 41. Then, the pair of pressing convex portions 41 are inserted behind the spring end portion 323 of the spring member 32 inside the housing 11. Then, the pair of pressing convex portions 41 are pressed against the pair of spring end portions 323. In a state where the spring member 32 is elastically deformed by the pressing jig 4, the pair of support pins 13 are disposed on the housing 11 at a position behind the support portion 322 and inside the pressing convex portion 41.

また、押圧治具4の押圧の際にはロードセルを用い、一定の押圧力によって押圧治具4を介して半導体積層ユニット2を押圧する。このとき、半導体積層ユニット2は、各連結パイプ222が少しずつ圧縮変形して、隣り合う冷却管22の間の間隔が縮まる。そして、半導体積層ユニット2の積層方向の寸法が縮む。
そして、加圧部材3を配設した後における加圧部材3による半導体積層ユニット2への押圧力は、半導体モジュール21の冷却効率を充分に確保することができると共に半導体積層ユニット2の変形を防ぐことができる所定の範囲内(本例においては、2.1〜5kN)となるようにする。
なお、所定の押圧力を付与したときの半導体積層ユニット2の積層寸法の変化がある程度予測できる場合には、押圧治具4の押圧は、一定の変位量にて行うこともできる。
Further, when the pressing jig 4 is pressed, a load cell is used to press the semiconductor multilayer unit 2 through the pressing jig 4 with a constant pressing force. At this time, in the semiconductor laminated unit 2, each connecting pipe 222 is compressed and deformed little by little, and the interval between the adjacent cooling pipes 22 is reduced. And the dimension of the lamination direction of the semiconductor lamination unit 2 shrinks.
The pressing force applied to the semiconductor multilayer unit 2 by the pressure member 3 after the pressure member 3 is disposed can sufficiently secure the cooling efficiency of the semiconductor module 21 and prevent deformation of the semiconductor multilayer unit 2. Within a predetermined range (2.1 to 5 kN in this example).
In addition, when the change of the lamination | stacking dimension of the semiconductor lamination | stacking unit 2 when predetermined | prescribed pressing force is given can be estimated to some extent, the press of the pressing jig 4 can also be performed by a fixed displacement amount.

次に、本例の作用効果につき説明する。
本例の電力変換装置の製造方法においては、図5に示すごとく、上記加圧部材3を筐体13に取付ける際に、ばね部材32における支承部322よりも外側の一対のばね端部323に押圧治具4を当接させてばね端部323を当接プレート31側へ押し込むことによりばね部材32を弾性変形させる。すなわち、ばね端部323を押圧治具4によって押圧することにより、ばね部材32を弾性変形させる。これにより、比較的小さい荷重でばね部材32を大きく弾性変形させることができる。
Next, the function and effect of this example will be described.
In the method of manufacturing the power conversion device of this example, as shown in FIG. 5, when the pressure member 3 is attached to the housing 13, the pair of spring end portions 323 outside the support portion 322 of the spring member 32 is provided. The spring member 32 is elastically deformed by bringing the pressing jig 4 into contact and pushing the spring end 323 toward the contact plate 31. That is, the spring member 32 is elastically deformed by pressing the spring end 323 with the pressing jig 4. Thereby, the spring member 32 can be largely elastically deformed with a relatively small load.

つまり、図6に示すごとく、支承部322よりも内側の部分に押圧治具40を当接させて押圧する場合に比べて、小さい荷重でばね部材32を大きく弾性変形させることができる。
このことにつき、図7を用いて説明する。
基本的に、ばね部材32においては、当接部材31に当接する押圧部321の中央部分からの距離が長い位置ほど、小さな力で大きく変位させることができる。それ故、支承部322において押圧する場合の荷重−変位曲線L0と、支承部322よりも内側において押圧する場合の荷重−変位曲線L1と、支承部322よりも外側(ばね端部323)において押圧する場合の荷重−変位曲線L2とは、図7のようになる。すなわち、ばね部材32への押圧治具4の当接部が外側へ行くほど、荷重に対する変位の大きさが大きくなる。
That is, as shown in FIG. 6, the spring member 32 can be greatly elastically deformed with a small load as compared with the case where the pressing jig 40 is pressed against the inner portion of the support portion 322 and pressed.
This will be described with reference to FIG.
Basically, in the spring member 32, the position where the distance from the central portion of the pressing portion 321 that contacts the contact member 31 is longer can be displaced with a smaller force. Therefore, the load-displacement curve L0 when pressed at the support portion 322, the load-displacement curve L1 when pressed at the inside of the support portion 322, and the press at the outside (spring end portion 323) of the support portion 322. The load-displacement curve L2 in this case is as shown in FIG. That is, the larger the displacement of the pressing jig 4 against the spring member 32 is, the larger the displacement with respect to the load is.

