JP4515301B2 - Electric double layer capacitor manufacturing method and manufacturing apparatus thereof - Google Patents

Electric double layer capacitor manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP4515301B2
JP4515301B2 JP2005085648A JP2005085648A JP4515301B2 JP 4515301 B2 JP4515301 B2 JP 4515301B2 JP 2005085648 A JP2005085648 A JP 2005085648A JP 2005085648 A JP2005085648 A JP 2005085648A JP 4515301 B2 JP4515301 B2 JP 4515301B2
Authority
JP
Japan
Prior art keywords
furnace
electrode body
vacuum drying
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005085648A
Other languages
Japanese (ja)
Other versions
JP2006269739A (en
Inventor
英雄 小野
正久 堀江
修一 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2005085648A priority Critical patent/JP4515301B2/en
Publication of JP2006269739A publication Critical patent/JP2006269739A/en
Application granted granted Critical
Publication of JP4515301B2 publication Critical patent/JP4515301B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

この発明は、電気二重層キャパシタの製造方法およびこの製造方法に用いられる電気二重層キャパシタの製造装置に関する。   The present invention relates to a method for manufacturing an electric double layer capacitor and an apparatus for manufacturing an electric double layer capacitor used in the manufacturing method.

近年、各種の蓄電素子として、高速充放電,充放電深度,充放電サイクル特性に優れる電気二重層キャパシタの適用技術が注目される。電気二重層キャパシタは、正極体と負極体とこれらの間に介装するセパレータとから組成される積層体と、積層体を電解質溶液と共に密封する容器と、容器の外部に配置される1対の端子と、からなり、1対の端子が正極体および負極体の同極どうしの結束部に接続される。   2. Description of the Related Art In recent years, attention has been focused on application technologies of electric double layer capacitors that are excellent in high-speed charge / discharge, charge / discharge depth, and charge / discharge cycle characteristics as various power storage elements. The electric double layer capacitor includes a laminate composed of a positive electrode body, a negative electrode body, and a separator interposed therebetween, a container for sealing the laminate together with an electrolyte solution, and a pair of electrodes disposed outside the container. And a pair of terminals are connected to a bundling portion of the positive and negative electrodes having the same polarity.

容器は、金属箔の中間層を含む積層構造の樹脂フィルムから形成される(特許文献1,特許文献2、参照)。分極性電極の主原料としては、多孔質の活性炭に代えて非多孔性炭素を用いることも知られている(非特許文献1)。   A container is formed from the resin film of the laminated structure containing the intermediate | middle layer of metal foil (refer patent document 1, patent document 2, reference). It is also known that non-porous carbon is used instead of porous activated carbon as the main raw material of the polarizable electrode (Non-Patent Document 1).

非多孔性炭素は、易黒鉛化炭を乾留およびアルカリ賦活して得られるものであり、比表面積が100m2/g以下と、殆ど外比表面積だけと見させる程小さく、炭素組織の層間距離が0.36〜0.37nmの黒鉛様炭素である。このような非多孔性炭素を主原料に形成される分極性電極を用いる電気二重層キャパシタについては、充電により、初めて静電容量を発生する。充電前は、各種電解質イオン,溶媒,N2ガスなどを取り込める程度の細孔がない非多孔性炭素にも拘わらず、充電により、静電容量が発生するのは、炭素組織の層間への溶媒を伴った電解質イオンのインターカレーション(溶媒共挿入:solvent co-intercalation)によるものと推定されるのである。
特開2002−299168 特開2003−124078 『高エネルギー密度の電気二重層キャパシタ』(応用物理 第37巻 第8号(2004) 所載)
Non-porous carbon is obtained by dry distillation and alkali activation of graphitized charcoal, and has a specific surface area of 100 m 2 / g or less, which is so small that it can be regarded as almost only the external specific surface area, and the interlayer distance of the carbon structure is small. It is 0.36 to 0.37 nm graphite-like carbon. For an electric double layer capacitor using a polarizable electrode formed of such non-porous carbon as a main raw material, capacitance is generated for the first time by charging. Before charging, even though non-porous carbon does not have pores that can take in various electrolyte ions, solvents, N 2 gas, etc., the capacitance is generated by charging because of the solvent between the layers of the carbon structure. It is presumed that this is due to intercalation of electrolyte ions accompanied by (solvent co-intercalation).
JP 2002-299168 A JP2003-124078 "High energy density electric double layer capacitor" (Applied Physics Vol. 37, No. 8, 2004)

この発明は、このような従来技術を踏まえつつ、分極性電極の主原料として用いられる炭素質材料の特性を十分に引き出しえる、電気二重層キャパシタの製造方法およびその製造装置の提供を目的とする。   An object of the present invention is to provide an electric double layer capacitor manufacturing method and an apparatus for manufacturing the electric double layer capacitor capable of sufficiently extracting the characteristics of the carbonaceous material used as the main raw material of the polarizable electrode in consideration of such a conventional technique. .

第1の発明は、炭素質材料を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、正極体と負極体とセパレータとから所定の積層体を組成する工程、正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子を接合する工程と、積層体を1対の端子の一部が突き出る状態に収めて注入した電解質溶液に含浸させる工程、炭素電極の電界賦活を行うべく1対の端子の間に電圧を印加する工程、を順次に処理することを特徴とする電気二重層キャパシタの製造方法において、積層体に構成する前の正極体および負極体を真空乾燥炉に搬入して真空度10-5Pa以下の減圧状態で温度200℃以上に加熱する工程、を備え、正極体および負極体を真空乾燥炉に搬入して真空度10 -5 Pa以下の減圧状態で温度200℃以上に加熱する工程は、真空乾燥の処理が終わると正極体および負極体の搬出前に常圧の低露点の不活性ガスを真空乾燥炉の内部に充填する工程、を含み、炉内に常圧の低露点の不活性ガスを充填する工程は、真空乾燥炉と内部が常圧の低露点の不活性雰囲気に維持され、正極体と負極体とセパレータとから所定の積層体を組成する工程が行われるグローブボックスとの間を接続する通路、この通路を開閉するバルブ、を介してグローブボックスから不活性ガスを真空乾燥炉に供給することを特徴とする。 The first invention includes a step of forming a polarizable electrode using a carbonaceous material as a main raw material and attaching a current collector to the carbon electrode to form a positive electrode body and a negative electrode body, and a positive electrode body, a negative electrode body, and a separator. A step of composing a predetermined laminated body, a step of joining a pair of terminals to the bundling portions of the same polarity as lead portions of the positive electrode body and the negative electrode body, and a state in which a part of the pair of terminals protrudes from the laminated body A method of manufacturing an electric double layer capacitor comprising: sequentially impregnating an electrolyte solution injected in a container and impregnating the electrolyte solution; and applying a voltage between a pair of terminals to perform electric field activation of a carbon electrode. in, comprising the step, heating to above the temperature 200 ° C. the following reduced pressure vacuum 10 -5 Pa a positive electrode and the negative electrode body was carried into a vacuum drying oven before composing the stack, the positive electrode body and the negative electrode body In a vacuum drying oven Heating input to a temperature 200 ° C. or higher in the following reduced pressure vacuum 10 -5 Pa in the processing of vacuum drying is completed the positive electrode body and the negative electrode body normal pressure low dew point inert gas before unloading Filling the inside of the vacuum drying furnace, and filling the furnace with an inert gas having a normal pressure and low dew point, the vacuum drying furnace and the interior are maintained in an inert atmosphere having a normal pressure and low dew point, A vacuum drying furnace for removing inert gas from the glove box through a passage connecting between the glove box in which a step of composing a predetermined laminate from the positive electrode body, the negative electrode body, and the separator is performed, and a valve for opening and closing the passage. It is characterized by supplying to .

