JP2013121219A - Power conversion apparatus and manufacturing method therefor - Google Patents

Power conversion apparatus and manufacturing method therefor Download PDF

Info

Publication number
JP2013121219A
JP2013121219A JP2011267439A JP2011267439A JP2013121219A JP 2013121219 A JP2013121219 A JP 2013121219A JP 2011267439 A JP2011267439 A JP 2011267439A JP 2011267439 A JP2011267439 A JP 2011267439A JP 2013121219 A JP2013121219 A JP 2013121219A
Authority
JP
Japan
Prior art keywords
elastic member
elastic deformation
deformation state
composite
composite elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011267439A
Other languages
Japanese (ja)
Other versions
JP5765208B2 (en
Inventor
Yasuaki Tokunaga
耕亮 徳永
Takahisa Kaneko
高久 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011267439A priority Critical patent/JP5765208B2/en
Publication of JP2013121219A publication Critical patent/JP2013121219A/en
Application granted granted Critical
Publication of JP5765208B2 publication Critical patent/JP5765208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power conversion apparatus by which manufacturing man-hours can be reduced and manufacturing time can be shortened, and to provide a manufacturing method therefor.SOLUTION: A power conversion apparatus is manufactured as follows. First, a composite elastic member 5 composed of two elastic members 51 and 52 is arranged on one side in a laminating direction (X direction) of a laminate 10. The composite elastic member 5 undergoes displacement through two elastic deformation states as a compressive force is applied thereto, which are: a first elastic deformation state S1 having a relatively low spring constant; and a second elastic deformation state S2 appearing after the first elastic deformation state S1 and having a spring constant greater than that of the first elastic deformation state S1. Then, the composite elastic member 5 is elastically deformed to compress the laminate 10 in the X direction by applying a high compressive force F that brings the composite elastic member 5 into the second elastic deformation state S2. Thereafter, the composite elastic member 5 is returned to the first elastic deformation state S1 or the initial state of the second elastic deformation state S2 by weakening the compressive force thereof, thereby fixing the laminate 10 in a frame 4.

Description

本発明は、複数の半導体モジュールと複数の冷却管とを、これらの間に放熱グリスを介在させた状態で積層した積層体を備える電力変換装置と、その製造方法に関する。   The present invention relates to a power conversion device including a stacked body in which a plurality of semiconductor modules and a plurality of cooling pipes are stacked with heat dissipation grease interposed therebetween, and a manufacturing method thereof.

従来から、例えば直流電力と交流電力との間で電力変換を行う電力変換装置として、半導体素子を内蔵した複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを積層した積層体を備えるものが知られている(下記特許文献1参照)。従来の電力変換装置の製造方法を図15〜図18に示す。   Conventionally, for example, as a power conversion device that performs power conversion between DC power and AC power, a stacked body in which a plurality of semiconductor modules incorporating semiconductor elements and a plurality of cooling pipes that cool the semiconductor modules are stacked. What is provided is known (see Patent Document 1 below). The manufacturing method of the conventional power converter device is shown in FIGS.

電力変換装置を製造するには、まず図15に示すごとく、複数の半導体モジュール92と複数の冷却管93とを積層して積層体910を製造し(積層工程)、この積層体910をフレーム94に収納する(収納工程)。半導体モジュール92の表面には、放熱グリス911を予め塗布しておく。   In order to manufacture the power conversion device, first, as shown in FIG. 15, a plurality of semiconductor modules 92 and a plurality of cooling pipes 93 are stacked to manufacture a stacked body 910 (a stacking process), and this stacked body 910 is assembled into a frame 94. (Storing process). On the surface of the semiconductor module 92, heat radiation grease 911 is applied in advance.

次いで、図16に示すごとく、フレーム94と積層体910との隙間Dに治具917を入れ、フレーム94の反対側を固定治具で支え、積層体910を積層方向(X方向)に圧縮する(高圧縮工程)。この際、積層体910に第1圧縮力Fを加えることによって、上記放熱グリス911を薄く延ばす。これにより、半導体モジュール92と冷却管93との密着性を向上させ、半導体モジュール92の放熱性を高める。   Next, as shown in FIG. 16, a jig 917 is inserted into the gap D between the frame 94 and the laminated body 910, the opposite side of the frame 94 is supported by a fixing jig, and the laminated body 910 is compressed in the laminating direction (X direction). (High compression process). At this time, by applying a first compression force F to the laminate 910, the heat dissipation grease 911 is thinly extended. Thereby, the adhesiveness between the semiconductor module 92 and the cooling pipe 93 is improved, and the heat dissipation of the semiconductor module 92 is enhanced.

次いで、治具917を取り出し、図17に示すごとく、圧縮荷重支持板915と弾性部材99(板ばね)とを隙間Dに入れる。そして、弾性部材99に上記第1圧縮力Fよりも小さな第2圧縮力fを加え、弾性部材99を弾性変形させつつ積層体910をX方向に圧縮する(低圧縮工程)。   Next, the jig 917 is taken out, and the compression load support plate 915 and the elastic member 99 (leaf spring) are put into the gap D as shown in FIG. Then, the second compression force f smaller than the first compression force F is applied to the elastic member 99, and the laminate 910 is compressed in the X direction while elastically deforming the elastic member 99 (low compression step).

次いで、図18に示すごとく、弾性部材99とフレーム94との間に固定具97を挿入して、弾性部材99を弾性変形した状態で固定する。これにより、弾性部材99の弾性力を利用して、半導体モジュール92と冷却管93との接触圧を維持しつつ、積層体910をフレーム94内に固定する。   Next, as shown in FIG. 18, a fixture 97 is inserted between the elastic member 99 and the frame 94 to fix the elastic member 99 in an elastically deformed state. Accordingly, the laminated body 910 is fixed in the frame 94 while maintaining the contact pressure between the semiconductor module 92 and the cooling pipe 93 by using the elastic force of the elastic member 99.

特開2007−166819号公報JP 2007-166819 A

近年、電力変換装置の製造工数を減らし、製造時間を短縮することが求められている。しかしながら従来の電力変換装置の製造方法は、上記高圧縮工程(図16参照)を行った後、治具917を取り出して代わりに弾性部材99を入れないと上記低圧縮工程(図17参照)を行うことができないため、これら2つの圧縮工程を連続して行うことができないという問題があった。そのため、2つの圧縮工程を別々に行う必要があり、製造時間を短縮しにくいという問題があった。   In recent years, it has been required to reduce the number of manufacturing steps of the power conversion device and shorten the manufacturing time. However, in the conventional method for manufacturing a power converter, after the high compression step (see FIG. 16) is performed, the jig 917 is taken out and the elastic member 99 is not inserted instead. There is a problem that these two compression steps cannot be performed continuously because they cannot be performed. Therefore, it is necessary to perform the two compression steps separately, and there is a problem that it is difficult to shorten the manufacturing time.

本発明は、かかる背景に鑑みてなされたもので、製造工数を低減でき、製造時間を短縮できる電力変換装置と、その製造方法を提供しようとするものである。   The present invention has been made in view of such a background, and an object of the present invention is to provide a power conversion device that can reduce the number of manufacturing steps and shorten the manufacturing time, and a manufacturing method thereof.

