JP2013012663A - Heat radiation component and semiconductor module apparatus - Google Patents

Heat radiation component and semiconductor module apparatus Download PDF

Info

Publication number
JP2013012663A
JP2013012663A JP2011145635A JP2011145635A JP2013012663A JP 2013012663 A JP2013012663 A JP 2013012663A JP 2011145635 A JP2011145635 A JP 2011145635A JP 2011145635 A JP2011145635 A JP 2011145635A JP 2013012663 A JP2013012663 A JP 2013012663A
Authority
JP
Japan
Prior art keywords
resin
ceramic substrate
heat
metal member
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011145635A
Other languages
Japanese (ja)
Inventor
Masaya Ito
正也 伊藤
Tetsuya Kato
哲也 加藤
Yoshiki Tsuboi
良樹 坪井
Tsutomu Sakai
努 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011145635A priority Critical patent/JP2013012663A/en
Publication of JP2013012663A publication Critical patent/JP2013012663A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent removal of a heat radiation metal member 31 and a circuit metal layer 21 which sandwich a joining surface and the occurence of an opening at an outer peripheral end edge of the joining surface of a ceramic and a heat radiation metal member metal or the circuit metal layer without causing the structural complication and an electric insulation problem in a heat radiation component having the joining structure formed by brazing the heat radiation metal member 31 and the circuit metal layer 21 to front and rear surfaces of a ceramic substrate 11 so as to sandwich the ceramic substrate 11.SOLUTION: A resin sandwiching body 41, sandwiching a ceramic substrate 11 and a heat radiation metal member 31 at an outer peripheral end edge of the joining surface of the two members 14a or an area located near the outer peripheral end edge in the thickness direction, is formed. The resin sandwiching body 41 inhibits the occurence of the removal of members and the like in a heat cycle.

Description

本発明は、半導体モジュール装置(パワーモジュール)等に使用される放熱部品に関し、詳しくは、セラミック基板を挟む配置で、その一方の面に放熱用金属部材(金属製のヒートシンク)が、他方の面に回路用金属層(又は金属板)が、それぞれロウ付けされてなる接合構造を有する放熱部品、及びこれを具備する半導体モジュール装置に関する。   The present invention relates to a heat radiating component used in a semiconductor module device (power module) and the like, and more specifically, a heat dissipation metal member (metal heat sink) is disposed on one surface of a ceramic substrate, and the other surface. The present invention relates to a heat dissipation component having a joint structure in which circuit metal layers (or metal plates) are brazed to each other, and a semiconductor module device including the heat dissipation component.

半導体モジュール装置(パワーモジュール)等の半導体装置や電子部品の搭載に用いられる放熱部品には、セラミック基板の一方の面に、半導体装置等を搭載するための回路用金属層(又は半導体装置搭載用の金属板)が形成され、それと反対側の面にはそれらの発熱体を冷却するための放熱用金属部材(ヒートシンク)が接合されているものがある。このような放熱部品を構成する回路用金属層(又は金属板。以下、回路用金属層ともいう)や放熱用金属部材の接合手段としては、それらをセラミック基板の各面にロウ付けにより接合しているものがある(例えば、特許文献1(図3),特許文献2(図4))。   For heat dissipation components used for mounting semiconductor devices and electronic components such as semiconductor module devices (power modules), a metal layer for circuits (or for mounting semiconductor devices) on one surface of a ceramic substrate A metal plate) is formed, and a metal member for heat dissipation (heat sink) for cooling those heating elements is joined to the surface opposite to the metal plate. As a joining means for the metal layer for circuit (or metal plate, hereinafter also referred to as circuit metal layer) and the metal member for heat radiation constituting such a heat radiation component, they are joined to each surface of the ceramic substrate by brazing. (For example, patent document 1 (FIG. 3), patent document 2 (FIG. 4)).

ここで、セラミック基板には、アルミナ(Al)、チッカアルミ(AlN)、チッカ珪素(Si)等のセラミックが用いられる。一方、回路用金属層(又はその金属板)や放熱用金属部材には、熱伝導性や放熱性、さらには被加工性などに適した素材が用いられる。例えば、アルミニウム、若しくは銅又はこれら各金属の合金が例示される。なお、放熱用金属部材としては、金属板のみからなるものや、金属基板部位(金属板)に多数のフィン(空冷、又は水冷のフィン又は凹凸)が立設、形成されたフィン付きのもの等が使用される。 Here, ceramics such as alumina (Al 2 O 3 ), ticker aluminum (AlN), and ticker silicon (Si 3 N 4 ) are used for the ceramic substrate. On the other hand, materials suitable for thermal conductivity, heat dissipation, and workability are used for the circuit metal layer (or its metal plate) and the heat dissipation metal member. For example, aluminum, copper, or an alloy of these metals is exemplified. In addition, as a heat radiating metal member, a member made of only a metal plate, a member with fins in which a large number of fins (air-cooled or water-cooled fins or irregularities) are erected and formed on a metal substrate part (metal plate) Is used.

特開2010−27735号公報JP 2010-27735 A 特開2010−177529号公報JP 2010-177529 A

このような放熱部品は、セラミック基板上の回路用金属層に搭載された半導体装置が発生する熱の放熱に用いられるため、氷点以下の低温から100℃を超える温度変化の熱サイクルに曝され続ける。一方、このような放熱部品は、セラミック基板と金属とのロウ付けによる接合体構造をなしている。このため、それらの素材間の熱膨張係数の大きな相違により、そのような熱サイクルに曝され続けると、セラミック基板と、放熱用金属部材をなす金属板との接合面の外周端縁において、剥離や開口が発生することがあった。すなわち、その両部材の接合面(ロウ材層)のうち、その外周端縁においてセラミック基板と金属板との間に微小な剥離(隙間)が生じ、これを起点としてそれが進展することで開口が発生することがあった。そして、このような場合には、その剥離等がある分、伝熱性が阻害されることから放熱性の低下を招くことになり、したがって、放熱部品の性能低下を招いてしまう。さらに、このような剥離等の発生はセラミックに亀裂を発生させる原因ともなり、重大な問題を発生させることもあった。このような剥離や開口の発生の要因は素材間の熱膨張係数の相違に基づくものであるが、具体的なメカニズムは次のように考えられる。   Such a heat radiating component is used to radiate heat generated by the semiconductor device mounted on the circuit metal layer on the ceramic substrate, and therefore is continuously exposed to a heat cycle in which the temperature changes from a low temperature below the freezing point to over 100 ° C. . On the other hand, such a heat radiating component has a joined body structure formed by brazing a ceramic substrate and a metal. For this reason, due to the large difference in the thermal expansion coefficient between these materials, if exposed to such a thermal cycle, peeling occurs at the outer peripheral edge of the joint surface between the ceramic substrate and the metal plate forming the metal member for heat dissipation. Or opening. That is, a minute separation (gap) is generated between the ceramic substrate and the metal plate at the outer peripheral edge of the joint surface (the brazing material layer) of the two members, and this opens as a starting point. May occur. In such a case, the heat transferability is hindered by the amount of peeling and the like, leading to a decrease in heat dissipation, and hence a decrease in performance of the heat dissipation component. Furthermore, the occurrence of such delamination can cause cracks in the ceramic and sometimes cause serious problems. The cause of the occurrence of such peeling and opening is based on the difference in thermal expansion coefficient between materials, and the specific mechanism is considered as follows.

放熱用金属部材の熱膨張係数(率)は、セラミックのそれより桁違いに大きい。このため、放熱部品が大きな温度変化にさらされると、放熱用金属部材はセラミックより大きく伸縮する。一方、放熱用金属部材のうち、セラミック基板との接合面は、セラミック基板にロウ付けされている(一体的に固定されている)ため、その面に沿う方向の自由な伸縮ができない。これに対し、放熱用金属部材のうち、その接合面と反対側の面(露出面)は、そのようなロウ付けによる拘束はないから、接合面側に比べると、その面に沿って比較的大きく伸縮する。   The thermal expansion coefficient (rate) of the metal member for heat dissipation is orders of magnitude greater than that of ceramic. For this reason, when the heat dissipation component is exposed to a large temperature change, the heat dissipation metal member expands and contracts more than the ceramic. On the other hand, of the metal member for heat dissipation, the joint surface with the ceramic substrate is brazed to the ceramic substrate (fixed integrally), and thus cannot be freely expanded and contracted along the surface. On the other hand, the surface (exposed surface) on the opposite side to the joint surface of the metal member for heat dissipation is not restricted by such brazing, and therefore is relatively along the surface compared to the joint surface side. It expands and contracts greatly.

