JP2009026957A - Insulating fin and heat sink - Google Patents

Insulating fin and heat sink Download PDF

Info

Publication number
JP2009026957A
JP2009026957A JP2007188578A JP2007188578A JP2009026957A JP 2009026957 A JP2009026957 A JP 2009026957A JP 2007188578 A JP2007188578 A JP 2007188578A JP 2007188578 A JP2007188578 A JP 2007188578A JP 2009026957 A JP2009026957 A JP 2009026957A
Authority
JP
Japan
Prior art keywords
fin
insulating
insulating substrate
thickness
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188578A
Other languages
Japanese (ja)
Inventor
Yoshihiro Tanaka
孔浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2007188578A priority Critical patent/JP2009026957A/en
Publication of JP2009026957A publication Critical patent/JP2009026957A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent troubles caused by the pressure of a cooling medium after an insulating fin is mounted at the aperture of a case that forms a cooling medium passage. <P>SOLUTION: An insulating fin 10 includes a conductive layer 14 for mounting electronic components, which is formed on the upper surface of an insulating substrate 12 made of ceramic; and a fin base portion 18 and a plurality of heat radiating fins 16, which are formed on the lower surface of the insulating substrate 12. The insulating substrate 12 is formed in such a size that it may overlap the periphery of the aperture of a case 30, when it is arranged so that the insulating fin 10 may choke up the aperture of the case 30, which forms the cooling medium passage, where the cooling medium circulates. Accordingly, if the pressure of the cooling medium is added to the mounting portion or its periphery, after the insulating fin 10 is mounted at the aperture of the case 30, troubles due to lack of strength can be prevented, because the insulating substrate 12 of high rigidity exists at the mounting portion. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、絶縁フィン及びヒートシンクに関する。   The present invention relates to an insulating fin and a heat sink.

従来、絶縁フィンとしては、セラミックス製の絶縁基板の一方の面に形成された電子部品搭載用の導体層と、前記絶縁基板の他方の面に形成され複数の放熱フィンが立設されたフィンベース部を有する放熱層とを備えたものが知られている。例えば、特許文献1には、両面銅貼り基板の一方の面の銅板(第1銅板)を導体層とし、他方の面の銅板(第2銅板)をフィンベース部とし、フィンベース部に複数の放熱フィンを立設した絶縁フィンが開示されている。この両面銅貼り基板は、セラミック基板の両面にAg−Cuろう材を介して銅板を貼り付けたものである。また、セラミック基板の厚さを0.635mm、導体層である第1銅板の厚さを0.3mmとしたとき、フィンベース部である第2銅板の厚さを0.15mm〜0.3mm(第1銅板の厚さ/第2銅板の厚さ=1〜2)に設定することにより反りを抑制している。こうした絶縁フィンは、通水路となる銅製ケースの開口から放熱フィンを入れたあと、銅製ケースの開口周縁とフィンベース部の外縁とを接合し、この状態で銅製ケースに水を流すことにより水冷している。
特開2005−11922号公報
Conventionally, as an insulating fin, a fin base in which a conductor layer for mounting an electronic component formed on one surface of a ceramic insulating substrate and a plurality of radiating fins formed on the other surface of the insulating substrate are erected. The thing provided with the thermal radiation layer which has a part is known. For example, in Patent Document 1, a copper plate (first copper plate) on one surface of a double-sided copper-clad substrate is used as a conductor layer, a copper plate (second copper plate) on the other surface is used as a fin base portion, and a plurality of fin base portions are provided. An insulating fin provided with radiating fins standing up is disclosed. This double-sided copper-clad substrate is obtained by adhering a copper plate to both sides of a ceramic substrate via an Ag-Cu brazing material. Moreover, when the thickness of the ceramic substrate is 0.635 mm and the thickness of the first copper plate as the conductor layer is 0.3 mm, the thickness of the second copper plate as the fin base portion is 0.15 mm to 0.3 mm ( The warpage is suppressed by setting the thickness of the first copper plate / the thickness of the second copper plate = 1 to 2). These insulating fins are cooled by water flowing through the copper case in this state after joining the rim of the copper case opening and the outer edge of the fin base after inserting the radiation fin from the opening of the copper case serving as a water passage. ing.
JP 2005-11922 A

しかしながら、特許文献1の絶縁フィンでは、銅製ケースに水を流すと銅製ケースの開口周縁とフィンベース部の外縁との接合部分には水圧がかかるが、フィンベース部の厚さが0.3mmと薄いため、接合部分が水圧に耐えられず漏水するおそれがあった。   However, in the insulating fin of Patent Document 1, when water is passed through the copper case, water pressure is applied to the joint portion between the opening edge of the copper case and the outer edge of the fin base portion, but the thickness of the fin base portion is 0.3 mm. Since it was thin, the joint portion could not withstand water pressure and could leak water.

本発明の絶縁フィンは、冷媒通路を形成するケースの開口に取り付けたあと冷媒の圧力により支障が生じるのを防止することを主目的とする。   The main object of the insulating fin of the present invention is to prevent troubles caused by the pressure of the refrigerant after being attached to the opening of the case forming the refrigerant passage.

本発明は、上述の主目的を達成するために以下の手段を採った。   The present invention adopts the following means in order to achieve the main object described above.

本発明の絶縁フィンは、
セラミックス製の絶縁基板の一方の面に形成された電子部品搭載用の導体層と、前記絶縁基板の他方の面に形成され複数の放熱フィンがフィンベース部に立設された放熱層とを備えた絶縁フィンであって、
前記絶縁基板は、冷媒が流通する冷媒通路を形成するケースの開口を前記絶縁フィンが塞ぐように配置されたときに前記ケースの開口の周縁と重なり合う大きさに形成されているものである。
The insulating fin of the present invention is
A conductor layer for mounting electronic parts formed on one surface of a ceramic insulating substrate, and a heat radiating layer formed on the other surface of the insulating substrate with a plurality of heat radiating fins standing on the fin base portion. Insulating fins,
The insulating substrate is formed to have a size that overlaps with the periphery of the opening of the case when the insulating fin is disposed so as to close the opening of the case forming a refrigerant passage through which the refrigerant flows.

この絶縁フィンでは、冷媒通路を形成するケースの開口を塞ぐように配置して取り付けたとき、絶縁基板はケースの開口の周縁と重なり合う状態となる。したがって、絶縁フィンをケースの開口に取り付けたあと冷媒の圧力が取付部分やその周辺に加わったとしても、その取付部分に剛性の高い絶縁基板が存在しているため、強度不足により支障が生じるのを防止することができる。   With this insulating fin, when the insulating fin is disposed and attached so as to close the opening of the case forming the refrigerant passage, the insulating substrate overlaps with the periphery of the opening of the case. Therefore, even if the pressure of the refrigerant is applied to the attachment part or its periphery after attaching the insulating fins to the opening of the case, there is a problem due to the lack of strength because a rigid insulating substrate exists in the attachment part. Can be prevented.