の発明は、第1の発明に係る電気二重層キャパシタの製造方法に用いられる電気二重層キャパシタの製造装置において、真空乾燥炉は、炉内を真空度10-5Pa以下に減圧する手段、炉内を温度200℃以上に加熱する手段、を備え、真空乾燥炉は、炉内に常圧の低露点の不活性ガスを充填する手段、を備え、炉内に常圧の低露点の不活性ガスを充填する手段は、真空乾燥炉と内部が常圧の低露点の不活性雰囲気に維持され、正極体と負極体とセパレータとから所定の積層体を組成する工程が行われるグローブボックスとの間を接続する通路、この通路を開閉するバルブ、を介してグローブボックスから不活性ガスを真空乾燥炉に供給する構成としたことを特徴とする。 According to a second aspect of the present invention, in the electric double layer capacitor manufacturing apparatus used in the method for manufacturing the electric double layer capacitor according to the first aspect of the invention, the vacuum drying furnace is a means for depressurizing the inside of the furnace to a degree of vacuum of 10 -5 Pa or less. And a means for heating the inside of the furnace to a temperature of 200 ° C. or higher, and the vacuum drying furnace comprises means for filling the furnace with an inert gas having a normal pressure and a low dew point. A means for filling the inert gas is a glove box in which a vacuum drying furnace and the inside are maintained in an inert atmosphere with a low dew point at normal pressure, and a step of composing a predetermined laminate from the positive electrode body, the negative electrode body, and the separator is performed. The inert gas is supplied to the vacuum drying furnace from the glove box through a passage connecting the two and a valve for opening and closing the passage .

の発明は、第の発明に係る電気二重層キャパシタの製造装置において、真空乾燥炉は、グローブボックスのパスボックスに密封可能な開閉扉を介して接続されることを特徴とする電気二重層キャパシタ。 A third invention is a manufacturing apparatus for an electric double layer capacitor according to the second invention, a vacuum drying oven, an electric double, characterized in that it is connected via a sealable door to pass box glove box Multilayer capacitor.

の発明は、第の発明に係る電気二重層キャパシタの製造装置において、真空乾燥炉は、グローブボックスのパスボックスを利用してその内部に構成されることを特徴とする。 A fourth invention is a manufacturing apparatus for an electric double layer capacitor according to the second invention, a vacuum drying furnace, characterized in that it is configured therein by using the pass box glove box.

の発明は、第の発明に係る電気二重層キャパシタの製造装置において、炉内を真空度10-5Pa以下に減圧する手段は、ターボ分子ポンプ、を備えることを特徴とする。 A fifth invention is a manufacturing apparatus for an electric double layer capacitor according to the second invention, the means for reducing the pressure in the furnace below the vacuum degree of 10 -5 Pa is characterized in that it comprises a turbo molecular pump, a.

第1の発明においては、真空度10-5Pa以下の減圧状態で温度200℃以上に加熱する工程により、正極体および負極体から水分など不純物を十分に除去することができる。その結果、電界賦活の工程において、不純物に因る分解生成物の発生も少なくなり、電界賦活により炭素質材料の特性を最大限に引き出せるようになる。つまり、高性能の電気二重層キャパシタを製造することが可能となる。分極性電極を形成する炭素質材料としては、非多孔質炭素または多孔質の活性炭を用いることが考えられる。 In the first invention, impurities such as moisture can be sufficiently removed from the positive electrode body and the negative electrode body by the step of heating to a temperature of 200 ° C. or higher in a reduced pressure state with a degree of vacuum of 10 −5 Pa or less. As a result, generation of decomposition products due to impurities is reduced in the electric field activation step, and the characteristics of the carbonaceous material can be maximized by electric field activation. That is, a high performance electric double layer capacitor can be manufactured. As the carbonaceous material forming the polarizable electrode, it is conceivable to use non-porous carbon or porous activated carbon.

そして、低露点(例えば、露点温度が−90℃)の不活性ガスを充填することにより、炉内が常圧に戻されるので、正極体および負極体の十分な乾燥状態を維持しつつ、これらを次の工程へ搬出することが可能となる。 And, by filling an inert gas having a low dew point (for example, a dew point temperature of −90 ° C.), the inside of the furnace is returned to normal pressure, so that the positive electrode body and the negative electrode body are maintained in a sufficiently dry state. Can be carried out to the next step.

の発明においては、真空乾燥炉により、真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱することが可能となり、正極体および負極体から水分など不純物を十分に除去することができる。 In the second invention, the vacuum drying furnace enables heating to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or less, and sufficiently removes impurities such as moisture from the positive electrode body and the negative electrode body. be able to.

そして、真空乾燥(真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する処理)が終わると、低露点(例えば、露点温度が−90℃)の不活性ガスを充填することにより、炉内が常圧に戻されるので、正極体および負極体の十分な乾燥状態を維持しつつ、これらを搬出することが可能となる。 When vacuum drying (treatment of heating to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or lower) is completed, an inert gas having a low dew point (for example, a dew point temperature of −90 ° C.) is filled. Thus, the inside of the furnace is returned to the normal pressure, so that the positive electrode body and the negative electrode body can be carried out while maintaining a sufficiently dry state.

そして、バルブの開閉により、グローブボックスから常圧の低露点の不活性ガスを炉内に充填可能のため、真空乾燥炉に不活性ガスを供給する専用の設備を備える必要がなくなる。 Then, by opening and closing the valve, for the glove box can be filled with low dew point inert gas atmospheric pressure in the furnace, it is unnecessary to provide a dedicated facility for supplying an inert gas into a vacuum drying oven.

の発明においては、真空乾燥の処理後、正極体および負極体は、外気に触れることなく、真空乾燥炉からパスボックスを通してグローブボックスに移せるのである。 In the third invention, after the vacuum drying treatment, the positive electrode body and the negative electrode body can be transferred from the vacuum drying furnace to the glove box through the pass box without touching the outside air.

の発明においては、真空乾燥(真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する処理)は、パスボックスの内部で行えるため、専用の真空乾燥炉が不要となる。 In a fourth aspect of the present invention, (in the following reduced pressure vacuum 10 -5 Pa, the process of heating to a temperature 200 ° C. or higher) vacuum drying, since performed inside the Path box, dedicated vacuum drying oven is not necessary .

の発明においては、ターボ分子ポンプにより、炉内を真空度10-5Pa以下に減圧可能となる。ターボ分子ポンプは、動作圧力に制限があり、補助ポンプが用いられる。 In the fifth invention, the inside of the furnace can be depressurized to a vacuum degree of 10 −5 Pa or less by the turbo molecular pump. The turbo molecular pump has a limited operating pressure, and an auxiliary pump is used.