このため、このような構造の放熱部品が、例えば、高温から低温へと大きな温度変化を受けるときには、放熱用金属部材は次のように変形しようとする。すなわち、このような場合には、放熱用金属部材およびセラミック基板とも、接合面に沿って縮むのであるが、放熱用金属部材自体の収縮量は、接合面と反対側の面(露出面)が大きく縮む。このために発生する応力により、放熱用金属部材はこの反対側の面(露出面)が、全体として凹となす形に反るように変形しようとする。これにより、放熱用金属部材の端縁(外周端縁)はセラミック基板から浮き上がろうとする作用が働く。逆に、低温から高温へと大きな温度変化を受けると、放熱用金属部材はこれと逆に変形しようとする。剥離等は、こうした熱サイクルを受け続ける結果として、両部材の接合面(ロウ材層)の外周端縁において発生し、経年によりそれが進行すると考えられる。放熱用金属部材には、上記したようにアルミニウム又は銅合金が使用されることが多いが、これらの金属の熱膨張率は、セラミックのそれより格段と大きいため、こうした問題が発生しやすいと考えられる。なお、このような問題は、セラミック基板と放熱用金属部材との間だけではなく、セラミック基板と回路用金属層との接合面間においても生じる。   For this reason, when the heat radiating component having such a structure is subjected to a large temperature change from high temperature to low temperature, for example, the heat radiating metal member tends to deform as follows. That is, in such a case, both the heat radiating metal member and the ceramic substrate shrink along the joint surface. However, the amount of shrinkage of the heat radiating metal member itself is such that the surface opposite to the joint surface (exposed surface). Shrink greatly. Due to the stress generated for this purpose, the metal member for heat dissipation tends to deform so that the opposite surface (exposed surface) is warped in a concave shape as a whole. Thereby, the effect | action which the edge (outer peripheral edge) of the metal member for heat dissipation tries to float up from a ceramic substrate acts. On the contrary, when a large temperature change is received from the low temperature to the high temperature, the metal member for heat dissipation tends to be deformed on the contrary. As a result of continuing to undergo such a heat cycle, peeling or the like occurs at the outer peripheral edge of the joint surface (the brazing material layer) of both members, and it is considered that it progresses over time. As described above, aluminum or copper alloy is often used for the heat dissipating metal member. However, the thermal expansion coefficient of these metals is much larger than that of ceramics, so these problems are likely to occur. It is done. Such a problem occurs not only between the ceramic substrate and the heat dissipating metal member but also between the bonding surfaces of the ceramic substrate and the circuit metal layer.

なお、こうした問題の解決手段としては、例えば、ネジ(ボルト、ナット)を用いて、セラミック基板と放熱用金属部材等の間を、接合面間が締付けられ、或いは接合面間で押付けあうように構造的に押え付けるということも考えられる。しかし、このようにする場合には、部品点数が増加し構造が複雑化するし、電気的絶縁の確保等においても難点がある。   As a means for solving such a problem, for example, a screw (bolt, nut) is used to tighten or press between the ceramic substrate and the heat radiating metal member between the bonding surfaces. It may be possible to hold down structurally. However, in this case, the number of parts increases, the structure becomes complicated, and there are difficulties in ensuring electrical insulation.

本発明は、かかる問題点を解消するためになされたもので、構造の複雑化や電気的絶縁の問題もなく、放熱部品におけるセラミックと、放熱用金属部材金属又は回路用金属層(又は金属板)との接合面の外周端縁において、その接合面を挟む両部材の剥離や開口の発生を効果的に防止できるようにすることにある。   The present invention has been made to solve such problems, and there is no problem of structural complexity and electrical insulation, and the ceramic in the heat dissipation component and the metal member for heat dissipation or the metal layer for circuit (or metal plate). ) In the outer peripheral edge of the joint surface, and the separation of both members sandwiching the joint surface and the generation of openings can be effectively prevented.

請求項1に記載の発明は、セラミック基板を挟む配置で、その一方の面に放熱用金属部材が、他方の面に回路用金属層又は金属板が、それぞれロウ付けされてなる接合構造を有する放熱部品において、
前記セラミック基板と前記放熱用金属部材とを、この2部材の接合面の外周端縁又は外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体が形成されていることを特徴とする放熱部品。
The invention according to claim 1 is an arrangement in which a ceramic substrate is sandwiched and a heat dissipation metal member is brazed on one surface and a circuit metal layer or metal plate is brazed on the other surface. In heat dissipation parts,
A resin sandwiched body is formed in which the ceramic substrate and the metal member for heat dissipation are sandwiched with resin in the thickness direction at an outer peripheral edge or a portion near the outer peripheral edge of the joint surface of the two members. Heat dissipation parts.

請求項2に記載の発明は、セラミック基板を挟む配置で、その一方の面に放熱用金属部材が、他方の面に回路用金属層又は金属板が、それぞれロウ付けされてなる接合構造を有する放熱部品において、
前記セラミック基板、前記放熱用金属部材、及び前記回路用金属層又は金属板とを、この3部材の接合面の外周端縁又は外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体が形成されていることを特徴とする。
The invention according to claim 2 has a joining structure in which a ceramic substrate is sandwiched and a metal member for heat dissipation is brazed on one side and a metal layer for circuit or a metal plate is brazed on the other side. In heat dissipation parts,
Resin sandwiching of the ceramic substrate, the metal member for heat dissipation, and the metal layer for circuit or metal plate with resin in the thickness direction at the outer peripheral edge or the peripheral edge portion of the joint surface of the three members A body is formed.

請求項3に記載の発明は、前記樹脂製挟み付け体は、前記セラミック基板の外周端縁に沿ってその全周に形成されていることを特徴とする請求項1又は2に記載の放熱部品である。
請求項4に記載の発明は、前記セラミック基板は、平面視、略四角形とされ、前記樹脂製挟み付け体が、その四角形のコーナーを含む部位に形成されていることを特徴とする請求項1又は2に記載の放熱部品である。
請求項5に記載の発明は、前記樹脂製挟み付け体は、射出成形により、樹脂製挟み付け体形成前の放熱部品をインサートとして形成されていることを特徴とする請求項1〜4のいずれか1項に記載の放熱部品である。そして、請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の放熱部品を具備することを特徴とする半導体モジュール装置である。
The invention according to claim 3 is characterized in that the resin sandwiched body is formed on the entire periphery along the outer peripheral edge of the ceramic substrate. It is.
According to a fourth aspect of the present invention, the ceramic substrate has a substantially square shape in a plan view, and the resin sandwiched body is formed at a portion including a corner of the square. Or it is a thermal radiation component of 2.
The invention according to claim 5 is characterized in that the resin sandwiched body is formed by injection molding with the heat dissipating part before the resin sandwiched body is formed as an insert. Or a heat dissipating component according to item 1. According to a sixth aspect of the present invention, there is provided a semiconductor module device comprising the heat dissipating component according to any one of the first to fifth aspects.

本発明では、上記したように樹脂製挟み付け体を形成してなるものであることから、構造の複雑化や電気的絶縁等の問題もなく、ロウ付けによる前記2部材又は前記3部材の接合面の外周端縁において、それらの接合面に剥離や開口が発生するのが抑制ないし防止できる。したがって、大きな温度変化の熱サイクルに曝され続ける半導体モジュール装置等に使用される半導体装置を搭載して、その放熱、冷却の役割を担うになう放熱部品として用いられるとしても、その信頼性を高めることができる。なお、樹脂製挟み付け体は、それが形成されるセラミック基板の側部(外側部)においてその基板の厚み方向に連なる外側肉部と、その外側肉部の厚み方向の両端側において基板の内側に延び、挟み付ける相手部材の面に覆い被さる(重なる)挟み付け部とを有するものとなる。そして、これらの各部の樹脂の厚み(肉厚)は、セラミック基板と熱用金属部材等との接合面における剥離、開口が発生するような変形の発生を抑制ないし防止できるような強度が得られるよう、樹脂の素材(物理的性質)等に応じて設定すればよい。なお、本発明の放熱部品を具備する半導体モジュール装置によれば、放熱性において信頼性の高い半導体モジュール装置となすことができる。   In the present invention, since the resin sandwiched body is formed as described above, there is no problem such as complicated structure and electrical insulation, and the two members or the three members are joined by brazing. It is possible to suppress or prevent the peeling or opening of the joint surfaces from occurring at the outer peripheral edges of the surfaces. Therefore, even if a semiconductor device used in a semiconductor module device or the like that continues to be exposed to a thermal cycle with a large temperature change is mounted and used as a heat dissipation component that plays the role of heat dissipation and cooling, its reliability is improved. Can be increased. In addition, the resin sandwiched body is composed of an outer meat portion continuous in the thickness direction of the ceramic substrate on the side portion (outer portion) of the ceramic substrate on which it is formed, and an inner side of the substrate at both end sides in the thickness direction of the outer meat portion. And a sandwiching portion that covers (overlaps) the surface of the mating member to be sandwiched. The thickness (thickness) of the resin in each of these parts provides a strength that can suppress or prevent the occurrence of deformation such as peeling or opening at the joint surface between the ceramic substrate and the thermal metal member. Thus, it may be set according to the material (physical properties) of the resin. Note that according to the semiconductor module device including the heat dissipation component of the present invention, a highly reliable semiconductor module device can be provided in terms of heat dissipation.

