JP2009021388A - Method of manufacturing electronic double-layer capacitor - Google Patents

Method of manufacturing electronic double-layer capacitor Download PDF

Info

Publication number
JP2009021388A
JP2009021388A JP2007182756A JP2007182756A JP2009021388A JP 2009021388 A JP2009021388 A JP 2009021388A JP 2007182756 A JP2007182756 A JP 2007182756A JP 2007182756 A JP2007182756 A JP 2007182756A JP 2009021388 A JP2009021388 A JP 2009021388A
Authority
JP
Japan
Prior art keywords
laminate
container
drying
layer capacitor
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007182756A
Other languages
Japanese (ja)
Inventor
Hiromasa Izaki
寛正 伊崎
Yasuhiko Koiso
保彦 小礒
Eisei Koura
永生 古浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Japan Pionics Ltd
Priority to JP2007182756A priority Critical patent/JP2009021388A/en
Publication of JP2009021388A publication Critical patent/JP2009021388A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic double-layer capacitor which includes the steps of: laminating a plus electrode body, a minus electrode body and a separator; drying the laminate; storing the laminate in a container; injecting an electrolyte into the container; subjecting the laminate to a pressure reduction treatment; and sealing the container stored with the laminate, the manufacturing method for efficiently removing water present in the laminate, especially water present in pores of active carbon etc. used as a composition material for a polarization electrode in the drying step to an extremely low concentration. <P>SOLUTION: When the laminate is dried, processing of heating, pressure-reducing and drying the laminate and processing of supplying dry gas to the laminate are carried out repeatedly a plurality of times. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタの製造方法において、正極体、負極体、及びセパレータからなる積層体の水分除去を効率よく行なう方法に関する。   The present invention relates to a method of manufacturing an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolyte solution, and removes moisture from a laminate including a positive electrode body, a negative electrode body, and a separator. The present invention relates to an efficient method.

近年、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタが蓄電媒体として実用化され始めている。電気二重層キャパシタの一般的な構成としては、金属箔等の集電体及び活性炭等の分極性電極からなる電極シートと、セパレータが交互に積層され、電解液が含浸された構成を有する電気二重層キャパシタセルが形成され、さらに電気二重層キャパシタセルが容器に密封されて電気二重層キャパシタとされる。   In recent years, an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolytic solution has been put into practical use as a power storage medium. As a general configuration of an electric double layer capacitor, an electric sheet having a configuration in which a current collector such as a metal foil and a polarizable electrode such as activated carbon and separators are alternately laminated and impregnated with an electrolytic solution. A multilayer capacitor cell is formed, and the electric double layer capacitor cell is sealed in a container to form an electric double layer capacitor.

また、電気二重層キャパシタの製造は、電極シートとセパレータの積層体を、角型の電気二重層キャパシタにおいてはサンドウィッチ状に、円筒型の電気二重層キャパシタにおいてはロール状に形成し、集電体(正極体及び負極体)のリード部を各々の端子に接続し、積層体を容器に収納した後、容器の開口部から電解液を注入して積層体に電解液を含浸し、電極端子の先端を外部に露出した状態で容器を密封する方法が多く実施されている。   In addition, an electric double layer capacitor is manufactured by forming a laminated body of an electrode sheet and a separator in a sandwich shape in a square electric double layer capacitor and in a roll shape in a cylindrical electric double layer capacitor. After connecting the lead portions of the (positive electrode body and negative electrode body) to each terminal and storing the laminate in a container, the electrolyte solution is injected from the opening of the container to impregnate the laminate with the electrolyte solution. Many methods for sealing containers with their tips exposed to the outside have been implemented.

このような電気二重層キャパシタにおいては、電解液として、高い耐電圧が得られる有機系電解液が一般的に用いられているが、微量の水分の存在でも充放電を繰返すと徐々に電解液と水が反応し、一酸化炭素、二酸化炭素等のガスが生成して耐電圧が低下し劣化しやすくなるという不都合が生じるので、電解液を注入する前に積層体及び容器を充分に乾燥させ、その後の操作は容器を密封するまで乾燥ガス雰囲気下で行なわれている。   In such an electric double layer capacitor, an organic electrolytic solution capable of obtaining a high withstand voltage is generally used as the electrolytic solution. However, when charging and discharging are repeated even in the presence of a small amount of water, the electrolytic solution gradually Since water reacts and the gas such as carbon monoxide and carbon dioxide is generated and the withstand voltage is lowered and deteriorates easily, the laminate and the container are sufficiently dried before injecting the electrolytic solution, Subsequent operations are performed in a dry gas atmosphere until the container is sealed.