図1は、電気二重層キャパシタの製造過程において、電界賦活などを処理するための装置10を説明するものである。槽11は、各工程の処理手段と共にグローブボックスの内部に設置される。グローブボックスの内部は、常圧の低露点(例えば、露点温度が−90℃)の不活性雰囲気に管理(維持)される。   FIG. 1 illustrates an apparatus 10 for processing electric field activation and the like in the manufacturing process of an electric double layer capacitor. The tank 11 is installed inside the glove box together with the processing means of each process. The inside of the glove box is managed (maintained) in an inert atmosphere having a low dew point at normal pressure (for example, a dew point temperature of −90 ° C.).

図1において、21は積層体22を収容する容器であり、金属箔の中間層を含む積層構造の樹脂フィルム(ラミネートフィルム)から形成される。積層体22は、正極体および負極体とこれらの間に介装するセパレータとから組成される。正極体および負極体は、分極性電極と集電体とから構成される。分極性電極は、非多孔性炭素(炭素質材料)を主原料に形成される。集電体は、高純度のアルミ箔から形成され、分極性電極(炭素電極)に取り付けられる。セパレータは、圧縮状態で100μmのガラス繊維から作られ、電解質溶液の保持体(retainner)機能を与えるべく、分極性電極と同等以上の厚みに設定される。分極性電極の集電体は、同極どうしが結束され、各結束部に極性の対応する端子24が接合される。1対の端子24は、高純度のアルミ板から形成される。   In FIG. 1, reference numeral 21 denotes a container for accommodating a laminated body 22, which is formed from a resin film (laminate film) having a laminated structure including an intermediate layer of metal foil. The laminate 22 is composed of a positive electrode body and a negative electrode body, and a separator interposed therebetween. The positive electrode body and the negative electrode body are composed of a polarizable electrode and a current collector. The polarizable electrode is formed using non-porous carbon (carbonaceous material) as a main raw material. The current collector is formed from a high-purity aluminum foil and is attached to a polarizable electrode (carbon electrode). The separator is made of 100 μm glass fiber in a compressed state, and is set to a thickness equal to or greater than that of the polarizable electrode in order to provide a retainer function for the electrolyte solution. The current collectors of the polarizable electrodes are bundled with the same polarity, and the terminals 24 corresponding to the polarities are joined to the respective binding portions. The pair of terminals 24 is formed from a high purity aluminum plate.

容器21を所定状態に収蔵する槽11は、真空ポンプに接続される配管用の開口部12と、槽11の内部をグローブボックスに開放する通路13およびこれを開閉するバルブ13aと、を備える。バルブ13aおよび蓋14を閉じると、槽11の内部は、高度な密閉状態に保持される。15は充放電装置に接続されるコネクタであり、槽11の内部において、容器21の開口から突き出る1対の端子24は、コネクタ15から延びる配線(コード)の鰐口部を介して分離可能に接続される。25は容器21を所定状態に保持する治具であり、プレート26に締付ボルト27が進退可能に螺合され、締付ボルト27上をスライド可能に支持されるプレート28、29が設けられる。プレート28,29間にスプリング30が介装され、締付ボルト27を初期位置からネジ込むと、プレート28,29間のスプリング30が圧縮され、プレート26,29間の容器21に加わる押圧力(面圧)を高めるようになっている。図示しないが、槽11は、電解質溶液を容器21に注入するための設備と、容器21内の余分な電解質溶液を回収するための設備と、を備える。   The tank 11 that stores the container 21 in a predetermined state includes an opening 12 for piping connected to a vacuum pump, a passage 13 that opens the inside of the tank 11 to a glove box, and a valve 13a that opens and closes this. When the valve 13a and the lid 14 are closed, the inside of the tank 11 is maintained in a highly sealed state. Reference numeral 15 denotes a connector connected to the charging / discharging device. In the tank 11, a pair of terminals 24 protruding from the opening of the container 21 are detachably connected via a wire (cord) opening extending from the connector 15. Is done. Reference numeral 25 denotes a jig that holds the container 21 in a predetermined state, and is provided with plates 28 and 29 that are screwed onto the plate 26 so that the fastening bolts 27 can be advanced and retracted, and are slidably supported on the fastening bolts 27. When the spring 30 is interposed between the plates 28 and 29 and the tightening bolt 27 is screwed from the initial position, the spring 30 between the plates 28 and 29 is compressed, and the pressing force applied to the container 21 between the plates 26 and 29 ( Surface pressure). Although not shown, the tank 11 includes equipment for injecting the electrolyte solution into the container 21 and equipment for recovering excess electrolyte solution in the container 21.

電解質溶液については、イミダゾリウム系などのカチオンと各種アニオンからなるイオン性液体グループの中から選定する。イオン性液体は、比較的に新規な開発物質であり、それ自体で電解質と溶媒の性格を併せ持つ。   The electrolyte solution is selected from an ionic liquid group consisting of cations such as imidazolium and various anions. An ionic liquid is a relatively new developed substance, and as such, has both the properties of an electrolyte and a solvent.

電気二重層キャパシタは、(1)非多孔性炭素を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、(2)正極体および負極体を真空乾燥炉に入れて真空度10-5Pa以下の減圧状態で温度200℃以上に加熱する工程、(3)正極体と負極体とセパレータとから積層体22を組成する工程、(4)正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子24を接合する工程と、(5)積層体22を1対の端子24の一部が突き出る状態に収めて注入した電解質溶液に含浸させる工程、(6)容器の密封前に炭素電極を電界賦活するべく1対の端子24の間に電圧を印加する工程、を経て製造される。 The electric double layer capacitor has the following steps: (1) forming a polarizable electrode using non-porous carbon as a main raw material and attaching a current collector to the carbon electrode to create a positive electrode body and a negative electrode body; (2) a positive electrode body And a step of placing the negative electrode body in a vacuum drying furnace and heating to a temperature of 200 ° C. or higher in a reduced pressure state with a degree of vacuum of 10 −5 Pa or less, (3) a step of composing the laminate 22 from the positive electrode body, the negative electrode body, and the separator; (4) a step of joining a pair of terminals 24 to the bundling portions of the same polarity as lead portions of the positive electrode body and the negative electrode body, and (5) a state in which a part of the pair of terminals 24 protrudes from the laminated body 22 And (6) a step of applying a voltage between the pair of terminals 24 to activate the carbon electrode before the container is sealed.

(1)において、非多孔性炭素は、比表面積が100m2/g以下かつ炭素組織の層間距離が0.36〜0.37nmの黒鉛様炭素であり、易黒鉛化コークスあるいはピッチ(前駆体)を300〜400℃で乾留した後、この原料炭に苛性アルカリ(例えば、KOH)を混合して不活性雰囲気中で650〜850℃に加熱する処理(アルカリ賦活)から得られる。乾留を経ない場合、多孔質の活性炭が生成される。 In (1), the non-porous carbon is graphite-like carbon having a specific surface area of 100 m 2 / g or less and a carbon structure interlayer distance of 0.36 to 0.37 nm, and graphitizable coke or pitch (precursor). Is obtained by a process (alkali activation) in which caustic (for example, KOH) is mixed with the raw coal and heated to 650-850 ° C. in an inert atmosphere. When carbonization is not performed, porous activated carbon is generated.