本発明の放熱部品が備える樹脂製挟み付け体をなす樹脂は、放熱部品、及びそれを構成する樹脂製挟み付け体の目的からして、電気的絶縁性を有し、かつ耐熱、耐水、耐油等の耐久性に優れた素材で、特に高温時の機械的強度が高い、弾性係数の大きい(高強度、高剛性材)素材から、選択するのがよい。例えば、PPS樹脂(ポリフェニレンサルファイド)、PC樹脂(ポリカーボネート)、PBT樹脂(ポリブチレンテレフタレート)等が例示される。ただし、強度アップのため、ガラス等の強化材(例えばガラス繊維やカーボン繊維。)を含むものとするのが好ましい。なお、本発明において「樹脂」には、こうした強化材を樹脂に含むものも含まれる。以下、樹脂という場合には、樹脂のみからなる素材と、樹脂にこれら繊維等の強化材が含まれている素材の双方を含む。また、放熱用金属部材(又は回路用金属層又は金属板)の低温降下時に起因する、接合面の外周端縁における剥離の発生防止のため、すなわち、低温降下時に挟み付け効果を高めるため、樹脂には、その機械的強度の大きさだけでな、収縮量が大きく得られる熱膨張係数が大きいものを用いるのが好ましい。   The resin constituting the resin sandwiched body included in the heat dissipation component of the present invention has electrical insulation and has heat resistance, water resistance, and oil resistance for the purpose of the heat dissipation component and the resin sandwich body constituting the heat dissipation component. It is preferable to select a material having excellent durability such as high mechanical strength at a high temperature and a material having a high elastic modulus (high strength, high rigidity). For example, PPS resin (polyphenylene sulfide), PC resin (polycarbonate), PBT resin (polybutylene terephthalate) and the like are exemplified. However, in order to increase the strength, it is preferable to include a reinforcing material such as glass (for example, glass fiber or carbon fiber). In the present invention, “resin” includes those containing such a reinforcing material in the resin. Hereinafter, the term “resin” includes both a material made only of a resin and a material in which a reinforcing material such as a fiber is contained in the resin. In addition, in order to prevent the occurrence of peeling at the outer peripheral edge of the joint surface due to the low temperature drop of the heat dissipating metal member (or circuit metal layer or metal plate), in order to enhance the pinching effect at the low temperature drop, resin It is preferable to use a material having a large thermal expansion coefficient that can provide a large amount of shrinkage, not just the mechanical strength.

なお、樹脂製挟み付け体は、周方向全体における剥離防止の観点からは、周方向に沿ってその全周に連続するように設ける(形成する)のが好ましいが、一部に不連続な部位があってもよいし、剥離の危険性が高い部位に選択的に設けてもよい。例えば、セラミック基板が、平面視、矩形(正方形、又は長方形)のもので、対角線寸法が大きい等により、その4つのコーナーにおいて、特に剥離の危険性が高いというような場合には、それらのコーナーにのみ樹脂製挟み付け体を設けるようにしてもよい。   In addition, from the viewpoint of preventing peeling in the entire circumferential direction, the resin sandwiched body is preferably provided (formed) so as to be continuous along the entire circumference along the circumferential direction. There may be, and you may selectively provide in the site | part with high risk of peeling. For example, if the ceramic substrate has a rectangular shape (square or rectangular) in plan view and the diagonal dimension is large, the corners of the ceramic substrate are particularly high in the risk of peeling. It is also possible to provide a resin sandwiched body only in the case.

また、樹脂製挟み付け体は、射出成形により、その形成前の放熱部品(仕掛品。以下、単に放熱部品)をインサート(又はアウトサート)として成形金型内にセットし、これと一体的に形成(モールド成形)するのが好ましい。理由は次のようである。インサート成形する場合には、樹脂を緊密に相手方をなす放熱部品に密着させることができるし、別工程での組立ても要しない。しかも、放熱部品の周囲に連続して環状に形成するのも容易であるなど、樹脂製挟み付け体の形成の自由度も高い。また、射出成形後、その冷却固化までの過程での樹脂の収縮により、常温において、既に放熱部品の厚み方向に挟み付け力(圧縮力)が付与されたものとなる。もっとも樹脂製挟み付け体は、別途、部品として、例えば、断面(横断面)が、コ字形状(凹形)の溝付き条材状に形成しておき、これを例えば、放熱部品仕掛品の各辺(平面視四角の場合には4辺)の側縁が、その凹部内に入り込むように、相対的に圧入して接着することで形成することもできる。   In addition, the resin sandwiched body is set by injection molding in a molding die as an insert (or outsert) with the heat dissipating part (work in process; hereinafter simply referred to as heat dissipating part) before being formed. It is preferable to form (mold). The reason is as follows. In the case of insert molding, the resin can be brought into close contact with the heat dissipating part that is the counterpart, and assembly in a separate process is not required. Moreover, it is easy to form an annular shape continuously around the heat dissipating component, and the degree of freedom in forming the resin sandwich is high. Further, due to the shrinkage of the resin in the process from injection molding to cooling and solidification, a clamping force (compression force) is already applied in the thickness direction of the heat dissipation component at room temperature. However, the resin sandwiched body is separately formed as a part, for example, in the shape of a grooved strip having a U-shaped (concave) cross section (transverse cross section). It can also be formed by relatively press-fitting and adhering the side edges of each side (four sides in the case of a square in plan view) so as to enter the recess.

本発明の放熱部品を具体化した実施の形態例(実施例1)を示した図であって、左図は一部破断平面図、右図は左図におけるS1−S1矢視断面図(中央縦断面図)。BRIEF DESCRIPTION OF THE DRAWINGS It is the figure which showed the embodiment (Example 1) which actualized the thermal radiation component of this invention, Comprising: The left figure is a partially broken plan view, The right figure is S1-S1 arrow sectional drawing (center) in the left figure Longitudinal section). 図1の平面図におけるS2−S2矢視断面図(中央横断面図)、及びその部分部拡大図。The S2-S2 arrow sectional view (central transverse sectional view) in the plan view of FIG. 1, and its partial enlarged view. 図2の部分拡大図のさらなる拡大図、及びその要部の拡大図。The further enlarged view of the partial enlarged view of FIG. 2, and the enlarged view of the principal part. 図1の放熱部品における樹脂製挟み付け体の形成例の工程の説明図。Explanatory drawing of the process of the example of formation of the resin clamping bodies in the heat radiating component of FIG. 図1の放熱部品における樹脂製挟み付け体の別の形成例の工程の説明図。Explanatory drawing of the process of another example of formation of the resin clamping bodies in the heat radiating component of FIG. 図1の放熱部品の変形例の斜視図。The perspective view of the modification of the heat radiating component of FIG. 図6のS4−S4矢視断面図。S4-S4 arrow sectional drawing of FIG. 本発明の放熱部品を具体化した実施の形態例(実施例2)の斜視図、及びその部分部拡大図。The perspective view of the embodiment (Example 2) which actualized the thermal radiation component of this invention, and its partial part enlarged view. 図8の一部破断平面図。The partially broken top view of FIG. 図9のS5−S5矢視断面図。FIG. 10 is a sectional view taken along arrow S5-S5 in FIG. 本発明の放熱部品を具体化した実施の形態例(実施例3)の斜視図。The perspective view of the embodiment (Example 3) which actualized the thermal radiation component of this invention. 図11のS6−S6矢視断面図、及びその要部拡大図。FIG. 12 is a sectional view taken along arrows S6-S6 in FIG. 図2の放熱部品における回路用金属層の表面に半導体装置を搭載(実装)して半導体モジュール装置としたものを模式的に示した図。The figure which showed typically what mounted the semiconductor device on the surface of the metal layer for circuits in the thermal radiation component of FIG. 2, and was set as the semiconductor module apparatus.