本発明の一態様は、電力変換装置の製造方法であって、
半導体素子を内蔵する複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを、これらの間に放熱グリスを介在させた状態で積層して積層体を製造する積層工程と、
上記積層体をフレームの内側に配置する積層体配置工程と、
2個の弾性部材を組み合わせてなり、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態と、該第1弾性変形状態の後に現れ上記ばね定数が上記第1弾性変形状態よりも高い第2弾性変形状態との、2つの弾性変形状態を経て変位する複合弾性部材を、上記積層体に対して、該積層体の積層方向における一方側に配置する弾性部材配置工程と、
上記複合弾性部材が上記第2弾性変形状態となる高圧縮力を加えることにより、上記複合弾性部材を弾性変形させつつ上記積層体を上記積層方向に圧縮し、その後、上記圧縮力を弱めて上記複合弾性部材を上記第2弾性変形状態の初期状態または上記第1弾性変形状態にする連続圧縮工程と、
上記第2弾性変形状態の初期状態または上記第1弾性変形状態になった上記複合弾性部材の押圧力を使って上記積層体を上記フレーム内に固定する固定工程とを行うことを特徴とする電力変換装置の製造方法にある(請求項1)。
One aspect of the present invention is a method of manufacturing a power converter,
A stacking step of manufacturing a stack by stacking a plurality of semiconductor modules containing semiconductor elements, and a plurality of cooling pipes for cooling the semiconductor modules, with heat dissipation grease interposed therebetween,
A laminated body arranging step of arranging the laminated body inside the frame;
Combining two elastic members, and applying a compressive force, a first elastic deformation state having a relatively low spring constant, and the spring constant appearing after the first elastic deformation state is greater than the first elastic deformation state. An elastic member disposing step of disposing a composite elastic member that is displaced through two elastic deformation states with a higher second elastic deformation state on one side in the stacking direction of the stack with respect to the stack;
The composite elastic member is compressed in the stacking direction while elastically deforming the composite elastic member by applying a high compressive force that causes the composite elastic member to be in the second elastic deformation state, and then the compressive force is weakened and the composite elastic member is compressed. A continuous compression step of bringing the composite elastic member into the initial state of the second elastic deformation state or the first elastic deformation state;
And a fixing step of fixing the laminated body in the frame using a pressing force of the composite elastic member in the initial state of the second elastic deformation state or the first elastic deformation state. It exists in the manufacturing method of a converter (Claim 1).

本発明の別の態様は、半導体素子を内蔵する複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを、放熱グリスを介在させた状態で積層した積層体と、
上記積層体を内側に保持するフレームと、
上記フレームを構成する壁部のうち上記積層体の積層方向における一方側に位置する第1壁部と、上記積層体との間に配置され、2個の弾性部材を組み合わせてなる複合弾性部材とを備え、
該複合弾性部材は、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態と、該第1弾性変形状態の後に現れ上記ばね定数が上記第1弾性変形状態よりも高い第2弾性変形状態との、2つの弾性変形状態を経て変位するよう構成され、上記第2弾性変形状態の初期状態または上記第1弾性変形状態となった上記複合弾性部材の押圧力により、上記積層体を上記積層方向に押圧して上記フレーム内に固定していることを特徴とする電力変換装置にある(請求項4)。
Another aspect of the present invention is a laminate in which a plurality of semiconductor modules containing semiconductor elements and a plurality of cooling pipes for cooling the semiconductor modules are stacked with heat dissipation grease interposed therebetween,
A frame for holding the laminate inside,
A composite elastic member formed by combining two elastic members, disposed between the first wall portion located on one side in the stacking direction of the stacked body among the wall portions constituting the frame, and the stacked body. With
The composite elastic member has a first elastic deformation state with a relatively low spring constant as a compressive force is applied, and a second elastic constant that appears after the first elastic deformation state and has a higher spring constant than the first elastic deformation state. The laminated body is configured to be displaced through two elastic deformation states, ie, an elastic deformation state, by the pressing force of the composite elastic member in the initial state of the second elastic deformation state or the first elastic deformation state. The power converter is characterized by being pressed in the laminating direction and fixed in the frame.

上記電力変換装置の製造方法においては、2つの弾性部材を組み合わせてなる上記複合弾性部材を、上記積層体の上記積層方向における一方側に配置して(弾性部材配置工程)、上記連続圧縮工程を行う。
このようにすると、連続圧縮工程において、複合弾性部材を介して上記高圧縮力(複合弾性部材を上記第2弾性変形状態にする力)を積層体に加えるため、冷却管と半導体モジュールとの間の放熱グリスを薄く延すことができる。そしてこの後、複合弾性部材に加える圧縮力を弱めて複合弾性部材を上記第2弾性変形状態の初期状態または上記第1弾性変形状態にすることにより、積層体を固定する力を加える工程に連続的に移行することができる。これにより、放熱グリスを薄く延す工程と、積層体を固定する力を加える工程を続けて行うことが可能になり、電力変換装置の製造工数を低減することが可能になる。
また、連続圧縮工程を完了した後、上記固定工程に連続的に移行することができる。この固定工程において、上記第2弾性変形状態の初期状態または第1弾性変形状態となった複合弾性部材を用いて積層体をフレームに固定することができる。
In the method for manufacturing the power conversion device, the composite elastic member formed by combining two elastic members is disposed on one side in the stacking direction of the laminate (elastic member disposing step), and the continuous compression step is performed. Do.
If it does in this way, in the continuous compression process, in order to apply the above-mentioned high compressive force (force which makes a composite elastic member the above-mentioned 2nd elastic deformation state) to a layered product via a composite elastic member, between a cooling pipe and a semiconductor module The heat dissipation grease can be extended thinly. Then, after this, the compressive force applied to the composite elastic member is weakened to bring the composite elastic member into the initial state of the second elastic deformation state or the first elastic deformation state, thereby continuing the step of applying a force for fixing the laminate. Can be migrated. As a result, it is possible to continuously perform the process of extending the heat dissipation grease thinly and the process of applying a force for fixing the laminated body, thereby reducing the number of manufacturing steps of the power conversion device.
Moreover, after completing a continuous compression process, it can transfer to the said fixing process continuously. In this fixing step, the laminate can be fixed to the frame using the composite elastic member in the initial state of the second elastic deformation state or the first elastic deformation state.

従来の電力変換装置の製造方法では、高圧縮工程(図16参照)を行うための部材(治具917)と、低圧縮工程(図17参照)を行うための部材(弾性部材99)とが別々になっていたため、高圧縮工程を行った後、治具917を取り外して代わりに弾性部材99を入れなければ低圧縮工程を行うことができず、これらの圧縮工程を連続して行うことができないという問題があった。これに対して上記電力変換装置の製造方法では、一つの部材(複合弾性部材)を用いて高圧縮工程と低圧縮工程とを行うため、これらの圧縮工程を連続して行うことが可能になる。そのため、電力変換装置の製造工数を減らすことができ、短時間で電力変換装置を製造することができる。   In the conventional method for manufacturing a power converter, a member (jig 917) for performing a high compression step (see FIG. 16) and a member (elastic member 99) for performing a low compression step (see FIG. 17) are provided. Since they were separate, after performing the high compression process, the low compression process cannot be performed unless the jig 917 is removed and the elastic member 99 is inserted instead, and these compression processes can be performed continuously. There was a problem that I could not. On the other hand, in the manufacturing method of the power converter, since the high compression step and the low compression step are performed using one member (composite elastic member), these compression steps can be performed continuously. . Therefore, the manufacturing man-hour of a power converter device can be reduced and a power converter device can be manufactured in a short time.

また、上記電力変換装置は上記複合弾性部材を備えるため、電力変換装置を組み立てるにあたり、上記電力変換装置の製造方法における上記連続圧縮工程を行うことが可能になる。そのため、電力変換装置の製造工数を減らすことができ、短時間で電力変換装置を製造することができる。   Moreover, since the said power converter device is provided with the said composite elastic member, in assembling a power converter device, it becomes possible to perform the said continuous compression process in the manufacturing method of the said power converter device. Therefore, the manufacturing man-hour of a power converter device can be reduced and a power converter device can be manufactured in a short time.

以上のごとく、本発明によれば、製造工数を低減でき、製造時間を短縮できる電力変換装置と、その製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a power conversion device that can reduce the number of manufacturing steps and shorten the manufacturing time, and a manufacturing method thereof.