なお、各押圧位置における荷重−変位特性は、各曲線に付した矢印の方向に進み、加圧方向へ変形する際の弾性力が、減圧方向へ復元する際の弾性力よりも大きくなるようなヒステリシスを有する。
なお、図7においては、上限値の5kNまで押圧治具4による押圧を行ったときの荷重−変位曲線を示している。
The load-displacement characteristic at each pressing position proceeds in the direction of the arrow attached to each curve, and the elastic force when deforming in the pressurizing direction is larger than the elastic force when restoring in the depressurizing direction. Has hysteresis.
In addition, in FIG. 7, the load-displacement curve when pressing with the pressing jig 4 to the upper limit of 5 kN is shown.

図7に示すごとく、本例のように押圧治具4による押圧をばね端部323において行った場合(曲線L2、図5参照)には、押圧治具4による押圧を支承部322よりも内側において行った場合(曲線L1、図6参照)よりも、同じ押圧力でばね部材32を大きく変位させることができる。それ故、加圧部材3を配設する工程において、押圧治具4による押圧力を低減して、半導体積層ユニット2に過大な荷重がかかることを防ぎ、冷却管22の変形や、半導体モジュール21の破損のおそれを排除することができる。また、ばね部材32の配設工程において、押圧治具4を押圧する際に用いられるロードセルやサーボモータなどにも特に高いスペックが要求されなくなるという利点もある。   As shown in FIG. 7, when the pressing by the pressing jig 4 is performed at the spring end 323 as in this example (see the curve L <b> 2 and FIG. 5), the pressing by the pressing jig 4 is performed inside the support 322. The spring member 32 can be displaced more largely with the same pressing force than in the case of (1) (see curve L1, FIG. 6). Therefore, in the step of disposing the pressurizing member 3, the pressing force by the pressing jig 4 is reduced to prevent an excessive load from being applied to the semiconductor laminated unit 2, and the deformation of the cooling pipe 22 or the semiconductor module 21 is prevented. It is possible to eliminate the risk of damage. In addition, in the step of arranging the spring member 32, there is also an advantage that a particularly high specification is not required for a load cell, a servo motor, or the like used when the pressing jig 4 is pressed.

また、半導体積層ユニット2は、図3に示すごとく、複数の半導体モジュール21と複数の冷却管22とを交互に積層してなるため、その積層方向の寸法公差(積層公差)は、各半導体モジュールの寸法公差と各冷却管の寸法公差との積算値となり、大きな値となることがある。そこで、この積層公差内におけるあらゆる半導体積層ユニット2に対して、ばね部材32によって適切な押圧力(2.1〜5kN)を与えることができるようにする必要がある。   Further, as shown in FIG. 3, the semiconductor lamination unit 2 is formed by alternately laminating a plurality of semiconductor modules 21 and a plurality of cooling pipes 22. Therefore, the dimensional tolerance (lamination tolerance) in the lamination direction is different for each semiconductor module. The integrated value of the dimensional tolerance and the dimensional tolerance of each cooling pipe may be large. Therefore, it is necessary to apply an appropriate pressing force (2.1 to 5 kN) by the spring member 32 to every semiconductor lamination unit 2 within the lamination tolerance.

本例においては、上記のごとく、押圧治具4を支承部322の外側のばね端部323に当接して、ばね部材32を弾性変形させるため、押圧治具4による荷重の変化に対するばね部材32の変位量を大きくすることができる。
すなわち、本例において、半導体積層ユニット2への加圧部材3による押圧力は、半導体モジュール21の冷却効率を確保すべく、2.1kN以上必要であるとする。一方、押圧治具4による半導体積層ユニット2への押圧力の上限値は、半導体積層ユニット2の強度との関係で、5kN以下であるとする。このとき許容されるばね部材32の変位の幅は、図5(A)に示す加圧部材3(ばね部材32)の弾性力が下限値(2.1kN)のときのばね部材32の変位と、図5(B)に示す押圧治具4による半導体積層ユニット2への押圧力が上限値(5kN)のときのばね部材32の変位との差xp2となる。この差xp2は、図7に示した差xp2でもある。
In this example, as described above, the pressing jig 4 is brought into contact with the spring end 323 outside the support portion 322 to elastically deform the spring member 32, so that the spring member 32 with respect to a change in the load by the pressing jig 4. The amount of displacement can be increased.
That is, in this example, it is assumed that the pressing force applied to the semiconductor laminated unit 2 by the pressing member 3 is 2.1 kN or more in order to ensure the cooling efficiency of the semiconductor module 21. On the other hand, the upper limit value of the pressing force applied to the semiconductor multilayer unit 2 by the pressing jig 4 is 5 kN or less in relation to the strength of the semiconductor multilayer unit 2. The allowable displacement of the spring member 32 at this time is the displacement of the spring member 32 when the elastic force of the pressure member 3 (spring member 32) shown in FIG. 5A is the lower limit (2.1 kN). The difference xp2 from the displacement of the spring member 32 when the pressing force applied to the semiconductor multilayer unit 2 by the pressing jig 4 shown in FIG. 5B is the upper limit value (5 kN). This difference xp2 is also the difference xp2 shown in FIG.