従来から、積層体の乾燥は、水分を極めて低い含有率になるまで除去するために、積層体を加熱減圧乾燥している。しかし、積層体は分極性電極として活性炭等の細孔を有し比表面積が大きいものを使用していること、積層体は分極性電極とセパレータを密着して積層した構成であること、セパレータは通常はセルロース製のものを使用しているため乾燥の際の加熱温度の上限は150〜200℃程度が限界であること等により、積層体の乾燥は真空乾燥機を用いても通常は10時間以上かかっていた。   Conventionally, the laminate is dried by heating under reduced pressure in order to remove moisture until the content becomes extremely low. However, the laminate uses a polarizable electrode having pores such as activated carbon and a large specific surface area, the laminate has a configuration in which the polarizable electrode and the separator are closely adhered, and the separator Usually, since the thing made from a cellulose is used, since the upper limit of the heating temperature in the case of drying is about 150-200 degreeC etc., even if it uses a vacuum dryer, drying of a laminated body is usually 10 hours. It took more than that.

このような状況下、従来から容器内の水分を除去して高い耐電圧を長期間にわたり維持する方法として、例えば、分極性電極とセパレータに水分吸着材を含ませる方法、容器内に乾燥剤を入れる方法、電解液を含浸する前に高周波電流を電極に印加し水分を除去する方法等が提案されている。
特開平10−144570号公報 特開平10−321483号公報 特開平11−54378号公報 特開2000−182910号公報
Under such circumstances, conventionally, as a method of removing moisture in the container and maintaining a high withstand voltage over a long period of time, for example, a method of including a moisture adsorbent in the polarizable electrode and the separator, a desiccant in the container There have been proposed a method of adding water, a method of applying a high-frequency current to the electrode before impregnating the electrolytic solution, and removing moisture.
Japanese Patent Laid-Open No. 10-144570 Japanese Patent Laid-Open No. 10-321483 JP-A-11-54378 JP 2000-182910 A

しかしながら、水分吸着材あるいは乾燥剤を用いる方法は、分極性電極の構成材料として一般的に用いられている活性炭等の細孔内に存在する水分を除去することが困難であり、また高周波電流を電極に印加する方法も、水分を極めて低濃度まで除去するために長時間の印加処理が必要であった。
従って、本発明が解決しようとする課題は、積層体に存在する水分、特に分極性電極として用いられる活性炭等の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できる電気二重層キャパシタの製造方法を提供することである。
However, the method using a moisture adsorbent or a desiccant is difficult to remove moisture present in the pores of activated carbon or the like generally used as a constituent material of a polarizable electrode. The method of applying to the electrode also required a long-time application process in order to remove moisture to an extremely low concentration.
Therefore, the problem to be solved by the present invention is that the electric water that can efficiently remove moisture present in the laminate, particularly moisture present in pores such as activated carbon used as a polarizable electrode, to a very low concentration. It is to provide a method for manufacturing a multilayer capacitor.

本発明者らは、前記の課題を解決すべく鋭意検討した結果、積層体を加熱減圧乾燥する処理、及び積層体に乾燥ガスを供給する処理を複数回繰返して行なうことにより、分極性電極の構成材料として一般的に用いられている活性炭等の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できることを見出し、本発明の電気二重層キャパシタの製造方法に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have repeatedly performed a treatment for drying the laminated body under reduced pressure by heating and a process for supplying a dry gas to the laminated body a plurality of times. It has been found that moisture present in pores such as activated carbon generally used as a constituent material can be efficiently removed to a very low concentration, and has reached the method for producing an electric double layer capacitor of the present invention.

すなわち本発明は、正極体、負極体、及びセパレータを積層する工程、該積層体を乾燥する工程、該積層体を容器に収納する工程、該容器に電解液を注入する工程、該積層体を減圧処理する工程、及び該積層体を収納した容器を密封する工程を含む電気二重層キャパシタの製造方法であって、該積層体を乾燥する工程中に、該積層体を加熱減圧乾燥する処理、及び該積層体に乾燥ガスを供給する処理を複数回繰返して行なうことを特徴とする電気二重層キャパシタの製造方法である。   That is, the present invention includes a step of laminating a positive electrode body, a negative electrode body, and a separator, a step of drying the laminated body, a step of storing the laminated body in a container, a step of injecting an electrolyte into the container, A method for producing an electric double layer capacitor comprising a step of reducing pressure and a step of sealing a container containing the laminate, wherein the laminate is heated and dried under reduced pressure during the step of drying the laminate; And a process for supplying a dry gas to the laminate is repeated a plurality of times.

本発明の電気二重層キャパシタの製造方法により、従来から長時間かかっていた積層体の乾燥処理時間を大幅に短縮することができる。また、正極体、負極体、及びセパレータを積層させた後に乾燥する方法は、これらの表面が密着しているため、極めて乾燥の効率が悪く実質的に不可能であったが、本発明の電気二重層キャパシタの製造方法により、積層後の乾燥が可能となった。そのため、従来からグローボックス等、水分が極めて低濃度になるまで除去された空間内で行なわれていた積層を、空気存在下で行なうことが可能となり、積層工程を極めて効率よく容易に行なうことができる。   According to the method for producing an electric double layer capacitor of the present invention, it is possible to significantly reduce the drying processing time of the multilayer body, which has conventionally taken a long time. In addition, the method of drying after laminating the positive electrode body, the negative electrode body, and the separator is extremely impossible because the surfaces are in close contact with each other. The double-layer capacitor manufacturing method enables drying after stacking. For this reason, it has become possible to perform lamination in a space where moisture has been removed until a very low concentration, such as a glow box, in the presence of air, and the lamination process can be performed very efficiently and easily. it can.

本発明は、正極体、負極体、及びセパレータを積層する工程、該積層体を乾燥する工程、該積層体を容器に収納する工程、該容器に電解液を注入する工程、該積層体を減圧処理する工程、及び該積層体を収納した容器を密封する工程を含む電気二重層キャパシタの製造方法に適用される。また、本発明は、角型の電気二重層キャパシタの製造方法及び円筒型の電気二重層キャパシタの製造方法に適用される。以下、角型の電気二重層キャパシタを例に挙げて詳細に説明するが、本発明がこれにより限定されるものではない。   The present invention includes a step of laminating a positive electrode body, a negative electrode body, and a separator, a step of drying the laminated body, a step of storing the laminated body in a container, a step of injecting an electrolyte into the container, The present invention is applied to a method for manufacturing an electric double layer capacitor including a step of processing and a step of sealing a container containing the laminate. The present invention is also applied to a method for manufacturing a square electric double layer capacitor and a method for manufacturing a cylindrical electric double layer capacitor. Hereinafter, a square electric double layer capacitor will be described in detail as an example, but the present invention is not limited thereto.

本発明における積層体は、図1に示すように、通常は、活性炭、カーボンブラック等を含む混合物からなる分極性電極にアルミ箔を貼り合わせた正極体1と、同様に分極性電極にアルミ箔を貼り合わせた負極体2を、紙、パルプ、またはプラスチック等からなるセパレータを介して交互に積層させたものであり、正極体のリード部3及び負極体のリード部4が、各々電極端子に接続できるように、一辺が50〜200mmの程度の正方形または長方形の積層体となるように、合計10〜100枚程積層させたものである。また、本発明における積層体は、図1に示すような積層体のほか、正極体のリード部3と正極端子5の接着、負極体のリード部4と負極端子6の接着が行なわれた図2に示すような積層体が含まれる。   As shown in FIG. 1, the laminate in the present invention is usually a positive electrode body 1 in which an aluminum foil is bonded to a polarizable electrode made of a mixture containing activated carbon, carbon black, and the like. Are laminated alternately with separators made of paper, pulp, plastic or the like, and the lead part 3 of the positive electrode body and the lead part 4 of the negative electrode body are respectively connected to the electrode terminals. In order to be able to be connected, about 10 to 100 sheets in total are laminated so as to form a square or rectangular laminated body having a side of about 50 to 200 mm. In addition to the laminate as shown in FIG. 1, the laminate in the present invention is a diagram in which the lead portion 3 of the positive electrode body and the positive electrode terminal 5 are bonded, and the lead portion 4 of the negative electrode body and the negative electrode terminal 6 are bonded. A laminate as shown in FIG.

また、本発明における容器は、図3に示すように、前記のような積層体7を密封するための偏平状の容器8であり、その構成は、通常はアルミ箔等の金属箔の表面を、熱溶融性のプラスチックフィルムで被覆したものである。前記のような積層体を収納する際は、予め正方形または長方形の金属箔の表面に熱溶融性のプラスチックフィルムが被覆されたシートを、2枚重ね合わせ、積層体を収納するための開口部を除いた周辺部を加熱加圧接着して袋状にされる。尚、容器の内部についても、積層体を収納する前に、加熱減圧乾燥する処理、あるいは加熱減圧乾燥する処理及び乾燥ガスを供給する処理が必要である。   In addition, as shown in FIG. 3, the container in the present invention is a flat container 8 for sealing the laminate 7 as described above, and the structure thereof is usually a surface of a metal foil such as an aluminum foil. And coated with a heat-meltable plastic film. When storing the laminate as described above, two sheets of a metal foil having a square or rectangular shape coated with a heat-meltable plastic film in advance are stacked, and an opening for storing the laminate is provided. The removed peripheral part is heated and pressed to form a bag. In addition, also about the inside of a container, before accommodating a laminated body, the process to heat-dry under reduced pressure, the process to heat-dry under reduced pressure, and the process to supply a dry gas are required.

本発明の電気二重層キャパシタの製造方法は、積層体を乾燥する工程中に、積層体を加熱減圧乾燥する処理、及び該積層体に乾燥ガスを供給する処理を、複数回繰返して行なう製造方法である。
本発明における前記の乾燥は、正極体、負極体、及びセパレータを積層した後であって、偏平状の容器に収納する前に行なわれる。乾燥を積層工程前に行なう場合は、乾燥処理時間を大幅に短縮することができるが、乾燥を積層工程後に行なう場合は、正極体、負極体、及びセパレータの積層作業を極めて効率よく行なうことができるので、積層工程後の乾燥の方が好ましい。
The method for producing an electric double layer capacitor of the present invention is a production method in which, during the step of drying the laminate, the treatment of drying the laminate by heating under reduced pressure and the treatment of supplying a dry gas to the laminate are repeated a plurality of times. It is.
The drying in the present invention is performed after the positive electrode body, the negative electrode body, and the separator are stacked and before being housed in a flat container. When drying is performed before the laminating step, the drying process time can be significantly shortened, but when drying is performed after the laminating step, the laminating operation of the positive electrode body, the negative electrode body, and the separator can be performed very efficiently. Since it can do, the drying after a lamination process is more preferable.

本発明における積層体の乾燥は、通常は、内部が加熱可能であり、真空ポンプと連通し、乾燥ガスの供給口及び排出口を有する容器に、積層体を収納することにより行なわれる。
積層体を加熱減圧乾燥する際の圧力条件としては、通常は5KPa(絶対圧力)以下、好ましくは1KPa(絶対圧力)以下であり、温度条件としては、通常は100〜250℃、好ましくは150〜220℃である。また、積層体に乾燥ガスを供給する際の圧力条件としては、積層体を加熱減圧乾燥する処理より高い圧力下(10〜200KPa(絶対圧力)程度)であり、温度条件としては、通常は100〜250℃、好ましくは150〜220℃である。
The laminated body in the present invention is usually dried by storing the laminated body in a container that can be heated inside and communicates with a vacuum pump and has a supply port and a discharge port for drying gas.
The pressure condition for drying the heated laminate under reduced pressure is usually 5 KPa (absolute pressure) or less, preferably 1 KPa (absolute pressure) or less, and the temperature condition is usually 100 to 250 ° C., preferably 150 to 220 ° C. In addition, the pressure condition for supplying the dry gas to the laminate is under a higher pressure (about 10 to 200 KPa (absolute pressure)) than the process of heating and drying the laminate, and the temperature condition is usually 100. It is -250 degreeC, Preferably it is 150-220 degreeC.

本発明における積層体の乾燥は、前記の加熱減圧乾燥処理、及び乾燥ガスの供給処理を繰返すことにより行なわれる。各々の処理時間は、積層体の状態、処理条件等により異なり一概に限定することはできないが、通常は1回の各処理時間は1〜100分であり、各処理は通常は2回以上、好ましくは3〜20回行なわれる。前記の乾燥に要する時間は、通常は2〜10時間である。尚、本発明に係る乾燥の前に、積層体の構成材料の予備乾燥を行なって、本発明に係る乾燥の負担を軽減させることもできる。   Drying of the laminate in the present invention is performed by repeating the heating and vacuum drying process and the drying gas supply process. Each treatment time varies depending on the state of the laminate, treatment conditions, etc., and cannot be unconditionally limited. Usually, each treatment time is 1 to 100 minutes, and each treatment is usually twice or more. Preferably it is performed 3 to 20 times. The time required for the drying is usually 2 to 10 hours. In addition, before the drying which concerns on this invention, the preliminary drying of the constituent material of a laminated body can be performed, and the burden of the drying which concerns on this invention can also be reduced.

本発明において、積層体の乾燥処理時間が大幅に短縮できるメカニズムについては明確ではないが、加熱減圧乾燥処理の後に、加熱された乾燥ガスを供給することにより、積層体の構成材料の表面(特に分極性電極として用いられる活性炭等の細孔内)が加熱乾燥ガスにより掃気され、これらの表面及び内部に存在する水分が効率よく除去されると考えられる。尚、乾燥ガスとしては、ヘリウム、ネオン、アルゴン、窒素、または空気を主成分とするガスが用いられる。乾燥ガスは、通常は100ppm以下、好ましくは10ppm以下、さらに好ましくは1ppm以下まで水分を除去したものが使用される。   In the present invention, the mechanism by which the drying time of the laminate can be significantly shortened is not clear, but by supplying a heated dry gas after the heating and vacuum drying treatment, the surface of the constituent material of the laminate (particularly It is considered that the inside of the pores of activated carbon or the like used as the polarizable electrode is scavenged by the heated dry gas, and the water present on the surface and inside thereof is efficiently removed. As the dry gas, a gas containing helium, neon, argon, nitrogen, or air as a main component is used. The dry gas is usually used after removing moisture to 100 ppm or less, preferably 10 ppm or less, more preferably 1 ppm or less.

本発明においては、正極体、負極体、及びセパレータを積層する工程、積層体を乾燥する工程が終了した後、積層体を容器に収納する工程、容器に電解液を注入する工程、積層体を減圧処理する工程、及び積層体を収納した容器を密封する工程が行なわれる。
積層体の容器への収納は、積層体の電極端子が容器の開口部側となるように積層体が容器に収納される。次に、容器の開口部から電解液が注入され、続いて容器内が減圧され、積層体の減圧処理が行なわれる。この減圧処理により、活性炭等の分極性電極に吸着されているガスが除去されるとともに、積層体に電解液を効率よく含浸することができる。また、必要に応じて、電解液の注入から容器の密封までの間に、分極性電極に含まれる水分や官能基を電気分解し除去するために、電極端子に通電して電解精製を行なうこともできる。積層体の減圧処理後、例えば加熱された2本のヒートシールバーを、容器を挟んだ状態で押圧することにより容器の密封が行なわれ、図3に示すような構成の電気二重層キャパシタが得られる。尚、本発明においては、電解液の注入から容器の密封まで、乾燥ガス雰囲気下で行なわれる。
In the present invention, after the step of laminating the positive electrode body, the negative electrode body, and the separator, and the step of drying the laminated body, the step of storing the laminated body in a container, the step of injecting an electrolyte into the container, A step of reducing the pressure and a step of sealing the container containing the laminate are performed.
The stack is stored in the container so that the electrode terminals of the stack are on the opening side of the container. Next, an electrolytic solution is injected from the opening of the container, and then the inside of the container is decompressed, and the laminate is decompressed. By this decompression treatment, the gas adsorbed on the polarizable electrode such as activated carbon is removed, and the laminate can be efficiently impregnated with the electrolytic solution. In addition, if necessary, between the injection of the electrolyte and the sealing of the container, the electrode terminal is energized and subjected to electrolytic purification in order to electrolyze and remove moisture and functional groups contained in the polarizable electrode. You can also. After the laminate is depressurized, the container is sealed by pressing, for example, two heated heat-seal bars with the container sandwiched therebetween, and an electric double layer capacitor configured as shown in FIG. 3 is obtained. It is done. In the present invention, the process from injection of the electrolytic solution to sealing of the container is performed in a dry gas atmosphere.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(積層体の製作)
活性炭、カーボンブラック等の混合物からなる分極性電極にアルミ箔を貼り合わせた正極体、負極体と、紙製のセパレータを、正極体のリード部及び負極体のリード部が、各々電極端子に接続できるように、合計30枚積層させて、図1に示すような一辺が100mmの正方形の積層体(厚さ15mm)を得た。次に、正極体のリード部及び負極体のリード部を、各々電極端子に溶接により接着して図2に示すような積層体を製作した。この間の積層作業は、空気中(25℃、湿度60%)で行なったので、グローボックス内における積層作業に比べて半分以下の時間で効率よく行なうことができた。
(Production of laminate)
A positive electrode body, a negative electrode body, and a paper separator made by bonding aluminum foil to a polarizable electrode made of a mixture of activated carbon, carbon black, etc., and a positive electrode body lead portion and a negative electrode body lead portion are connected to electrode terminals, respectively. In total, 30 sheets were laminated to obtain a square laminate (thickness 15 mm) having a side of 100 mm as shown in FIG. Next, the lead portion of the positive electrode body and the lead portion of the negative electrode body were respectively bonded to the electrode terminals by welding to produce a laminate as shown in FIG. Since the lamination work during this time was performed in the air (25 ° C., humidity 60%), it could be efficiently performed in less than half the time compared to the lamination work in the glow box.

(積層体の乾燥)
次に、内部が加熱可能であり、真空ポンプと連通し、乾燥ガスの供給口及び排出口を有する容積400ccの乾燥用容器にこの積層体を収納した。続いて、乾燥用容器の温度を200℃に昇温するとともに減圧して、200℃、2〜8KPa(絶対圧力)の条件で20分間加熱減圧乾燥した。次に、200℃の乾燥窒素ガスを2000cc/minの条件で20分間供給した。さらに、前記の加熱減圧乾燥する処理、及び積層体に乾燥窒素ガスを供給する処理を5回繰返して(合計で6回、合計処理時間:4時間)積層体を乾燥する工程を終了した。尚、2回目以後の加熱減圧乾燥する処理における圧力は、2KPa以下であった。
(Drying the laminate)
Next, this laminated body was accommodated in a drying container having a capacity of 400 cc, which can be heated inside, communicated with a vacuum pump, and has a supply port and a discharge port for a dry gas. Then, while raising the temperature of the container for drying to 200 degreeC, it pressure-reduced and it heat-depressurized and dried for 20 minutes on the conditions of 200 degreeC and 2-8 KPa (absolute pressure). Next, dry nitrogen gas at 200 ° C. was supplied for 20 minutes under the condition of 2000 cc / min. Furthermore, the process of drying by heating under reduced pressure and the process of supplying dry nitrogen gas to the laminate were repeated 5 times (total 6 times, total treatment time: 4 hours) to complete the step of drying the laminate. Note that the pressure in the second and subsequent heating and drying processes was 2 KPa or less.

(水分含有率の測定)
表面をポリプロピレンが含まれるフィルムで被覆したアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、真空乾燥機を用いて50℃で15時間減圧乾燥した。尚、この偏平状の容器は、一辺に開口部を有するものであった。次に、乾燥窒素ガス雰囲気下において、積層体を電極端子が容器の開口部(貼り合せ部)側になるように偏平状の容器に挿入した後、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、容器を密封すれば電気二重層キャパシタが得られるが、その前に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は9ppmであった。
(Measurement of moisture content)
A square flat container having a side of 150 mm and having an aluminum foil whose surface is covered with a film containing polypropylene as a base material was dried under reduced pressure at 50 ° C. for 15 hours using a vacuum dryer. This flat container had an opening on one side. Next, in a dry nitrogen gas atmosphere, the laminate was inserted into a flat container so that the electrode terminal was on the opening (bonding part) side of the container, and then ammonium salt or the like was dispersed in the propylene carbonate solvent. 120 ml of electrolyte was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, when the container is sealed, an electric double layer capacitor can be obtained. Before that, the electrolytic solution was sampled and the water content of the electrolytic solution was measured. As a result, the water content was 9 ppm.

(積層体の乾燥)
実施例1と同様にして図2に示すような積層体を製作した。この間の積層作業は、実施例1と同様に空気中(25℃、湿度60%)で行なった。
次に、積層体を加熱減圧乾燥する処理、及び積層体に乾燥窒素ガスを供給する処理を合計で3回(合計処理時間:2時間)行なったほかは実施例1と同様にして積層体を乾燥した。
(Drying the laminate)
In the same manner as in Example 1, a laminate as shown in FIG. The laminating operation during this time was performed in air (25 ° C., humidity 60%) in the same manner as in Example 1.
Next, the laminate was prepared in the same manner as in Example 1 except that the laminate was heated and dried under reduced pressure and the dry nitrogen gas was supplied to the laminate three times in total (total treatment time: 2 hours). Dried.

(水分含有率の測定)
実施例1と同様にして減圧乾燥した偏平状の容器に積層体を挿入し、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、実施例1と同様に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は25ppmであった。
(Measurement of moisture content)
The laminate was inserted into a flat container dried under reduced pressure in the same manner as in Example 1, and 120 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, the electrolytic solution was sampled in the same manner as in Example 1, and the moisture content of the electrolytic solution was measured. As a result, the moisture content was 25 ppm.

[比較例1]
(積層体の乾燥)
実施例1と同様にして図2に示すような積層体を製作した。この間の積層作業は、実施例1と同様に空気中(25℃、湿度60%)で行なった。
次に、内部が加熱可能であり、真空ポンプと連通し、乾燥ガスの供給口及び排出口を有する実施例1と同様の容積400ccの乾燥用容器にこの積層体を収納した。続いて、乾燥用容器の温度を200℃に昇温するとともに減圧して、200℃、8KPa(絶対圧力)以下の条件で18時間加熱減圧乾燥した。
[Comparative Example 1]
(Drying the laminate)
In the same manner as in Example 1, a laminate as shown in FIG. The laminating operation during this time was performed in air (25 ° C., humidity 60%) in the same manner as in Example 1.
Next, this laminated body was accommodated in a drying container having a capacity of 400 cc similar to that in Example 1, which was heatable inside, communicated with a vacuum pump, and had a drying gas supply port and a discharge port. Subsequently, the temperature of the drying container was raised to 200 ° C. and reduced in pressure, and dried under reduced pressure by heating for 18 hours under the conditions of 200 ° C. and 8 KPa (absolute pressure) or less.

(水分含有率の測定)
実施例1と同様にして減圧乾燥した偏平状の容器に積層体を挿入し、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、実施例1と同様に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は60ppmであった。
(Measurement of moisture content)
The laminate was inserted into a flat container dried under reduced pressure in the same manner as in Example 1, and 120 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, the electrolytic solution was sampled in the same manner as in Example 1, and the moisture content of the electrolytic solution was measured. As a result, the moisture content was 60 ppm.

以上のように、本発明の電気二重層キャパシタの製造方法は、積層体の乾燥時間を大幅に短縮できることがわかった。   As mentioned above, it turned out that the manufacturing method of the electric double layer capacitor of this invention can shorten the drying time of a laminated body significantly.

本発明における積層体の一例示す斜視図The perspective view which shows an example of the laminated body in this invention 本発明における図1以外の積層体の一例示す斜視図The perspective view which shows an example of laminated bodies other than FIG. 1 in this invention 本発明における電気二重層キャパシタの一例を示す構成図Configuration diagram showing an example of an electric double layer capacitor in the present invention

符号の説明Explanation of symbols

1 正極体
2 負極体
3 正極体のリード部
4 負極体のリード部
5 正極端子
6 負極端子
7 積層体
8 容器
DESCRIPTION OF SYMBOLS 1 Positive electrode body 2 Negative electrode body 3 Lead part of positive electrode body 4 Lead part of negative electrode body 5 Positive electrode terminal 6 Negative electrode terminal 7 Laminated body 8 Container

Claims (4)

正極体、負極体、及びセパレータを積層する工程、該積層体を乾燥する工程、該積層体を容器に収納する工程、該容器に電解液を注入する工程、該積層体を減圧処理する工程、及び該積層体を収納した容器を密封する工程を含む電気二重層キャパシタの製造方法であって、該積層体を乾燥する工程中に、該積層体を加熱減圧乾燥する処理、及び該積層体に乾燥ガスを供給する処理を複数回繰返して行なうことを特徴とする電気二重層キャパシタの製造方法。   A step of laminating a positive electrode body, a negative electrode body, and a separator, a step of drying the laminate, a step of storing the laminate in a container, a step of injecting an electrolyte into the container, a step of subjecting the laminate to reduced pressure, And a method of manufacturing an electric double layer capacitor including the step of sealing the container containing the laminate, wherein the laminate is heated and dried under reduced pressure during the step of drying the laminate, and the laminate A method of manufacturing an electric double layer capacitor, wherein the process of supplying a dry gas is repeated a plurality of times. 積層体を乾燥する工程は、内部が加熱可能であり、真空ポンプと連通し、乾燥ガスの供給口及び排出口を有する容器に、該積層体を収納することにより行なう請求項1に記載の電気二重層キャパシタの製造方法。   2. The electricity according to claim 1, wherein the step of drying the laminated body is performed by housing the laminated body in a container that is internally heatable, communicates with a vacuum pump, and has a supply port and a discharge port for a dry gas. A manufacturing method of a double layer capacitor. 積層体に乾燥ガスを供給する処理は、積層体を加熱減圧乾燥する処理より高い圧力下、及び100〜250℃の温度下で行なう請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the process of supplying the dry gas to the multilayer body is performed under a higher pressure than the process of drying the multilayer body under reduced pressure by heating and at a temperature of 100 to 250 ° C. 乾燥ガスは、ヘリウム、ネオン、アルゴン、窒素、または空気である請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the dry gas is helium, neon, argon, nitrogen, or air.
JP2007182756A 2007-07-12 2007-07-12 Method of manufacturing electronic double-layer capacitor Pending JP2009021388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182756A JP2009021388A (en) 2007-07-12 2007-07-12 Method of manufacturing electronic double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182756A JP2009021388A (en) 2007-07-12 2007-07-12 Method of manufacturing electronic double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2009021388A true JP2009021388A (en) 2009-01-29

Family

ID=40360780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182756A Pending JP2009021388A (en) 2007-07-12 2007-07-12 Method of manufacturing electronic double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2009021388A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029380A (en) * 2017-07-25 2019-02-21 旭化成株式会社 Method for drying wound electrode body for nonaqueous lithium power storage element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029380A (en) * 2017-07-25 2019-02-21 旭化成株式会社 Method for drying wound electrode body for nonaqueous lithium power storage element

Similar Documents

Publication Publication Date Title
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP2009188003A (en) Manufacturing method of capacitor
US6309428B1 (en) Method for producing electrochemical capacitor
JP2009021388A (en) Method of manufacturing electronic double-layer capacitor
JP4623840B2 (en) Manufacturing method of electric double layer capacitor
US20150143680A1 (en) Ultracapacitor vacuum assembly
JP2002249307A (en) Method for reforming active carbon and method for manufacturing electric double layered condenser
JP2009021093A (en) Manufacturing method for battery or capacitor
JP2006324284A (en) Method for manufacturing electrochemical capacitor
JP2006179547A (en) Electric double layer capacitor and its manufacturing process
JP4044295B2 (en) Batteries, electric double layer capacitors and methods for producing them
JP4515301B2 (en) Electric double layer capacitor manufacturing method and manufacturing apparatus thereof
JP2006196562A (en) Electric double layer capacitor
JP2007227519A (en) Manufacturing method of electric double layer capacitor
JP3716081B2 (en) Electric double layer capacitor and manufacturing method thereof
JPWO2021033697A5 (en)
JP2009289766A (en) Electric double-layer capacitor module
JP2006261196A (en) Electric double layer capacitor
JP4672956B2 (en) Manufacturing method of electric double layer capacitor
JP2006135119A (en) Square-shaped electrode cell and its manufacturing method, and electric double layer capacitor using the same
JP2009111107A (en) Electrode sheet and electrochemical capacitor using the same
WO2011155000A1 (en) Capacitor
JP2005217036A (en) Apparatus and method for manufacturing electric double layer capacitor
JP2010123766A (en) Electrode sheet, and electric double-layer capacitor and lithium ion capacitor using the same