非多孔性炭素は、通常の手法で洗浄,粉砕などの処理を施した後、導電材(例えば、カーボンブラック)および結着材(例えば、ポリテトラフルオロエチレン)を加えて混練してシート状の分極性電極に形成され、この炭素電極に集電体を取り付けることにより、正極体および負極体が作成されるのである。   Non-porous carbon is processed into a sheet-like form after being subjected to treatments such as washing and pulverization by a normal method, and a conductive material (for example, carbon black) and a binder (for example, polytetrafluoroethylene) are added and kneaded. A positive electrode body and a negative electrode body are formed by forming a polarizable electrode and attaching a current collector to the carbon electrode.

(2)において、正極体および負極体は、真空乾燥炉に入れ、真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する。極度の減圧状態を確保するため、ターボ分子ポンプが使用される。この処理(真空乾燥)が終わると、正極体および負極体を真空乾燥炉から搬出する前に炉内を常圧に戻すべく低露点(例えば、露点温度が−90℃)の不活性ガスを充填するのである。ガラス繊維のセパレータについても、真空乾燥炉に正極体および負極体と一緒に入れ、真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する。 In (2), the positive electrode body and the negative electrode body are placed in a vacuum drying furnace and heated to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or lower. Turbo molecular pumps are used to ensure extreme pressure reduction. After this treatment (vacuum drying) is completed, the positive and negative electrode bodies are filled with an inert gas having a low dew point (for example, a dew point temperature of −90 ° C.) to return the inside of the furnace to normal pressure before carrying it out of the vacuum drying furnace. To do. The glass fiber separator is also put in a vacuum drying furnace together with the positive electrode body and the negative electrode body and heated to a temperature of 200 ° C. or higher in a reduced pressure state with a vacuum degree of 10 −5 Pa or lower.

(3)において、正極体と負極体とこれらの間に介装されるセパレータとから積層体22が組成される。組成後の積層体22は、以降の工程において、ばらけることがないよう、帯を巻いて結束する。(4)において、積層体22の各集電体は、同極どうしが結束され、各結束部に極性の対応する端子24を溶接する。   In (3), the laminate 22 is composed of a positive electrode body, a negative electrode body, and a separator interposed therebetween. The laminated body 22 after the composition is wound and bound so as not to be separated in the subsequent steps. In (4), the current collectors of the laminate 22 are bundled with the same polarity, and the terminals 24 corresponding to the polarities are welded to the binding portions.

(5)において、積層体22は、容器21に1対の端子24の一部(先端側)が開口から突き出る状態に収め、図1の槽11に収蔵される。密閉した槽11の内部を10Pa以下に減圧し、10Pa以下の減圧状態を保持しつつ、所定時間が経過すると、低露点(例えば、露点温度が−90℃)の不活性ガスを充填して槽11の内部を常圧に戻すのであり、常圧状態を保持しつつ、電解質溶液を容器21に注入する。注入後は、槽11の内部を10Pa以下の減圧状態に保持する処理と、低露点の不活性ガスの充填によって常圧状態に保持する処理と、を交互に繰り返すのである。これにより、炭素電極(分極性電極)およびセパレータに電解質溶液が十分に浸透するようになり、含浸時間も短縮される。   In (5), the laminated body 22 is housed in the container 21 in a state in which part of the pair of terminals 24 (front end side) protrudes from the opening, and is stored in the tank 11 of FIG. The inside of the sealed tank 11 is depressurized to 10 Pa or less, and when a predetermined time elapses while maintaining a depressurized state of 10 Pa or less, the tank is filled with an inert gas having a low dew point (for example, a dew point temperature of −90 ° C.). 11 is returned to normal pressure, and the electrolyte solution is injected into the container 21 while maintaining the normal pressure state. After the injection, the process of maintaining the inside of the tank 11 in a reduced pressure state of 10 Pa or less and the process of maintaining the normal pressure state by filling with an inert gas having a low dew point are alternately repeated. As a result, the electrolyte solution can sufficiently penetrate the carbon electrode (polarizable electrode) and the separator, and the impregnation time is also shortened.

(6)において、1次電界賦活および2次電界賦活が処理される。1次電界賦活は、積層体22を収めた開口状態の容器21を槽11に入れ、密閉した槽11の内部を10Pa以下の減圧状態に保持しつつ行われる充放電サイクルであり、電流密度が所定値(例えば、1mA/cm2)未満の定電流充電により、長時間かけて電圧を徐々に高め、予め定めた印加可能な最大電圧(例えば、3V〜5V)に達したら、その電圧を保持しつつ、所定時間が経過すると、定電流放電により、電圧を0Vまで低下させる。2次電界賦活は、密閉した槽11の内部を常圧の低露点(例えば、露点温度が−90℃)の不活性雰囲気に保持しつつ行われる充電サイクルと、10Pa以下の減圧状態(不活性雰囲気)に保持しつつ行われる充放電サイクルと、を交互に所定回数(例えば、2〜15回)行う処理であり、各充放電サイクルにおいて、電流密度が所定値(例えば、1mA/cm2)以上の定電流充電により、電圧を短時間に高め、予め定めた印加可能な最大電圧(例えば、3V〜5V)に達したら、その電圧を保持しつつ、所定時間が経過すると、定電流放電により、電圧を0Vまで低下させる。 In (6), primary electric field activation and secondary electric field activation are processed. The primary electric field activation is a charge / discharge cycle that is performed while an open container 21 containing the laminate 22 is placed in the tank 11 and the inside of the sealed tank 11 is maintained in a reduced pressure state of 10 Pa or less, and the current density is The voltage is gradually increased over a long period of time by constant current charging less than a predetermined value (for example, 1 mA / cm 2 ), and the voltage is maintained when a predetermined maximum voltage that can be applied (for example, 3 V to 5 V) is reached. However, when a predetermined time elapses, the voltage is reduced to 0 V by constant current discharge. The secondary electric field activation includes a charge cycle performed while maintaining the inside of the sealed tank 11 in an inert atmosphere having a low pressure dew point (for example, a dew point temperature of −90 ° C.) and a reduced pressure state (inactive) of 10 Pa or less. And a charge / discharge cycle performed while maintaining the atmosphere) alternately, a predetermined number of times (for example, 2 to 15 times), and in each charge / discharge cycle, the current density is a predetermined value (for example, 1 mA / cm 2 ). With the above constant current charging, when the voltage is increased in a short time and reaches a predetermined maximum voltage that can be applied (for example, 3 V to 5 V), when the predetermined time has passed while maintaining the voltage, constant current discharge is performed. Reduce the voltage to 0V.

2次電界賦活の、密閉した槽11の内部を常圧の低露点の不活性雰囲気に保持しつつ行われる、最後の充放電サイクルにおいては、予め定めた印加可能な最大電圧を一定時間保持した後、槽11の蓋14を開いた状態において、治具25(図1、参照)の締付ボルト27を初期位置から所定量だけネジ込むことにより、スプリング30のバネ力を高めて容器21内の余分な電解質溶液を回収する処理が行われる。その後、電圧0の放電状態において、容器21の開口を密封するのである。   In the final charge / discharge cycle, which is performed while maintaining the inside of the sealed tank 11 of the secondary electric field activation in an inert atmosphere with a low pressure dew point at normal pressure, a predetermined maximum voltage that can be applied is maintained for a certain period of time. Thereafter, in a state where the lid 14 of the tank 11 is opened, the spring bolt of the jig 25 (see FIG. 1) is screwed by a predetermined amount from the initial position, thereby increasing the spring force of the spring 30 and increasing the inside of the container 21. The excess electrolyte solution is recovered. Thereafter, the opening of the container 21 is sealed in a discharge state at a voltage of 0.