一方、図6に示すごとく、支承部322よりも内側の部分に押圧治具40を当接させて押圧する場合には、図6(B)に示す押圧治具40による半導体積層ユニット2への押圧力が上限値(5kN)のときのばね部材32の変位が小さい。したがって、図6(A)に示す加圧部材3(ばね部材32)の弾性力が下限値(2.1kN)のときのばね部材32の変位と、図6(B)に示す押圧治具40による半導体積層ユニット2への押圧力が上限値(5kN)のときのばね部材32の変位との差xp1が小さい。この差xp1は、図7に示した差xp1でもある。   On the other hand, as shown in FIG. 6, when pressing the pressing jig 40 against the portion inside the support portion 322, the pressing to the semiconductor multilayer unit 2 by the pressing jig 40 shown in FIG. The displacement of the spring member 32 when the pressing force is the upper limit value (5 kN) is small. Therefore, the displacement of the spring member 32 when the elastic force of the pressure member 3 (spring member 32) shown in FIG. 6A is the lower limit (2.1 kN), and the pressing jig 40 shown in FIG. 6B. The difference xp1 from the displacement of the spring member 32 when the pressing force to the semiconductor laminated unit 2 by the upper limit value (5 kN) is small. This difference xp1 is also the difference xp1 shown in FIG.

このように、本例の場合には、許容される上記ばね部材32の変位の上限と下限との差xp2が大きいため、図11に示すごとく、上記半導体積層ユニット2の積層公差Lcが大きくても、加圧部材3によって適切な押圧力を半導体積層ユニット2に付与することが容易となる。
すなわち、図11(A)に示すごとく、半導体積層ユニット2の積層方向の寸法が小さいときには、ばね部材32へ付与する押圧力を比較的小さくして(例えば押圧力を2.1kNとして)、ばね部材32の弾性変形の変位量を小さくする。一方、図11(C)に示すごとく、半導体積層ユニット2の積層方向の寸法が大きいときには、ばね部材32へ付与する押圧力を比較的大きくして(例えば押圧力を5kNとして)、ばね部材32の弾性変形の変位量を大きくする。このとき、ばね部材32の弾性力が小さくなりすぎず、また、押圧治具4による押圧力が大きくなりすぎることを防ぐことができる。
Thus, in this example, since the difference xp2 between the upper limit and the lower limit of the allowable displacement of the spring member 32 is large, the stacking tolerance Lc of the semiconductor stacked unit 2 is large as shown in FIG. However, it becomes easy to apply an appropriate pressing force to the semiconductor laminated unit 2 by the pressing member 3.
That is, as shown in FIG. 11A, when the dimension in the stacking direction of the semiconductor stacked unit 2 is small, the pressing force applied to the spring member 32 is made relatively small (for example, the pressing force is 2.1 kN), and the spring The amount of displacement of the elastic deformation of the member 32 is reduced. On the other hand, as shown in FIG. 11C, when the dimension in the stacking direction of the semiconductor stacked unit 2 is large, the pressing force applied to the spring member 32 is made relatively large (for example, the pressing force is set to 5 kN), and the spring member 32. Increase the amount of elastic deformation. At this time, the elastic force of the spring member 32 does not become too small, and the pressing force by the pressing jig 4 can be prevented from becoming too large.

その結果、図10に示すごとく、半導体積層ユニット2の積層方向の寸法に応じて、ばね部材32の支承部322を支承する支承ピン13として、直径の異なる支承ピン13を多種類用意する必要がなくなる。すなわち、少ない種類の支承ピン13によって、半導体積層ユニット2の積層方向の寸法に対応することができる。それ故、製造コストを低減し、生産効率を向上させることができる。   As a result, as shown in FIG. 10, it is necessary to prepare many types of support pins 13 having different diameters as the support pins 13 for supporting the support portions 322 of the spring members 32 in accordance with the dimensions in the stacking direction of the semiconductor stacked unit 2. Disappear. That is, the dimensions of the semiconductor multilayer unit 2 in the stacking direction can be accommodated by a small number of support pins 13. Therefore, the manufacturing cost can be reduced and the production efficiency can be improved.

このことにつき、主として図8〜図11を用いて説明する。
ばね部材32の支承部322の内側において加圧してばね部材32を変形させる場合(図6)でも、図8に示すごとく、半導体積層ユニット2の積層公差Lcが小さいときには、上記の許容範囲内におけるばね部材32の変位の幅xp1が小さくても、少ない種類の支承ピン13で対応できる。例えば、xp1≧Lcであれば、1種類の支承ピン13で対応できる。
This will be described mainly with reference to FIGS.
Even when pressure is applied inside the support portion 322 of the spring member 32 to deform the spring member 32 (FIG. 6), as shown in FIG. 8, when the stacking tolerance Lc of the semiconductor stacking unit 2 is small, it is within the above allowable range. Even if the displacement width xp1 of the spring member 32 is small, it can be handled with a small number of types of support pins 13. For example, if xp1 ≧ Lc, one type of support pin 13 can be used.