実施例1における、積層工程の説明図。FIG. 3 is an explanatory diagram of a stacking process in the first embodiment. 実施例1における、積層体配置工程の説明図。Explanatory drawing of the laminated body arrangement | positioning process in Example 1. FIG. 実施例1における、弾性部材配置工程の説明図。Explanatory drawing of the elastic member arrangement | positioning process in Example 1. FIG. 実施例1における、連続圧縮工程の前半の説明図。Explanatory drawing of the first half of the continuous compression process in Example 1. FIG. 実施例1における、連続圧縮工程の後半の説明図。Explanatory drawing of the latter half of the continuous compression process in Example 1. FIG. 実施例1における、固定工程の説明図。Explanatory drawing of the fixing process in Example 1. FIG. 実施例1における、複合弾性部材の圧縮力と変形量との関係を表したグラフ。3 is a graph showing the relationship between the compressive force and deformation amount of a composite elastic member in Example 1. 実施例1における、電力変換装置の平面図。The top view of the power converter device in Example 1. FIG. 図8のA−A断面図。AA sectional drawing of FIG. 図8のB−B断面図。BB sectional drawing of FIG. 実施例2における、電力変換装置の平面図。The top view of the power converter device in Example 2. FIG. 実施例3における、複合弾性部材の斜視図。The perspective view of the composite elastic member in Example 3. FIG. 実施例4における、複合弾性部材の側面図。The side view of the composite elastic member in Example 4. FIG. 実施例5における、複合弾性部材の断面図。Sectional drawing of the composite elastic member in Example 5. FIG. 従来例における、電力変換装置の製造工程説明図。The manufacturing process explanatory drawing of the power converter device in a prior art example. 図15に続く図。The figure following FIG. 図16に続く図。The figure following FIG. 図17に続く図。The figure following FIG.

上記弾性部材はコイルばねであり、上記複合弾性部材は、直径および軸線方向長さが互いに異なる2つの上記コイルばねを組み合わせてなり、直径が大きい外側コイルばねの内側に、該外側コイルばねよりも直径が小さい内側コイルばねが配置されていることが好ましい(請求項2、請求項5)。
この場合には、上記2つのコイルばねのうち、一方のコイルばねのみが弾性変形する状態が第1弾性変形状態となり、両方のコイルばねが弾性変形する状態が第2弾性変形状態となる。また、上記複合弾性部材は、外側コイルばねの内側に上記内側コイルばねを配置しているため、複合弾性部材の外形が外側コイルばねの外形となり、複合弾性部材を小型化することができる。
The elastic member is a coil spring, and the composite elastic member is a combination of the two coil springs having different diameters and axial lengths, and is disposed inside the outer coil spring having a larger diameter than the outer coil spring. It is preferable that an inner coil spring having a small diameter is disposed (claims 2 and 5).
In this case, the state in which only one of the two coil springs is elastically deformed is the first elastic deformation state, and the state in which both coil springs are elastically deformed is the second elastic deformation state. Moreover, since the said composite elastic member has arrange | positioned the said inner coil spring inside the outer side coil spring, the external shape of a composite elastic member becomes the external shape of an outer side coil spring, and a composite elastic member can be reduced in size.

また、上記弾性部材はコイルばねであり、上記複合弾性部材は、ばね定数が異なる2つの上記コイルばねを直列に接続してなることが好ましい(請求項3、請求項6)。
この場合には、圧縮力を加えるに従って、ばね定数が小さいコイルばねが主に弾性変形し、複合弾性部材が第1弾性変形状態となる。ばね定数が小さいコイルばねが変形し終えた後、ばね定数が大きいコイルばねが弾性変形し、複合弾性部材は第2弾性変形状態となる。
上記複合弾性部材は、2つの弾性部材(コイルばね)を接続して一体化しているため、部品点数を低減することができる。また、電力変換装置を製造する際に、2つの弾性部材を別々に取り付ける必要がなくなり、製造工程を容易に行えるようになる。これにより、電力変換装置の製造コストを低減することが可能になる。
Preferably, the elastic member is a coil spring, and the composite elastic member is formed by connecting two coil springs having different spring constants in series (Claim 3 and Claim 6).
In this case, as the compressive force is applied, the coil spring having a small spring constant is mainly elastically deformed, and the composite elastic member is in the first elastic deformation state. After the coil spring having the small spring constant is completely deformed, the coil spring having the large spring constant is elastically deformed, and the composite elastic member is in the second elastic deformation state.
Since the composite elastic member connects and integrates two elastic members (coil springs), the number of parts can be reduced. Moreover, when manufacturing a power converter device, it becomes unnecessary to attach two elastic members separately, and a manufacturing process can be performed now easily. Thereby, it becomes possible to reduce the manufacturing cost of a power converter device.

(実施例1)
上記電力変換装置及びその製造方法に係る実施例について、図1〜図10を用いて説明する。
本例の電力変換装置1は、図8〜図10に示すごとく、積層体10と、フレーム4と、複合弾性部材5とを備える。積層体10は、半導体素子を内蔵する複数の半導体モジュール2と、半導体モジュール2を冷却する複数の冷却管3とを、放熱グリス11を介在させた状態で積層してなる。フレーム4の内側に、積層体10が保持されている。複合弾性部材5は、フレーム4を構成する壁部のうち積層体10の積層方向(X方向)における一方側に位置する第1壁部41と、積層体10との間に配置されている。複合弾性部材5は、2個の弾性部材51,52を組み合わせてなる。
Example 1
The Example which concerns on the said power converter device and its manufacturing method is described using FIGS.
The power converter 1 of this example is provided with the laminated body 10, the flame | frame 4, and the composite elastic member 5, as shown in FIGS. The laminated body 10 is formed by laminating a plurality of semiconductor modules 2 containing semiconductor elements and a plurality of cooling pipes 3 for cooling the semiconductor module 2 with heat radiation grease 11 interposed therebetween. A laminated body 10 is held inside the frame 4. The composite elastic member 5 is disposed between the laminated body 10 and the first wall part 41 located on one side in the lamination direction (X direction) of the laminated body 10 among the wall parts constituting the frame 4. The composite elastic member 5 is formed by combining two elastic members 51 and 52.

複合弾性部材5は、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態S1(図7参照)と、第1弾性変形状態S1の後に現ればね定数が第1弾性変形状態S1よりも高い第2弾性変形状態S2との、2つの弾性変形状態を経て変位するよう構成されている。そして、第1弾性変形状態S1となった複合弾性部材5の押圧力fにより、積層体10をX方向に押圧してフレーム4内に固定している。   As the compressive force is applied to the composite elastic member 5, the first elastic deformation state S1 (see FIG. 7) having a relatively low spring constant and the spring constant appearing after the first elastic deformation state S1 have the first elastic deformation state S1. It is configured to be displaced through two elastic deformation states with a higher second elastic deformation state S2. The laminated body 10 is pressed in the X direction and fixed in the frame 4 by the pressing force f of the composite elastic member 5 in the first elastic deformation state S1.

また、本例における電力変換装置1の製造方法では、図1〜図6に示すごとく、積層工程(図1参照)と、積層体配置工程(図2参照)と、弾性部材配置工程(図3参照)と、連続圧縮工程(図4、図5参照)と、固定工程(図6参照)とを行う。
図1に示すごとく、積層工程では、半導体素子を内蔵する複数の半導体モジュール2と、半導体モジュール2を冷却する複数の冷却管3とを、これらの間に放熱グリス11を介在させた状態で積層して積層体10を製造する。
図2に示すごとく、積層体配置工程では、積層体10をフレーム4の内側に配置する。
Moreover, in the manufacturing method of the power converter device 1 in this example, as shown in FIGS. 1-6, a lamination process (refer FIG. 1), a laminated body arrangement | positioning process (refer FIG. 2), and an elastic member arrangement | positioning process (FIG. 3). Reference), a continuous compression step (see FIGS. 4 and 5), and a fixing step (see FIG. 6).
As shown in FIG. 1, in the laminating process, a plurality of semiconductor modules 2 incorporating semiconductor elements and a plurality of cooling pipes 3 for cooling the semiconductor module 2 are laminated with a heat dissipating grease 11 interposed therebetween. Thus, the laminate 10 is manufactured.
As shown in FIG. 2, in the laminated body arranging step, the laminated body 10 is arranged inside the frame 4.