以下、本発明の放熱部品を具体化した実施の形態例(実施例1)について、図1〜図3を参照しながら詳細に説明する。本例の放熱部品10は、各図に示したようにセラミック基板(以下、単に基板とも言う)11をその厚み方向に挟んで、その表面12に接合された回路用金属層(導電性金属層)21と、裏面13側に接合された放熱用金属部材31とを備えている。そして、本例では、セラミック基板11と、放熱用金属部材31とを、その両者の接合面の外周端縁14aである基板11の外周端縁14又は外周端縁寄り部位で、それらを厚み方向に樹脂で挟む樹脂製挟み付け体41とから構成されている。詳細は次のようである。なお、セラミック基板11はチッカ珪素からなり、金属はアルミニウムからなり、樹脂製挟み付け体41は、PPS樹脂を主成分(60vol%)とするガラス繊維(40vol%)含有樹脂からなるものである。   Hereinafter, an embodiment (Example 1) embodying the heat dissipation component of the present invention will be described in detail with reference to FIGS. The heat dissipating component 10 of the present example includes a circuit metal layer (conductive metal layer) bonded to a surface 12 with a ceramic substrate (hereinafter also simply referred to as a substrate) 11 sandwiched in the thickness direction as shown in each drawing. ) 21 and a heat radiating metal member 31 joined to the back surface 13 side. In this example, the ceramic substrate 11 and the heat dissipating metal member 31 are disposed in the thickness direction at the outer peripheral edge 14 of the substrate 11 that is the outer peripheral edge 14a of the joint surface of the ceramic substrate 11 and the outer peripheral edge 14a. And a resin sandwiching body 41 sandwiched with resin. Details are as follows. The ceramic substrate 11 is made of ticker silicon, the metal is made of aluminum, and the resin sandwiching body 41 is made of a glass fiber (40 vol%)-containing resin containing PPS resin as a main component (60 vol%).

すなわち、本例の放熱部品10は、平面視、正方形(又は正方形に近い長方形)のセラミック基板11の表面(図2(断面図)の上)12に、平面視、同形状をなす回路用金属層(導電性金属層)21が、その周囲の各辺をセラミック基板11の周囲の各辺と平行にし、かつそれと同心状にして、例えばアルミ合金系ロウでロウ付けされている。ただし、回路用金属層21は、セラミック基板11より一回り小さい正方形を呈しており、その周囲には、各辺に沿ってセラミック基板11の表面12が所定(一定)の幅で露出している。なお、このようなセラミックの露出は、例えば、回路用金属層21をなす金属板(薄板)をロウ付けした後、周囲をエッチングにより除去するなどにより具体化される。   That is, the heat dissipating component 10 of this example is a circuit metal having the same shape in plan view on the surface (on top of FIG. 2 (cross-sectional view)) 12 of a square (or a rectangle close to a square) ceramic substrate 11. A layer (conductive metal layer) 21 is brazed with, for example, an aluminum alloy brazing so that each side of the layer 21 is parallel to each side of the ceramic substrate 11 and concentric with the side. However, the circuit metal layer 21 has a square that is slightly smaller than the ceramic substrate 11, and the surface 12 of the ceramic substrate 11 is exposed at a predetermined (constant) width along each side. . Such exposure of the ceramic is realized, for example, by brazing a metal plate (thin plate) forming the circuit metal layer 21 and then removing the periphery by etching.

一方、セラミック基板11の裏面(図2(断面図)の下)13に接合されている放熱用金属部材31は、本例ではセラミック基板11の裏面13側に位置し、その裏面13に接合されている金属基板部位33と、この金属基板部位33のうち、セラミック基板11と反対側面に多数形成された放熱用フィン35とから構成されている。なお、セラミック基板11の裏面13と、放熱用金属部材31の金属基板部位33とのロウ付けにも、アルミ合金系ロウが使用されている。なお、セラミック基板11の表面12、裏面13と、接合されている相手部材との間にはロウ材層が存在するが、このロウ材層は図示を省略している。   On the other hand, the heat dissipating metal member 31 bonded to the back surface 13 of the ceramic substrate 11 (below FIG. 2 (cross-sectional view)) is located on the back surface 13 side of the ceramic substrate 11 and is bonded to the back surface 13 in this example. The metal substrate portion 33 and the heat radiation fins 35 formed on the side surface opposite to the ceramic substrate 11 in the metal substrate portion 33. Note that an aluminum alloy braze is also used for brazing the back surface 13 of the ceramic substrate 11 and the metal substrate portion 33 of the metal member 31 for heat dissipation. Note that a brazing material layer exists between the front surface 12 and the back surface 13 of the ceramic substrate 11 and the mating member, but this brazing material layer is not shown.

本例では、この放熱用金属部材31をなす金属基板部位33は、セラミック基板11より一回り大きい、平面視、同形状をなすものであり、各辺をセラミック基板11の周囲の各辺と平行にし、かつ、それと同心状にしてロウ付けされている。ただし、金属基板部位33は、各辺に沿う、その外周端縁34が所定の幅で、セラミック基板11の外周端縁14よりも外向きに突出する状態でロウ付けされている。なお、フィン35は、金属板をセラミック基板11の裏面にロウ付けした後、その金属板の表面に斜めに刃物を入れて切り起こす切起こし法で形成してもよい。なお、ロウ付けは、ロウ材を接合対象の両者の接合面間に配置し、これら3者を位置決めして重ね、適度の面圧(例えば、0.2MPa)がかかるように錘を載せ、所定温度に加熱溶融して冷却することで行われる。   In this example, the metal substrate portion 33 forming the heat radiating metal member 31 is slightly larger than the ceramic substrate 11 and has the same shape in plan view, and each side is parallel to each side around the ceramic substrate 11. And it is brazed concentrically with it. However, the metal substrate portion 33 is brazed so that the outer peripheral edge 34 along each side has a predetermined width and protrudes outward from the outer peripheral edge 14 of the ceramic substrate 11. Note that the fins 35 may be formed by a cutting and raising method in which a metal plate is brazed to the back surface of the ceramic substrate 11, and then a blade is obliquely inserted into the surface of the metal plate and cut up. For brazing, a brazing material is placed between the joining surfaces of both of the objects to be joined, these three members are positioned and stacked, and a weight is placed so that an appropriate surface pressure (for example, 0.2 MPa) is applied. It is performed by heating and melting to a temperature and cooling.

上記したように、本例の放熱部品10は、セラミック基板11の表裏各面(上下面)12,13に、回路用金属層21と放熱用金属部材31とを有する三層構造の接合体構造を有している。そして本例では、セラミック基板11と、放熱用金属部材31における金属基板部位33の両部材とを、その四辺を包囲するようにその周囲全体(全周)において、その接合面の外周端縁14a又はその外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂挟み付け体41が形成されている。この樹脂挟み付け体41は、平面視において所定の幅で四角枠状をなしており、横断面では、両部材の外周端縁14,34を挟み付けた状態において図示したような矩形断面を呈している。すなわち、横断面に示したように、樹脂挟み付け体41は、それが形成されるセラミック基板11及び金属基板部位33の外周端縁寄り部位において、厚み方向に連なる外側肉部43と、その外側肉部43の厚み方向の両端側において基板11の内側に延び、挟み付ける相手部材の面に覆い被さる(重なる)挟み付け部45,47とを有している。   As described above, the heat dissipating component 10 of this example has a three-layer structure having the circuit metal layer 21 and the heat dissipating metal member 31 on the front and back surfaces (upper and lower surfaces) 12 and 13 of the ceramic substrate 11. have. In this example, the outer peripheral edge 14a of the joining surface of the ceramic substrate 11 and both members of the metal substrate portion 33 of the heat radiating metal member 31 are surrounded by the entire periphery (entire circumference) so as to surround the four sides. Alternatively, a resin sandwiching body 41 that is sandwiched with resin in the thickness direction is formed near the outer peripheral edge. The resin sandwiching body 41 has a rectangular frame shape with a predetermined width in a plan view, and has a rectangular cross section as shown in the state in which the outer peripheral edges 14 and 34 of both members are sandwiched in the cross section. ing. That is, as shown in the cross section, the resin sandwiching body 41 includes the outer meat portion 43 that is continuous in the thickness direction and the outer side thereof in the portion near the outer peripheral edge of the ceramic substrate 11 and the metal substrate portion 33 on which the resin sandwiched body 41 is formed. There are sandwiching portions 45, 47 that extend inside the substrate 11 at both ends in the thickness direction of the meat portion 43 and cover (overlap) the surfaces of the mating member to be sandwiched.