ところが、図9に示すごとく、半導体積層ユニット2の積層公差Lcが大きくなり、xp1<Lcとなると、1種類の支承ピン13では対応できず、図9(A)に示すように半導体積層ユニット2の積層寸法が小さいときには、2.1kNの弾性力を生むばね部材32の変位では、支承ピン13と半導体積層ユニット2との間に荷重をかけられない。また、図9(C)に示すように導体積層ユニット2の積層寸法が大きいときには、押圧治具40によって5kNの荷重をかけたときのばね部材32の変位では、支承ピン13と半導体積層ユニット2との間にばね部材32を配設することができない。   However, as shown in FIG. 9, when the stacking tolerance Lc of the semiconductor stacked unit 2 becomes large and xp1 <Lc, one type of support pin 13 cannot cope, and the semiconductor stacked unit 2 as shown in FIG. 9A. When the stacking dimension is small, a load cannot be applied between the support pin 13 and the semiconductor stacking unit 2 by the displacement of the spring member 32 that generates an elastic force of 2.1 kN. As shown in FIG. 9C, when the lamination dimension of the conductor lamination unit 2 is large, the displacement of the spring member 32 when a load of 5 kN is applied by the pressing jig 40 causes the support pin 13 and the semiconductor lamination unit 2 to be displaced. The spring member 32 cannot be disposed between the two.

そのため、図10(A)に示すごとく、半導体積層ユニット2の積層寸法が小さいときには、直径の大きい支承ピン13を用いる必要が生じ、図10(C)に示すごとく、半導体積層ユニット2の積層寸法が大きいときには、直径の小さい支承ピン13を用いる必要が生じる。
この問題は、許容範囲内におけるばね部材32の変位の幅xp(上述のxp1、xp2)に対するLcの大きさが大きくなればなるほど大きくなる。すなわち、Lc/xpが1以下(すなわちxp≧Lc)であれば、上述のごとく、支承ピン13の直径は1種類で対応できる。しかしながら、Lc/xpが1を超えると支承ピン13の直径は、2種類以上必要となる。具体的には、必要な支承ピン13の直径の種類の最低数Npは、Np≧(Lc/xp)を満たす最小の自然数となる。
Therefore, as shown in FIG. 10A, when the semiconductor laminate unit 2 has a small laminate dimension, it is necessary to use the support pin 13 having a large diameter. As shown in FIG. 10C, the laminate dimension of the semiconductor laminate unit 2 is obtained. When is large, it is necessary to use a bearing pin 13 having a small diameter.
This problem increases as the magnitude of Lc with respect to the displacement width xp (xp1, xp2 described above) of the spring member 32 within the allowable range increases. That is, if Lc / xp is 1 or less (that is, xp ≧ Lc), as described above, the diameter of the support pin 13 can be handled by one type. However, when Lc / xp exceeds 1, two or more types of diameters of the support pin 13 are required. Specifically, the minimum number Np of the necessary types of diameter of the support pin 13 is the minimum natural number that satisfies Np ≧ (Lc / xp).

したがって、逆に言うと、xpを大きくすることによって、必要な支承ピン13の直径の種類の最低数Npを小さくすることができる。つまり、本発明のように、ばね端部323において押圧部材4によってばね部材32を押圧するようにすることで、荷重に対するばね部材32の変位を大きくして、xpを大きくすることにより、半導体積層ユニット2における積層公差Lcが大きくなっても、用意すべき支承ピン13を少なくすることができる。   Therefore, in other words, by increasing xp, the minimum number Np of necessary types of diameter of the support pin 13 can be reduced. That is, as in the present invention, by pressing the spring member 32 with the pressing member 4 at the spring end 323, the displacement of the spring member 32 with respect to the load is increased, and xp is increased. Even if the stacking tolerance Lc in the unit 2 is increased, the support pins 13 to be prepared can be reduced.

また、ばね部材32は、一対のばね端部323を支承ピン13よりも外方に配置している。そして、自然長における一対のばね端部323の間の距離Aと、自然長における一対の支承部322の間の距離Bとは、A≧1.22Bを満たす。そのため、一対のばね端部323は、支承ピン13の配設位置よりも充分に外側に配置される。これにより、半導体積層ユニット2の一端に加圧部材3を配置して押圧する際に、多少の寸法公差や配置のずれが生じても、支承ピン13に干渉することなく、一対のばね端部に押圧治具4を確実に当接させることができる。これにより、押圧治具4によって一対のばね端部323を当接プレート31側へ確実に押圧することができる。   Further, the spring member 32 has a pair of spring end portions 323 arranged outside the support pin 13. The distance A between the pair of spring end portions 323 in the natural length and the distance B between the pair of support portions 322 in the natural length satisfy A ≧ 1.22B. Therefore, the pair of spring end portions 323 are disposed sufficiently outside the position where the support pin 13 is disposed. Thus, when the pressing member 3 is disposed and pressed at one end of the semiconductor laminated unit 2, even if some dimensional tolerance or misalignment occurs, the pair of spring end portions does not interfere with the support pin 13. Thus, the pressing jig 4 can be reliably brought into contact. Accordingly, the pair of spring end portions 323 can be reliably pressed toward the contact plate 31 by the pressing jig 4.