非多孔性炭素は、比表面積が100m2/g以下かつ炭素組織の層間距離が0.36〜0.37nmの黒鉛様炭素であり、充電前は、電解質イオン,溶媒,N2ガスなどを取り込める程度の細孔がないが、充電により、印加電圧がしきい値を超えると、炭素組織への溶媒を伴った電解質イオンの侵入(インタカレーション)により、層間に電気二重層が形成され、初めて静電容量が発生する。溶媒は、電解質イオンの出し入れを媒介する。インターカレーションにより、層間距離が拡大するため、炭素電極の体積が膨張する。この膨張は、印加電圧に応じて増減するのである。 Non-porous carbon is graphite-like carbon having a specific surface area of 100 m 2 / g or less and a carbon structure interlayer distance of 0.36 to 0.37 nm, and can take in electrolyte ions, solvents, N 2 gas, and the like before charging. Although there are no pores of the degree, when the applied voltage exceeds the threshold value due to charging, an electric double layer is formed between the layers due to the intrusion (intercalation) of the electrolyte ions with the solvent into the carbon structure. Capacitance is generated. The solvent mediates electrolyte ions in and out. Intercalation increases the distance between the layers, and the volume of the carbon electrode expands. This expansion increases and decreases according to the applied voltage.

1次電界賦活は、長時間充電によるので、インターカレーションを効率よく炭素組織の層間に浸透させることができる。充電に伴って気体状の分解生成物が発生しても、10Pa以下の減圧環境下において、気体状の分解生成物の溶解度も低下するため、電解質溶液から気体状の分解生成物を速やかに放出させることができる。2次電界賦活においては、各サイクルが比較的に短時間の充電となるが、これを繰り返すことにより、炭素電極(分極性電極)の膨張の増減が安定するのである。電解質イオンの出し入れを媒介する溶媒により、炭素組織の奥部に吸着する気体状の分解生成物も効率よく持ち出され、充電に伴う気体状の分解生成物の除去が促進される。10Pa以下の減圧環境下において、気体状の分解生成物は、電解質溶液から速やかに放出される。不活性雰囲気の常圧環境下においては、電解質イオンの出し入りを媒介する溶媒の浸透が促進される。   Since the primary electric field activation is based on long-time charging, intercalation can efficiently penetrate between the layers of the carbon structure. Even when a gaseous decomposition product is generated with charging, the solubility of the gaseous decomposition product also decreases under a reduced pressure environment of 10 Pa or less, so that the gaseous decomposition product is quickly released from the electrolyte solution. Can be made. In the secondary electric field activation, each cycle is charged for a relatively short time. By repeating this, the increase and decrease of the expansion of the carbon electrode (polarizable electrode) is stabilized. The solvent that mediates the entry / exit of the electrolyte ions efficiently brings out the gaseous decomposition products adsorbed in the inner part of the carbon structure, and promotes the removal of the gaseous decomposition products accompanying charging. In a reduced pressure environment of 10 Pa or less, the gaseous decomposition product is rapidly released from the electrolyte solution. In a normal pressure environment of an inert atmosphere, penetration of the solvent that mediates the entry and exit of electrolyte ions is promoted.

このような(1)〜(6)の工程を経る製造方法においては、(2)の工程により、水分など不純物が十分に除去されるため、(6)の工程における、不純物に因る分解生成物の発生も少なくなり、電界賦活により、非多孔性炭素の特性を最大限に引き出せるのである。つまり、高性能の電気二重層キャパシタを製造することができる。   In the manufacturing method that includes the steps (1) to (6), impurities such as moisture are sufficiently removed by the step (2). The generation of materials is reduced, and the characteristics of non-porous carbon can be maximized by electric field activation. That is, a high performance electric double layer capacitor can be manufactured.

図2は、(2)の工程に用いる真空乾燥炉を説明する構成図であり、40は炉本体であり、炉内を真空度10-5Pa以下に減圧(真空引き)する手段45、炉内を温度200℃以上に加熱する手段(図示せず)、炉内に常圧の低露点の不活性ガスを充填する手段60、を備える。 FIG. 2 is a block diagram for explaining a vacuum drying furnace used in the step (2), 40 is a furnace body, means 45 for depressurizing (evacuating) the inside of the furnace to a degree of vacuum of 10 −5 Pa or less, furnace Means (not shown) for heating the interior to a temperature of 200 ° C. or higher, and means 60 for filling the furnace with an inert gas having a normal pressure and a low dew point.

41は羽根を高速回転させて気体分子を弾き飛ばすことにより排気するターボ分子ポンプであり、42はトラップであり、43はロータリポンプ(真空ポンプ)であり、これらを直列に接続する回路により、炉内を真空度10-5Pa以下に減圧(真空引き)する手段45が構成される。ターボ分子ポンプ41は、動作圧力に制限があるため、補助ポンプとしてロータリポンプ43が備えられるのである。 Reference numeral 41 denotes a turbo molecular pump that exhausts air by spinning blades at high speed, 42 is a trap, and 43 is a rotary pump (vacuum pump). A means 45 for reducing the pressure (vacuum) to a degree of vacuum of 10 −5 Pa or less is configured. Since the turbo molecular pump 41 has a limited operating pressure, a rotary pump 43 is provided as an auxiliary pump.

炉内を真空度10-5Pa以下に減圧するときは、ロータリポンプ43のみを先に運転する。炉内が所定の真空度に達したら、さらに目標の真空度(10-5Pa以下)に減圧するべく、ロータリポンプ43を運転状態に維持しつつ、ターボ分子ポンプ41の運転を開始するのである。 When the pressure in the furnace is reduced to 10 -5 Pa or less, only the rotary pump 43 is operated first. When the inside of the furnace reaches a predetermined degree of vacuum, the operation of the turbo molecular pump 41 is started while maintaining the rotary pump 43 in an operating state in order to further reduce the pressure to a target degree of vacuum (10 −5 Pa or less). .

61は炉本体40とグローブボックス(図3、参照)との間を接続する通路であり、62は通路61を開閉するバルブであり、これらにより、炉内に常圧の低露点の不活性ガスを充填する手段60が構成される。図3において、50は装置10(図1、参照)を含む各工程の処理手段を収装するグローブボックス、51はパスボックスであり、炉本体40は、グローブボックス50の外部に配置され、パスボックス51に搬出用の開閉扉を介して接続される。 61 is a passage for connecting the furnace body 40 and the glove box (see FIG. 3), 62 is a valve for opening and closing the passage 61, and thereby, an inert gas having a normal pressure and a low dew point in the furnace. The means 60 for filling is configured. In FIG. 3, 50 is a glove box that houses the processing means of each process including the apparatus 10 (see FIG. 1), 51 is a pass box, and the furnace body 40 is disposed outside the glove box 50, and passes It is connected to the box 51 via an opening / closing door.