本発明の絶縁フィンにおいて、前記絶縁基板は、窒化ケイ素セラミックス又は窒化アルミニウムセラミックスを主体とし、前記導体層及び前記放熱層は、アルミニウム又はアルミニウム合金を主体とすることが好ましい。ここで、ヤング率は窒化ケイ素セラミックスや窒化アルミニウムセラミックスに比べてアルミニウムやその合金の方が1桁ほど小さい。このため、本発明を適用する意義が高い。なお、窒化ケイ素セラミックスや窒化アルミニウムセラミックス、アルミニウム、アルミニウム合金は熱伝導率も高く、熱を効率よく放出しやすいため、この点でも好ましい。ここで、フィンベース部は、絶縁基板の外周を取り囲むように鋳ぐるんで形成されていることが好ましい。アルミニウムやアルミニウム合金は特許文献1で使用されている銅や銅合金に比べて融点が低いため、鋳ぐるみによりフィンベース部を形成しやすい。なお、放熱フィンもフィンベース部と共に鋳ぐるみにより一体成形してもよい。例えば、放熱フィンをフィンベース部にろう材等により接合することも考えられるが、その場合には接合部で熱伝導性が悪くなるおそれがある。このため、放熱フィンとフィンベース部とを一体成形することが好ましい。放熱フィンとフィンベース部とを一体成形するには、例えば、放熱フィン付きのフィンベース部をかたどった鋳型に金属溶湯を流し込んでもよいし、放熱フィンの高さをもつ金属層を形成したあと放熱フィンを削り出して作製してもよいが、製造コストを考慮すれば前者が好ましい。   In the insulating fin of the present invention, it is preferable that the insulating substrate is mainly composed of silicon nitride ceramics or aluminum nitride ceramics, and the conductor layer and the heat dissipation layer are mainly composed of aluminum or an aluminum alloy. Here, the Young's modulus is about an order of magnitude smaller for aluminum and its alloys than for silicon nitride ceramics and aluminum nitride ceramics. For this reason, the significance of applying the present invention is high. Note that silicon nitride ceramics, aluminum nitride ceramics, aluminum, and aluminum alloys are preferable in this respect because they have high thermal conductivity and easily release heat efficiently. Here, the fin base portion is preferably formed by casting so as to surround the outer periphery of the insulating substrate. Since aluminum or aluminum alloy has a lower melting point than copper or copper alloy used in Patent Document 1, it is easy to form a fin base portion by casting. The heat dissipating fins may be integrally formed with the fin base portion by casting. For example, it is conceivable to join the radiating fin to the fin base portion with a brazing material or the like, but in that case, the thermal conductivity may deteriorate at the joint portion. For this reason, it is preferable to integrally mold the radiating fin and the fin base portion. In order to integrally form the radiating fin and the fin base, for example, the molten metal may be poured into a mold shaped like the fin base with the radiating fin, or after the metal layer having the height of the radiating fin is formed, the heat is radiated. The fins may be cut out and manufactured, but the former is preferable in view of manufacturing costs.

本発明の絶縁フィンにおいて、前記フィンベース部のうち前記導体層と対向する部分の厚さt1が、前記導体層の厚さt0の0.7〜1.5倍であることが好ましい。一般に導体層の厚みは、電子部品搭載用のはんだ(接合材)の破壊を防ぐため0.5mm程度に設定されている。ここでは、フィンベース部のうち導体層と対向する部分の厚さt1が導体層の厚さt0の0.7〜1.5倍であるため、電子部品の効率的な冷却と絶縁フィン部材の破壊防止(例えば絶縁フィンと電子部品との接合材の破壊防止や絶縁基板と放熱層との境界の破壊防止など)を両立することができる。この点について以下に詳説する。厚さの比r(=t1/t0)が値5を超える場合には放熱層の剛性が高くなるため反りを有効に防ぐことができるが、その反面、熱抵抗が大きくなる。また、ヒートサイクルで絶縁基板との熱膨張差により絶縁基板と放熱層との境界や電子部品搭載用の接合材(はんだ等)が破壊されることもある。厚さの比rを2〜5にした場合、熱抵抗は下がるが、バイメタルの原理から反りが大きくなり、この場合も絶縁基板と放熱層との境界や電子部品搭載用の接合材に負荷がかかる。この点に鑑み、本発明者らは鋭意研究を重ねた結果、厚さの比rが値1.5以下であれば、厚さの比が値5のときと同等又はそれ以上に反りを抑えられるうえ、放熱層のフィンベース部が薄いため熱抵抗が下がることを見いだした。また、厚さの比rを値1以下にすると、今度は逆向きに反りが発生するが、厚さの比rが値1.5の逆数つまり値0.7以上であれば反りを良好に抑えられる。以上のことから、厚さの比rを0.7〜1.5の範囲にすることにより、電子部品の効率的な冷却と絶縁フィン部材の破壊防止を両立することができる。ここで、絶縁基板は、窒化ケイ素セラミックス又は窒化アルミニウムセラミックスを主体とし、導体層及び放熱層は、アルミニウム又はアルミニウム合金を主体とした場合、熱膨張率の差が大きいため反りが発生しやすいことから、厚さの比rを0.7〜1.5の範囲にする意義が高い。ちなみに、熱膨張率を例示すると、窒化ケイ素セラミックスでは2.3×10-6/K、窒化アルミニウムセラミックスでは4.4×10-6/Kといずれもかなり小さいのに対して、アルミニウムでは23.5×10-6/Kとかなり大きい。 In the insulating fin of the present invention, it is preferable that a thickness t1 of the fin base portion facing the conductor layer is 0.7 to 1.5 times the thickness t0 of the conductor layer. Generally, the thickness of the conductor layer is set to about 0.5 mm in order to prevent destruction of solder (joining material) for mounting electronic components. Here, since the thickness t1 of the fin base portion facing the conductor layer is 0.7 to 1.5 times the thickness t0 of the conductor layer, efficient cooling of the electronic component and the insulating fin member It is possible to achieve both prevention of destruction (for example, prevention of destruction of the bonding material between the insulating fin and the electronic component and prevention of destruction of the boundary between the insulating substrate and the heat dissipation layer). This will be described in detail below. When the thickness ratio r (= t1 / t0) exceeds a value of 5, the rigidity of the heat dissipation layer increases, so that warping can be effectively prevented, but on the other hand, thermal resistance increases. In addition, a boundary between the insulating substrate and the heat dissipation layer and a bonding material (solder or the like) for mounting an electronic component may be destroyed due to a difference in thermal expansion with the insulating substrate in a heat cycle. When the thickness ratio r is 2 to 5, the thermal resistance decreases, but the warpage increases due to the bimetal principle. In this case as well, a load is applied to the boundary between the insulating substrate and the heat dissipation layer and the bonding material for mounting the electronic component. Take it. In view of this point, as a result of intensive research, the inventors have suppressed the warpage to a value equal to or greater than that when the thickness ratio is 5 if the thickness ratio r is 1.5 or less. In addition, it has been found that the heat resistance is lowered because the fin base portion of the heat dissipation layer is thin. Further, when the thickness ratio r is set to a value of 1 or less, warping occurs in the opposite direction. However, if the thickness ratio r is a reciprocal of the value 1.5, that is, a value of 0.7 or more, the warp is improved. It can be suppressed. From the above, by making the thickness ratio r in the range of 0.7 to 1.5, it is possible to achieve both efficient cooling of the electronic component and prevention of the destruction of the insulating fin member. Here, when the insulating substrate is mainly composed of silicon nitride ceramics or aluminum nitride ceramics, and the conductor layer and the heat dissipation layer are mainly composed of aluminum or aluminum alloy, warpage is likely to occur because of a large difference in thermal expansion coefficient. The thickness ratio r is highly significant in the range of 0.7 to 1.5. By the way, the coefficient of thermal expansion is exemplified by 2.3 × 10 −6 / K for silicon nitride ceramics and 4.4 × 10 −6 / K for aluminum nitride ceramics. It is considerably large as 5 × 10 −6 / K.