すなわち、仮に、図12に示すごとく、一対のばね端部323の間の距離Aが、一対の支承部322の間の距離Bに対して小さいと、押圧治具4をばね端部323に対して確実に当接させることが困難となる。すなわち、押圧治具4を一対の支承ピン13の外側からばね端部323に当接させることが困難となる。特に、大きな直径の支承ピン13を用いたとき、ばね部材32等の寸法公差や配置のずれを考慮すると、押圧治具4をばね端部323に当接させることが困難となる。
これに対して、本発明においては、A≧1.22Bを満たしているため、多少の寸法公差や配置のずれが生じても、一対のばね端部に押圧治具4を確実に当接させることができる。
That is, as shown in FIG. 12, if the distance A between the pair of spring end portions 323 is smaller than the distance B between the pair of support portions 322, the pressing jig 4 is moved relative to the spring end portion 323. Thus, it is difficult to ensure contact. That is, it is difficult to bring the pressing jig 4 into contact with the spring end 323 from the outside of the pair of support pins 13. In particular, when a large-diameter support pin 13 is used, it is difficult to bring the pressing jig 4 into contact with the spring end 323 in consideration of dimensional tolerances and dislocations of the spring member 32 and the like.
In contrast, in the present invention, since A ≧ 1.22B is satisfied, the pressing jig 4 is reliably brought into contact with the pair of spring ends even if some dimensional tolerance or misalignment occurs. be able to.

以上のごとく、本例によれば、半導体積層ユニットを加圧する加圧部材の配設を小さい力で容易に行うことができると共に、製造コスト、生産効率に優れた電力変換装置及びその製造方法を提供することができる。   As described above, according to this example, it is possible to easily dispose the pressurizing member that pressurizes the semiconductor lamination unit with a small force, and to provide a power conversion device excellent in manufacturing cost and production efficiency and a manufacturing method thereof. Can be provided.

なお、上記実施例1において、許容されるばね部材32の弾性力の下限値を2.1kN、許容される押圧治具による半導体積層ユニット2への押圧力の上限値を5kNとしたが、これらの値は例示であり、本発明は、これに限定されるものではない。
また、上記実施例1において、ばね部材の支承部を支承する支承体として、円柱形状の支承ピン13を用いる例を示したが、上記支承体としては、例えば三角柱形状、四角柱形状、半円柱形状、楕円柱形状等、円柱形状以外の形状のものを用いることもできる。
In Example 1, the lower limit value of the elastic force of the allowable spring member 32 is 2.1 kN, and the upper limit value of the pressing force to the semiconductor laminated unit 2 by the allowable pressing jig is 5 kN. The values are examples, and the present invention is not limited to these values.
Moreover, in the said Example 1, although the example which uses the cylindrical support pin 13 as a support body which supports the support part of a spring member was shown, as said support body, for example, a triangular prism shape, a quadrangular prism shape, a semi-cylinder A shape other than a cylindrical shape, such as a shape or an elliptical column shape, can also be used.

(実施例2)
本例は、図13に示すごとく、ばね部材32のばね端部323における支承ピン13側の面324と端面325との間の角部326に、曲面を設けた例である。
その他は、実施例1と同様である。
本例の場合には、押圧治具4をばね端部323に安定して当接させることができ、より確実にばね部材32を弾性変形させることができる。
その他、実施例1と同様の作用効果を有する。
(Example 2)
In this example, as shown in FIG. 13, a curved surface is provided at a corner portion 326 between the surface 324 on the support pin 13 side and the end surface 325 in the spring end portion 323 of the spring member 32.
Others are the same as in the first embodiment.
In the case of this example, the pressing jig 4 can be stably brought into contact with the spring end 323, and the spring member 32 can be elastically deformed more reliably.
In addition, the same effects as those of the first embodiment are obtained.

(実施例3)
本例は、図14に示すごとく、ばね部材32の支承部322とばね端部323との間に、支承ピン13側に凸となるように屈曲した屈曲部327を設けた例である。本例においては、ばね端部323が半導体積層ユニット2の積層方向に略垂直となる。
その他は、実施例1と同様である。
本例の場合にも、押圧治具4をばね端部323に安定して当接させることができ、より確実にばね部材32を弾性変形させることができる。
その他、実施例1と同様の作用効果を有する。
(Example 3)
In this example, as shown in FIG. 14, a bent portion 327 that is bent so as to protrude toward the support pin 13 is provided between the support portion 322 and the spring end portion 323 of the spring member 32. In this example, the spring end 323 is substantially perpendicular to the stacking direction of the semiconductor stacked unit 2.
Others are the same as in the first embodiment.
Also in this example, the pressing jig 4 can be stably brought into contact with the spring end 323, and the spring member 32 can be elastically deformed more reliably.
In addition, the same effects as those of the first embodiment are obtained.