また、図3に示すごとく、弾性部材配置工程では、複合弾性部材5を、積層体10に対して、積層体10の積層方向(X方向)における一方側に配置する。複合弾性部材5は、2個の弾性部材51,52を組み合わせてなる。図7に示すごとく、複合弾性部材5は、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態S1と、該第1弾性変形状態S1の後に現ればね定数が第1弾性変形状態S1よりも高い第2弾性変形状態S2との、2つの弾性変形状態を経て変位する。   As shown in FIG. 3, in the elastic member arranging step, the composite elastic member 5 is arranged on one side in the stacking direction (X direction) of the stacked body 10 with respect to the stacked body 10. The composite elastic member 5 is formed by combining two elastic members 51 and 52. As shown in FIG. 7, the composite elastic member 5 has a first elastic deformation state S1 having a relatively low spring constant and a spring constant appearing after the first elastic deformation state S1 as the compression force is applied. It displaces through two elastic deformation states, the second elastic deformation state S2 higher than the state S1.

連続圧縮工程では、図4に示すごとく、複合弾性部材5が第2弾性変形状態S2となる高圧縮力Fを加えることにより、複合弾性部材5を弾性変形させつつ積層体10をX方向に圧縮する。その後、図5に示すごとく、圧縮力を弱めて複合弾性部材5を第1弾性変形状態S1にする。なお、フレーム4、積層体10の剛性が充分に高い場合は、第2弾性変形状態S2の初期状態にしてもよい。
また、固定工程では、図6に示すごとく、第1弾性変形状態S1になった複合弾性部材5の押圧力fを使って、積層体10をフレーム4内に固定する。
In the continuous compression step, as shown in FIG. 4, the composite elastic member 5 is compressed in the X direction while elastically deforming the composite elastic member 5 by applying a high compression force F that causes the composite elastic member 5 to be in the second elastic deformation state S2. To do. Thereafter, as shown in FIG. 5, the compressive force is weakened to bring the composite elastic member 5 into the first elastic deformation state S1. In addition, when the rigidity of the frame 4 and the laminated body 10 is sufficiently high, the initial state of the second elastic deformation state S2 may be set.
In the fixing step, as shown in FIG. 6, the laminated body 10 is fixed in the frame 4 by using the pressing force f of the composite elastic member 5 in the first elastic deformation state S1.

次に、本例に係る電力変換装置1の製造方法について詳細に説明する。図1に示すごとく、半導体モジュール2は、半導体素子を内蔵した本体部200を有する。この本体部200から、制御端子21とパワー端子22(図10参照)が突出している。積層体10を製造するにあたって、本体部200の表面に放熱グリス11を予め塗布しておく。   Next, a method for manufacturing the power conversion device 1 according to this example will be described in detail. As shown in FIG. 1, the semiconductor module 2 has a main body 200 that contains a semiconductor element. A control terminal 21 and a power terminal 22 (see FIG. 10) protrude from the main body 200. When manufacturing the laminated body 10, the thermal radiation grease 11 is previously apply | coated to the surface of the main-body part 200. FIG.

また、複数の冷却管3は、該冷却管3の長手方向(Y方向)における両端部にて、連結管12によって連結されている。複数の冷却管3のうち、X方向における一端に位置する冷却管3aには、冷媒30(図8参照)を導入するための導入パイプ13と、冷媒30を導出するための導出パイプ14とが取り付けてある。   The plurality of cooling pipes 3 are connected by connecting pipes 12 at both ends in the longitudinal direction (Y direction) of the cooling pipe 3. Among the plurality of cooling pipes 3, the cooling pipe 3 a located at one end in the X direction includes an introduction pipe 13 for introducing the refrigerant 30 (see FIG. 8) and a lead-out pipe 14 for leading the refrigerant 30. It is attached.

積層工程が完了した後、図2に示すごとく、積層体10をフレーム4の内側に配置する(積層体配置工程)。本例のフレーム4は金属製であり、制御端子21の突出方向(Z方向)から見た形状が略矩形状をしている。   After the lamination process is completed, as shown in FIG. 2, the laminated body 10 is arranged inside the frame 4 (a laminated body arranging process). The frame 4 of this example is made of metal, and the shape of the control terminal 21 viewed from the protruding direction (Z direction) is substantially rectangular.

弾性部材配置工程では、図3に示すごとく、フレーム4を構成する壁部のうちX方向における一方側に位置する第1壁部41と、積層体10との間に、複合弾性部材5を挿入する。また、複合弾性部材5と積層体10との間に、圧縮荷重支持板15を介在させておく。さらに、第1壁部41と複合弾性部材5との間に、固定板16と治具17とを挿入する。圧縮荷重支持板15は、固定板16と治具17を使って複合弾性部材5に圧縮力を加えた場合に、複合弾性部材5に隣接する冷却管3bに対して均一に押圧することを目的としている。   In the elastic member arranging step, as shown in FIG. 3, the composite elastic member 5 is inserted between the laminated body 10 and the first wall portion 41 located on one side in the X direction among the wall portions constituting the frame 4. To do. Further, a compression load support plate 15 is interposed between the composite elastic member 5 and the laminate 10. Further, the fixing plate 16 and the jig 17 are inserted between the first wall portion 41 and the composite elastic member 5. The purpose of the compression load support plate 15 is to uniformly press the cooling pipe 3b adjacent to the composite elastic member 5 when a compression force is applied to the composite elastic member 5 using the fixed plate 16 and the jig 17. It is said.

複合弾性部材5は、外側コイルばね52と、該外側コイルばね52よりも直径が小さい内側コイルばね51とからなる。内側コイルばね51は外側コイルばね52の内側に配置されている。また、内側コイルばね51のX方向(軸線方向)における長さは、外側コイルばね52のX方向における長さよりも長い。   The composite elastic member 5 includes an outer coil spring 52 and an inner coil spring 51 having a smaller diameter than the outer coil spring 52. The inner coil spring 51 is disposed inside the outer coil spring 52. Further, the length of the inner coil spring 51 in the X direction (axial direction) is longer than the length of the outer coil spring 52 in the X direction.

治具17と固定板16を使って複合弾性部材5に圧縮力を加えると、まず、内側コイルばね51のみが弾性変形し、複合弾性部材5が第1弾性変形状態S1(図7参照)となる。
複合弾性部材5にさらに圧縮力を加えると、図4に示すごとく、治具17および固定板16によって内側コイルばね51と外側コイルばね52とが両方とも弾性変形し、複合弾性部材5が上記第2弾性変形状態S2となる(図7参照)。
When a compression force is applied to the composite elastic member 5 using the jig 17 and the fixed plate 16, only the inner coil spring 51 is elastically deformed first, and the composite elastic member 5 is in the first elastic deformation state S1 (see FIG. 7). Become.
When compressive force is further applied to the composite elastic member 5, as shown in FIG. 4, both the inner coil spring 51 and the outer coil spring 52 are elastically deformed by the jig 17 and the fixing plate 16, and the composite elastic member 5 is 2 It becomes elastic deformation state S2 (refer FIG. 7).

