JP2009021093A - Manufacturing method for battery or capacitor - Google Patents

Manufacturing method for battery or capacitor Download PDF

Info

Publication number
JP2009021093A
JP2009021093A JP2007182757A JP2007182757A JP2009021093A JP 2009021093 A JP2009021093 A JP 2009021093A JP 2007182757 A JP2007182757 A JP 2007182757A JP 2007182757 A JP2007182757 A JP 2007182757A JP 2009021093 A JP2009021093 A JP 2009021093A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode active
separator
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007182757A
Other languages
Japanese (ja)
Inventor
Hiromasa Izaki
寛正 伊崎
Yasuhiko Koiso
保彦 小礒
Eisei Koura
永生 古浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Japan Pionics Ltd
Priority to JP2007182757A priority Critical patent/JP2009021093A/en
Publication of JP2009021093A publication Critical patent/JP2009021093A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for a battery or a capacitor, using an electrode including activated carbon for a component for electrode active material, in which water existing in an electrode sheet or a separator, or especially, water existing in pores of activated carbon used for the component of the electrode active material can be efficiently eliminated to an extraordinarily low level of concentration in a drying process of the electrode active material before lamination processing or the separator. <P>SOLUTION: A process of eliminating water from the electrode active material by supplying heated drying gas to the electrode active material of an electrode placed in a drying process space for eliminating water from the electrode active material, and a process of eliminating gas including water caused by the above process from the drying process space are repeated a plurality of times. Similar processes as above are carried out for the separator as well. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、活性炭を電極活物質の構成成分として含有する電極を用いた電池またはキャパシタの製造方法において、電極活物質の構成成分である活性炭の細孔に含まれる水分の除去を効率よく行なう方法、及び電極活物質とともに用いられるセパレータに含まれる水分の除去を効率よく行なう方法に関する。   The present invention relates to a method for efficiently removing water contained in pores of activated carbon, which is a constituent of an electrode active material, in a battery or capacitor manufacturing method using an electrode containing activated carbon as a constituent of an electrode active material. And a method for efficiently removing moisture contained in a separator used together with an electrode active material.

従来から、電池あるいはキャパシタ等には、活性炭を電極活物質の構成成分として含む電極が用いられている。
例えば、リチウムイオン二次電池には、活性炭等炭素材料の電極活物質と金属箔等の集電体からなる負極シートが用いられており、セパレータを介して交互に、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等の電極活物質と金属箔等の集電体からなる正極シートとともに捲回され、この捲回体が電解液に含浸されたセル構成を有している。さらにこのようなセルが円筒型容器に密封されてリチウムイオン二次電池とされている。
Conventionally, an electrode containing activated carbon as a constituent component of an electrode active material is used for a battery or a capacitor.
For example, in a lithium ion secondary battery, a negative electrode sheet made of a carbon material electrode active material such as activated carbon and a current collector such as a metal foil is used. The cell structure is wound together with a positive electrode sheet made of an electrode active material such as lithium manganate and a current collector such as a metal foil, and the wound body is impregnated with an electrolytic solution. Further, such a cell is sealed in a cylindrical container to form a lithium ion secondary battery.

また、電気二重層キャパシタにおいては、活性炭を含有する電極活物質と金属箔の集電体からなる電極シートが用いられており、この電極シートとセパレータが交互に積層(捲回)され、電解液が含浸されたセル構成を有している。さらにこのようなセルが偏平状容器または円筒型容器に密封されて電気二重層キャパシタとされている。
さらに、電気二重層キャパシタの正極シートとリチウムイオン二次電池の負極シートが用いられたハイブリッド型の電池がある。
Moreover, in the electric double layer capacitor, an electrode sheet made of an electrode active material containing activated carbon and a current collector of metal foil is used, and the electrode sheet and the separator are alternately laminated (rolled) to form an electrolyte solution. Has a cell configuration impregnated. Further, such a cell is sealed in a flat container or a cylindrical container to form an electric double layer capacitor.
Furthermore, there is a hybrid type battery using a positive electrode sheet of an electric double layer capacitor and a negative electrode sheet of a lithium ion secondary battery.

前記の電池またはキャパシタの製造は、電極シートとセパレータを、角型のものにおいてはサンドウィッチ状に、円筒型のものにおいてはロール状に形成し、集電体(正極体及び負極体)のリード部を各々の端子に接続して、積層体(捲回体)を容器に収納した後、容器の開口部から電解液を注入して積層体(捲回体)に電解液を含浸し、電極端子の先端を外部に露出した状態で容器を密封する方法が多く実施されている。   In the manufacture of the battery or capacitor, the electrode sheet and the separator are formed in a sandwich shape in a rectangular shape and in a roll shape in a cylindrical shape, and a lead portion of a current collector (a positive electrode body and a negative electrode body). Is connected to each terminal, and the laminated body (winding body) is accommodated in the container, and then an electrolytic solution is injected from the opening of the container to impregnate the laminated body (winding body) with the electrolytic solution. Many methods have been implemented to seal the container with its tip exposed to the outside.