そして、樹脂挟み付け体41の挟み付け部45,47は、セラミック基板11の外周端縁14又はその外周端縁寄り部位で、それぞれ所定の幅W1,W2で、これらを厚み方向に挟み付けている。すなわち、本例では、図2,3中の拡大図に示したように、樹脂挟み付け体41の挟み付け部45,47等で、両部材の外周端縁(側面)14,34寄り部位を挟み付ける形で、しかも、その周囲の各面に緊密に密着する形で形成されている。ただし、この樹脂製挟み付け体41の基板11の厚み方向における高さは、回路用金属層21側をなす上端面44aが、この回路用金属層21の上面と略面一をなしている。また、放熱用金属部材31側をなす下端面44bが、そのフィン35の先端37より突出する高さを有しており、上端面44a及び下端面44bとも四角枠の全周において同一高さを呈している。このため、本例では、挟み付け部45,47の厚みW1,W2は、セラミック基板11に密着している側よりも、放熱用金属部材31に密着している側の方が厚いもの(W2>W1)となっている。これらの厚みや外側肉部43の厚みは、これら両部材の接合面の外周端縁における剥離の発生を防止し得る強度が得られるか、高められるように、樹脂の強度等に応じて適宜の厚みとすればよい。本例では、下側の挟み付け部47の厚み方向における高さをフィン35の先端より突出する高さとしたため、その下面、すなわち、樹脂製挟み付け体41における四角枠の下端面44bに、別途、図示しない樹脂板を接着等により貼り付けることで、フィン35を四角枠部内に包囲し、そして、その内部への冷却用流体(例えば水)の出入り口を設けることで、冷却流路(冷媒通過流路)を形成できるようにされている。   The sandwiching portions 45 and 47 of the resin sandwiching body 41 are sandwiched in the thickness direction with predetermined widths W1 and W2, respectively, at the outer peripheral edge 14 of the ceramic substrate 11 or near the outer peripheral edge. Yes. That is, in this example, as shown in the enlarged views in FIGS. 2 and 3, the portions near the outer peripheral edges (side surfaces) 14 and 34 of both members are sandwiched by the sandwiching portions 45 and 47 of the resin sandwiching body 41. It is formed so as to be sandwiched and in close contact with the surrounding surfaces. However, the height of the resin sandwiched body 41 in the thickness direction of the substrate 11 is such that the upper end surface 44a on the circuit metal layer 21 side is substantially flush with the upper surface of the circuit metal layer 21. Moreover, the lower end surface 44b which makes the metal member 31 for heat dissipation has a height which protrudes from the front-end | tip 37 of the fin 35, and both the upper end surface 44a and the lower end surface 44b have the same height in the perimeter of a square frame. Presents. For this reason, in this example, the thicknesses W1 and W2 of the sandwiching portions 45 and 47 are thicker on the side in close contact with the heat dissipating metal member 31 than on the side in close contact with the ceramic substrate 11 (W2 > W1). These thicknesses and the thickness of the outer flesh portion 43 are appropriately set according to the strength of the resin so that the strength capable of preventing the occurrence of peeling at the outer peripheral edge of the joint surface of these two members can be obtained or increased. What is necessary is just thickness. In this example, since the height in the thickness direction of the lower sandwiching portion 47 is a height protruding from the tip of the fin 35, the lower surface thereof, that is, the lower end surface 44b of the square frame in the resin sandwiching body 41 is separately provided. By attaching a resin plate (not shown) by bonding or the like, the fins 35 are enclosed in the rectangular frame portion, and a cooling fluid (for example, water) is provided in the interior thereof, thereby providing a cooling channel (refrigerant passage). A flow path) can be formed.

このような放熱部品10において、その回路用金属層21には、Ni、Auメッキが形成され、半導体装置などの電子部品がロウ付けされて搭載されるなどして組立てられ半導体モジュール装置としてヒートサイクル下で使用される。この際、本例の放熱部品10によれば、セラミック基板11と、放熱用金属部材31における金属基板部位33とを、その両部材の接合面の外周端縁14a又はその外周端縁寄り部位で、厚み方向に樹脂で挟む挟み付け体41を、基板11の周囲に沿って四角枠状に備えている。このため、両部材の熱膨張係数の大きな相違があることに基づいて、この両部材11,31の接合面の外周端縁において剥離したり開くような変形を起こそうとしても、それが抑制ないし防止される。すなわち、従来の放熱部品のように、本例の樹脂製挟み付け体41を備えていない放熱部品では、ロウ付けされているセラミック基板11と、放熱用金属部材31とが、その接合面の外周端縁において、特に、その両者の熱膨張係数の相違の大きさに起因し、熱サイクル下でその両部材に剥離や開口が発生しがちであったのに対し、その発生が抑制ないしは防止される。   In such a heat radiating component 10, Ni and Au plating is formed on the circuit metal layer 21, and an electronic component such as a semiconductor device is mounted by being brazed and assembled. Used below. At this time, according to the heat dissipating component 10 of this example, the ceramic substrate 11 and the metal substrate portion 33 in the heat dissipating metal member 31 are arranged at the outer peripheral edge 14a of the joint surface of both members or a portion near the outer peripheral edge. A sandwiching body 41 sandwiched with resin in the thickness direction is provided in a square frame shape along the periphery of the substrate 11. For this reason, even if an attempt is made to cause a deformation such as peeling or opening at the outer peripheral edge of the joint surface of the two members 11 and 31 based on the large difference between the thermal expansion coefficients of the two members, this is not suppressed. Is prevented. That is, in the heat radiating component that does not include the resin sandwiching body 41 of the present example as in the conventional heat radiating component, the brazed ceramic substrate 11 and the heat radiating metal member 31 are the outer periphery of the joint surface. In particular, due to the large difference in thermal expansion coefficient between the two at the edge, peeling and opening of both members tended to occur under a thermal cycle, whereas this occurrence was suppressed or prevented. The

しかも、本例では、セラミック基板11と、放熱用金属部材31における金属基板部位33とを、その全周において樹脂製挟み付け体41によって挟み付けている。したがって、その全周のいずれの位置においても、そのような剥離等の発生の防止が図られている。しかも、本例では、樹脂製挟み付け体41をなす樹脂に、ガラス繊維を混入したPPS樹脂(ポリフェニレンサルファイド)を使用している。この樹脂は、高温時の機械的強度が高く、しかも、弾性係数も大きいため、本例では剥離等の発生の防止効果が極めて高いパワーモジュールに好適な放熱モジュールとなすことができる。なお、放熱用金属部材31はセラミック基板より大きな熱伸縮を起こし、低温時には、ロウ付け面側と反対側が大きく収縮することによりその端縁が捲られるように反ろうとする応力状態になる。したがって、その端縁において剥離等を誘発しやすいので、樹脂は、熱膨張係数が大きく低温変化において放熱用金属部材31より大きく収縮させるようにすることで、挟み付け力を高めることができる。このため、樹脂製挟み付け体41をなす樹脂には、熱膨張係数が大きく低温時に大きく収縮する高強度、高剛性材を用いるのがよい。   In addition, in this example, the ceramic substrate 11 and the metal substrate portion 33 in the heat radiating metal member 31 are sandwiched by the resin sandwiching body 41 on the entire circumference. Therefore, the occurrence of such peeling or the like is prevented at any position on the entire circumference. Moreover, in this example, a PPS resin (polyphenylene sulfide) in which glass fibers are mixed in the resin constituting the resin sandwiched body 41 is used. Since this resin has high mechanical strength at a high temperature and a large elastic coefficient, in this example, it can be a heat dissipation module suitable for a power module that is extremely effective in preventing the occurrence of peeling and the like. Note that the heat dissipating metal member 31 undergoes greater thermal expansion and contraction than the ceramic substrate, and at a low temperature, the side opposite to the brazing surface side is greatly contracted, resulting in a stress state that warps so that the edge is bent. Therefore, peeling or the like is likely to be induced at the edge, so that the resin has a large coefficient of thermal expansion and can contract more than the metal member 31 for heat dissipation in a low temperature change, thereby increasing the pinching force. For this reason, it is preferable to use a high-strength, high-rigidity material having a large thermal expansion coefficient and contracting greatly at low temperatures as the resin constituting the resin sandwiching body 41.