このように厚さの比rを0.7〜1.5とした本発明の絶縁フィンにおいて、前記厚さt1は0.8mm以下であり、前記絶縁基板の厚さは前記厚さt0,t1より薄いのが好ましい。こうすれば、反りをより良好に抑えられるし、導体層に搭載された電子部品の発熱を素早く放熱フィンに伝えることもできる。   Thus, in the insulating fin of the present invention in which the thickness ratio r is 0.7 to 1.5, the thickness t1 is 0.8 mm or less, and the thickness of the insulating substrate is the thickness t0, t1. Thinner is preferred. In this way, it is possible to suppress warpage more satisfactorily, and it is possible to quickly transmit heat generated by the electronic component mounted on the conductor layer to the heat radiating fins.

本発明の絶縁フィンにおいて、前記放熱層の外周側にて前記厚さt1よりも厚く形成された補強部を備えていてもよい。この補強部は、前記ケースの開口を塞いだときに前記ケースの開口の周縁と接触するように設けられていてもよい。こうすれば、補強部の存在により、絶縁フィンをケースに取り付ける際に強度不足により支障が生じるのを防止することができる。   The insulating fin of the present invention may include a reinforcing portion formed thicker than the thickness t1 on the outer peripheral side of the heat dissipation layer. The reinforcing portion may be provided so as to come into contact with the peripheral edge of the opening of the case when the opening of the case is closed. If it carries out like this, when an insulation fin is attached to a case by the presence of a reinforcement part, it can prevent that a trouble arises by insufficient strength.

本発明のヒートシンクは、
冷媒が流通する冷媒通路を形成するケースと、
前記ケースの開口を塞ぐと共に前記放熱フィンが前記冷媒と接触するように配置された上述のいずれかの絶縁フィンと、
を備えたものである。
The heat sink of the present invention is
A case forming a refrigerant passage through which the refrigerant flows;
Any of the above-described insulating fins arranged so as to close the opening of the case and to make the radiating fins contact the refrigerant;
It is equipped with.

このヒートシンクでは、絶縁フィンをケースの開口に取り付けたあと冷媒の圧力が取付部分やその周辺に加わったとしても、その取付部分に絶縁基板が存在しているため、強度不足により支障が生じるのを防止することができる。こうしたヒートシンクは、前記ケースの開口の周縁に対して前記絶縁フィンのうち前記絶縁基板が存在している部分を押し付ける押圧部材を備えていてもよい。こうすれば、剛性の高いセラミックス製の絶縁基板で押さえの強度を持たせることになるため、フィンベース部の厚さが薄くても冷媒の圧力によって絶縁フィンが変形するのを抑制することができる。   In this heat sink, even if the pressure of the refrigerant is applied to the attachment part and its surroundings after attaching the insulating fin to the opening of the case, the insulation substrate exists in the attachment part, so that the problem is caused by insufficient strength. Can be prevented. Such a heat sink may include a pressing member that presses a portion of the insulating fin where the insulating substrate is present against the periphery of the opening of the case. In this way, since the holding strength is given by the insulating substrate made of ceramic with high rigidity, the deformation of the insulating fin due to the pressure of the refrigerant can be suppressed even if the fin base portion is thin. .

次に、本発明の実施の形態を図面に基づいて説明する。図1は絶縁フィン10の平面図、図2は図1のA−A断面図、図3は絶縁フィン10の背面図である。   Next, embodiments of the present invention will be described with reference to the drawings. 1 is a plan view of the insulating fin 10, FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1, and FIG. 3 is a rear view of the insulating fin 10.

絶縁フィン10は、セラミックス製の絶縁基板12と、この絶縁基板12の上面に形成された2つの導体層14と、絶縁基板12の下面に形成されたフィンベース部18に複数の放熱フィン16を立設した放熱層19と、フィンベース部18の外周側に形成された補強部20とを備えている。この絶縁フィン10は、本実施形態では縦50mm、横100mmの長方形状に形成されている。   The insulating fin 10 includes a ceramic insulating substrate 12, two conductor layers 14 formed on the upper surface of the insulating substrate 12, and a plurality of radiating fins 16 on a fin base portion 18 formed on the lower surface of the insulating substrate 12. A standing heat dissipation layer 19 and a reinforcing portion 20 formed on the outer peripheral side of the fin base portion 18 are provided. In this embodiment, the insulating fins 10 are formed in a rectangular shape having a length of 50 mm and a width of 100 mm.

絶縁基板12は、導体層14に搭載される電子部品としてのパワーモジュールPM(例えばMOSFETやIGBTなど、図6参照)と放熱層19に形成された放熱フィン16とを電気的に絶縁するものである。この絶縁基板12は、本実施形態では厚さ0.3mmの窒化ケイ素セラミックス(熱伝導率80W/mK、熱膨張率2.3×10-6/K)により絶縁フィン10の縦横の長さに比べて一回り小さな長方形状に形成されている。 The insulating substrate 12 electrically insulates the power module PM (for example, MOSFET, IGBT, etc., see FIG. 6) as an electronic component mounted on the conductor layer 14 and the radiating fins 16 formed in the radiating layer 19. is there. In this embodiment, the insulating substrate 12 is made of silicon nitride ceramics having a thickness of 0.3 mm (thermal conductivity: 80 W / mK, thermal expansion coefficient: 2.3 × 10 −6 / K) so that the vertical and horizontal lengths of the insulating fins 10 are increased. Compared to a slightly smaller rectangular shape.

導体層14は、パワーモジュールPMを搭載可能な回路パターンであり、本実施形態では厚さ0.5mmのアルミニウム(熱伝導率222W/mK、熱膨張率23.5×10-6/K)又はアルミニウム合金により30mm×34mmの長方形状に形成されている。 The conductor layer 14 is a circuit pattern on which the power module PM can be mounted. In the present embodiment, 0.5 mm thick aluminum (thermal conductivity 222 W / mK, thermal expansion coefficient 23.5 × 10 −6 / K) or It is formed in a rectangular shape of 30 mm × 34 mm from an aluminum alloy.

放熱層19のうちフィンベース部18は、絶縁基板12の下面を覆うように形成されている。このフィンベース部18は、本実施形態では厚さ0.5mmのアルミニウム又はアルミニウム合金で作製されている。つまり、フィンベース部18のうち導体層14と対向する部分の厚さは0.5mmである。また、フィンベース部18の下面には、導体層14と対向する領域に複数の放熱フィン16が形成されている。各放熱フィン16は、φ1.5mmのアルミニウム製又はアルミニウム合金製の円柱であり、フィンベース部18と一体成形されている。但し、放熱フィン16は、フィンベース部18にろう付けされていてもよい。   The fin base portion 18 of the heat dissipation layer 19 is formed so as to cover the lower surface of the insulating substrate 12. In this embodiment, the fin base portion 18 is made of aluminum or aluminum alloy having a thickness of 0.5 mm. That is, the thickness of the portion of the fin base portion 18 facing the conductor layer 14 is 0.5 mm. A plurality of heat radiation fins 16 are formed on the lower surface of the fin base portion 18 in a region facing the conductor layer 14. Each radiating fin 16 is a cylinder made of aluminum or aluminum alloy having a diameter of 1.5 mm, and is integrally formed with the fin base portion 18. However, the heat radiating fins 16 may be brazed to the fin base portion 18.