このようなリチウムイオン二次電池または電気二重層キャパシタにおいては、電解液として、高い耐電圧が得られる有機系電解液が一般的に用いられているが、微量の水分の存在でも充放電を繰返すと徐々に電解液と水が反応し、一酸化炭素、二酸化炭素等のガスが生成して耐電圧が低下し劣化しやすくなるという不都合が生じるので、電解液を注入する前に積層体(捲回体)及び容器を充分に乾燥させ、その後の操作は容器を密封するまで乾燥された乾燥ガス雰囲気下で行なわれている。   In such a lithium ion secondary battery or electric double layer capacitor, an organic electrolytic solution that can obtain a high withstand voltage is generally used as the electrolytic solution. However, charging and discharging are repeated even in the presence of a small amount of moisture. As the electrolyte and water react gradually, a gas such as carbon monoxide and carbon dioxide is generated, resulting in a disadvantage that the withstand voltage is lowered and is likely to be deteriorated. The operation is performed under a dry gas atmosphere, which is dried until the container is sealed.

従来から、積層体(捲回体)の乾燥は、水分を効率よく除去するために、電極とセパレータを密着して積層した積層体(捲回体)の状態ではなく、電極シートとセパレータが別々に、あるいは電極シートとセパレータに間隙を設けた状態で加熱減圧乾燥により行なうことが多い。しかし、電極活物質の構成成分として使用される活性炭は、細孔を有し比表面積が大きいこと、電極シートには加熱温度の上限があること等により、電極シートの乾燥は真空乾燥機を用いても通常は10時間以上かかっていた。   Conventionally, in order to efficiently remove moisture, the laminated body (rolled body) is not a laminated body (rolled body) in which the electrode and the separator are stacked in close contact, but the electrode sheet and the separator are separated. Alternatively, it is often carried out by drying under heating and reduced pressure with a gap between the electrode sheet and the separator. However, activated carbon used as a component of the electrode active material has pores and a large specific surface area, and the electrode sheet has a maximum heating temperature. But it usually took more than 10 hours.

このような状況下、従来から容器内の水分を除去して高い耐電圧を長期間にわたり維持する方法として、例えば、電極活物質とセパレータに水分吸着材を含ませる方法、容器内に乾燥剤を入れる方法、電解液を含浸する前に高周波電流を電極に印加し水分を除去する方法等が提案されている。
特開平10−144570号公報 特開平10−321483号公報 特開平11−54378号公報 特開2000−182910号公報
Under such circumstances, conventionally, as a method of removing moisture in the container and maintaining a high withstand voltage over a long period of time, for example, a method of including a moisture adsorbent in the electrode active material and the separator, a desiccant in the container There have been proposed a method of adding water, a method of applying a high-frequency current to the electrode before impregnating the electrolytic solution, and removing moisture.
Japanese Patent Laid-Open No. 10-144570 Japanese Patent Laid-Open No. 10-321483 JP-A-11-54378 JP 2000-182910 A

しかしながら、水分吸着材あるいは乾燥剤を用いる方法は、電極活物質の構成材料として一般的に用いられている活性炭の細孔内に存在する水分を除去することが困難であり、また高周波電流を電極に印加する方法も、水分を極めて低濃度まで除去するために長時間の印加処理が必要であった。
従って、本発明が解決しようとする課題は、電極シート及びセパレータに存在する水分、特に電極活物質の構成成分として用いられる活性炭の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できる電池またはキャパシタの製造方法を提供することである。
However, the method using a moisture adsorbent or a desiccant is difficult to remove moisture present in the pores of activated carbon that is generally used as a constituent material of the electrode active material, and a high-frequency current is applied to the electrode. The method of applying to the substrate also required a long-time application process in order to remove moisture to an extremely low concentration.
Therefore, the problem to be solved by the present invention is that the moisture present in the electrode sheet and the separator, particularly the moisture present in the pores of the activated carbon used as a constituent component of the electrode active material, is efficiently reduced to a very low concentration. It is to provide a method of manufacturing a battery or capacitor that can be removed.

本発明者らは、前記の課題を解決すべく鋭意検討した結果、加熱された乾燥ガスを供給して電極活物質を加熱するとともに電極活物質から水分を脱着させる処理、及び水分を吸収したガスを除去する処理を複数回繰返して行なうことにより、電極活物質の構成成分として一般的に用いられている活性炭の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できること、さらに同様な処理をセパレータに対しても行なうことにより、セパレータに存在する水分を、効率よく極めて低濃度になるまで除去できることを見出し、本発明の電池またはキャパシタの製造方法の製造方法に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have supplied heated dry gas to heat the electrode active material, desorb moisture from the electrode active material, and gas that has absorbed moisture. By repeatedly performing the treatment for removing water several times, moisture present in the pores of activated carbon generally used as a component of the electrode active material can be efficiently removed to a very low concentration. By performing the same treatment on the separator, it was found that the water present in the separator can be efficiently removed to a very low concentration, and has reached the manufacturing method of the battery or capacitor manufacturing method of the present invention.