実施例1における、電力変換装置の製造方法の説明図。Explanatory drawing of the manufacturing method of the power converter device in Example 1. FIG. 実施例1における、ばね部材の斜視図。FIG. 3 is a perspective view of a spring member in the first embodiment. 実施例1における、電力変換装置の説明図。Explanatory drawing of the power converter device in Example 1. FIG. 実施例1における、ばね部材の説明図。Explanatory drawing of the spring member in Example 1. FIG. 実施例1における、(A)弾性力が下限値であるときのばね部材の説明図、(B)荷重が上限値であるときのばね部材の説明図。(A) Explanatory drawing of a spring member when elastic force is a lower limit in Example 1, (B) Explanatory drawing of a spring member when a load is an upper limit. 比較例における、(A)弾性力が下限値であるときのばね部材の説明図、(B)荷重が上限値であるときのばね部材の説明図。In a comparative example, (A) Explanatory drawing of a spring member when elastic force is a lower limit, (B) Explanatory drawing of a spring member when load is an upper limit. 実施例1における、異なる3箇所でそれぞれ押圧したときのばね部材の荷重−変位特性を示す線図。The diagram which shows the load-displacement characteristic of a spring member when it presses in three different places in Example 1, respectively. 比較例における、半導体積層ユニットの積層公差が小さいときのばね部材の配設状態を示す説明図。Explanatory drawing which shows the arrangement | positioning state of a spring member when the lamination | stacking tolerance of a semiconductor lamination | stacking unit in a comparative example is small. 比較例における、半導体積層ユニットの積層公差が大きいときのばね部材の配設状態を示す説明図。Explanatory drawing which shows the arrangement | positioning state of a spring member when the lamination | stacking tolerance of a semiconductor lamination | stacking unit is large in a comparative example. 比較例における、半導体積層ユニットの積層公差が大きいときに異なる直径の支承体を用いたばね部材の配設状態を示す説明図。Explanatory drawing which shows the arrangement | positioning state of the spring member using the support body of a different diameter when the lamination | stacking tolerance of a semiconductor lamination unit in a comparative example is large. 実施例1における、半導体積層ユニットの積層公差が大きいときのばね部材の配設状態を示す説明図。FIG. 3 is an explanatory diagram illustrating an arrangement state of spring members when the stacking tolerance of the semiconductor stacked unit is large in the first embodiment. 一対のばね端部の間の距離Aが一対の支承部の間の距離Bに対して充分に大きくない場合の問題点を示す説明図。Explanatory drawing which shows a problem in case the distance A between a pair of spring end parts is not large enough with respect to the distance B between a pair of support parts. 実施例2における、ばね部材のばね端部付近の形状を表す説明図。Explanatory drawing showing the shape of the spring end part vicinity of a spring member in Example 2. FIG. 実施例3における、ばね部材のばね端部付近の形状を表す説明図。Explanatory drawing showing the shape of the spring member vicinity of the spring member in Example 3. FIG. 従来例における、電力変換装置の説明図。Explanatory drawing of the power converter device in a prior art example. 従来例における、電力変換装置の製造方法の説明図。Explanatory drawing of the manufacturing method of the power converter device in a prior art example.

符号の説明Explanation of symbols

1 電力変換装置
11 筐体
111 内壁
13 支承体
2 半導体積層ユニット
21 半導体モジュール
22 冷却管
3 加圧部材
31 当接部材
311 当接面
32 ばね部材
321 押圧部
322 支承部
323 ばね端部
4 押圧部材
DESCRIPTION OF SYMBOLS 1 Power converter 11 Housing | casing 111 Inner wall 13 Support body 2 Semiconductor laminated unit 21 Semiconductor module 22 Cooling pipe 3 Pressure member 31 Contact member 311 Contact surface 32 Spring member 321 Press part 322 Support part 323 Spring end 4 Press member

Claims (6)