補強部20は、フィンベース部18の外周側にてアルミニウムにより厚さ1.3mmに形成されている。この補強部20は、絶縁基板12の下面に形成されたフィンベース部18から絶縁基板12の外周を覆うようにして絶縁基板12の上面の周縁に達している。補強部20のうち絶縁基板12の上面の周縁に達した部分の端面20aと各導体層14とは、電気的に確実に絶縁されるように数mmの間隔が空いている。なお、補強部20のうち、絶縁基板12の下面から下側(フィンベース部18側)の厚みtxと絶縁基板12の上面から上側(導体層14側)の厚みtyは、共に0.5mmとなっている。   The reinforcing portion 20 is formed with a thickness of 1.3 mm from aluminum on the outer peripheral side of the fin base portion 18. The reinforcing portion 20 reaches the periphery of the upper surface of the insulating substrate 12 so as to cover the outer periphery of the insulating substrate 12 from the fin base portion 18 formed on the lower surface of the insulating substrate 12. The end face 20a of the reinforcing portion 20 reaching the periphery of the upper surface of the insulating substrate 12 and each conductor layer 14 are spaced by a few millimeters so as to be surely electrically insulated. Of the reinforcing portion 20, the thickness tx below the insulating substrate 12 from the lower surface (fin base portion 18 side) and the thickness ty above the insulating substrate 12 from the upper surface (conductor layer 14 side) are both 0.5 mm. It has become.

次に、導体層14の厚さとフィンベース部18の厚さと反りとの関係について説明する。この関係を調べるために、絶縁フィン10そのものを用いるのではなく、縦30mm×横30mmの試験片を用いて熱応力が発生したときの反りを測定した。試験片は、厚さ0.3mmの窒化ケイ素セラミックスを絶縁基板とし、その絶縁基板の上面に厚さ0.5mm(=t0)のアルミニウム層(導体層14に相当)を形成すると共に絶縁基板の下面に厚さ0.5〜6mm(=t1)のアルミニウム層(フィンベース部18に相当)を形成したものを用いた。具体的には、試験片としては、厚さt1が0.5mm,0.7mm,0.8mm,1mm,1.2mm,1.5mm,2mm,3mm,6mmの9種類を用いた。そして、これらの試験片を20℃から120℃に加熱したときに発生する反りを測定した。その結果を図4に示す。   Next, the relationship between the thickness of the conductor layer 14, the thickness of the fin base portion 18, and the warp will be described. In order to investigate this relationship, the warping when thermal stress was generated was measured using a test piece 30 mm long by 30 mm wide rather than using the insulating fin 10 itself. The test piece was formed by using a silicon nitride ceramic with a thickness of 0.3 mm as an insulating substrate, and forming an aluminum layer (corresponding to the conductor layer 14) with a thickness of 0.5 mm (= t0) on the upper surface of the insulating substrate. What formed the aluminum layer (equivalent to the fin base part 18) of thickness 0.5-6mm (= t1) on the lower surface was used. Specifically, nine kinds of test pieces having a thickness t1 of 0.5 mm, 0.7 mm, 0.8 mm, 1 mm, 1.2 mm, 1.5 mm, 2 mm, 3 mm, and 6 mm were used. And the curvature which generate | occur | produces when these test pieces were heated from 20 degreeC to 120 degreeC was measured. The result is shown in FIG.

図4は横軸に厚さの比r(=t1/t0)をとり、縦軸に反りをとったときのグラフである。このグラフから明らかなように、厚さの比rが値1のときには反りは発生せず、厚さの比rが値1から値2.4までの範囲では厚さの比rが大きいほど反りが大きくなり、値2.4から値12までの範囲では厚さの比rが大きいほど反りが小さくなった。厚さの比rが値1のときに反りが発生しないのは、絶縁基板の上下両面での熱膨張差がないからと考えられる。また、厚さの比rが値2.4から値12までの範囲では、その比rが大きくなるほどフィンベース部の剛性が高くなるため反りが小さくなったと考えられる。一方、厚さの比rが値1から値2.4までの範囲では、その比rが大きいほど熱膨張差が大きくなるが、フィンベース部の剛性が低いため比rが大きくなるほど熱膨張差が大きくなるのに伴って反りが大きくなったと考えられる。また、図4から、厚さの比rが値1.5以下であれば、厚さの比が値5のときと同等又はそれ以上に反りを抑えられることがわかる。なお、厚さの比rを値1以下にすると、今度は逆向きに反りが発生するが、図4の結果を考慮すれば、厚さの比rが値1.5の逆数つまり値0.7以上であれば反りを良好に抑えられると考えられるし、強度を保つこともできる。以上のことから、厚さの比rは0.7〜1.5の範囲であることが好ましい。   FIG. 4 is a graph when the horizontal axis represents the thickness ratio r (= t1 / t0) and the vertical axis represents the warp. As is apparent from this graph, no warp occurs when the thickness ratio r is 1, and when the thickness ratio r is between 1 and 2.4, the warp increases as the thickness ratio r increases. In the range from 2.4 to 12, the warp became smaller as the thickness ratio r was larger. The reason why no warp occurs when the thickness ratio r is 1 is that there is no difference in thermal expansion between the upper and lower surfaces of the insulating substrate. Further, when the thickness ratio r is in the range from 2.4 to 12, it is considered that as the ratio r increases, the rigidity of the fin base portion increases and the warpage decreases. On the other hand, when the thickness ratio r is in the range from 1 to 2.4, the larger the ratio r, the larger the thermal expansion difference. However, the lower the rigidity of the fin base portion, the greater the ratio r, the larger the thermal expansion difference. It is thought that the warpage increased with the increase of. Further, FIG. 4 shows that if the thickness ratio r is 1.5 or less, the warpage can be suppressed to be equal to or greater than that when the thickness ratio is 5. If the thickness ratio r is set to a value of 1 or less, warping occurs in the opposite direction. However, considering the result of FIG. 4, the thickness ratio r is an inverse of the value 1.5, that is, a value of 0. If it is 7 or more, it is considered that warpage can be satisfactorily suppressed, and the strength can be maintained. From the above, the thickness ratio r is preferably in the range of 0.7 to 1.5.

次に、絶縁フィン10の製法の一例について、図5を用いて説明する。図5は、絶縁フィン10の製造工程図である。   Next, an example of a method for manufacturing the insulating fin 10 will be described with reference to FIG. FIG. 5 is a manufacturing process diagram of the insulating fin 10.

まず、絶縁基板12の各辺の中央に幅が数mmのスペーサ22を嵌め込み、スペーサ22が嵌め込まれた絶縁基板12を金型40のキャビティ42に入れる(図5(a)参照)。スペーサ22は、純アルミニウム製(融点670℃)であり、C字状に形成されている。また、金型40は下型と上型に分離可能であるが、図5では便宜上、下型と上型とが一体になったものを示した。キャビティ42は、絶縁フィン10の外形をかたどった空間である。このとき、キャビティ42の底面(放熱フィン16を形成するための穴があいている面)から絶縁基板12の下面までの間隔はフィンベース部18の厚さと一致し、キャビティ42の天井から絶縁基板12の上面までの間隔は導体層14の厚さと一致する。続いて、純アルミニウム製のスペーサ22よりも融点の低いアルミニウム合金(融点約600℃)の金属溶湯を用意する。そして、金型40を、このアルミニウム合金の融点と同程度(例えば(融点−200℃)〜(融点+50℃)の範囲)に加熱する。絶縁基板12の周囲の空間は狭いため、アルミダイカストで一般に金型に設定される200〜300℃では、鋳造時に溶湯が途中で凝固して完全に被覆できないおそれや、アルミニウム合金が絶縁基板12の表層と反応せず双方が接合されないおそれがある。このため、金属溶湯が充填中に凝固しないよう金型温度を融点付近にする必要がある。また、金型温度が高すぎるとスペーサ22が溶けたり金型の消耗が大きくなるため、そのような不具合が発生しないように金型温度の上限が決められている。   First, a spacer 22 having a width of several millimeters is fitted into the center of each side of the insulating substrate 12, and the insulating substrate 12 with the spacer 22 fitted therein is put into the cavity 42 of the mold 40 (see FIG. 5A). The spacer 22 is made of pure aluminum (melting point: 670 ° C.) and is formed in a C shape. In addition, the mold 40 can be separated into a lower mold and an upper mold, but FIG. 5 shows a mold in which the lower mold and the upper mold are integrated for convenience. The cavity 42 is a space shaped like the outer shape of the insulating fin 10. At this time, the distance from the bottom surface of the cavity 42 (the surface where the holes for forming the heat radiating fins 16 are formed) to the lower surface of the insulating substrate 12 matches the thickness of the fin base portion 18, so The distance to the top surface of 12 matches the thickness of the conductor layer 14. Subsequently, a molten metal of an aluminum alloy (melting point: about 600 ° C.) having a melting point lower than that of the pure aluminum spacer 22 is prepared. Then, the mold 40 is heated to the same degree as the melting point of the aluminum alloy (for example, the range of (melting point−200 ° C.) to (melting point + 50 ° C.)). Since the space around the insulating substrate 12 is narrow, at 200 to 300 ° C., which is generally set in a die by aluminum die casting, there is a possibility that the molten metal may solidify during casting and cannot be completely covered, There is a possibility that both do not react with the surface layer and are not joined. For this reason, it is necessary to make the mold temperature near the melting point so that the molten metal does not solidify during filling. Further, if the mold temperature is too high, the spacer 22 melts or the mold wears up, and therefore the upper limit of the mold temperature is determined so that such a problem does not occur.