すなわち本発明は、活性炭を電極活物質の構成成分として含有する電極と、セパレータとを、交互に積層して構成される積層体を用いた電池またはキャパシタの製造方法であって、積層前の電極活物質の乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれた電極の電極活物質に供給して、該電極活物質から水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なうことを特徴とする電池またはキャパシタの製造方法である。   That is, the present invention relates to a method for manufacturing a battery or a capacitor using a laminate comprising alternately stacked electrodes containing activated carbon as a constituent of an electrode active material and separators, and the electrode before lamination In the drying process of the active material, a heated drying gas is supplied to the electrode active material of the electrode placed in the drying treatment space to remove moisture from the electrode active material, and a gas containing moisture by the treatment A method for manufacturing a battery or a capacitor is characterized in that the process of removing the water from the dry processing space is repeated a plurality of times.

また、本発明は、活性炭を電極活物質の構成成分として含有する電極と、セパレータとを、交互に積層して構成される積層体を用いた電池またはキャパシタの製造方法であって、積層前のセパレータの乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれたセパレータに供給して、該セパレータから水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なうことを特徴とする電池またはキャパシタの製造方法である。   The present invention also relates to a method for manufacturing a battery or a capacitor using a laminate comprising an electrode containing activated carbon as a constituent component of an electrode active material and a separator, which are alternately laminated. In the separator drying process, the heated drying gas is supplied to the separator placed in the drying processing space to remove moisture from the separator, and the moisture-containing gas is removed from the drying processing space by the processing. The method of manufacturing a battery or a capacitor is characterized in that the process is repeated a plurality of times.

本発明の電池またはキャパシタの製造方法により、従来から長時間かかっていた電極シート及びセパレータの乾燥処理時間を大幅に短縮することができるようになった。   According to the battery or capacitor manufacturing method of the present invention, the drying time of the electrode sheet and separator, which has conventionally taken a long time, can be greatly reduced.

本発明は、活性炭を電極活物質の構成成分として含有する電極を用いたリチウムイオン二次電池、ハイブリッド型の電池、あるいは電気二重層キャパシタ等の製造方法に適用される。また、本発明は、角型の電池、角型のキャパシタの製造方法、円筒型の電池、及び円筒型のキャパシタの製造方法に適用される。尚、本発明の電池またはキャパシタの製造方法においては、積層体には捲回体が含まれるものとする。   The present invention is applied to a method of manufacturing a lithium ion secondary battery, a hybrid battery, an electric double layer capacitor, or the like using an electrode containing activated carbon as a constituent component of an electrode active material. The present invention is also applied to a rectangular battery, a method for manufacturing a rectangular capacitor, a cylindrical battery, and a method for manufacturing a cylindrical capacitor. In the method for manufacturing a battery or a capacitor according to the present invention, the laminated body includes a wound body.

本発明は、積層前の電極活物質の乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれた電極の電極活物質に供給して、該電極活物質から水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なう製造方法である。また、積層前のセパレータの乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれたセパレータに供給して、該セパレータから水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なう製造方法である。   The present invention provides a process of removing moisture from the electrode active material by supplying a heated dry gas to the electrode active material of the electrode placed in the drying treatment space in the step of drying the electrode active material before lamination, and In the manufacturing method, the process of removing the gas containing moisture from the process from the drying process space is repeated a plurality of times. In addition, in the drying process of the separator before lamination, the heated drying gas is supplied to the separator placed in the drying processing space, and the moisture is removed from the separator, and the gas containing moisture by the treatment is added to the separator. In this manufacturing method, the process of removing from the drying process space is repeated a plurality of times.

本発明における電池またはキャパシタの捲回体は、例えばリチウムイオン二次電池においては、図1に示すように、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等の活物質と金属箔等の集電体からなる正極シート1、及び、活性炭を構成成分として含む活物質と金属箔等の集電体からなる負極シート2を、紙、パルプ、またはプラスチック等からなるセパレータ3を介して交互に積層させたものであり、正極シートのリード部4及び負極シートのリード部5が、各々電極端子に接続できるように積層させたものである。   As shown in FIG. 1, for example, in a lithium ion secondary battery, the battery or capacitor winding body according to the present invention is a current collector such as an active material such as lithium cobaltate, lithium nickelate, or lithium manganate and a metal foil. The positive electrode sheet 1 made of a body and the negative electrode sheet 2 made of a collector such as an active material containing activated carbon as a constituent and a metal foil are alternately laminated via separators 3 made of paper, pulp, plastic, or the like. The lead portion 4 of the positive electrode sheet and the lead portion 5 of the negative electrode sheet are laminated so that they can be connected to the electrode terminals, respectively.