なお、上記した放熱部品10における樹脂製挟み付け体41の形成は、例えば、この樹脂製挟み付け体41を備えていないロウ付け接合体(放熱部品仕掛品)をインサート部品として、その接合体に一体化するように射出成形により製造するのが好ましい。すなわち、図4に示したような射出成形用金型を用い、樹脂製挟み付け体41を備えていないロウ付け接合体10aを、図4−Aに示したように、その金型(図示下型)100内にインサートとして配置し、上型120を型閉じする。そして図4−Bに示したように、型閉じして形成された、樹脂製挟み付け体41に相当するキャビティ(空所)140に対して、原料樹脂(本例では、ガラス繊維含有PPS樹脂)を射出して成形する。こうして、その冷却、固化後に型開きしてその成形体を取り出すことで、樹脂製挟み付け体41が一体成形された上記放熱部品10が得られる。このようにインサートして射出成形する場合には、樹脂製挟み付け体41が緊密に、しかも、密着成形されてなる放熱部品10を容易に得ることができる。   In addition, formation of the resin sandwiched body 41 in the above-described heat radiating component 10 is performed by, for example, using a brazed joined body (a heat dissipating component work-in-process) that does not include the resin sandwiched body 41 as an insert part. It is preferable to manufacture by injection molding so as to be integrated. That is, using a mold for injection molding as shown in FIG. 4, a brazed joined body 10a not provided with a resin sandwiching body 41 is formed as shown in FIG. The mold is placed as an insert in the mold 100, and the upper mold 120 is closed. Then, as shown in FIG. 4-B, a raw material resin (in this example, a glass fiber-containing PPS resin) is formed against a cavity (vacant space) 140 corresponding to the resin sandwich body 41 formed by closing the mold. ) Is molded. Thus, after the cooling and solidification, the mold is opened and the molded body is taken out, whereby the heat radiating component 10 in which the resin sandwiching body 41 is integrally formed is obtained. When inserting and injection molding in this way, it is possible to easily obtain the heat radiating component 10 in which the resin sandwiched body 41 is closely and closely molded.

なお、放熱部品10における樹脂製挟み付け体41の形成は射出成形に限定されるものではなく、別途、部品として製造しておいて、組み付けることも可能である。例えば、図5に示したように、上記例におけるような樹脂製挟み付け体41をセラミック基板11の対角線方向において切断した、4つの樹脂製の台形成形品41a〜41aとして、別途、製造しておき、これをその内側の溝部41bが、ロウ付け接合体10aの側方における、セラミック基板11と、放熱用金属部材31の金属基板部位33の外周端縁14,34寄り部位に、相互に圧入されるように押込み、或いは、接着剤(樹脂などの絶縁性のある接着剤)を介して相互に圧入されるように押込み、その後、要すれば、台形成形品41aの傾斜端面41t相互間を接着剤等により接着して固定するようにしてもよい。   The formation of the resin sandwiched body 41 in the heat radiating component 10 is not limited to injection molding, but it can be separately manufactured and assembled. For example, as shown in FIG. 5, the resin sandwiched body 41 as in the above example is cut separately in the diagonal direction of the ceramic substrate 11, and is separately manufactured as four resin-made trapezoidal products 41a to 41a. The groove 41b on the inner side of the ceramic substrate 11 and the outer peripheral edge 14, 34 of the metal substrate part 33 of the metal member 31 for heat dissipation are mutually connected to the side of the brazed assembly 10a. Press-fit so as to be press-fit, or press-fit so as to be press-fit to each other via an adhesive (insulating adhesive such as resin), and thereafter, if necessary, between the inclined end surfaces 41t of the trapezoidal shaped product 41a The gap may be fixed with an adhesive or the like.

なお、上記例では樹脂製挟み付け体41を平面視、四角枠状とし、この樹脂製挟み付け体41における四角枠部の高さは、回路用金属層21側をなす上端面44aが、この回路用金属層21の上面と略面一をなす一方、放熱用金属部材31側をなす下端面44bが、そのフィン35の先端より突出させて、全周において同一高さで周回する平面を有する四角枠状ものとしている。しかし、図6、図7に示した変形例の放熱部品210のように、この四角枠部は開口部位48を有するものとしておいてもよい。すなわち、開口部位48は、フィン35相互の隙間に対向する四角枠部の部位を部位を切欠いて形成し、この切欠いた開口部位48を冷却用流体の出入り用のゲートとしておいてもよい。このようにしておけば、このゲートが連なるように、複数のこの放熱部品210を直列に並べて取付けるように配置し、フィン35の先端側である下端面44bを、図中、2点鎖線で示したように、板60で塞ぐようにすることで、効率的な冷却が得られる流路が容易に形成できる。なお、図6、図7に示した放熱部品210は、上記放熱部品10と、樹脂製挟み付け体41において切欠いて設けた開口部位48を有する点のみが相違するのみであるため、同一の部位には同一の符号を付すに止める。   In the above example, the resin sandwiched body 41 has a square frame shape in plan view, and the height of the square frame portion in the resin sandwiched body 41 is such that the upper end surface 44a on the circuit metal layer 21 side is The lower end surface 44b which is substantially flush with the upper surface of the circuit metal layer 21 and which is on the side of the heat dissipating metal member 31 protrudes from the tip of the fin 35, and has a plane which circulates at the same height on the entire circumference. It has a square frame shape. However, as in the heat dissipating component 210 of the modification shown in FIG. 6 and FIG. That is, the opening part 48 may be formed by notching a part of the rectangular frame portion facing the gap between the fins 35, and the notch opening part 48 may be used as a gate for entering and exiting the cooling fluid. If it does in this way, it arrange | positions so that this several heat radiating components 210 may be arranged in series so that this gate may continue, and the lower end surface 44b which is the front end side of the fin 35 is shown with a dashed-two dotted line in the figure. As described above, by closing the plate 60 with the plate 60, a flow path capable of obtaining efficient cooling can be easily formed. The heat radiating component 210 shown in FIGS. 6 and 7 is different from the heat radiating component 10 only in that it has an opening portion 48 provided by cutting out the resin sandwiched body 41. Are given the same reference numerals.

なお、上記各例ではセラミック基板11と、放熱用金属部材31の金属基板部位33との両部材の全周に沿って、樹脂製挟み付け体41で挟み付けたものを例示したが、このような挟み付けは、放熱部品次第では、必ずしもその全周において連続して挟みつけていなくともよい。剥離等の発生の危険性が小さい場合には、不連続で挟み付けるように構成してもよい。   In each of the above examples, the ceramic substrate 11 and the metal substrate portion 33 of the heat dissipation metal member 31 are illustrated as being sandwiched by the resin sandwiching body 41 along the entire circumference of both members. Depending on the heat dissipating component, it is not always necessary to continuously pinch the entire periphery. When the risk of occurrence of peeling or the like is small, it may be configured to be sandwiched discontinuously.

次に、このように不連続で挟み付けるように構成した第2実施例の放熱部品310について、図8〜図10に基づいて説明する。ただし、このものは、上記両部材11,31を不連続で挟み付けるように樹脂製挟み付け体41を構成した点のみが、上記第1実施例と相違するだけで、本質的違いはないので、その相違点のみ説明し、それと同一部位には同一の符号を付すに止める。   Next, the heat radiating component 310 of the second embodiment configured to be sandwiched in this manner will be described with reference to FIGS. However, this is different from the first embodiment only in that the resin sandwiched body 41 is configured so as to sandwich both the members 11 and 31 discontinuously, and there is no essential difference. Only the differences will be described, and the same parts are designated by the same reference numerals.

上記各例では、セラミック基板11と、放熱用金属部材31の金属基板部位33との両部材を、その周囲全体(全周)において、樹脂製挟み付け体41で挟み付ける構成のものとしたが、本例では、この樹脂製挟み付け体41が、セラミック基板11と、放熱用金属部材31の金属基板部位33との両部材を、セラミック基板11のコーナー19と、相手方接合部材の4つコーナーを含む部位(コーナー部位)において樹脂(コーナー部)41cで挟み付けるようにしたものである。すなわち、この樹脂コーナー部位41c相互間のうち、セラミック基板11とその表面にロウ付けされた回路用金属層21側の部位は、上記各例と比較すると切欠き状で底面49aが平坦にして凹設された凹部49をなし、この凹部49の部位では、セラミック基板11と、放熱用金属部材31における金属基板部位33との両部材とを挟みつけていない。なお、本例では、この凹部49の底面49aは、セラミック基板11の裏面13と面一となるように設定されており、したがってこの凹部49は、セラミック基板11の裏面から13回路用金属層21側に向けて開口されている。   In each of the above examples, both the ceramic substrate 11 and the metal substrate portion 33 of the heat radiating metal member 31 are configured to be sandwiched by the resin sandwiching body 41 in the entire periphery (entire circumference). In this example, this resin sandwiched body 41 is composed of the ceramic substrate 11 and the metal substrate portion 33 of the metal member 31 for heat dissipation, the corner 19 of the ceramic substrate 11 and the four corners of the mating joint member. It is made to pinch | interpose with the resin (corner part) 41c in the site | part (corner site | part) containing. That is, among the resin corner portions 41c, the ceramic substrate 11 and the portion on the side of the circuit metal layer 21 brazed to the surface thereof are notched compared to the above examples, and the bottom surface 49a is flat and recessed. A recessed portion 49 is formed, and the portion of the recessed portion 49 does not sandwich the ceramic substrate 11 and the metal substrate portion 33 of the heat dissipating metal member 31. In this example, the bottom surface 49 a of the recess 49 is set to be flush with the back surface 13 of the ceramic substrate 11. Therefore, the recess 49 is formed from the back surface of the ceramic substrate 11 to the 13 circuit metal layer 21. Open to the side.