そして、用意した金属溶湯を金型40の図示しない注入口を介してキャビティ42へ注入する(図5(b)参照)。すると、キャビティ42が金属溶湯で満たされたあとオーバーフローした金属溶湯が図示しない排出口を介して排出される。このときの鋳込み圧力は、10〜40MPaの範囲に設定される。こうすることにより、絶縁基板12の周囲の全体に金属溶湯が溜まった状態となる。このとき、スペーサ22は、金属溶湯の温度より融点が高いため、溶融することはない。したがって、キャビティ42に配置された絶縁基板12の位置は、鋳込みの間も当初のまま維持される。続いて、金型40を冷却する。すると、キャビティ42に溜まっていた金属溶湯が固化する。その後、金型40から成形品を取り出し、トリミングにより外形を整える(図5(c)参照)。得られた成形品は、絶縁基板12の全面がアルミニウム合金で覆われているから、導体層14の形状に合わせてマスクを形成した後、電解加工やエッチングを施す。こうすることにより、絶縁基板12の上面には2つの導体層14が形成され、絶縁基板12の周囲に補強部20が形成された絶縁フィン10が完成する(図5(d)参照)。この絶縁フィン10は、放熱フィン16がフィンベース部18と一体成形されている。   Then, the prepared molten metal is injected into the cavity 42 through an injection port (not shown) of the mold 40 (see FIG. 5B). Then, the molten metal overflowed after the cavity 42 is filled with the molten metal is discharged through a discharge port (not shown). The casting pressure at this time is set in the range of 10 to 40 MPa. By doing so, the molten metal is accumulated in the entire periphery of the insulating substrate 12. At this time, the spacer 22 does not melt because the melting point is higher than the temperature of the molten metal. Therefore, the position of the insulating substrate 12 disposed in the cavity 42 is maintained as it is during casting. Subsequently, the mold 40 is cooled. Then, the molten metal accumulated in the cavity 42 is solidified. Thereafter, the molded product is taken out from the mold 40 and trimmed to trim the outer shape (see FIG. 5C). In the obtained molded product, since the entire surface of the insulating substrate 12 is covered with an aluminum alloy, a mask is formed in accordance with the shape of the conductor layer 14 and then subjected to electrolytic processing or etching. By doing so, the two conductive layers 14 are formed on the upper surface of the insulating substrate 12, and the insulating fin 10 in which the reinforcing portion 20 is formed around the insulating substrate 12 is completed (see FIG. 5D). In this insulating fin 10, the heat radiating fin 16 is integrally formed with the fin base portion 18.

次に、絶縁フィン10の使用例について説明する。図6は絶縁フィン10を利用したヒートシンク50の断面図である。   Next, a usage example of the insulating fin 10 will be described. FIG. 6 is a cross-sectional view of a heat sink 50 using the insulating fin 10.

ヒートシンク50は、上部開口を有するケース30と、この上部開口を塞ぐ絶縁フィン10とを備えている。ケース30は、底面部32とその底面部32の周囲に立設された側壁部34とを有している。また、ケース30の上部開口の周縁をなす側壁部34の上端面と絶縁フィン10の補強部20の下面とは、熱伝導性の接着層を介して液密に接合されている。また、絶縁フィン10の絶縁基板12は、側壁部34の上端面と重なり合う大きさに形成されている。なお、ケース30の側壁部34と絶縁フィン10の補強部20とを液密用のガスケットを介した状態でネジによって締結してもよい。絶縁フィン10は、放熱フィン16がケース30の内部に収容されるように配置されている。この絶縁フィン10の各導体層14にはニッケル層24が形成され、IGBTやMOSFETなどのパワーモジュールPMがこのニッケル層24にはんだ26を介して接合されている。ニッケル層24は、はんだ濡れ性を良好にするために設けられており、例えば導体層14の上面にニッケルリンめっきを施すことにより形成される。そして、ケース30と絶縁フィン10とによって囲まれた冷媒通路52に冷媒(例えば冷却水)を流通させる。こうすることにより、パワーモジュールPMが作動することにより発生した熱は、放熱フィン16に伝達されたあと放熱フィン16と冷媒との間で熱交換されることにより冷媒に伝達される。   The heat sink 50 includes a case 30 having an upper opening and insulating fins 10 that close the upper opening. The case 30 has a bottom surface portion 32 and a side wall portion 34 erected around the bottom surface portion 32. Further, the upper end surface of the side wall portion 34 that forms the periphery of the upper opening of the case 30 and the lower surface of the reinforcing portion 20 of the insulating fin 10 are joined in a liquid-tight manner through a heat conductive adhesive layer. Further, the insulating substrate 12 of the insulating fin 10 is formed to have a size overlapping with the upper end surface of the side wall portion 34. Note that the side wall portion 34 of the case 30 and the reinforcing portion 20 of the insulating fin 10 may be fastened with screws in a state where a liquid-tight gasket is interposed therebetween. The insulating fins 10 are arranged such that the heat radiating fins 16 are accommodated inside the case 30. A nickel layer 24 is formed on each conductor layer 14 of the insulating fin 10, and a power module PM such as an IGBT or a MOSFET is joined to the nickel layer 24 via a solder 26. The nickel layer 24 is provided to improve solder wettability, and is formed, for example, by applying nickel phosphorus plating to the upper surface of the conductor layer 14. Then, a refrigerant (for example, cooling water) is circulated through the refrigerant passage 52 surrounded by the case 30 and the insulating fins 10. By doing so, the heat generated by the operation of the power module PM is transmitted to the heat radiating fins 16 and then transferred to the refrigerant by heat exchange between the heat radiating fins 16 and the refrigerant.