また、本発明における電池またはキャパシタの積層体は、例えば電気二重層キャパシタにおいては、図2に示すように、通常は、活性炭のほか、カーボンブラック等を含む電極活物質にアルミ箔を貼り合わせた正極シート1と、同様に電極活物質にアルミ箔を貼り合わせた負極シート2を、紙、パルプ、またはプラスチック等からなるセパレータを介して交互に積層させたものであり、正極シートのリード部4及び負極シートのリード部5が、各々電極端子に接続できるように積層させたものである。
また、ハイブリッド型の電池は、前記の積層体において、電気二重層キャパシタの正極シートとリチウムイオン二次電池の負極シートを用いたものである。
Further, in the electric double layer capacitor, for example, in the electric double layer capacitor, the laminated body of the battery or the capacitor according to the present invention usually has an aluminum foil bonded to an electrode active material containing carbon black or the like in addition to activated carbon. A positive electrode sheet 1 and a negative electrode sheet 2 in which an aluminum foil is similarly bonded to an electrode active material are alternately laminated via a separator made of paper, pulp, plastic, or the like, and a lead portion 4 of the positive electrode sheet. And the lead part 5 of the negative electrode sheet is laminated so that it can be connected to each electrode terminal.
Moreover, the hybrid type battery uses a positive electrode sheet of an electric double layer capacitor and a negative electrode sheet of a lithium ion secondary battery in the above laminate.

本発明においては、図1、図2に示すような捲回体または積層体が積層される前に、加熱された乾燥ガスの乾燥処理空間への供給処理と、水分を含有した該ガスの乾燥処理空間からの除去処理の繰返しによる電極活物質の乾燥処理、セパレータの乾燥処理が行なわれる。例えば、ロール状に捲かれた電極シートまたはセパレータ、所定の大きさに切断された電極シートまたはセパレータを、本発明の方法により乾燥処理することができる。   In the present invention, before the wound body or laminate as shown in FIGS. 1 and 2 is laminated, the heated drying gas is supplied to the drying treatment space, and the moisture-containing gas is dried. A drying process of the electrode active material and a drying process of the separator are performed by repeating the removal process from the processing space. For example, an electrode sheet or separator rolled in a roll shape, or an electrode sheet or separator cut into a predetermined size can be dried by the method of the present invention.

また、本発明においては、前記のような捲回体または積層体を容器に密封するが、その構成材料は、通常はアルミ箔等の金属箔の表面を、熱溶融性のプラスチックフィルムで被覆したものである。電池またはキャパシタの製造において、容器の乾燥も必要であるが、この容器についても、捲回体または積層体を収納する前に、加熱された乾燥ガスを供給して容器を加熱するとともに容器から水分を除去する処理、及び水分を含有したガスを除去する処理を複数回繰返して乾燥することもできる。   Further, in the present invention, the wound or laminated body as described above is sealed in a container, and the constituent material is usually a metal foil such as an aluminum foil whose surface is covered with a heat-meltable plastic film. Is. In the production of a battery or capacitor, it is necessary to dry the container, and this container is also supplied with a heated dry gas to heat the container before storing the wound body or laminated body, and moisture from the container. It is also possible to repeat the treatment for removing the water and the treatment for removing the gas containing moisture a plurality of times for drying.

本発明における電極活物質の乾燥は、通常は、減圧ポンプ(真空ポンプ)と連通し、乾燥ガスの供給口及び排出口を有する容器、処理室等の乾燥処理空間に、電極シートのみ、セパレータのみ、または電極シートとセパレータを密着させない状態で収納することにより行なわれる。
加熱された乾燥ガスの乾燥処理空間への供給は、通常は乾燥処理空間と減圧ポンプが遮断された状態で行なわれる。また、水分を含有したガスの乾燥処理空間からの除去は、通常は乾燥処理空間と減圧ポンプが連通された状態で行なわれる。
The electrode active material in the present invention is usually dried with a vacuum pump (vacuum pump), a container having a supply port and a discharge port for a dry gas, a drying processing space such as a processing chamber, only an electrode sheet, only a separator. Alternatively, the electrode sheet and the separator are housed in a state where they are not in close contact with each other.
The supply of the heated drying gas to the drying processing space is usually performed in a state where the drying processing space and the vacuum pump are shut off. Further, the removal of the gas containing moisture from the drying processing space is usually performed in a state where the drying processing space and the vacuum pump are in communication.

乾燥ガスを供給する際の圧力条件としては、特に制限されることはないが、通常は50〜1000KPa(絶対圧力)、好ましくは常圧よりも高い圧力下(110〜1000KPa(絶対圧力))で行なわれる。また、乾燥ガスの温度条件としては、通常は100〜300℃、好ましくは150〜250℃である。
また、乾燥ガスの除去する際の圧力条件としては、通常は乾燥ガスを供給する際の圧力より低い圧力であるが、好ましくは10KPa(絶対圧力)以下、さらに好ましくは1KPa(絶対圧力)以下であり、真空ポンプが用いられる。
Although it does not restrict | limit especially as pressure conditions at the time of supplying dry gas, Usually, 50-1000 KPa (absolute pressure), Preferably under pressure (110-1000 KPa (absolute pressure)) higher than a normal pressure Done. Moreover, as temperature conditions of a dry gas, it is 100-300 degreeC normally, Preferably it is 150-250 degreeC.
The pressure condition for removing the dry gas is usually a pressure lower than the pressure for supplying the dry gas, preferably 10 KPa (absolute pressure) or less, more preferably 1 KPa (absolute pressure) or less. Yes, a vacuum pump is used.

本発明における電極活物質の乾燥は、前記のような加熱された乾燥ガスの供給処理、及び該ガスの除去処理を繰返すことにより行なわれる。各々の処理時間は、電極活物質の状態、処理条件等により異なり一概に限定することはできないが、通常は1回の各処理時間は1〜100分であり、各処理は通常は2回以上、好ましくは3〜20回行なわれる。前記の乾燥に要する時間は、通常は1〜10時間である。   The electrode active material in the present invention is dried by repeating the heated drying gas supply process and the gas removal process as described above. Each treatment time varies depending on the state of the electrode active material, treatment conditions, etc., and cannot be generally limited. However, each treatment time is usually 1 to 100 minutes, and each treatment is usually twice or more. It is preferably performed 3 to 20 times. The time required for the drying is usually 1 to 10 hours.

本発明において、電極活物質の乾燥処理時間が大幅に短縮できるメカニズムについては明確ではないが、加熱された乾燥ガスを供給して電極活物質を加熱すると、電極活物質である活性炭の細孔内に含まれる水分が活性炭から脱着してガス中に移動し、水分を吸収した該ガスを除去した後、再度加熱された乾燥ガスの供給及び除去を繰返すことにより、活性炭の細孔内の水分が効率よく除去されると考えられる。尚、乾燥ガスとしては、ヘリウム、ネオン、アルゴン、窒素、または空気を主成分とするガスが用いられる。乾燥ガスは、通常は100ppm以下、好ましくは10ppm以下、さらに好ましくは1ppm以下まで水分を除去したものが使用される。   In the present invention, the mechanism by which the drying time of the electrode active material can be significantly shortened is not clear, but when heated dry gas is supplied to heat the electrode active material, the pores of the activated carbon that is the electrode active material After the moisture contained in is desorbed from the activated carbon and moves into the gas and the gas that has absorbed the moisture is removed, the moisture in the pores of the activated carbon is reduced by repeating the supply and removal of the heated dry gas again. It is considered to be removed efficiently. As the dry gas, a gas containing helium, neon, argon, nitrogen, or air as a main component is used. The dry gas is usually used after removing moisture to 100 ppm or less, preferably 10 ppm or less, more preferably 1 ppm or less.

本発明においては、前述の乾燥工程が終了し、積層体または捲回体が形成された後、これらが乾燥処理済みの容器に収納され、電池またはキャパシタの製造が継続される。
積層体または捲回体の容器への収納は、積層体または捲回体の電極端子が容器の開口部側となるようにされる。次に、容器の開口部から電解液が注入され、続いて容器内が減圧され、積層体の減圧処理が行なわれる。この減圧処理により、電極活物質に吸着されているガスが除去されるとともに、積層体または捲回体に電解液を効率よく含浸することができる。また、必要に応じて、電解液の注入から容器の密封までの間に、電極活物質に含まれる水分や官能基を電気分解し除去するために、電極端子に通電して電解精製を行なうこともできる。積層体または捲回体の減圧処理後、例えば加熱された2本のヒートシールバーを、容器を挟んだ状態で押圧することにより容器の密封が行なわれ、電池またはキャパシタが得られる。尚、本発明においては、電解液の注入から容器の密封まで、乾燥ガス雰囲気下で行なわれる。
In the present invention, after the above-described drying step is completed and a laminated body or a wound body is formed, these are stored in a container that has been subjected to a drying process, and the production of a battery or a capacitor is continued.
The stacked body or the wound body is stored in the container so that the electrode terminal of the laminated body or the wound body is on the opening side of the container. Next, an electrolytic solution is injected from the opening of the container, and then the inside of the container is decompressed, and the laminate is decompressed. By this decompression treatment, the gas adsorbed on the electrode active material is removed, and the laminate or the wound body can be efficiently impregnated with the electrolytic solution. Also, if necessary, between the injection of the electrolyte and the sealing of the container, the electrode terminal is energized and subjected to electrolytic purification in order to electrolyze and remove moisture and functional groups contained in the electrode active material. You can also. After the laminated body or the wound body is depressurized, the container is sealed by pressing, for example, two heated heat-seal bars with the container interposed therebetween, and a battery or a capacitor is obtained. In the present invention, the process from injection of the electrolytic solution to sealing of the container is performed in a dry gas atmosphere.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

(電極活物質及びセパレータの乾燥)
活性炭、カーボンブラック等の混合物からなる電極活物質にアルミ箔を貼り合わせた一辺が100mmの正方形の正極シート、負極シート、及び紙製のセパレータ(合計30枚)を、温度25℃、湿度60%の空気で満たされた試験室に24時間放置した後、真空ポンプと連通し、乾燥ガスの供給口及び排出口を有する容積600ccの乾燥用容器に、各々が密着しないような状態で収納した。
(Drying of electrode active material and separator)
A 100 mm square positive electrode sheet, negative electrode sheet, and paper separator (30 sheets in total) with an aluminum foil bonded to an electrode active material made of a mixture of activated carbon, carbon black, etc., at a temperature of 25 ° C. and a humidity of 60% After being left for 24 hours in a test chamber filled with air, the sample was stored in a 600 cc drying container having a supply port and a discharge port for drying gas in a state where they were not in close contact with each other.

次に、水分含有率が1ppm以下、温度が200℃の乾燥窒素ガスを、加圧下(150〜200KPa(絶対圧力))、3000cc/minの条件で25分間供給した。続いて、乾燥用容器を10KPa(絶対圧力)以下の圧力条件で5分間減圧して窒素ガスを除去した。さらに、前記の加熱された乾燥窒素ガスを供給する処理、及び窒素ガスを除去する処理を9回繰返して(合計で10回、合計処理時間:5時間)電極活物質及びセパレータを乾燥する工程を終了した。   Next, dry nitrogen gas having a moisture content of 1 ppm or less and a temperature of 200 ° C. was supplied under pressure (150 to 200 KPa (absolute pressure)) at 3000 cc / min for 25 minutes. Subsequently, the drying container was decompressed for 5 minutes under a pressure condition of 10 KPa (absolute pressure) or less to remove nitrogen gas. Furthermore, the process of supplying the heated dry nitrogen gas and the process of removing the nitrogen gas are repeated 9 times (total 10 times, total processing time: 5 hours) to dry the electrode active material and the separator. finished.

(水分含有率の測定)
乾燥済の正極シート及び負極シートを、乾燥済のセパレータを介して交互に積層させるとともに、正極シートのリード部及び負極シートのリード部を、各々電極端子に溶接により接着して積層体を製作した。この間の積層作業は、乾燥窒素ガス雰囲気下で行なった。
また、表面をポリプロピレンが含まれるフィルムで被覆したアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、真空乾燥機を用いて50℃で15時間減圧乾燥した。尚、この偏平状の容器は、一辺に開口部を有するものであった。
(Measurement of moisture content)
The dried positive electrode sheet and negative electrode sheet were alternately laminated through the dried separator, and the lead part of the positive electrode sheet and the lead part of the negative electrode sheet were bonded to the electrode terminals by welding to produce a laminate. . The laminating operation during this period was performed in a dry nitrogen gas atmosphere.
In addition, a square flat container having a side of 150 mm and having an aluminum foil whose surface was covered with a film containing polypropylene as a base material was dried under reduced pressure at 50 ° C. for 15 hours using a vacuum dryer. This flat container had an opening on one side.

次に、乾燥窒素ガス雰囲気下において、積層体を電極端子が容器の開口部(貼り合せ部)側になるように偏平状の容器に挿入した後、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、容器を密封すれば電気二重層キャパシタが得られるが、その前に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は12ppmであった。   Next, in a dry nitrogen gas atmosphere, the laminate was inserted into a flat container so that the electrode terminal was on the opening (bonding part) side of the container, and then ammonium salt or the like was dispersed in the propylene carbonate solvent. 120 ml of electrolyte was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, when the container is sealed, an electric double layer capacitor can be obtained. Before that, the electrolytic solution was sampled and the water content of the electrolytic solution was measured. As a result, the water content was 12 ppm.

(電極活物質及びセパレータの乾燥)
実施例1と同様の正極シート、負極シート、及び紙製のセパレータ(合計30枚)を、温度25℃、湿度60%の空気で満たされた試験室に24時間放置した後、実施例1と同様の容積600ccの乾燥用容器に、各々が密着しないような状態で収納した。
次に、加熱された乾燥窒素ガスを供給する処理、及び窒素ガスを除去する処理を合計で6回(合計処理時間:3時間)行なったほかは実施例1と同様にして電極活物質及びセパレータを乾燥した。
(Drying of electrode active material and separator)
The same positive electrode sheet, negative electrode sheet, and paper separator (30 sheets in total) as in Example 1 were left in a test chamber filled with air at a temperature of 25 ° C. and a humidity of 60% for 24 hours. They were stored in a similar drying container having a capacity of 600 cc so that they were not in close contact with each other.
Next, an electrode active material and a separator were obtained in the same manner as in Example 1 except that the treatment for supplying heated dry nitrogen gas and the treatment for removing nitrogen gas were performed a total of six times (total treatment time: 3 hours). Dried.