このように、複合弾性部材5に高圧縮力Fを加えることにより、フレーム4を構成する壁部のうちX方向における他端側に位置する第2壁部42(図2参照)に積層体10を押し付け、積層体10を圧縮する。これにより、半導体モジュール92と冷却管93との密着性を向上させ、半導体モジュール92の放熱性を高める。   Thus, by applying a high compressive force F to the composite elastic member 5, the laminated body 10 is placed on the second wall portion 42 (see FIG. 2) located on the other end side in the X direction among the wall portions constituting the frame 4. Is pressed to compress the laminate 10. Thereby, the adhesiveness between the semiconductor module 92 and the cooling pipe 93 is improved, and the heat dissipation of the semiconductor module 92 is enhanced.

次に、図5に示すごとく、複合弾性部材5に加える圧縮力を弱め、内側コイルばね51のみを圧縮する状態にして、複合弾性部材5を第1弾性変形状態S1にする。または、ケース4、積層体10の剛性が充分に高い場合は、第2弾性変形状態S2の初期状態にしても良い。
その後、図6に示すごとく、第1壁部41と固定板16との間に固定具18を挿入する。これにより、第1弾性変形状態S1となった複合弾性部材5の押圧力fを使って、半導体モジュール2と冷却管3との接触圧を維持しつつ、積層体10をフレーム4内に固定する。
Next, as shown in FIG. 5, the compressive force applied to the composite elastic member 5 is weakened, and only the inner coil spring 51 is compressed, so that the composite elastic member 5 is in the first elastic deformation state S1. Alternatively, when the rigidity of the case 4 and the laminate 10 is sufficiently high, the initial state of the second elastic deformation state S2 may be set.
Thereafter, as shown in FIG. 6, the fixture 18 is inserted between the first wall portion 41 and the fixing plate 16. Accordingly, the laminated body 10 is fixed in the frame 4 while maintaining the contact pressure between the semiconductor module 2 and the cooling pipe 3 by using the pressing force f of the composite elastic member 5 in the first elastic deformation state S1. .

なお、本例では、積層体配置工程(図2参照)を行った後、連続圧縮工程(図4、図5参照)を行っているが、これらを同時に行ってもよい。すなわち、フレーム4内に配置する前に、フレーム4の外部において、複合弾性部材5を使って積層体10を予め圧縮しておく。この際、複合弾性部材5に高圧縮力Fを加えて第2弾性変形状態S2にしておく。そして、高圧縮力Fを加えた状態で積層体10をフレーム4に入れ、その後、圧縮力を弱めて複合弾性部材5を第1弾性変形状態S1、または第2弾性変形状態S2の初期状態にする。   In addition, in this example, after performing a laminated body arrangement | positioning process (refer FIG. 2), although the continuous compression process (refer FIG. 4, FIG. 5) is performed, these may be performed simultaneously. In other words, before being placed in the frame 4, the laminated body 10 is compressed in advance using the composite elastic member 5 outside the frame 4. At this time, a high compressive force F is applied to the composite elastic member 5 to be in the second elastic deformation state S2. And the laminated body 10 is put in the flame | frame 4 in the state which applied the high compressive force F, Then, compressive force is weakened and the composite elastic member 5 is made into the initial state of 1st elastic deformation state S1 or 2nd elastic deformation state S2. To do.

一方、図8〜図10に示すごとく、本例の電力変換装置1は、上記半導体モジュール2、フレーム4等の他、コンデンサ19、バスバー61〜63、端子台69を備える。これらの部品は、収容ケース6に収容されている。   On the other hand, as shown in FIGS. 8 to 10, the power conversion device 1 of this example includes a capacitor 19, bus bars 61 to 63, and a terminal block 69 in addition to the semiconductor module 2 and the frame 4. These components are housed in the housing case 6.

半導体モジュール2は、図10に示すごとく、複数のパワー端子22と、制御端子21とを備える。パワー端子22には、直流電源(図示しない)の正電極に接続される正極端子22aと、直流電源の負電極に接続される負極端子22bと、交流負荷に接続される交流端子22cとがある。正極端子22aには正極バスバー61が溶接されており、負極端子22bには負極バスバー62が溶接されている。また、交流端子22cには交流バスバー63が溶接されている。正極バスバー61と負極バスバー62はコンデンサ19に接続している。   As shown in FIG. 10, the semiconductor module 2 includes a plurality of power terminals 22 and a control terminal 21. The power terminal 22 includes a positive terminal 22a connected to a positive electrode of a DC power supply (not shown), a negative terminal 22b connected to a negative electrode of the DC power supply, and an AC terminal 22c connected to an AC load. . A positive electrode bus bar 61 is welded to the positive electrode terminal 22a, and a negative electrode bus bar 62 is welded to the negative electrode terminal 22b. An AC bus bar 63 is welded to the AC terminal 22c. The positive electrode bus bar 61 and the negative electrode bus bar 62 are connected to the capacitor 19.

制御端子21には、制御回路基板64が接続されている。この制御回路基板64によって、半導体モジュール2のスイッチング動作を制御することにより、正極端子22aと負極端子22bとの間に印加される直流電圧を交流電圧に変換し、交流端子22cから出力している。   A control circuit board 64 is connected to the control terminal 21. By controlling the switching operation of the semiconductor module 2 by the control circuit board 64, the DC voltage applied between the positive terminal 22a and the negative terminal 22b is converted into an AC voltage and output from the AC terminal 22c. .

本例の作用効果について説明する。本例における電力変換装置1の製造方法では、2つの弾性部材を組み合わせてなる複合弾性部材5を、X方向における一方側に配置して(弾性部材配置工程)、上記連続圧縮工程を行う。
このようにすると、図4に示すごとく、連続圧縮工程において、複合弾性部材5を介して高圧縮力F(複合弾性部材5を第2弾性変形状態S2にする力)を積層体10に加えるため、冷却管3と半導体モジュール2との間の放熱グリス11を薄く延すことができる。そしてこの後、図5に示すごとく、複合弾性部材5に加える圧縮力を弱めて複合弾性部材5を第1弾性変形状態S1にすることにより、積層体10を固定する力を加える工程に連続的に移行することができる。これにより、放熱グリス11を薄く延す工程と、積層体10を固定する力を加える工程を続けて行うことが可能になり、電力変換装置1の製造工数を低減することが可能になる。
また、連続圧縮工程を完了した後、図6に示すごとく、固定工程に連続的に移行することができる。この固定工程において、第1弾性変形状態S1となった複合弾性部材5を用いて積層体10をフレーム4に固定することができる。
The effect of this example will be described. In the manufacturing method of the power converter 1 in this example, the composite elastic member 5 formed by combining two elastic members is disposed on one side in the X direction (elastic member disposing step), and the above-described continuous compression step is performed.
In this case, as shown in FIG. 4, in the continuous compression process, a high compressive force F (force that causes the composite elastic member 5 to be in the second elastic deformation state S <b> 2) is applied to the laminate 10 through the composite elastic member 5. The heat dissipating grease 11 between the cooling pipe 3 and the semiconductor module 2 can be thinly extended. After that, as shown in FIG. 5, the compressive force applied to the composite elastic member 5 is weakened and the composite elastic member 5 is brought into the first elastic deformation state S1, thereby continuing the process of applying a force for fixing the laminate 10. Can be migrated to. Thereby, the process of extending the heat dissipation grease 11 thinly and the process of applying a force for fixing the laminated body 10 can be continuously performed, and the number of manufacturing steps of the power conversion device 1 can be reduced.
Moreover, after completing a continuous compression process, as shown in FIG. 6, it can transfer to a fixing process continuously. In this fixing step, the laminate 10 can be fixed to the frame 4 using the composite elastic member 5 that has been in the first elastic deformation state S1.