以上詳述した絶縁フィン10によれば、絶縁フィン10をケース30の開口に取り付けたあと冷媒の圧力が取付部分やその周辺に加わったとしても、その取付部分に剛性の高い絶縁基板12が存在しているため、強度不足により支障が生じるのを防止することができる。加えて、フィンベース部18に比べて肉厚の補強部20を備えているため、その効果をより顕著に得ることができる。また、絶縁基板12は剛性の高い窒化ケイ素セラミックスであるのに対して、導体層14やフィンベース部18は剛性の低いアルミニウム又はその合金であるため、本発明を適用する意義が高い。また、アルミニウム又はその合金は銅又は銅合金と比べて融点が低いため、絶縁基板12をフィンベース部18で鋳ぐるむのに適している。なお、窒化ケイ素セラミックスやアルミニウム、アルミニウム合金は熱伝導率も高く、熱を効率よく放出しやすいため、この点でも好ましい。更に、フィンベース部18のうち導体層14と対向する部分の厚さt1が導体層14の厚さt0の0.7〜1.5倍(本実施形態では1倍)であるため、電子部品の効率的な冷却と絶縁フィン部材の破壊防止を両立することができる。また、厚さt1は0.8mm以下(本実施形態では0.5mm)であり、絶縁基板12の厚さは導体層14の厚さt0やフィンベース部18の厚さt1より薄いため、反りをより良好に抑えられるし、導体層14に搭載された電子部品の発熱を素早く放熱フィン16に伝えることもできる。   According to the insulating fin 10 described in detail above, even if the pressure of the refrigerant is applied to the attachment portion and its periphery after the insulation fin 10 is attached to the opening of the case 30, the insulating substrate 12 having high rigidity exists in the attachment portion. Therefore, it is possible to prevent problems caused by insufficient strength. In addition, since the thick reinforcing portion 20 is provided as compared with the fin base portion 18, the effect can be obtained more remarkably. In addition, since the insulating substrate 12 is made of silicon nitride ceramic with high rigidity, the conductor layer 14 and the fin base portion 18 are made of aluminum with low rigidity or an alloy thereof, so that it is highly significant to apply the present invention. In addition, since aluminum or an alloy thereof has a lower melting point than copper or a copper alloy, it is suitable for casting the insulating substrate 12 with the fin base portion 18. Note that silicon nitride ceramics, aluminum, and aluminum alloys are preferable in this respect because they have high thermal conductivity and easily release heat efficiently. Furthermore, since the thickness t1 of the portion of the fin base portion 18 facing the conductor layer 14 is 0.7 to 1.5 times (in this embodiment, 1 time) the thickness t0 of the conductor layer 14, the electronic component This makes it possible to achieve both efficient cooling and prevention of breakage of the insulating fin member. Further, the thickness t1 is 0.8 mm or less (0.5 mm in the present embodiment), and the thickness of the insulating substrate 12 is smaller than the thickness t0 of the conductor layer 14 and the thickness t1 of the fin base portion 18, and thus warps. The heat generated by the electronic component mounted on the conductor layer 14 can be quickly transmitted to the heat radiating fins 16.

ここで、絶縁フィン10をケース30の開口に取り付けたあと冷媒の圧力が取付部分やその周辺に加わったとしても支障が生じないという効果を調べるため、絶縁基板のサイズを変えた絶縁フィンを開口部サイズが80mm×30mmの水冷ケースにとりつけて、水圧0.2MPaをかけた場合の変形について調べた。開口部より少し小さいサイズ(79mm×29mm)の絶縁基板を用いて製作した絶縁フィンの変形量は62μmであったが、開口部と同じサイズ(80mm×30mm)又は開口部より大きなサイズ(82mm×32mm)の絶縁基板を用いて絶縁フィンを製作した場合の変形量は54μmであった。以上のことから、絶縁基板を水冷ケースの開口部の周縁に重ねるサイズにすることで、変形量が13%も減ることがわかった。従来は絶縁基板は低熱膨張と絶縁性と高熱伝導性が求められていたが、この発明では強度部材としても利用することで、電子部品の効率的な冷却と絶縁フィン部材の破壊防止を両立させている。   Here, after the insulating fin 10 is attached to the opening of the case 30, in order to investigate the effect that no trouble occurs even if the pressure of the refrigerant is applied to the attachment portion or the periphery thereof, the insulating fin having a changed size of the insulating substrate is opened. It was attached to a water-cooled case with a part size of 80 mm × 30 mm and examined for deformation when a water pressure of 0.2 MPa was applied. The amount of deformation of the insulating fin manufactured using an insulating substrate slightly smaller than the opening (79 mm × 29 mm) was 62 μm, but the same size as the opening (80 mm × 30 mm) or larger than the opening (82 mm × The amount of deformation when an insulating fin was manufactured using an insulating substrate of 32 mm) was 54 μm. From the above, it has been found that the deformation amount is reduced by 13% when the insulating substrate is sized to overlap the periphery of the opening of the water cooling case. Conventionally, an insulating substrate has been required to have low thermal expansion, insulation, and high thermal conductivity, but in the present invention, it is also used as a strength member to achieve both efficient cooling of electronic components and prevention of destruction of the insulating fin member. ing.

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

例えば、上述した実施形態では、絶縁基板12を鋳ぐるむようにして絶縁フィン10を製造したが、放熱フィン16とフィンベース部18と補強部20とを鋳造により一体成形し、その成形品に絶縁基板12、導体層14を順次ろう付けして絶縁フィン10を製造してもよい。その場合、補強部20のうち絶縁基板12の上面の周縁を覆う部分は省略してもよい。   For example, in the embodiment described above, the insulating fin 10 is manufactured by casting the insulating substrate 12. However, the heat dissipating fin 16, the fin base portion 18, and the reinforcing portion 20 are integrally formed by casting, and the insulating substrate 12 is formed on the molded product. The insulating fins 10 may be manufactured by brazing the conductor layers 14 sequentially. In that case, you may abbreviate | omit the part which covers the periphery of the upper surface of the insulated substrate 12 among the reinforcement parts 20. FIG.

上述した実施形態では、補強部20を絶縁基板12の外周面や絶縁基板12の上面の周縁を覆うようにして形成したが、補強部20のうち絶縁基板12の上面から上側の部分を省略した補強部120(図7参照)を形成してもよいし、補強部20のうち絶縁基板12の外周面を覆う部分や絶縁基板12の上面から上側の部分を省略する一方、絶縁基板12の下面よりも下側にフィンベース部18よりも厚みを持つ補強部220(図8参照)を形成してもよい。   In the embodiment described above, the reinforcing portion 20 is formed so as to cover the outer peripheral surface of the insulating substrate 12 and the peripheral edge of the upper surface of the insulating substrate 12, but the upper portion of the reinforcing portion 20 from the upper surface of the insulating substrate 12 is omitted. The reinforcing portion 120 (see FIG. 7) may be formed, or the portion of the reinforcing portion 20 that covers the outer peripheral surface of the insulating substrate 12 or the upper portion of the insulating substrate 12 is omitted, while the lower surface of the insulating substrate 12 is omitted. A reinforcing portion 220 (see FIG. 8) having a thickness greater than that of the fin base portion 18 may be formed on the lower side.

上述した実施形態では、絶縁フィン10は1枚の絶縁基板12を備えるとしたが、導体層14に応じて複数に分割した絶縁基板112(図9参照)を備えていてもよい。但し、強度面を考慮すれば絶縁基板12を1枚とした方が有利である。   In the embodiment described above, the insulating fin 10 includes the single insulating substrate 12, but may include the insulating substrate 112 (see FIG. 9) divided into a plurality according to the conductor layer 14. However, considering the strength, it is advantageous to use one insulating substrate 12.