このように本例では、セラミック基板11と、放熱用金属部材31の金属基板部位33との両部材をその周囲における4つのコーナーを含む部位を、樹脂製挟み付け体41の4つのコーナーを含む樹脂コーナー部41cで挟み付けている。このような本例は、セラミック基板11のコーナーでロウ付け接合面の剥離等の発生や集中的に発生しやすい放熱部品において効果的である。というのは、このような樹脂製挟み付け体41によれば、樹脂の減量が図られる分、その軽量化が図られるためである。なお、樹脂製挟み付け体41でもってこのように不連続で挟み付ける場合、図示はしないが、セラミック基板11のコーナー部位以外(例えば、そのコーナー相互間の適所)で挟み付けるように形成してもよい。   Thus, in this example, the part including the four corners around the ceramic substrate 11 and the metal substrate part 33 of the metal member 31 for heat dissipation includes the four corners of the resin sandwiched body 41. It is sandwiched by the resin corner portion 41c. Such an example is effective in a heat radiating component that is likely to cause peeling or the like of the brazed joint surface at the corner of the ceramic substrate 11 or to be concentrated. This is because, according to such a resin sandwiching body 41, the weight of the resin can be reduced as much as the amount of resin is reduced. In addition, when discontinuously sandwiching with the resin sandwiching body 41, although not shown, it is formed so as to be sandwiched at a portion other than the corner portion of the ceramic substrate 11 (for example, an appropriate portion between the corners). Also good.

なお、上記各例では、放熱用金属部材31がフィン35を有するものにおいて具体化したが、本発明ではフィン35の有無にかかわらず放熱用金属部材(ヒートシンク)31とセラミック基板11とのロウ付け接合において、この2部材を、その2部材の接合面の外周端縁又は外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体を形成する具体化できる。さらに本発明は、放熱用金属部材31とセラミック基板11との接合だけでなく、セラミック基板11における放熱用金属部材31が接合されている反対面に回路用金属層(又は、半導体装置等の搭載用等の金属板)21が接合されているその三層接合体において、この3部材の接合面の外周端縁又は外周端縁寄り部位で、それらを厚み方向に樹脂で挟む樹脂製挟み付け体を形成してなるものとしても具体化できる。   In each of the above examples, the heat dissipating metal member 31 is embodied with the fins 35. However, in the present invention, the heat dissipating metal member (heat sink) 31 and the ceramic substrate 11 are brazed regardless of the presence or absence of the fins 35. In joining, the two members can be embodied to form a resin sandwiched body in which the two members are sandwiched with resin in the thickness direction at the outer peripheral edge or near the outer peripheral edge of the joint surface of the two members. Furthermore, the present invention is not limited to the joining of the heat dissipating metal member 31 and the ceramic substrate 11, but the circuit metal layer (or mounting of a semiconductor device or the like) is provided on the opposite surface of the ceramic substrate 11 where the heat dissipating metal member 31 is joined. In the three-layer joined body to which the metal plate 21) is joined, a resin sandwiched body in which the three members are sandwiched with resin in the thickness direction at the outer peripheral edge or the portion near the outer peripheral edge of the joint surface. It can also be embodied as a product formed by forming.

図11、図12はこのような構成の放熱部品410を具体化した実施例(第3実施例)を示したものである。このものも、本質的には上記各例と異なる点はないので、その相違点のみ説明し、同一の部位には、同一の符号を付すに止める。すなわち、この放熱部品410においては、セラミック基板11を挟む配置で、その一方の面に放熱用金属部材31が、他方の面に回路用金属層(又は金属板)21が、それぞれロウ付けされてなる接合構造を有する。この点は、三層接合体を有する点は上記各例におけるものと同じである。ただし、本例では、放熱用金属部材31がフィンを有しない金属基板部位のみからなる平板形状のものである点のみが相違する。一方、樹脂製挟み付け体41は、これら3部材を、その3部材の接合面の外周端縁14a,24a、又はその外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体41を形成して、その挟み付けをしている。すなわち、樹脂製挟み付け体41は、回路用金属層(又は金属板)21の露出面側において、回路用金属層(又は金属板)21の外周端縁24寄り部位を所定の幅W3で覆い、反対側の放熱用金属部材31の露出面側において外周端縁34寄り部位を所定の幅W2で覆うように、それぞれ挟み付け部45,47を有するように形成され、これによってこの3部材を挟み付ける形で形成されている。なお、本例では、W3<W2である。   11 and 12 show an embodiment (third embodiment) in which the heat dissipating component 410 having such a configuration is embodied. Since this is essentially the same as the above examples, only the differences will be described, and the same reference numerals will be given to the same parts. That is, in this heat dissipation component 410, the heat dissipating metal member 31 is brazed on one surface and the circuit metal layer (or metal plate) 21 is brazed on the other surface, with the ceramic substrate 11 sandwiched therebetween. It has the joining structure which becomes. This point is the same as that in each of the above examples in that it has a three-layer assembly. However, the present example is different only in that the heat dissipating metal member 31 is of a flat plate shape composed only of a metal substrate portion having no fins. On the other hand, the resin sandwiched body 41 is a resin sandwiched body 41 in which these three members are sandwiched with resin in the thickness direction at the outer peripheral edge 14a, 24a of the joint surface of the three members or at a portion near the outer peripheral edge. Is formed and sandwiched. That is, the resin sandwiching body 41 covers the portion near the outer peripheral edge 24 of the circuit metal layer (or metal plate) 21 with a predetermined width W3 on the exposed surface side of the circuit metal layer (or metal plate) 21. In addition, on the exposed surface side of the metal member 31 for heat radiation on the opposite side, it is formed so as to have sandwiching portions 45 and 47 so as to cover the portion near the outer peripheral edge 34 with a predetermined width W2, respectively. It is formed in a sandwiched form. In this example, W3 <W2.

なお、このものでは、樹脂製挟み付け体41の構成上、セラミックの露出はない。また、この放熱部品410でも、ロウ付け接合面の剥離等の発生が、セラミック基板11のコーナーにおいて集中的に発生しやすい場合などにおいては、上記したものと同様、そのコーナーのみを挟むように樹脂製挟み付け体を形成してもよい。また、このものでも放熱用金属部材31がフィンを有すものであるとしても同様に具体化できる。   In this case, the ceramic is not exposed due to the structure of the resin sandwiching body 41. Also, in this heat radiating component 410, when the occurrence of peeling of the brazed joint surface is likely to occur intensively at the corner of the ceramic substrate 11, the resin so as to sandwich only the corner as described above. A sandwiched body may be formed. In addition, even in this case, even if the metal member 31 for heat dissipation has a fin, it can be similarly embodied.

なお、上記各例で示した放熱部品に、半導体装置を実装することで、放熱部品を具備する半導体モジュール装置となすことができる。図13は、実施例1の図2おいて、その放熱部品10における回路用金属層21の表面に半導体チップ等の半導体装置50を搭載(実装)して半導体モジュール装置500としたものを模式的に示したものである。同図では、フィン35の先端側に、板60を取り付けて塞ぎ、樹脂製挟み付け体41における挟み付け部47の対向する左右に、冷却用流体(例えば水)の出入り用の管路55を取付けた状態を示している。このような半導体モジュール装置によれば、放熱性において信頼性の高い半導体モジュール装置となすことができる。   In addition, it can be set as the semiconductor module apparatus which comprises a heat radiating component by mounting a semiconductor device in the heat radiating component shown in each said example. FIG. 13 is a schematic view of the semiconductor module device 500 shown in FIG. 2 of the first embodiment in which a semiconductor device 50 such as a semiconductor chip is mounted (mounted) on the surface of the circuit metal layer 21 in the heat dissipation component 10. It is shown in. In the drawing, a plate 60 is attached and closed on the tip side of the fin 35, and cooling pipes (for example, water) in and out of the sandwiching body 47 on the left and right sides of the sandwiching section 47 are provided. The attached state is shown. According to such a semiconductor module device, it is possible to provide a highly reliable semiconductor module device in terms of heat dissipation.