従来の電力変換装置1の製造方法では、高圧縮工程(図16参照)を行うための部材(治具917)と、低圧縮工程(図17参照)を行うための部材(弾性部材99)とが別々になっていたため、高圧縮工程を行った後、治具917を取り外して代わりに弾性部材99を入れなければ低圧縮工程を行うことができず、これらの圧縮工程を連続して行うことができないという問題があった。これに対して、本例の電力変換装置1の製造方法では、一つの部材(複合弾性部材5)を用いて高圧縮工程と低圧縮工程とを行うため、これらの圧縮工程を連続して行うことが可能になる。そのため、電力変換装置1の製造工数を減らすことができ、短時間で電力変換装置1を製造することができる。   In the conventional method for manufacturing the power converter 1, a member (jig 917) for performing a high compression step (see FIG. 16), a member (elastic member 99) for performing a low compression step (see FIG. 17), and After the high compression process is performed, the low compression process cannot be performed unless the jig 917 is removed and the elastic member 99 is inserted instead, and these compression processes are performed continuously. There was a problem that could not. On the other hand, in the manufacturing method of the power converter 1 of this example, since the high compression process and the low compression process are performed using one member (composite elastic member 5), these compression processes are performed continuously. It becomes possible. Therefore, the manufacturing man-hour of the power converter device 1 can be reduced, and the power converter device 1 can be manufactured in a short time.

なお、仮に、ばね定数が高い1個の弾性部材を介して積層体10に高圧縮力Fを加え、そのまま圧縮力を弱めずに、弾性部材の高い弾性力を利用して積層体10をフレーム4内に固定したとすると、圧縮工程を行う回数を1回にすることが可能であるが、この場合には、フレーム4の剛性がより必要となり、フレームが大型化しやすくなる。   In addition, if the high compression force F is applied to the laminated body 10 through one elastic member with a high spring constant and the compression force is not weakened as it is, the laminated body 10 is framed using the high elastic force of the elastic member. If it is fixed within 4, it is possible to reduce the number of times the compression process is performed, but in this case, the frame 4 needs to be more rigid and the frame is likely to be enlarged.

また、仮に、ばね定数が低い1個の弾性部材を介して積層体10に高圧縮力Fを加え、その後に圧縮力を弱め、弾性部材の弾性力を使って積層体10をフレーム4内に固定したとすると、2回の圧縮工程を連続して行うことができるが、この場合には、高圧縮力Fを加える際に弾性部材に高いストレスが加わり、弾性部材が破損しやすくなるという問題が生じる。   Further, if a high compressive force F is applied to the laminate 10 through one elastic member having a low spring constant, then the compressive force is weakened, and the laminate 10 is put into the frame 4 using the elastic force of the elastic member. If it is fixed, two compression steps can be performed continuously. In this case, a high stress is applied to the elastic member when the high compression force F is applied, and the elastic member is easily damaged. Occurs.

これに対して本例では、上記複合弾性部材5を用いるため、このような問題を防止できる。すなわち、図4に示すごとく、高圧縮力Fを加える場合には、ばね定数が高い弾性部材(外側コイルばね52)とばね定数が低い弾性部材(内側コイルばね51)とが両方とも弾性変形するため、ばね定数が低い弾性部材(内側コイルばね51)に高いストレスが加わることを防止できる。また、高圧縮力Fを加えた後、図5に示すごとく、圧縮力を弱めて積層体10を保持するため、この後はフレーム4に高圧縮力Fが加わらなくなる。そのため、フレーム4に高い剛性が要求されなくなり、フレーム4を小型化できる。   On the other hand, in this example, since the composite elastic member 5 is used, such a problem can be prevented. That is, as shown in FIG. 4, when a high compressive force F is applied, both the elastic member having a high spring constant (outer coil spring 52) and the elastic member having a low spring constant (inner coil spring 51) are elastically deformed. Therefore, high stress can be prevented from being applied to the elastic member (inner coil spring 51) having a low spring constant. Further, after applying the high compressive force F, as shown in FIG. 5, the compressive force is weakened to hold the laminate 10, and thereafter, the high compressive force F is not applied to the frame 4. Therefore, the frame 4 is not required to have high rigidity, and the frame 4 can be downsized.

また、図3〜図5に示すごとく、本例の複合弾性部材5は、直径および軸線方向長さが互いに異なる2つのコイルばね51,52を組み合わせてなる。そして、直径が大きい外側コイルばね52の内側に、外側コイルばね52よりも直径が小さい内側コイルばね51が配置されている。
このようにすると、外側コイルばね52の内側に内側コイルばね51が配置されているため、複合弾性部材5の外形が外側コイルばねの外形となり、複合弾性部材5を小型化することができる。
3-5, the composite elastic member 5 of this example is formed by combining two coil springs 51 and 52 having different diameters and axial lengths. An inner coil spring 51 having a smaller diameter than the outer coil spring 52 is disposed inside the outer coil spring 52 having a large diameter.
In this case, since the inner coil spring 51 is disposed inside the outer coil spring 52, the outer shape of the composite elastic member 5 becomes the outer coil spring, and the composite elastic member 5 can be downsized.

なお、本例では、内側コイルばね51のばね定数は外側コイルばね52のばね定数よりも小さいが、これらのばね定数は互いに等しくてもよい。また、本例では、内側コイルばね51の方が、外側コイルばね52よりも軸線方向(X方向)における長さが長いが、外側コイルばね52の方を長くしてもよい。   In this example, the spring constant of the inner coil spring 51 is smaller than the spring constant of the outer coil spring 52, but these spring constants may be equal to each other. In this example, the inner coil spring 51 is longer in the axial direction (X direction) than the outer coil spring 52, but the outer coil spring 52 may be longer.

以上のごとく、本例によれば、製造工数を低減でき、製造時間を短縮できる電力変換装置1と、その製造方法を提供することができる。   As described above, according to this example, it is possible to provide the power conversion apparatus 1 that can reduce the number of manufacturing steps and shorten the manufacturing time, and the manufacturing method thereof.

(実施例2)
本例は図11に示すごとく、積層体10を収容ケース6に収容し、複合弾性部材5を使って、積層体10を収容ケース6内に固定した例である。複合弾性部材5は、実施例1と同様に、第2弾性変形状態S2の初期状態か、または第1弾性変形状態S1にしてある。本例では、収容ケース6がフレーム4を兼ねている。
(Example 2)
In this example, as shown in FIG. 11, the laminated body 10 is housed in the housing case 6, and the laminated body 10 is fixed in the housing case 6 using the composite elastic member 5. The composite elastic member 5 is in the initial state of the second elastic deformation state S2 or in the first elastic deformation state S1, as in the first embodiment. In this example, the housing case 6 also serves as the frame 4.

本例の電力変換装置1を製造する際には、実施例1と同様に、積層工程と、積層体配置工程と、弾性部材配置工程と、連続圧縮工程と、固定工程とを行う。
その他、実施例1と同様の構成および作用効果を有する。
When manufacturing the power converter device 1 of this example, similarly to Example 1, a lamination process, a laminated body arrangement process, an elastic member arrangement process, a continuous compression process, and a fixing process are performed.
In addition, the configuration and operational effects are the same as those of the first embodiment.