上述した実施形態では、補強部20は絶縁基板12の上面から上側の厚みと絶縁基板12の下面から下側の厚みを等しくしたが、図10(a)の補強部320や図10(b)の補強部420のように絶縁基板12の下面から下側の厚みの方が上面から上側の厚みよりも厚くなるようにしてもよい。こうすれば、フィンベース部18を一層補強することができる。こうした構造は、フィンベース部18を純アルミニウムで製造した場合等のように剛性が得られにくい場合に特に有効である。なお、補強部20,320,420のうち絶縁基板12の上面から上側の部分は、導体層14への電子部品の搭載を考慮するとあまり厚くするのは好ましくないが、絶縁基板12のうちケース30の開口部周辺の部分は、ケース30に取り付けたときに冷媒の圧力により一番応力がかかる部分なので厚くするのが好ましい。   In the embodiment described above, the reinforcing portion 20 has the same thickness on the upper side from the upper surface of the insulating substrate 12 and the thickness on the lower side from the lower surface of the insulating substrate 12, but the reinforcing portion 320 in FIG. 10 (a) and FIG. 10 (b). As in the reinforcing portion 420, the lower thickness from the lower surface of the insulating substrate 12 may be thicker than the upper thickness from the upper surface. In this way, the fin base portion 18 can be further reinforced. Such a structure is particularly effective when rigidity is difficult to obtain, such as when the fin base portion 18 is made of pure aluminum. In addition, it is not preferable to make the portion above the upper surface of the insulating substrate 12 out of the reinforcing portions 20, 320, and 420 in consideration of mounting electronic components on the conductor layer 14, but the case 30 of the insulating substrate 12 is not preferable. The portion around the opening is preferably thick because it is the portion most stressed by the refrigerant pressure when attached to the case 30.

上述した実施形態では、絶縁フィン10とケース30とを熱伝導性の接着層を介して接合したが、図11に示すように、絶縁フィン10のうちケース30の側壁部34の上端面と対向している部分にフレーム状の押圧部材60を配置し、ネジ38をこの押圧部材60と補強部20とを貫通しケース30の側壁部34に設けたネジ穴36に螺合させて締め付けることにより、両者を接合してもよい。ケース30の材料強度が弱い場合にはケース30に補強材を埋め込み、そこにネジ穴36を開けてもよい。ここで、側壁部34の上端面にはガスケット34aが嵌め込まれており、このガスケット34aにより絶縁フィン10とケース30との液密性が確保されている。この場合も、絶縁基板12の一部がケース30の側壁部34の上端面に重なっているため、剛性の高い絶縁基板12で押さえの強度を持たせていることになり、フィンベース部18が薄くても冷媒の圧力によって絶縁フィン10が変形してしまうのを抑制できる。なお、ネジ38が絶縁基板12に当たる場合には、絶縁基板12に穴を開けるか切欠をつけ、それにネジ38を通すようにしてもよい。   In the above-described embodiment, the insulating fin 10 and the case 30 are joined via the heat conductive adhesive layer. However, as shown in FIG. 11, the insulating fin 10 faces the upper end surface of the side wall portion 34 of the case 30. A frame-like pressing member 60 is disposed in the portion, and a screw 38 is passed through the pressing member 60 and the reinforcing portion 20 and screwed into a screw hole 36 provided in the side wall portion 34 of the case 30 to be tightened. Both may be joined. When the material strength of the case 30 is weak, a reinforcing material may be embedded in the case 30 and a screw hole 36 may be formed there. Here, a gasket 34 a is fitted into the upper end surface of the side wall portion 34, and the liquid tightness between the insulating fin 10 and the case 30 is secured by the gasket 34 a. Also in this case, since a part of the insulating substrate 12 overlaps with the upper end surface of the side wall portion 34 of the case 30, the insulating substrate 12 having high rigidity gives the holding strength, and the fin base portion 18 Even if it is thin, it can suppress that the insulation fin 10 deform | transforms with the pressure of a refrigerant | coolant. When the screw 38 hits the insulating substrate 12, a hole or a notch may be made in the insulating substrate 12, and the screw 38 may be passed therethrough.

本実施形態の絶縁フィン10の平面図である。It is a top view of the insulation fin 10 of this embodiment. 図1のA−A断面図である。It is AA sectional drawing of FIG. 本実施形態の絶縁フィン10の背面図である。It is a rear view of the insulation fin 10 of this embodiment. 厚さの比r(=t1/t0)と反りとの関係を表すグラフである。It is a graph showing the relationship between thickness ratio r (= t1 / t0) and curvature. 本実施形態の絶縁フィン10の製造工程図である。It is a manufacturing-process figure of the insulation fin 10 of this embodiment. 本実施形態の絶縁フィン10の使用例を示す説明図である。It is explanatory drawing which shows the usage example of the insulation fin 10 of this embodiment. 別の実施形態の絶縁フィンの断面図である。It is sectional drawing of the insulation fin of another embodiment. 別の実施形態の絶縁フィンの断面図である。It is sectional drawing of the insulation fin of another embodiment. 別の実施形態の絶縁フィンの断面図である。It is sectional drawing of the insulation fin of another embodiment. 別の実施形態の絶縁フィンの断面図である。It is sectional drawing of the insulation fin of another embodiment. 別の実施形態の絶縁フィンの断面図である。It is sectional drawing of the insulation fin of another embodiment.

符号の説明Explanation of symbols

10 絶縁フィン、12 絶縁基板、14 導体層、16 放熱フィン、18 フィンベース部、19 放熱層、20 補強部、20a 端面、22 スペーサ、24 ニッケル層、26 はんだ、30 ケース、32 底面部、34 側壁部、34a ガスケット、36 ネジ穴、38 ネジ、40 金型、42 キャビティ、50 ヒートシンク、52 冷媒通路、60 押圧部材、112 絶縁基板、120,220,320,420 補強部。 DESCRIPTION OF SYMBOLS 10 Insulation fin, 12 Insulation board | substrate, 14 Conductor layer, 16 Radiation fin, 18 Fin base part, 19 Radiation layer, 20 Reinforcement part, 20a End surface, 22 Spacer, 24 Nickel layer, 26 Solder, 30 Case, 32 Bottom part, 34 Side wall portion, 34a gasket, 36 screw hole, 38 screw, 40 mold, 42 cavity, 50 heat sink, 52 refrigerant passage, 60 pressing member, 112 insulating substrate, 120, 220, 320, 420 reinforcing portion.

Claims (8)