電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却管とを交互に積層してなる半導体積層ユニットを有する電力変換装置を製造する方法であって、
上記電力変換装置の筐体に上記半導体積層ユニットを配置した後、
上記半導体積層ユニットの積層方向の一方の端部に、上記冷却管の主面に当接する当接面を有する当接プレートと、該当接プレートにおける上記当接面と反対側の面に配されたばね部材とを有する加圧部材を配置し、
上記ばね部材は、上記当接プレート側に凸の状態で湾曲した押圧部と、該押圧部の両端に形成された支承部とを有し、
上記ばね部材における上記支承部よりも外側の一対のばね端部に押圧治具を当接させて上記ばね端部を上記当接プレート側へ押し込むことにより上記ばね部材を弾性変形させた状態で、上記一対の支承部の後方位置において上記筐体内に一対の支承体を配設し、
次いで、上記押圧治具を後退させて上記ばね部材が復元する方向に上記一対の支承部を変位させることにより、該支承部と上記筐体の内壁との間に上記支承体が挟持される状態で、上記支承部を上記支承体に支承させることを特徴とする電力変換装置の製造方法。
A method for producing a power conversion device having a semiconductor laminated unit in which a semiconductor module constituting a part of a power conversion circuit and a cooling pipe for cooling the semiconductor module are alternately laminated,
After arranging the semiconductor laminated unit in the casing of the power converter,
A contact plate having a contact surface that contacts the main surface of the cooling pipe at one end in the stacking direction of the semiconductor stacked unit, and a spring disposed on a surface of the contact plate opposite to the contact surface A pressure member having a member,
The spring member has a pressing portion curved in a convex state toward the contact plate side, and support portions formed at both ends of the pressing portion,
In a state where the spring member is elastically deformed by bringing a pressing jig into contact with a pair of spring end portions outside the support portion of the spring member and pushing the spring end portion toward the contact plate. A pair of support bodies are disposed in the housing at a rear position of the pair of support parts,
Next, the support body is sandwiched between the support portion and the inner wall of the housing by moving the pair of support portions in a direction in which the spring member is restored by retracting the pressing jig. And the manufacturing method of the power converter device which makes the said support part support on the said support body.
請求項1において、上記ばね部材は、上記ばね端部における上記支承体側の面と端面との間の角部に、曲面を設けてなることを特徴とする電力変換装置の製造方法。   2. The method of manufacturing a power conversion device according to claim 1, wherein the spring member is provided with a curved surface at a corner portion between the end surface of the spring end portion and the surface on the support body side. 請求項1又は2において、上記ばね部材は、上記支承部と上記ばね端部との間に、上記支承体側に凸となるように屈曲した屈曲部を設けてなることを特徴とする電力変換装置の製造方法。   3. The power conversion device according to claim 1, wherein the spring member is provided with a bent portion bent so as to be convex toward the support body between the support portion and the spring end portion. Manufacturing method. 電力変換回路の一部を構成する半導体モジュールと、該半導体モジュールを冷却する冷却管とを交互に積層してなる半導体積層ユニットを有する電力変換装置であって、
上記半導体積層ユニットの積層方向の一方の端部には、該半導体積層ユニットを積層方向に加圧する加圧部材が配されており、
該加圧部材は、上記冷却管の主面に当接する当接面を有する当接プレートと、該当接プレートにおける上記当接面と反対側の面に配されたばね部材とを有し、
上記ばね部材は、上記当接プレート側に凸の状態で湾曲した押圧部と、該押圧部の両端に形成された支承部とを有し、
上記ばね部材は、上記電力変換装置の筐体の内壁と上記支承部との間に介在される一対の支承体に上記支承部を支承させると共に上記当接プレートに上記押圧部を当接させて、上記当接プレートを上記支承体から離れる方向に押圧するように付勢された状態で配設されており、
上記ばね部材は、一対のばね端部を上記支承体よりも外方に配置しており、
自然長における上記一対のばね端部の間の距離をAとし、自然長における上記一対の支承部の間の距離をBとしたとき、A≧1.22Bを満たすことを特徴とする電力変換装置。
A power conversion device having a semiconductor stacked unit formed by alternately stacking a semiconductor module constituting a part of a power conversion circuit and a cooling pipe for cooling the semiconductor module,
A pressure member that pressurizes the semiconductor lamination unit in the lamination direction is disposed at one end in the lamination direction of the semiconductor lamination unit,
The pressurizing member includes a contact plate having a contact surface that contacts the main surface of the cooling pipe, and a spring member disposed on a surface of the contact plate opposite to the contact surface,
The spring member has a pressing portion curved in a convex state toward the contact plate side, and support portions formed at both ends of the pressing portion,
The spring member is configured such that the support portion is supported by a pair of support bodies interposed between an inner wall of the casing of the power converter and the support portion, and the pressing portion is contacted by the contact plate. , Arranged in a biased state so as to press the contact plate in a direction away from the support body,
The spring member has a pair of spring ends arranged outside the support body,
A power conversion device satisfying A ≧ 1.22B, where A is a distance between the pair of spring ends in the natural length and B is a distance between the pair of support portions in the natural length. .
請求項4において、上記ばね部材は、上記ばね端部における上記支承体側の面と端面との間の角部に、曲面を設けてなることを特徴とする電力変換装置。   5. The power conversion device according to claim 4, wherein the spring member is provided with a curved surface at a corner portion between the end surface of the spring end portion and the surface on the support body side. 請求項4又は5において、上記ばね部材は、上記支承部と上記ばね端部との間に、上記支承体側に凸となるように屈曲した屈曲部を設けてなることを特徴とする電力変換装置。   6. The power conversion device according to claim 4, wherein the spring member is provided with a bent portion bent so as to be convex toward the support body between the support portion and the spring end portion. .
JP2007186782A 2007-07-18 2007-07-18 Power converter and manufacturing method thereof Active JP5211568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007186782A JP5211568B2 (en) 2007-07-18 2007-07-18 Power converter and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007186782A JP5211568B2 (en) 2007-07-18 2007-07-18 Power converter and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009027805A true JP2009027805A (en) 2009-02-05
JP5211568B2 JP5211568B2 (en) 2013-06-12

Family

ID=40399084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007186782A Active JP5211568B2 (en) 2007-07-18 2007-07-18 Power converter and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5211568B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259203A (en) * 2009-04-23 2010-11-11 Denso Corp Method of manufacturing power conversion apparatus
JP2011200057A (en) * 2010-03-23 2011-10-06 Denso Corp Power conversion device and method of manufacturing the same
JP2012161133A (en) * 2011-01-31 2012-08-23 Denso Corp Power conversion device and method of manufacturing the same
JP2012205357A (en) * 2011-03-24 2012-10-22 Denso Corp Power conversion device
JP2013121219A (en) * 2011-12-07 2013-06-17 Denso Corp Power conversion apparatus and manufacturing method therefor
JP2014013831A (en) * 2012-07-04 2014-01-23 Toyota Motor Corp Power conversion system and manufacturing method therefor
JP2015015864A (en) * 2013-07-08 2015-01-22 株式会社デンソー Power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052950A (en) * 2000-08-08 2002-02-19 Araco Corp Automobile driving device
JP2003112232A (en) * 2001-10-01 2003-04-15 Dai:Kk Gas vent device for die, and method for using the device
JP2003237779A (en) * 2002-02-15 2003-08-27 Toyo Seikan Kaisha Ltd Easily openable lid having re-sealing function
JP2007166819A (en) * 2005-12-15 2007-06-28 Denso Corp Power conversion equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002052950A (en) * 2000-08-08 2002-02-19 Araco Corp Automobile driving device
JP2003112232A (en) * 2001-10-01 2003-04-15 Dai:Kk Gas vent device for die, and method for using the device
JP2003237779A (en) * 2002-02-15 2003-08-27 Toyo Seikan Kaisha Ltd Easily openable lid having re-sealing function
JP2007166819A (en) * 2005-12-15 2007-06-28 Denso Corp Power conversion equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010259203A (en) * 2009-04-23 2010-11-11 Denso Corp Method of manufacturing power conversion apparatus
JP2011200057A (en) * 2010-03-23 2011-10-06 Denso Corp Power conversion device and method of manufacturing the same
JP2012161133A (en) * 2011-01-31 2012-08-23 Denso Corp Power conversion device and method of manufacturing the same
JP2012205357A (en) * 2011-03-24 2012-10-22 Denso Corp Power conversion device
JP2013121219A (en) * 2011-12-07 2013-06-17 Denso Corp Power conversion apparatus and manufacturing method therefor
JP2014013831A (en) * 2012-07-04 2014-01-23 Toyota Motor Corp Power conversion system and manufacturing method therefor
JP2015015864A (en) * 2013-07-08 2015-01-22 株式会社デンソー Power conversion device

Also Published As

Publication number Publication date
JP5211568B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5211568B2 (en) Power converter and manufacturing method thereof
JP4525582B2 (en) Power converter
JP4462179B2 (en) Power converter
JP6197769B2 (en) Power converter and manufacturing method thereof
JP5531999B2 (en) Power converter
JP5494210B2 (en) Power converter and manufacturing method thereof
JP4600413B2 (en) Power converter
JP2009130964A (en) Power conversion equipment
JP5471705B2 (en) Power converter and manufacturing method thereof
JP5359951B2 (en) Power converter and manufacturing method thereof
JP5445041B2 (en) Power converter
JP5333274B2 (en) Power converter
JP5440324B2 (en) Power converter
JP6299618B2 (en) Power converter and manufacturing method thereof
JP2014011936A (en) Power converter
JPWO2017033802A1 (en) Pressing structure and pressing unit
JP5782845B2 (en) Power converter and manufacturing method thereof
JP4682938B2 (en) Stacked cooler
CN112053998B (en) Power conversion device and method for manufacturing same
JP5510350B2 (en) Power converter and manufacturing method thereof
JP5884661B2 (en) Pressure member and power conversion device
JP5327120B2 (en) Power converter
JP7099385B2 (en) Pressurizing member
JP5935586B2 (en) Manufacturing method of semiconductor laminated unit
JP6874672B2 (en) Pressurized parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130211

R151 Written notification of patent or utility model registration

Ref document number: 5211568

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250