(実施例3)
本例は、複合弾性部材5の形状を変更した実施例である。図12に示すごとく、本例の複合弾性部材5は、コイルばね53と、該コイルばね53よりもばね定数が高い皿ばね54とを組み合わせてなる。コイルばね53の軸線方向(X方向)において、コイルばね53の長さは、皿ばね54の長さよりも長い。皿ばね54は本体部541と、該本体部541から突出した複数の脚部542と、本体部541に形成された貫通穴540とを備える。貫通穴540にコイルばね53が挿入されている。皿ばね54に圧縮力を加えると、本体部541と脚部542との間の角度θが広がりながら、皿ばね54が弾性変形する。
(Example 3)
This example is an example in which the shape of the composite elastic member 5 is changed. As shown in FIG. 12, the composite elastic member 5 of this example is formed by combining a coil spring 53 and a disc spring 54 having a spring constant higher than that of the coil spring 53. In the axial direction (X direction) of the coil spring 53, the length of the coil spring 53 is longer than the length of the disc spring 54. The disc spring 54 includes a main body portion 541, a plurality of leg portions 542 protruding from the main body portion 541, and a through hole 540 formed in the main body portion 541. A coil spring 53 is inserted into the through hole 540. When a compression force is applied to the disc spring 54, the disc spring 54 is elastically deformed while the angle θ between the main body portion 541 and the leg portion 542 is widened.

固定板16と治具17を使って複合弾性部材5に圧縮力を加えると、まずコイルばね53が弾性変形し、続いてコイルばね53と皿ばね54とが両方とも弾性変形する。コイルばね53のみが弾性変形する状態が第1弾性変形状態S1であり、コイルばね53と皿ばね54とが両方とも弾性変形する状態が第2弾性変形状態S2である。
その他、実施例1と同様の構成を備える。
When a compression force is applied to the composite elastic member 5 using the fixing plate 16 and the jig 17, the coil spring 53 is first elastically deformed, and then both the coil spring 53 and the disc spring 54 are elastically deformed. The state in which only the coil spring 53 is elastically deformed is the first elastic deformation state S1, and the state in which both the coil spring 53 and the disc spring 54 are elastically deformed is the second elastic deformation state S2.
In addition, the same configuration as that of the first embodiment is provided.

本例の作用効果について説明する。本例では、複合弾性部材5に皿ばね54が使われているため、皿ばね54の複数の脚部542によって圧縮力をしっかりと受け止めることができる。そのため、複合弾性部材5がぐらつきにくく、安定化しやすい。
その他、実施例1と同様の構成および作用効果を備える。
The effect of this example will be described. In this example, since the disc spring 54 is used for the composite elastic member 5, the compression force can be firmly received by the plurality of legs 542 of the disc spring 54. Therefore, the composite elastic member 5 is less likely to wobble and is easy to stabilize.
In addition, the configuration and operational effects similar to those of the first embodiment are provided.

(実施例4)
本例は、複合弾性部材5の形状を変更した実施例である。図13に示すごとく、本例の複合弾性部材5は、ばね定数が異なる2つのコイルばね55,56を直列に接続して構成されている。圧縮力を加えると、ばね定数が小さいコイルばね55が主に弾性変形し、複合弾性部材5が第1弾性変形状態S1となる。ばね定数が小さいコイルばね55が変形し終えた後、ばね定数が大きいコイルばねが弾性変形し、複合弾性部材5は第2弾性変形状態S2となる。
その他、実施例1と同様の構成を備える。
Example 4
This example is an example in which the shape of the composite elastic member 5 is changed. As shown in FIG. 13, the composite elastic member 5 of this example is configured by connecting two coil springs 55 and 56 having different spring constants in series. When a compression force is applied, the coil spring 55 having a small spring constant is mainly elastically deformed, and the composite elastic member 5 is in the first elastic deformation state S1. After the coil spring 55 having a small spring constant is completely deformed, the coil spring having a large spring constant is elastically deformed, and the composite elastic member 5 is in the second elastic deformation state S2.
In addition, the same configuration as that of the first embodiment is provided.

本例の作用効果について説明する。本例では、2つの弾性部材(コイルばね55,56)が接続されて一つの複合弾性部材5となっているため、部品点数を低減することができる。また、電力変換装置1を製造する際に、2つのコイルばね55,56を別々に取り付ける必要がなくなり、製造工程を容易に行えるようになる。これにより、電力変換装置1の製造コストを低減することが可能になる。
その他、実施例1と同様の作用効果を有する。
The effect of this example will be described. In this example, since two elastic members (coil springs 55 and 56) are connected to form one composite elastic member 5, the number of parts can be reduced. Moreover, when manufacturing the power converter device 1, it becomes unnecessary to attach the two coil springs 55 and 56 separately, and the manufacturing process can be easily performed. Thereby, the manufacturing cost of the power converter device 1 can be reduced.
In addition, the same effects as those of the first embodiment are obtained.

(実施例5)
本例は、複合弾性部材5の形状を変更した実施例である。図14に示すごとく、本例の複合弾性部材5は、コイルばね57と、該コイルばね57よりもばね定数が高い筒状弾性部材58とを組み合わせてなる。筒状弾性部材58は、ゴム等の弾性材料からなる。また、筒状弾性部材58の内側にコイルばね57が配置されている。
このようにすると、筒状弾性部材58の内側にコイルばね57が配置されているため、複合弾性部材5を小型化しやすい。また、筒状弾性部材58はコイルばねよりも低コストで製造できるため、実施例1のように2つのコイルばね51,52を組み合わせた場合と比較して、複合弾性部材5の製造コストを低減しやすい。
その他、実施例1と同様の構成および作用効果を有する。
(Example 5)
This example is an example in which the shape of the composite elastic member 5 is changed. As shown in FIG. 14, the composite elastic member 5 of this example is formed by combining a coil spring 57 and a cylindrical elastic member 58 having a higher spring constant than the coil spring 57. The cylindrical elastic member 58 is made of an elastic material such as rubber. A coil spring 57 is arranged inside the cylindrical elastic member 58.
If it does in this way, since the coil spring 57 is arrange | positioned inside the cylindrical elastic member 58, the composite elastic member 5 is easy to reduce in size. Moreover, since the cylindrical elastic member 58 can be manufactured at a lower cost than the coil spring, the manufacturing cost of the composite elastic member 5 is reduced as compared with the case where the two coil springs 51 and 52 are combined as in the first embodiment. It's easy to do.
In addition, the configuration and operational effects are the same as those of the first embodiment.

1 電力変換装置
10 積層体
11 放熱グリス
2 半導体モジュール
3 冷却管
4 フレーム
5 複合弾性部材
51,52 弾性部材
DESCRIPTION OF SYMBOLS 1 Power converter 10 Laminated body 11 Thermal radiation grease 2 Semiconductor module 3 Cooling pipe 4 Frame 5 Composite elastic member 51,52 Elastic member

Claims (6)