(水分含有率の測定)
実施例1と同様にして積層体を製作した後、これを偏平状の容器に挿入し、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、捲回体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、実施例1と同様に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は28ppmであった。
(Measurement of moisture content)
After a laminate was produced in the same manner as in Example 1, this was inserted into a flat container, and 120 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the wound body was decompressed. During this period, the electrode terminals were energized and subjected to electrolytic purification. Thereafter, the electrolytic solution was sampled in the same manner as in Example 1, and the moisture content of the electrolytic solution was measured. As a result, the water content was 28 ppm.

[比較例1]
(電極活物質及びセパレータの乾燥)
実施例1と同様の正極シート、負極シート、及び紙製のセパレータ(合計30枚)を、温度25℃、湿度60%の空気で満たされた試験室に24時間放置した後、内部が加熱可能であり、真空ポンプと連通する容積600ccの乾燥用容器に、各々が密着しないような状態で収納した。
次に、乾燥用容器の温度を200℃に昇温するとともに減圧して、電極活物質及びセパレータを、200℃、5KPa(絶対圧力)以下の条件で18時間加熱減圧乾燥した。
[Comparative Example 1]
(Drying of electrode active material and separator)
The same positive electrode sheet, negative electrode sheet, and paper separators as in Example 1 (30 sheets in total) were allowed to stand in a test chamber filled with air at a temperature of 25 ° C. and a humidity of 60% for 24 hours, and then the inside could be heated. It was stored in a drying container having a capacity of 600 cc communicating with the vacuum pump in a state where they were not in close contact with each other.
Next, the temperature of the drying container was raised to 200 ° C. and the pressure was reduced, and the electrode active material and the separator were dried under heating and reduced pressure at 200 ° C. and 5 KPa (absolute pressure) for 18 hours.

(水分含有率の測定)
実施例1と同様にして積層体を製作した後、これを偏平状の容器に挿入し、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液120mlを容器に注入した。続いて、容器内を30分間真空ポンプにより減圧にして、捲回体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、実施例1と同様に電解液をサンプリングして電解液の水分含有率を測定した。その結果、水分含有率は60ppmであった。
(Measurement of moisture content)
After a laminate was manufactured in the same manner as in Example 1, this was inserted into a flat container, and 120 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was poured into the container. Subsequently, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the wound body was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, the electrolytic solution was sampled in the same manner as in Example 1, and the moisture content of the electrolytic solution was measured. As a result, the moisture content was 60 ppm.

以上のように、本発明電池またはキャパシタの製造方法は、電極シート及びセパレータの乾燥時間を大幅に短縮できることがわかった。   As mentioned above, it turned out that the manufacturing method of the battery of this invention or a capacitor can shorten the drying time of an electrode sheet and a separator significantly.

本発明における捲回体の一例示す斜視図The perspective view which shows an example of the winding body in this invention 本発明における積層体の一例示す斜視図The perspective view which shows an example of the laminated body in this invention

符号の説明Explanation of symbols

1 正極シート
2 負極シート
3 セパレータ
4 正極シートのリード部
5 負極シートのリード部
DESCRIPTION OF SYMBOLS 1 Positive electrode sheet 2 Negative electrode sheet 3 Separator 4 Positive electrode sheet lead part 5 Negative electrode sheet lead part

Claims (7)