52はグローブボックス50の内部に対するパスボックス51の開閉扉であり、53は作業用のグローブの取付部(グローブボックス50の外壁に手の差込口を開口する)であり、54は作動用の窓部であり、グローブボックス50の外部から、これらを使って各工程に必要な作業や操作が行えるようになっている。グローブおよび窓部54は、必要な数だけグローブボックス50に配置される。   52 is an opening / closing door of the pass box 51 with respect to the inside of the glove box 50, 53 is a work glove mounting portion (opens a hand slot on the outer wall of the glove box 50), and 54 is an operating glove box. It is a window part, and the operation | work and operation required for each process can be performed from the outside of the glove box 50 using these. The required number of gloves and windows 54 are arranged in the glove box 50.

(2)の工程においては、炉内に積層体22の組成材料(正極体,負極体,ガラス繊維のセパレータ)を搬入用の開閉扉から収める。炉本体40の密閉状態において、ロータリポンプ43およびターボ分子ポンプ41により、炉内を真空度10-5Pa以下に減圧する。そして、真空度10-5Pa以下の減圧状態において、炉内を温度200℃以上に加熱するのである。この処理が終了すると、通路61のバルブ62を開いてグローブボックス50から炉内に常圧の低露点の不活性ガスを充填する。その後、パスボックス51の開閉扉52および炉本体40の搬出用の開閉扉を開いて組成材料をパスボックス51に移してグローブボックス50の内部へ搬入するのである。 In the step (2), the composition material (the positive electrode body, the negative electrode body, and the glass fiber separator) of the laminated body 22 is placed in the furnace from the opening and closing door. In the sealed state of the furnace body 40, the inside of the furnace is depressurized to 10 −5 Pa or less by the rotary pump 43 and the turbo molecular pump 41. Then, the inside of the furnace is heated to a temperature of 200 ° C. or higher in a reduced pressure state with a degree of vacuum of 10 −5 Pa or less. When this process is completed, the valve 62 of the passage 61 is opened, and the furnace is filled with an inert gas having a normal pressure and a low dew point from the glove box 50. Thereafter, the opening / closing door 52 of the pass box 51 and the opening / closing door for carrying out the furnace body 40 are opened, the composition material is transferred to the pass box 51 and carried into the glove box 50.

このような真空乾燥炉によると、真空度10-5Pa以下の減圧状態において、温度200℃以上の加熱が可能となり、組成材料から水分など不純物を十分に除去することができる。この処理(真空乾燥)後、低露点の不活性ガスにより、炉内が常圧に戻されるので、組成材料の十分な乾燥状態を維持しつつ、これらを搬出することが可能となる。その際、炉本体40がパスボックス51に搬出用の開閉扉を介して接続するため、組成材料は、外気に触れることなく、炉内からパスボックス51を通してグローブボックス50へ搬入することができる。炉内への充填用の不活性ガスについては、グローブボックス50から通路61およびバルブ62を介して供給するようにしたので、真空乾燥炉に不活性ガスを供給する専用の設備を備える必要がなくなるのである。 According to such a vacuum drying furnace, heating at a temperature of 200 ° C. or higher is possible in a reduced pressure state with a degree of vacuum of 10 −5 Pa or less, and impurities such as moisture can be sufficiently removed from the composition material. After this treatment (vacuum drying), the inside of the furnace is returned to normal pressure by an inert gas having a low dew point, so that it is possible to carry them out while maintaining a sufficiently dry state of the composition material. At this time, since the furnace body 40 is connected to the pass box 51 via an opening / closing door, the composition material can be carried into the glove box 50 from the furnace through the pass box 51 without touching the outside air. Since the inert gas for filling the furnace is supplied from the glove box 50 through the passage 61 and the valve 62, there is no need to provide a dedicated facility for supplying the inert gas to the vacuum drying furnace. It is.

図4は、(2)の工程に用いる別の真空乾燥炉を説明する構成図であり、40Aは炉本体であり、炉内を真空度10-5Pa以下に減圧(真空引き)する手段45A、炉内を温度200℃以上に加熱する手段(図示せず)、炉内に常圧の低露点の不活性ガスを充填する手段60A、を備える。炉本体40Aは、グローブボックスの外部に配置するのでなく、パスボックスを利用してその内部に構成される。 FIG. 4 is a block diagram for explaining another vacuum drying furnace used in the step (2). Reference numeral 40A denotes a furnace body, and means 45A for depressurizing (evacuating) the inside of the furnace to a degree of vacuum of 10 −5 Pa or less. , A means (not shown) for heating the inside of the furnace to a temperature of 200 ° C. or higher, and a means 60A for filling the furnace with an inert gas having a low dew point at normal pressure. The furnace main body 40A is not disposed outside the glove box, but is configured inside using a pass box.

41は羽根を高速回転させて気体分子を弾き飛ばすことにより排気するターボ分子ポンプであり、42はトラップであり、43はロータリポンプ(真空ポンプ)であり、これらを直列に接続する回路により、炉内を真空度10-5Pa以下に減圧(真空引き)する手段45Aが構成される。この回路45Aに3方向切換弁46が介装される。3方向切換弁46は、ポート(a)-(b)間を連通するポジションと、ポート(a)-(c)間を連通するポジションと、の2位置に切り替え可能なものである。 Reference numeral 41 denotes a turbo molecular pump that exhausts air by spinning blades at high speed, 42 is a trap, and 43 is a rotary pump (vacuum pump). Means 45A for depressurizing (evacuating) the inside to a degree of vacuum of 10 −5 Pa or less is configured. A three-way switching valve 46 is interposed in the circuit 45A. The three-way switching valve 46 can be switched between two positions: a position where the ports (a)-(b) communicate with each other and a position where the ports (a)-(c) communicate with each other.

炉内を真空度10-5Pa以下に減圧するときは、3方向切換弁46のポート(a)-(b)間を連通させる。この状態において、図2の真空乾燥炉と同様にロータリポンプ43のみを先に運転する。炉内が所定の真空度に達したら、さらに目標の真空度(10-5Pa以下)に減圧するべく、ロータリポンプ43を運転状態に維持しつつ、ターボ分子ポンプ41の運転を開始させるのである。3方向切換弁46のポート(a)-(c)間を連通させると、ターボ分子ポンプ41を経由する回路45Aから経由しない回路47に切り替わるため、ロータリポンプ43の運転のみに基づいて、炉内を所定の真空度に減圧することもできる。これにより、真空乾燥炉において、正極体および負極体のように10-5Pa以下の真空度を要する処理と、端子24(図1、参照)のようにそれほどの真空度を要さない処理と、の両方に対応可能となる。61Aはパスボックス(炉本体40A)とグローブボックスとの間を接続する通路であり、62Aは通路を開閉するバルブであり、これらにより、炉内に常圧の低露点の不活性ガスを充填する手段60Aが構成される。 When the pressure in the furnace is reduced to 10 -5 Pa or less, the ports (a)-(b) of the three-way selector valve 46 are communicated. In this state, only the rotary pump 43 is operated first as in the vacuum drying furnace of FIG. When the inside of the furnace reaches a predetermined degree of vacuum, the operation of the turbo molecular pump 41 is started while maintaining the rotary pump 43 in an operating state in order to further reduce the pressure to the target degree of vacuum (10 −5 Pa or less). . When the ports (a)-(c) of the three-way switching valve 46 are communicated, the circuit 45A that passes through the turbo molecular pump 41 is switched to the circuit 47 that does not pass through. Therefore, based on the operation of the rotary pump 43 only, Can be depressurized to a predetermined degree of vacuum. As a result, in a vacuum drying furnace, a process that requires a vacuum of 10 −5 Pa or less, such as a positive electrode body and a negative electrode body, and a process that does not require that much vacuum, such as the terminal 24 (see FIG. 1). It becomes possible to support both. 61A is a passage that connects the pass box (furnace body 40A) and the glove box, and 62A is a valve that opens and closes the passage. By these, the furnace is filled with an inert gas at a normal pressure and a low dew point. A means 60A is configured.