上記各例で示した放熱部品において、セラミック基板11としては、チッカ珪素(SiN)を用いた場合を例示したが、本発明の放熱部品に適用できるセラミックはこれらに限定されるものではなく、アルミナ(Al)、チッカアルミ(AlN)、或いはそれ以外のセラミックであってもよいことは明らかである。また、セラミック基板11にロウ付けされる、放熱用金属部材31、或いは回路用金属層(又は金属板)をなす金属も、Al、Cuに限定されるものではない。さらに、樹脂挟み付け体をなす樹脂は、耐熱性(高温時の機械的強度)が高く、弾性係数の大きい(高強度、高剛性材)ものから適宜のものを選択して用いればよいことは上記したとおりである。また、樹脂挟み付け体の具体的な形状、構造も、さらにはその成形法も上記したものに限定されるものでないのは上述したとおりである。なお、樹脂挟み付け体をなす樹脂が、セラミック基板と放熱用金属部材とを挟み付けて接合する手段、或いは、樹脂挟み付け体をなす樹脂が、セラミック基板、放熱用金属部材、及び回路用金属層又は金属板の3部材を挟み付けて接合する手段は、従来公知のいかなる手段であってもよい。 In the heat dissipating component shown in each of the above examples, the ceramic substrate 11 is exemplified by using ticker silicon (SiN), but the ceramic applicable to the heat dissipating component of the present invention is not limited to these, and alumina It is obvious that (Al 2 O 3 ), ticker aluminum (AlN), or other ceramics may be used. Further, the metal forming the heat radiation metal member 31 or the circuit metal layer (or metal plate) brazed to the ceramic substrate 11 is not limited to Al or Cu. Furthermore, the resin constituting the resin sandwiched body has a high heat resistance (mechanical strength at high temperature) and can be used by selecting an appropriate one from those having a large elastic modulus (high strength, high rigidity material). As described above. Further, as described above, the specific shape and structure of the resin sandwiched body and the molding method are not limited to those described above. The resin constituting the resin sandwiching means is a means for sandwiching and joining the ceramic substrate and the metal member for heat dissipation, or the resin constituting the resin sandwiching body is the ceramic substrate, the metal member for heat dissipation, and the circuit metal. The means for sandwiching and joining the three members of the layers or metal plates may be any conventionally known means.

10、210、310、410 放熱部品
11 セラミック基板
12,13 セラミック基板の面
14 セラミック基板の外周端縁
14a,24a 接合面の外周端縁
19 セラミック基板のコーナー
21 回路用金属層
31 放熱用金属部材
41 樹脂製挟み付け体
10, 210, 310, 410 Heat-dissipating component 11 Ceramic substrate 12, 13 Surface 14 of ceramic substrate Outer peripheral edge 14a, 24a of ceramic substrate Outer peripheral edge 19 of bonding surface Ceramic substrate corner 21 Circuit metal layer 31 Metal member for heat dissipation 41 Plastic sandwich

Claims (6)

セラミック基板を挟む配置で、その一方の面に放熱用金属部材が、他方の面に回路用金属層又は金属板が、それぞれロウ付けされてなる接合構造を有する放熱部品において、
前記セラミック基板と前記放熱用金属部材とを、この2部材の接合面の外周端縁又は外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体が形成されていることを特徴とする放熱部品。
In a heat dissipating component having a joining structure in which a heat dissipating metal member is brazed on one surface and a circuit metal layer or metal plate is brazed on the other surface in an arrangement sandwiching a ceramic substrate
A resin sandwiched body is formed in which the ceramic substrate and the metal member for heat dissipation are sandwiched with resin in the thickness direction at an outer peripheral edge or a portion near the outer peripheral edge of the joint surface of the two members. Heat dissipation parts.
セラミック基板を挟む配置で、その一方の面に放熱用金属部材が、他方の面に回路用金属層又は金属板が、それぞれロウ付けされてなる接合構造を有する放熱部品において、
前記セラミック基板、前記放熱用金属部材、及び前記回路用金属層又は金属板とを、この3部材の接合面の外周端縁又は外周端縁寄り部位で、厚み方向に樹脂で挟む樹脂製挟み付け体が形成されていることを特徴とする放熱部品。
In a heat dissipating component having a joining structure in which a heat dissipating metal member is brazed on one surface and a circuit metal layer or metal plate is brazed on the other surface in an arrangement sandwiching a ceramic substrate
Resin sandwiching of the ceramic substrate, the metal member for heat dissipation, and the metal layer for circuit or metal plate with resin in the thickness direction at the outer peripheral edge or the peripheral edge portion of the joint surface of the three members A heat dissipating component characterized in that a body is formed.
前記樹脂製挟み付け体は、前記セラミック基板の外周端縁に沿ってその全周に形成されていることを特徴とする請求項1又は2に記載の放熱部品。   The heat-radiating component according to claim 1, wherein the resin sandwiched body is formed along the entire outer peripheral edge of the ceramic substrate. 前記セラミック基板は、平面視、略四角形とされ、前記樹脂製挟み付け体が、その四角形のコーナーを含む部位に形成されていることを特徴とする請求項1又は2に記載の放熱部品。   The heat dissipation component according to claim 1 or 2, wherein the ceramic substrate has a substantially square shape in a plan view, and the resin sandwiched body is formed at a portion including a corner of the rectangle. 前記樹脂製挟み付け体は、射出成形により、樹脂製挟み付け体形成前の放熱部品をインサートとして形成されていることを特徴とする請求項1〜4のいずれか1項に記載の放熱部品。   The heat radiating component according to any one of claims 1 to 4, wherein the resin sandwiched body is formed by injection molding with a heat radiating component before forming the resin sandwiched body as an insert. 請求項1〜5のいずれか1項に記載の放熱部品を具備することを特徴とする半導体モジュール装置。   A semiconductor module device comprising the heat dissipating component according to claim 1.
JP2011145635A 2011-06-30 2011-06-30 Heat radiation component and semiconductor module apparatus Withdrawn JP2013012663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145635A JP2013012663A (en) 2011-06-30 2011-06-30 Heat radiation component and semiconductor module apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145635A JP2013012663A (en) 2011-06-30 2011-06-30 Heat radiation component and semiconductor module apparatus

Publications (1)

Publication Number Publication Date
JP2013012663A true JP2013012663A (en) 2013-01-17

Family

ID=47686286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145635A Withdrawn JP2013012663A (en) 2011-06-30 2011-06-30 Heat radiation component and semiconductor module apparatus

Country Status (1)

Country Link
JP (1) JP2013012663A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153925A (en) * 2014-02-17 2015-08-24 三菱マテリアル株式会社 Method of manufacturing substrate for power module with heat sink
WO2021140586A1 (en) * 2020-01-08 2021-07-15 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153925A (en) * 2014-02-17 2015-08-24 三菱マテリアル株式会社 Method of manufacturing substrate for power module with heat sink
WO2021140586A1 (en) * 2020-01-08 2021-07-15 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device
JPWO2021140586A1 (en) * 2020-01-08 2021-07-15
CN114902400A (en) * 2020-01-08 2022-08-12 三菱电机株式会社 Semiconductor device and method for manufacturing semiconductor device
JP7241923B2 (en) 2020-01-08 2023-03-17 三菱電機株式会社 Semiconductor device and method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP4748173B2 (en) Semiconductor module and manufacturing method thereof
JP6020731B2 (en) Semiconductor module, semiconductor device, and automobile
JP6337957B2 (en) Semiconductor module unit and semiconductor module
JP6324539B2 (en) Semiconductor module
JP5955251B2 (en) Power semiconductor module
JP5432085B2 (en) Power semiconductor device
WO2013118478A1 (en) Semiconductor device
JP2011134949A (en) Semiconductor device
JP2009026957A (en) Insulating fin and heat sink
JP6337954B2 (en) Insulating substrate and semiconductor device
WO2008075409A1 (en) Base for power module, method for producing base for power module and power module
JP2007165588A (en) Power module structure, and solid-state relay using same
JP6742538B2 (en) Semiconductor device
JP2013012663A (en) Heat radiation component and semiconductor module apparatus
JP6183166B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2009200258A (en) Semiconductor module
JP3880812B2 (en) Cooler
JP6607105B2 (en) Circuit board, semiconductor module, and circuit board manufacturing method
JP2008159946A (en) Cooling device of semiconductor module, and manufacturing method therefor
US20140091444A1 (en) Semiconductor unit and method for manufacturing the same
JPWO2021001924A1 (en) Power module and its manufacturing method
JP5021290B2 (en) HELIBOON TYPE LIQUID COOLING HEAT SINK AND ITS MANUFACTURING METHOD
JP2007141932A (en) Power module base
JP2008135595A (en) Power module
JP5987665B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140902