電力変換装置の製造方法であって、
半導体素子を内蔵する複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを、これらの間に放熱グリスを介在させた状態で積層して積層体を製造する積層工程と、
上記積層体をフレームの内側に配置する積層体配置工程と、
2個の弾性部材を組み合わせてなり、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態と、該第1弾性変形状態の後に現れ上記ばね定数が上記第1弾性変形状態よりも高い第2弾性変形状態との、2つの弾性変形状態を経て変位する複合弾性部材を、上記積層体に対して、該積層体の積層方向における一方側に配置する弾性部材配置工程と、
上記複合弾性部材が上記第2弾性変形状態となる高圧縮力を加えることにより、上記複合弾性部材を弾性変形させつつ上記積層体を上記積層方向に圧縮し、その後、上記圧縮力を弱めて上記複合弾性部材を上記第2弾性変形状態の初期状態または上記第1弾性変形状態にする連続圧縮工程と、
上記第2弾性変形状態の初期状態または上記第1弾性変形状態になった上記複合弾性部材の押圧力を使って上記積層体を上記フレーム内に固定する固定工程とを行うことを特徴とする電力変換装置の製造方法。
A method for manufacturing a power converter,
A stacking step of manufacturing a stack by stacking a plurality of semiconductor modules containing semiconductor elements, and a plurality of cooling pipes for cooling the semiconductor modules, with heat dissipation grease interposed therebetween,
A laminated body arranging step of arranging the laminated body inside the frame;
Combining two elastic members, and applying a compressive force, a first elastic deformation state having a relatively low spring constant, and the spring constant appearing after the first elastic deformation state is greater than the first elastic deformation state. An elastic member disposing step of disposing a composite elastic member that is displaced through two elastic deformation states with a higher second elastic deformation state on one side in the stacking direction of the stack with respect to the stack;
The composite elastic member is compressed in the stacking direction while elastically deforming the composite elastic member by applying a high compressive force that causes the composite elastic member to be in the second elastic deformation state, and then the compressive force is weakened and the composite elastic member is compressed. A continuous compression step of bringing the composite elastic member into the initial state of the second elastic deformation state or the first elastic deformation state;
And a fixing step of fixing the laminated body in the frame using a pressing force of the composite elastic member in the initial state of the second elastic deformation state or the first elastic deformation state. A method for manufacturing a conversion device.
請求項1に記載の電力変換装置の製造方法において、上記弾性部材はコイルばねであり、上記複合弾性部材は、直径および軸線方向長さが互いに異なる2つの上記コイルばねを組み合わせてなり、直径が大きい外側コイルばねの内側に、該外側コイルばねよりも直径が小さい内側コイルばねが配置されていることを特徴とする電力変換装置の製造方法。   2. The method of manufacturing a power conversion device according to claim 1, wherein the elastic member is a coil spring, and the composite elastic member is a combination of two coil springs having different diameters and axial lengths. An inner coil spring having a diameter smaller than that of the outer coil spring is disposed inside the large outer coil spring. 請求項1に記載の電力変換装置の製造方法において、上記弾性部材はコイルばねであり、上記複合弾性部材は、ばね定数が異なる2つの上記コイルばねを直列に接続してなることを特徴とする電力変換装置の製造方法。   2. The method of manufacturing a power conversion device according to claim 1, wherein the elastic member is a coil spring, and the composite elastic member is formed by connecting two coil springs having different spring constants in series. A method for manufacturing a power converter. 半導体素子を内蔵する複数の半導体モジュールと、該半導体モジュールを冷却する複数の冷却管とを、放熱グリスを介在させた状態で積層した積層体と、
上記積層体を内側に保持するフレームと、
上記フレームを構成する壁部のうち上記積層体の積層方向における一方側に位置する第1壁部と、上記積層体との間に配置され、2個の弾性部材を組み合わせてなる複合弾性部材とを備え、
該複合弾性部材は、圧縮力を加えるに従って、ばね定数が相対的に低い第1弾性変形状態と、該第1弾性変形状態の後に現れ上記ばね定数が上記第1弾性変形状態よりも高い第2弾性変形状態との、2つの弾性変形状態を経て変位するよう構成され、上記第2弾性変形状態の初期状態または上記第1弾性変形状態となった上記複合弾性部材の押圧力により、上記積層体を上記積層方向に押圧して上記フレーム内に固定していることを特徴とする電力変換装置。
A laminated body in which a plurality of semiconductor modules containing semiconductor elements and a plurality of cooling pipes for cooling the semiconductor modules are laminated with heat dissipation grease interposed therebetween;
A frame for holding the laminate inside,
A composite elastic member formed by combining two elastic members, disposed between the first wall portion located on one side in the stacking direction of the stacked body among the wall portions constituting the frame, and the stacked body. With
The composite elastic member has a first elastic deformation state with a relatively low spring constant as a compressive force is applied, and a second elastic constant that appears after the first elastic deformation state and has a higher spring constant than the first elastic deformation state. The laminated body is configured to be displaced through two elastic deformation states, ie, an elastic deformation state, by the pressing force of the composite elastic member in the initial state of the second elastic deformation state or the first elastic deformation state. Is pressed in the laminating direction and fixed in the frame.
請求項4に記載の電力変換装置において、上記弾性部材はコイルばねであり、上記複合弾性部材は、直径および軸線方向長さが互いに異なる2つの上記コイルばねを組み合わせてなり、直径が大きい外側コイルばねの内側に、該外側コイルばねよりも直径が小さい内側コイルばねが配置されていることを特徴とする電力変換装置。   5. The power conversion device according to claim 4, wherein the elastic member is a coil spring, and the composite elastic member is a combination of two coil springs having different diameters and axial lengths, and has a large diameter. An inner coil spring having a smaller diameter than the outer coil spring is disposed inside the spring. 請求項4に記載の電力変換装置において、上記弾性部材はコイルばねであり、上記複合弾性部材は、ばね定数が異なる2つの上記コイルばねを直列に接続してなることを特徴とする電力変換装置。   5. The power converter according to claim 4, wherein the elastic member is a coil spring, and the composite elastic member is formed by connecting two coil springs having different spring constants in series. .
JP2011267439A 2011-12-07 2011-12-07 Power conversion device and manufacturing method thereof Active JP5765208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011267439A JP5765208B2 (en) 2011-12-07 2011-12-07 Power conversion device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011267439A JP5765208B2 (en) 2011-12-07 2011-12-07 Power conversion device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013121219A true JP2013121219A (en) 2013-06-17
JP5765208B2 JP5765208B2 (en) 2015-08-19

Family

ID=48773637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011267439A Active JP5765208B2 (en) 2011-12-07 2011-12-07 Power conversion device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5765208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059239A (en) * 2014-09-12 2016-04-21 株式会社デンソー Power conversion device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992782A (en) * 1995-09-21 1997-04-04 Mitsubishi Electric Corp Jig and method for replacing semiconductor element
JP2000268843A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Fuel cell
JP2009027805A (en) * 2007-07-18 2009-02-05 Denso Corp Power conversion device and its manufacturing method
JP2010200478A (en) * 2009-02-25 2010-09-09 Denso Corp Power converting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0992782A (en) * 1995-09-21 1997-04-04 Mitsubishi Electric Corp Jig and method for replacing semiconductor element
JP2000268843A (en) * 1999-03-16 2000-09-29 Mitsubishi Electric Corp Fuel cell
JP2009027805A (en) * 2007-07-18 2009-02-05 Denso Corp Power conversion device and its manufacturing method
JP2010200478A (en) * 2009-02-25 2010-09-09 Denso Corp Power converting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016059239A (en) * 2014-09-12 2016-04-21 株式会社デンソー Power conversion device

Also Published As

Publication number Publication date
JP5765208B2 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP6076465B2 (en) Method for manufacturing a lithium ion battery module and corresponding lithium ion battery module
JP5272629B2 (en) Method for producing assembled battery structure
JP5725209B2 (en) Power converter and manufacturing method thereof
JP6119918B2 (en) Winding component mounting structure and power conversion device equipped with the mounting structure
JP5494210B2 (en) Power converter and manufacturing method thereof
JP2014053104A (en) Electrode connection structure
JP5359951B2 (en) Power converter and manufacturing method thereof
JP2009187972A (en) Power storage module
JP5835145B2 (en) Semiconductor laminated unit and manufacturing method thereof
JP5765208B2 (en) Power conversion device and manufacturing method thereof
WO2017033802A1 (en) Pressing structure and pressing unit
JP6969333B2 (en) Manufacturing method of power converter
JP6299618B2 (en) Power converter and manufacturing method thereof
JP5333274B2 (en) Power converter
JP2009246219A (en) Bobbin, reactor, and method of assembling reactor
JP5782845B2 (en) Power converter and manufacturing method thereof
JP5359980B2 (en) Method for manufacturing power conversion device
JP6119419B2 (en) Power converter
JP4513451B2 (en) Assembled battery
JP2011165922A (en) Power conversion device
JP2020035716A (en) Battery module
JP2008124232A (en) Manufacturing method of electric double layer capacitor
JP6303961B2 (en) Power converter
JP5772618B2 (en) Power converter and manufacturing method thereof
JP2013146168A (en) Power conversion device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5765208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250