(2)の工程においては、炉内に積層体22の組成材料(正極体,負極体,ガラス繊維のセパレータ)を搬入用の開閉扉から収める。パスボックス40Aの密閉状態において、ロータリポンプ43およびターボ分子ポンプ41により、炉内を真空度10-5Pa以下に減圧する。そして、真空度10-5Pa以下の減圧状態において、炉内を温度200℃以上に加熱するのである。この処理が終了すると、通路61Aのバルブ62Aを開いてグローブボックスから炉内に常圧の低露点の不活性ガスを充填する。その後、パスボックス40Aの開閉扉を開いて組成材料をグローブボックスの内部へ搬入するのである(図3、参照)。 In the step (2), the composition material (the positive electrode body, the negative electrode body, and the glass fiber separator) of the laminated body 22 is placed in the furnace from the opening and closing door. In the sealed state of the pass box 40A, the pressure in the furnace is reduced to 10 −5 Pa or less by the rotary pump 43 and the turbo molecular pump 41. Then, the inside of the furnace is heated to a temperature of 200 ° C. or higher in a reduced pressure state with a degree of vacuum of 10 −5 Pa or less. When this processing is completed, the valve 62A of the passage 61A is opened, and an inert gas having a normal pressure and a low dew point is filled into the furnace from the glove box. Thereafter, the opening / closing door of the pass box 40A is opened to carry the composition material into the glove box (see FIG. 3).

このような真空乾燥炉によると、真空乾燥(真空度10-5Pa以下の減圧状態において、温度200℃以上に加熱する処理)は、パスボックス40Aの内部で行えるため、専用の真空乾燥炉が不要となり、設備費を大きく低減することができる。 According to such a vacuum drying furnace, vacuum drying (a process of heating to a temperature of 200 ° C. or higher in a reduced pressure state with a degree of vacuum of 10 −5 Pa or lower) can be performed inside the pass box 40A. It becomes unnecessary and can greatly reduce the equipment cost.

この発明の実施形態に係る装置(槽)の説明図である。It is explanatory drawing of the apparatus (tank) which concerns on embodiment of this invention. 同じく真空乾燥炉の説明図である。It is explanatory drawing of a vacuum drying furnace similarly. 同じくグローブボックスを説明する断面図である。It is sectional drawing explaining a glove box similarly. 別の実施形態に係る真空乾燥炉の説明図である。It is explanatory drawing of the vacuum-drying furnace which concerns on another embodiment.

符号の説明Explanation of symbols

21 電気二重層キャパシタの容器
22 積層体
24 端子
40,40A 炉本体
41 ターボ分子ポンプ
42 トラップ
43 ロータリポンプ(真空ポンプ)
45,45A 減圧(真空引き)手段
60,60A 不活性ガスの充填手段
61,61A 通路
62,62A バルブ
21 Container for Electric Double Layer Capacitor 22 Laminate 24 Terminal 40, 40A Furnace Body 41 Turbo Molecular Pump 42 Trap 43 Rotary Pump (Vacuum Pump)
45, 45A Depressurization (evacuation) means 60, 60A Inert gas filling means 61, 61A Passage 62, 62A Valve

Claims (5)

炭素質材料を主原料に分極性電極を形成すると共に集電体をこの炭素電極に取り付けることにより正極体および負極体を作成する工程、正極体と負極体とセパレータとから所定の積層体を組成する工程、正極体および負極体のリード部としてこれらの同極どうしの結束部に1対の端子を接合する工程と、積層体を1対の端子の一部が突き出る状態に収めて注入した電解質溶液に含浸させる工程、炭素電極の電界賦活を行うべく1対の端子の間に電圧を印加する工程、を順次に処理することを特徴とする電気二重層キャパシタの製造方法において、積層体に構成する前の正極体および負極体を真空乾燥炉に搬入して真空度10-5Pa以下の減圧状態で温度200℃以上に加熱する工程、を備え、正極体および負極体を真空乾燥炉に搬入して真空度10 -5 Pa以下の減圧状態で温度200℃以上に加熱する工程は、真空乾燥の処理が終わると正極体および負極体の搬出前に常圧の低露点の不活性ガスを真空乾燥炉の内部に充填する工程、を含み、炉内に常圧の低露点の不活性ガスを充填する工程は、真空乾燥炉と内部が常圧の低露点の不活性雰囲気に維持され、正極体と負極体とセパレータとから所定の積層体を組成する工程が行われるグローブボックスとの間を接続する通路、この通路を開閉するバルブ、を介してグローブボックスから不活性ガスを真空乾燥炉に供給することを特徴とする電気二重層キャパシタの製造方法。 Forming a polarizable electrode from a carbonaceous material as a main raw material and attaching a current collector to the carbon electrode to create a positive electrode body and a negative electrode body, composing a predetermined laminate from the positive electrode body, the negative electrode body, and a separator A step of bonding a pair of terminals to the bundling portions of the same polarity as lead portions of the positive electrode body and the negative electrode body, and an electrolyte in which the laminated body is put in a state in which a part of the pair of terminals protrudes In the method of manufacturing an electric double layer capacitor, the step of impregnating in a solution and the step of applying a voltage between a pair of terminals to perform electric field activation of the carbon electrode are sequentially formed. comprising the step, heating to above the temperature 200 ° C. the following reduced pressure vacuum 10 -5 Pa a positive electrode and the negative electrode body was carried into a vacuum drying oven before, carrying a positive electrode and a negative electrode body into a vacuum drying oven And the degree of vacuum 0 -5 Pa heating above a temperature 200 ° C. at a reduced pressure of not more than state, the vacuum drying oven to inert gas treatment ends and before unloading of the positive electrode body and the negative electrode body normal pressure low dew point of the vacuum drying The step of filling the furnace with an inert gas having a normal pressure and a low dew point is maintained in a vacuum drying furnace and an inert atmosphere having a low pressure and a normal dew point. Supplying an inert gas from the glove box to the vacuum drying furnace through a passage connecting between the glove box and a glove box in which a step of composing a predetermined laminate is performed from the separator and a valve for opening and closing the passage. A manufacturing method of an electric double layer capacitor characterized in that 請求項1に係る電気二重層キャパシタの製造方法に用いられる電気二重層キャパシタの製造装置において、真空乾燥炉は、炉内を真空度10-5Pa以下に減圧する手段、炉内を温度200℃以上に加熱する手段、を備え、真空乾燥炉は、炉内に常圧の低露点の不活性ガスを充填する手段、を備え、炉内に常圧の低露点の不活性ガスを充填する手段は、真空乾燥炉と内部が常圧の低露点の不活性雰囲気に維持され、正極体と負極体とセパレータとから所定の積層体を組成する工程が行われるグローブボックスとの間を接続する通路、この通路を開閉するバルブ、を介してグローブボックスから不活性ガスを真空乾燥炉に供給する構成としたことを特徴とする電気二重層キャパシタの製造装置。 In the electric double layer capacitor manufacturing apparatus used in the method for manufacturing an electric double layer capacitor according to claim 1, the vacuum drying furnace includes means for reducing the pressure in the furnace to a degree of vacuum of 10 -5 Pa or less, and the temperature in the furnace is 200 ° C. The vacuum drying furnace includes a means for filling the furnace with an inert gas having a normal pressure and a low dew point, and a means for filling the furnace with an inert gas having a normal pressure and a low dew point. Is a passage connecting between a vacuum drying furnace and a glove box in which the inside is maintained in an inert atmosphere with a low dew point at normal pressure, and a step of composing a predetermined laminate is performed from the positive electrode body, the negative electrode body, and the separator An apparatus for producing an electric double layer capacitor, characterized in that an inert gas is supplied from a glove box to a vacuum drying furnace through a valve for opening and closing the passage . 請求項2に係る電気二重層キャパシタの製造装置において、真空乾燥炉は、グローブボックスのパスボックスに密封可能な開閉扉を介して接続されることを特徴とする電気二重層キャパシタの製造装置。The apparatus for manufacturing an electric double layer capacitor according to claim 2, wherein the vacuum drying furnace is connected to a pass box of the glove box via a sealable open / close door. 請求項2に係る電気二重層キャパシタの製造装置において、真空乾燥炉は、グローブボックスのパスボックスを利用してその内部に構成されることを特徴とする電気二重層キャパシタの製造装置。3. The apparatus for manufacturing an electric double layer capacitor according to claim 2, wherein the vacuum drying furnace is configured inside using a pass box of a glove box. 請求項2に係る電気二重層キャパシタの製造装置において、炉内を真空度10The electric double layer capacitor manufacturing apparatus according to claim 2, wherein the inside of the furnace has a degree of vacuum of 10 -5-Five Pa以下に減圧する手段は、ターボ分子ポンプ、を備えることを特徴とする電気二重層キャパシタの製造装置。The means for reducing the pressure to Pa or less includes a turbo molecular pump.
JP2005085648A 2005-03-24 2005-03-24 Electric double layer capacitor manufacturing method and manufacturing apparatus thereof Expired - Fee Related JP4515301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085648A JP4515301B2 (en) 2005-03-24 2005-03-24 Electric double layer capacitor manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085648A JP4515301B2 (en) 2005-03-24 2005-03-24 Electric double layer capacitor manufacturing method and manufacturing apparatus thereof