セラミックス製の絶縁基板の一方の面に形成された電子部品搭載用の導体層と、前記絶縁基板の他方の面に形成され複数の放熱フィンがフィンベース部に立設された放熱層とを備えた絶縁フィンであって、
前記絶縁基板は、冷媒が流通する冷媒通路を形成するケースの開口を前記絶縁フィンが塞ぐように配置されたときに前記ケースの開口の周縁と重なり合う大きさに形成されている、
絶縁フィン。
A conductor layer for mounting electronic parts formed on one surface of a ceramic insulating substrate, and a heat radiating layer formed on the other surface of the insulating substrate with a plurality of heat radiating fins standing on the fin base portion. Insulating fins,
The insulating substrate is formed in a size that overlaps with the periphery of the opening of the case when the insulating fin is disposed so as to close the opening of the case forming a refrigerant passage through which the refrigerant flows.
Insulating fins.
前記絶縁基板は、窒化ケイ素セラミックス又は窒化アルミニウムセラミックスを主体とし、前記導体層及び前記放熱層は、アルミニウム又はアルミニウム合金を主体とする、
請求項1に記載の絶縁フィン。
The insulating substrate is mainly composed of silicon nitride ceramics or aluminum nitride ceramics, and the conductor layer and the heat dissipation layer are mainly composed of aluminum or an aluminum alloy.
The insulating fin according to claim 1.
前記フィンベース部は、前記絶縁基板の外周を取り囲むように鋳ぐるんで形成されている、
請求項2に記載の絶縁フィン。
The fin base portion is formed by casting so as to surround the outer periphery of the insulating substrate.
The insulating fin according to claim 2.
前記フィンベース部のうち前記導体層と対向する部分の厚さt1が、前記導体層の厚さt0の0.7〜1.5倍である、
請求項1〜3のいずれか1項に記載の絶縁フィン。
The thickness t1 of the portion facing the conductor layer in the fin base portion is 0.7 to 1.5 times the thickness t0 of the conductor layer.
The insulation fin of any one of Claims 1-3.
前記厚さt1は0.8mm以下であり、前記絶縁基板の厚さは前記厚さt0,t1より薄い、
請求項4に記載の絶縁フィン。
The thickness t1 is 0.8 mm or less, and the thickness of the insulating substrate is thinner than the thicknesses t0 and t1.
The insulating fin according to claim 4.
請求項1〜5のいずれか1項に記載の絶縁フィンであって、
前記放熱層の外周側にて前記厚さt1よりも厚く形成された補強部
を備えた絶縁フィン。
The insulating fin according to any one of claims 1 to 5,
An insulating fin provided with a reinforcing portion formed thicker than the thickness t1 on the outer peripheral side of the heat dissipation layer.
冷媒が流通する冷媒通路を形成するケースと、
前記ケースの開口を塞ぐと共に前記放熱フィンが前記冷媒と接触するように配置された請求項1〜6のいずれか1項に記載の絶縁フィンと、
を備えたヒートシンク。
A case forming a refrigerant passage through which the refrigerant flows;
The insulating fin according to any one of claims 1 to 6, wherein the insulating fin is disposed so as to close the opening of the case and to contact the heat radiating fin with the refrigerant.
Heat sink with.
請求項7に記載のヒートシンクであって、
前記ケースの開口の周縁に対して前記絶縁フィンのうち前記絶縁基板が存在している部分を押し付ける押圧部材
を備えたヒートシンク。
A heat sink according to claim 7,
The heat sink provided with the press member which presses the part in which the said insulated substrate exists among the said insulation fins with respect to the periphery of the opening of the said case.
JP2007188578A 2007-07-19 2007-07-19 Insulating fin and heat sink Pending JP2009026957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007188578A JP2009026957A (en) 2007-07-19 2007-07-19 Insulating fin and heat sink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007188578A JP2009026957A (en) 2007-07-19 2007-07-19 Insulating fin and heat sink

Publications (1)

Publication Number Publication Date
JP2009026957A true JP2009026957A (en) 2009-02-05

Family

ID=40398494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188578A Pending JP2009026957A (en) 2007-07-19 2007-07-19 Insulating fin and heat sink

Country Status (1)

Country Link
JP (1) JP2009026957A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238963A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Substrate for power module, method for manufacturing substrate for power module, and power module
WO2011087027A1 (en) * 2010-01-12 2011-07-21 日本軽金属株式会社 Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
US8426962B2 (en) 2010-10-13 2013-04-23 Mitsubishi Electric Corporation Semiconductor device
EP2600399A2 (en) 2011-11-30 2013-06-05 Hitachi Ltd. Power semiconductor device
JP2013175788A (en) * 2013-06-05 2013-09-05 Mitsubishi Materials Corp Substrate for power module, manufacturing method of substrate for power module, and power module
JP2014030053A (en) * 2013-10-11 2014-02-13 Honda Motor Co Ltd Method for setting plate thickness of insulating substrate and metal plate of semiconductor device
JP2014033119A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Semiconductor device
US9299633B2 (en) 2010-10-26 2016-03-29 Fuji Electric Co., Ltd. Semiconductor device, heat radiation member, and manufacturing method for semiconductor device
JP2017228551A (en) * 2016-06-20 2017-12-28 Dowaメタルテック株式会社 Metal-ceramic combining substrate and manufacturing method thereof
JP2020050548A (en) * 2018-09-27 2020-04-02 Dowaメタルテック株式会社 Metal-ceramic bonded substrate, and method of producing the same
CN113015410A (en) * 2021-02-26 2021-06-22 江苏捷士通射频系统有限公司 Three-dimensional circulation vacuum cavity type radiator and manufacturing method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238963A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp Substrate for power module, method for manufacturing substrate for power module, and power module
WO2011087027A1 (en) * 2010-01-12 2011-07-21 日本軽金属株式会社 Liquid-cooled integrated substrate and method for manufacturing liquid-cooled integrated substrate
US9320129B2 (en) 2010-01-12 2016-04-19 Dowa Metaltech Co., Ltd. Liquid-cooled integrated substrate and manufacturing method of liquid-cooled integrated substrate
US8426962B2 (en) 2010-10-13 2013-04-23 Mitsubishi Electric Corporation Semiconductor device
KR101285182B1 (en) * 2010-10-13 2013-07-11 미쓰비시덴키 가부시키가이샤 Semiconductor device
US9299633B2 (en) 2010-10-26 2016-03-29 Fuji Electric Co., Ltd. Semiconductor device, heat radiation member, and manufacturing method for semiconductor device
US9013877B2 (en) 2011-11-30 2015-04-21 Hitachi Power Semiconductor Device, Ltd. Power semiconductor device
EP2600399A2 (en) 2011-11-30 2013-06-05 Hitachi Ltd. Power semiconductor device
JP2013115297A (en) * 2011-11-30 2013-06-10 Hitachi Ltd Power semiconductor device
JP2014033119A (en) * 2012-08-06 2014-02-20 Mitsubishi Electric Corp Semiconductor device
JP2013175788A (en) * 2013-06-05 2013-09-05 Mitsubishi Materials Corp Substrate for power module, manufacturing method of substrate for power module, and power module
JP2014030053A (en) * 2013-10-11 2014-02-13 Honda Motor Co Ltd Method for setting plate thickness of insulating substrate and metal plate of semiconductor device
JP2017228551A (en) * 2016-06-20 2017-12-28 Dowaメタルテック株式会社 Metal-ceramic combining substrate and manufacturing method thereof
JP2020050548A (en) * 2018-09-27 2020-04-02 Dowaメタルテック株式会社 Metal-ceramic bonded substrate, and method of producing the same
JP7157609B2 (en) 2018-09-27 2022-10-20 Dowaメタルテック株式会社 METAL-CERAMIC BONDING SUBSTRATE AND MANUFACTURING METHOD THEREOF
CN113015410A (en) * 2021-02-26 2021-06-22 江苏捷士通射频系统有限公司 Three-dimensional circulation vacuum cavity type radiator and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2009026957A (en) Insulating fin and heat sink
JP6324539B2 (en) Semiconductor module
US6473303B2 (en) Cooling device for a high-power semiconductor module
KR100609320B1 (en) Semiconductor device and method of producing the same
JP6065973B2 (en) Semiconductor module
CN109417059B (en) Heat radiation bottom plate for semiconductor mounting and manufacturing method thereof
CN113454774B (en) Packaged chip and manufacturing method thereof
US10366938B2 (en) Silicon nitride circuit board and electronic component module using the same
JP2013232614A (en) Semiconductor device
JP4140100B2 (en) Printed wiring board with built-in heat pipe
JP2011134949A (en) Semiconductor device
CN107787147B (en) A kind of semisolid communication radiating shell and its production method
JPH11126870A (en) Heat sink with integrated fin and production thereof
CN118098990A (en) Method for manufacturing ceramic-metal circuit board and semiconductor device using the same
JP2008218938A (en) Metal-ceramics bonded substrate
JP3920977B2 (en) Heat sink and manufacturing method thereof
JP6344477B2 (en) Semiconductor module
JP2007141932A (en) Power module base
JP5631446B2 (en) Method for producing metal / ceramic bonding substrate
JP2008159946A (en) Cooling device of semiconductor module, and manufacturing method therefor
JP7221401B2 (en) Electric circuit board and power module
JP2004327711A (en) Semiconductor module
JP2012222324A (en) Semiconductor device
JP2016187009A (en) Metal-ceramic joined substrate and manufacturing method of the same
JP2013012663A (en) Heat radiation component and semiconductor module apparatus