活性炭を電極活物質の構成成分として含有する電極と、セパレータとを、交互に積層して構成される積層体を用いた電池またはキャパシタの製造方法であって、積層前の電極活物質の乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれた電極の電極活物質に供給して、該電極活物質から水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なうことを特徴とする電池またはキャパシタの製造方法。   A method for producing a battery or a capacitor using a laminate comprising alternately laminated activated carbon as an electrode active material component and a separator, wherein the electrode active material is dried before lamination. In the process, the heated dry gas is supplied to the electrode active material of the electrode placed in the dry treatment space, the moisture is removed from the electrode active material, and the gas containing moisture by the treatment is supplied to the dry treatment space. A process for producing a battery or a capacitor, wherein the process of removing from the battery is repeated a plurality of times. 活性炭を電極活物質の構成成分として含有する電極と、セパレータとを、交互に積層して構成される積層体を用いた電池またはキャパシタの製造方法であって、積層前のセパレータの乾燥工程において、加熱された乾燥ガスを乾燥処理空間に置かれたセパレータに供給して、該セパレータから水分を除去する処理、及び前記処理により水分を含有したガスを該乾燥処理空間から除去する処理を複数回繰返して行なうことを特徴とする電池またはキャパシタの製造方法。   A method for producing a battery or a capacitor using a laminate comprising an electrode containing activated carbon as a constituent component of an electrode active material and a separator, which are alternately laminated, and in the step of drying the separator before lamination, Supplying the heated dry gas to the separator placed in the drying treatment space, removing the moisture from the separator, and removing the moisture-containing gas from the drying treatment multiple times. A method for producing a battery or a capacitor, characterized by comprising: 加熱された乾燥ガスの乾燥処理空間への供給は、乾燥処理空間と減圧ポンプが遮断された状態で行なう請求項1または請求項2に記載の電池またはキャパシタの製造方法。   The battery or capacitor manufacturing method according to claim 1 or 2, wherein the heated drying gas is supplied to the drying processing space in a state where the drying processing space and the decompression pump are shut off. 水分を含有したガスの乾燥処理空間からの除去は、乾燥処理空間と減圧ポンプが連通された状態で行なう請求項1または請求項2に記載の電池またはキャパシタの製造方法。   The method for manufacturing a battery or capacitor according to claim 1 or 2, wherein the removal of the moisture-containing gas from the drying processing space is performed in a state where the drying processing space and the decompression pump are in communication. 乾燥ガスは、100〜300℃の温度である請求項1または請求項2に記載の電池またはキャパシタの製造方法。   The method for manufacturing a battery or a capacitor according to claim 1 or 2, wherein the dry gas has a temperature of 100 to 300 ° C. 乾燥ガスは、水分含有率が100ppm以下である請求項1または請求項2に記載の電池またはキャパシタの製造方法。   The method for manufacturing a battery or a capacitor according to claim 1, wherein the dry gas has a moisture content of 100 ppm or less. 乾燥ガスは、ヘリウム、ネオン、アルゴン、窒素、または空気である請求項1または請求項2に記載の電池またはキャパシタの製造方法。   The method for manufacturing a battery or a capacitor according to claim 1, wherein the dry gas is helium, neon, argon, nitrogen, or air.
JP2007182757A 2007-07-12 2007-07-12 Manufacturing method for battery or capacitor Pending JP2009021093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007182757A JP2009021093A (en) 2007-07-12 2007-07-12 Manufacturing method for battery or capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007182757A JP2009021093A (en) 2007-07-12 2007-07-12 Manufacturing method for battery or capacitor

Publications (1)

Publication Number Publication Date
JP2009021093A true JP2009021093A (en) 2009-01-29

Family

ID=40360574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007182757A Pending JP2009021093A (en) 2007-07-12 2007-07-12 Manufacturing method for battery or capacitor

Country Status (1)

Country Link
JP (1) JP2009021093A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192390A (en) * 2010-03-11 2011-09-29 Noritake Co Ltd Drying method and drying device of metal foil laminated body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192390A (en) * 2010-03-11 2011-09-29 Noritake Co Ltd Drying method and drying device of metal foil laminated body

Similar Documents

Publication Publication Date Title
JP5873971B2 (en) Electrochemical capacitor and electrode used therefor
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
JP6019400B2 (en) Electrode for electrochemical capacitor and electrochemical capacitor using the same
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP6976097B2 (en) Alkali metal ion doping method
JP2009188003A (en) Manufacturing method of capacitor
KR101660297B1 (en) Active carbon synthesized from ionic liquids, manufacturing method of the same, supercapacitor using the active carbon and manufacturing method of the supercapacitor
US10665852B2 (en) Method for reducing residual water content in battery material
JP2002249307A (en) Method for reforming active carbon and method for manufacturing electric double layered condenser
JP2009021093A (en) Manufacturing method for battery or capacitor
JP2010245086A (en) Method for manufacturing lithium ion capacitor
JP2009021388A (en) Method of manufacturing electronic double-layer capacitor
JP2006324284A (en) Method for manufacturing electrochemical capacitor
JP2003217669A (en) Method of manufacturing nonaqueous electrolyte battery
KR101571679B1 (en) Carbon nanofiber-ionic liquids composite, manufacturing method of the same, ultra-capacitor using the composite and manufacturing method of the ultra-capacitor
JP4515301B2 (en) Electric double layer capacitor manufacturing method and manufacturing apparatus thereof
JP3716081B2 (en) Electric double layer capacitor and manufacturing method thereof
JP2007227519A (en) Manufacturing method of electric double layer capacitor
JP2007049029A (en) Method of manufacturing electrochemical device
JP2006196562A (en) Electric double layer capacitor
JP2003100572A (en) Electric double layer capacitor and method for manufacturing the same
JP7439395B2 (en) Electricity storage device and method for manufacturing electricity storage device
JP2009111107A (en) Electrode sheet and electrochemical capacitor using the same
JP2010123766A (en) Electrode sheet, and electric double-layer capacitor and lithium ion capacitor using the same
JP2009289766A (en) Electric double-layer capacitor module