Publications (2)

Publication Number Publication Date
JP2006269739A JP2006269739A (en) 2006-10-05
JP4515301B2 true JP4515301B2 (en) 2010-07-28

Family

ID=37205385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085648A Expired - Fee Related JP4515301B2 (en) 2005-03-24 2005-03-24 Electric double layer capacitor manufacturing method and manufacturing apparatus thereof

Country Status (1)

Country Link
JP (1) JP4515301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180061872A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Manufacturing Apparatus of Electrode Assembly and Method for Manufacturing Electrode Assembly

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9293268B2 (en) 2013-11-22 2016-03-22 Corning Incorporated Ultracapacitor vacuum assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025867A (en) * 2000-07-04 2002-01-25 Jeol Ltd Electric double-layer capacitor and carbon material for the electric double-layer capacitor
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2003197476A (en) * 2001-12-26 2003-07-11 Kuraray Co Ltd Separator and electric double-layer capacitor
JP2004031422A (en) * 2002-06-21 2004-01-29 Nissan Diesel Motor Co Ltd Glove box apparatus
JP2004289130A (en) * 2003-03-04 2004-10-14 Jeol Ltd Electric double-layer capacitor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002025867A (en) * 2000-07-04 2002-01-25 Jeol Ltd Electric double-layer capacitor and carbon material for the electric double-layer capacitor
JP2002362912A (en) * 2001-06-06 2002-12-18 Jeol Ltd Method of removing residual active hydrogen oxide
JP2003197476A (en) * 2001-12-26 2003-07-11 Kuraray Co Ltd Separator and electric double-layer capacitor
JP2004031422A (en) * 2002-06-21 2004-01-29 Nissan Diesel Motor Co Ltd Glove box apparatus
JP2004289130A (en) * 2003-03-04 2004-10-14 Jeol Ltd Electric double-layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180061872A (en) * 2016-11-30 2018-06-08 주식회사 엘지화학 Manufacturing Apparatus of Electrode Assembly and Method for Manufacturing Electrode Assembly
KR102264685B1 (en) * 2016-11-30 2021-06-15 (주)엘지에너지솔루션 Manufacturing Apparatus of Electrode Assembly and Method for Manufacturing Electrode Assembly

Also Published As

Publication number Publication date
JP2006269739A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US8845994B2 (en) Electrode active material having high capacitance, method for producing the same, and electrode and energy storage device comprising the same
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
KR100768281B1 (en) Electric double-layer capacitor
KR101289521B1 (en) Production method for electric double layer capacitor
US7074688B2 (en) Method of making an electrode for an electrochemical capacitor and the method of making an electrochemical capacitor
WO2019070568A2 (en) Lithium ion- or sodium ion-based internal hybrid electrochemical energy storage cell
WO2006132444A1 (en) Electrode for electric double layer capacitor and electric double layer capacitor
KR101793040B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode using the electrode active material and ultracapacitorusing the electrode active material
JP2010062163A (en) Manufacturing method of secondary battery
JP4515301B2 (en) Electric double layer capacitor manufacturing method and manufacturing apparatus thereof
JP4178497B2 (en) Electric double layer capacitor manufacturing apparatus and manufacturing method
CN108028434B (en) Method for manufacturing electrochemical device and electrochemical device
JP4515304B2 (en) Electric double layer capacitor and degassing valve
CN104157471A (en) Super capacitor-used cell drying method
KR102143773B1 (en) Manufacturing method of porous active carbon using lignocellulose biomass and manufacturing method of the supercapacitor usig the active carbon
KR101571679B1 (en) Carbon nanofiber-ionic liquids composite, manufacturing method of the same, ultra-capacitor using the composite and manufacturing method of the ultra-capacitor
JP2010123766A (en) Electrode sheet, and electric double-layer capacitor and lithium ion capacitor using the same
WO2007077906A1 (en) Nonaqueous capacitor and method for manufacturing the same
KR102687377B1 (en) Preparation method of porous regenerated carbon from waste supercapacitor, porous regenerated carbon manufactured thereby, regenerated supercapacitor comprising the porous regenerated carbon, and preparation method thereof
WO2011155000A1 (en) Capacitor
JP3786551B2 (en) Electric double layer capacitor and manufacturing method thereof
KR102116279B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor
JP2009289766A (en) Electric double-layer capacitor module
JP2009021388A (en) Method of manufacturing electronic double-layer capacitor
JP6379655B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees