JP2007227519A - Manufacturing method of electric double layer capacitor - Google Patents

Manufacturing method of electric double layer capacitor Download PDF

Info

Publication number
JP2007227519A
JP2007227519A JP2006045071A JP2006045071A JP2007227519A JP 2007227519 A JP2007227519 A JP 2007227519A JP 2006045071 A JP2006045071 A JP 2006045071A JP 2006045071 A JP2006045071 A JP 2006045071A JP 2007227519 A JP2007227519 A JP 2007227519A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
organic solution
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006045071A
Other languages
Japanese (ja)
Inventor
Yasuhiko Koiso
保彦 小礒
Toshio Akiyama
敏雄 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Japan Pionics Ltd
Priority to JP2006045071A priority Critical patent/JP2007227519A/en
Publication of JP2007227519A publication Critical patent/JP2007227519A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an electric double layer capacitor with which moisture existing in a laminated body, especially moisture existing in a pore of an activated carbon used as a composition material of a polarizable electrode, can efficiently be removed to very low concentration in the manufacturing method of the electric double layer capacitor for storing the laminated body formed of a positive electrode body, a negative electrode body and a separator in a vessel, pouring electrolytic solution into the vessel and impregnating it in the laminated body, and sealing the vessel in a state where a tip of a terminal of the positive electrode body and that of the negative electrode body are exposed outside. <P>SOLUTION: The laminated body or the composition material is impregnated in organic solution before electrolytic solution is impregnated in the laminated body. Treatment for discharging water included in solution with organic solution is performed. A process is included for removing moisture from the laminated body or the composition material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタの製造方法において、正極体、負極体、及びセパレータからなる積層体またはその構成材料の水分除去を効率よく行なう方法に関する。   The present invention relates to a method of manufacturing an electric double layer capacitor in which electricity is accumulated in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolyte solution, and a laminate comprising a positive electrode body, a negative electrode body, and a separator, or a constituent material thereof The present invention relates to a method for efficiently removing moisture.

近年、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタが蓄電媒体として実用化され始めている。電気二重層キャパシタの一般的な構成としては、金属箔等の集電体及び活性炭等の分極性電極からなる電極シートと、セパレータが交互に積層され、電解液が含浸された構成を有する電気二重層キャパシタセルが形成され、さらに電気二重層キャパシタセルが容器に密封されて電気二重層キャパシタとされる。   In recent years, an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolytic solution has been put into practical use as a power storage medium. As a general configuration of an electric double layer capacitor, an electric sheet having a configuration in which a current collector such as a metal foil and a polarizable electrode such as activated carbon and separators are alternately laminated and impregnated with an electrolytic solution. A multilayer capacitor cell is formed, and the electric double layer capacitor cell is sealed in a container to form an electric double layer capacitor.

また、電気二重層キャパシタの製造は、電極シートとセパレータの積層体を、角型の電気二重層キャパシタにおいてはサンドウィッチ状に、円筒型の電気二重層キャパシタにおいてはロール状に形成し、集電体(正極体及び負極体)のリード部を各々の端子に接続し、積層体を容器に収納した後、容器の開口部から電解液を注入して積層体に電解液を含浸し、電極端子の先端を外部に露出した状態で容器を密封する方法が多く実施されている。   In addition, an electric double layer capacitor is manufactured by forming a laminated body of an electrode sheet and a separator in a sandwich shape in a square electric double layer capacitor and in a roll shape in a cylindrical electric double layer capacitor. After connecting the lead portions of the (positive electrode body and negative electrode body) to each terminal and storing the laminate in a container, the electrolyte solution is injected from the opening of the container to impregnate the laminate with the electrolyte solution. Many methods for sealing containers with their tips exposed to the outside have been implemented.

このような電気二重層キャパシタにおいては、電解液として、高い耐電圧が得られる有機系電解液が一般的に用いられているが、微量の水分の存在でも充放電を繰返すと徐々に電解液と水が反応し、一酸化炭素、二酸化炭素等のガスが生成して耐電圧が低下し劣化しやすくなるという不都合が生じるので、電解液を注入する前に積層体及び容器を充分に乾燥させ、その後の操作は容器を密封するまで不活性ガス雰囲気下で行なわれている。   In such an electric double layer capacitor, an organic electrolytic solution capable of obtaining a high withstand voltage is generally used as the electrolytic solution. However, when charging and discharging are repeated even in the presence of a small amount of water, the electrolytic solution gradually Since water reacts and the gas such as carbon monoxide and carbon dioxide is generated and the withstand voltage is lowered and deteriorates easily, the laminate and the container are sufficiently dried before injecting the electrolytic solution, Subsequent operations are performed under an inert gas atmosphere until the container is sealed.

従来から、積層体の乾燥は、水分を極めて低い含有率になるまで除去するために、積層体を加熱減圧乾燥している。しかし、積層体は分極性電極として活性炭等の細孔を有し比表面積が大きいものを使用していること、積層体は分極性電極とセパレータを密着して積層した構成であること、セパレータは通常はセルロース製のものを使用しているため乾燥の際の加熱温度の上限は150〜200℃程度が限界であること等により、積層体の乾燥は真空乾燥機を用いても通常は10時間以上かかっていた。   Conventionally, the laminate is dried by heating under reduced pressure in order to remove moisture until the content becomes extremely low. However, the laminate uses a polarizable electrode having pores such as activated carbon and a large specific surface area, the laminate has a configuration in which the polarizable electrode and the separator are closely adhered, and the separator Usually, since the thing made from a cellulose is used, since the upper limit of the heating temperature in the case of drying is about 150-200 degreeC etc., even if it uses a vacuum dryer, drying of a laminated body is usually 10 hours. It took more than that.

このような状況下、従来から容器内の水分を除去して高い耐電圧を長期間にわたり維持する方法として、例えば、分極性電極とセパレータに水分吸着材を含ませる方法、容器内に乾燥剤を入れる方法、電解液を含浸する前に高周波電流を電極に印加し水分を除去する方法等が提案されている。
特開平10−144570号公報 特開平10−321483号公報 特開平11−54378号公報 特開2000−182910号公報
Under such circumstances, conventionally, as a method of removing moisture in the container and maintaining a high withstand voltage over a long period of time, for example, a method of including a moisture adsorbent in the polarizable electrode and the separator, a desiccant in the container There have been proposed a method of adding water, a method of applying a high-frequency current to the electrode before impregnating the electrolytic solution, and removing moisture.
Japanese Patent Laid-Open No. 10-144570 Japanese Patent Laid-Open No. 10-321483 JP-A-11-54378 JP 2000-182910 A

しかしながら、水分吸着材あるいは乾燥剤を用いる方法は、分極性電極の構成材料として一般的に用いられている活性炭等の細孔内に存在する水分を除去することが困難であり、また高周波電流を電極に印加する方法も、水分を極めて低濃度まで除去するために長時間の印加処理が必要であった。
従って、本発明が解決しようとする課題は、積層体に存在する水分、特に分極性電極として用いられる活性炭等の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できる電気二重層キャパシタの製造方法を提供することである。
However, the method using a moisture adsorbent or a desiccant is difficult to remove moisture present in the pores of activated carbon or the like generally used as a constituent material of a polarizable electrode. The method of applying to the electrode also required a long-time application process in order to remove moisture to an extremely low concentration.
Therefore, the problem to be solved by the present invention is that the electric water that can efficiently remove moisture present in the laminate, particularly moisture present in pores such as activated carbon used as a polarizable electrode, to a very low concentration. It is to provide a method for manufacturing a multilayer capacitor.

本発明者らは、前記の課題を解決すべく鋭意検討した結果、積層体またはその構成材料を有機溶液に含浸し、これらに含まれる水を有機溶液とともに排出する処理を行なうことにより、分極性電極の構成材料として一般的に用いられている活性炭等の細孔内に存在する水分を、効率よく極めて低濃度になるまで除去できることを見出し、本発明の電気二重層キャパシタの製造方法に到達した。   As a result of intensive studies to solve the above-described problems, the present inventors impregnated a laminate or a constituent material thereof in an organic solution, and performed a treatment for discharging water contained in the laminate together with the organic solution. It has been found that moisture present in pores such as activated carbon generally used as a constituent material of an electrode can be efficiently removed to a very low concentration, and has reached the manufacturing method of the electric double layer capacitor of the present invention. .

すなわち本発明は、正極体、負極体、及びセパレータからなる積層体を容器に収納し、該容器に電解液を注入して該積層体に含浸した後、該容器を正極体の端子の先端及び負極体の端子の先端が外部に露出した状態で密封する電気二重層キャパシタの製造方法であって、積層体に電解液を含浸する前に、積層体またはその構成材料を有機溶液により含浸処理して、該積層体またはその構成材料から水分を除去する工程を含むことを特徴とする電気二重層キャパシタの製造方法である。   That is, in the present invention, a laminate composed of a positive electrode body, a negative electrode body, and a separator is housed in a container, an electrolyte is injected into the container and the laminate is impregnated, and then the container is attached to the tip of the terminal of the positive electrode body and A method of manufacturing an electric double layer capacitor in which the tip of a negative electrode terminal is exposed to the outside, and the laminate or its constituent material is impregnated with an organic solution before the laminate is impregnated with an electrolyte. And a method for producing an electric double layer capacitor comprising a step of removing moisture from the laminate or a constituent material thereof.

本発明の電気二重層キャパシタの製造方法における有機溶液の含浸処理を、積層体の組立て前または組立て直後に適用した場合、分極性電極として用いられる活性炭等の細孔内に付着している水分を、有機溶液によって洗い流すので、従来から長時間かかっていた積層体の乾燥処理時間を大幅に短縮することができる。また、発明の電気二重層キャパシタの製造方法における有機溶液の含浸処理を、積層体の容器収納から電解液の注入までの間に適用した場合、細孔内に残存する水分をさらに低濃度になるまで除去することが可能である。   When the impregnation treatment of the organic solution in the manufacturing method of the electric double layer capacitor of the present invention is applied before or immediately after the assembly of the laminated body, the moisture adhering in the pores such as activated carbon used as the polarizable electrode is removed. Since it is washed away with the organic solution, the drying process time of the laminate, which has conventionally taken a long time, can be greatly shortened. In addition, when the impregnation treatment of the organic solution in the method for manufacturing the electric double layer capacitor of the invention is applied between the container storage of the multilayer body and the injection of the electrolytic solution, the moisture remaining in the pores is further reduced. Can be removed.

本発明は、正極体、負極体、及びセパレータからなる積層体を容器に収納し、容器に電解液を注入して積層体に含浸した後、容器を正極体の端子の先端及び負極体の端子の先端が外部に露出した状態で密封する電気二重層キャパシタの製造方法に適用される。また、本発明は、角型の電気二重層キャパシタの製造方法及び円筒型の電気二重層キャパシタの製造方法に適用される。以下、角型の電気二重層キャパシタを例に挙げ詳細に説明するが、本発明がこれにより限定されるものではない。   In the present invention, a laminated body composed of a positive electrode body, a negative electrode body, and a separator is housed in a container, an electrolyte is injected into the container and the laminated body is impregnated, and then the tip of the terminal of the positive electrode body and the terminal of the negative electrode body The method is applied to a method of manufacturing an electric double layer capacitor that is sealed with its tip exposed to the outside. The present invention is also applied to a method for manufacturing a square electric double layer capacitor and a method for manufacturing a cylindrical electric double layer capacitor. Hereinafter, a square electric double layer capacitor will be described in detail as an example, but the present invention is not limited thereto.

本発明における積層体は、図1に示すように、通常は、活性炭、カーボンブラック等を含む混合物からなる分極性電極にアルミ箔を貼り合わせた正極体1と、同様に分極性電極にアルミ箔を貼り合わせた負極体2を、紙、パルプ、またはプラスチック等からなるセパレータを介して交互に積層させたものであり、正極体のリード部3及び負極体のリード部4が、各々電極端子に接続できるように、一辺が50〜200mmの程度の正方形または長方形の積層体となるように、合計10〜100枚程積層させたものである。また、本発明における積層体は、図1に示すような積層体のほか、正極体のリード部3と正極端子5の接着、負極体のリード部4と負極端子6の接着が行なわれた図2に示すような積層体が含まれる。   As shown in FIG. 1, the laminate in the present invention is usually a positive electrode body 1 in which an aluminum foil is bonded to a polarizable electrode made of a mixture containing activated carbon, carbon black, and the like. Are laminated alternately with separators made of paper, pulp, plastic or the like, and the lead part 3 of the positive electrode body and the lead part 4 of the negative electrode body are respectively connected to the electrode terminals. In order to be able to be connected, about 10 to 100 sheets in total are laminated so as to form a square or rectangular laminated body having a side of about 50 to 200 mm. In addition to the laminate as shown in FIG. 1, the laminate in the present invention is a diagram in which the lead portion 3 of the positive electrode body and the positive electrode terminal 5 are bonded, and the lead portion 4 of the negative electrode body and the negative electrode terminal 6 are bonded. A laminate as shown in FIG.

また、本発明における容器は、図3に示すように、前記のような積層体7を密封するための容器8であり、その構成材料は、通常はアルミ箔等の金属箔の表面を、熱溶融性のプラスチックフィルムで被覆したものである。前記のような積層体を収納する際は、予め正方形または長方形の金属箔の表面に熱溶融性のプラスチックフィルムが被覆されたシートを、2枚重ね合わせ、積層体を収納するための開口部を除いた周辺部を加熱加圧接着して袋状にされる。   Further, as shown in FIG. 3, the container in the present invention is a container 8 for sealing the laminate 7 as described above, and its constituent material is usually a surface of a metal foil such as an aluminum foil. It is coated with a meltable plastic film. When storing the laminate as described above, two sheets of a metal foil having a square or rectangular shape coated with a heat-meltable plastic film in advance are stacked, and an opening for storing the laminate is provided. The removed peripheral part is heated and pressed to form a bag.

本発明の電気二重層キャパシタの製造方法は、積層体に電解液を含浸する前に、前記のような積層体またはその構成材料(特に分極性電極として用いられる活性炭)を有機溶液に含浸し、これらに含まれる水を有機溶液とともに排出する処理(含浸処理)を行なう製造方法である。含侵処理の際は、積層体またはその構成材料とともに容器(特に内部)を含侵処理してもよい。
本発明において、有機溶液による含浸処理は、積層体に電解液を含浸する前に行なえばよいが、有機溶液を含浸させやすい点で積層体の組立て前が好ましく、また作業性がよい点で積層体の容器収納から電解液の注入までの間に行なうことが好ましい。
In the method for producing an electric double layer capacitor of the present invention, before impregnating the laminate with an electrolyte, the laminate or the constituent material thereof (particularly activated carbon used as a polarizable electrode) is impregnated in an organic solution, It is a manufacturing method for performing a treatment (impregnation treatment) for discharging water contained in these together with an organic solution. In the impregnation treatment, the container (particularly the inside) may be impregnated with the laminate or the constituent material thereof.
In the present invention, the impregnation treatment with the organic solution may be performed before the laminate is impregnated with the electrolytic solution. However, it is preferable to assemble the laminate so that the organic solution can be easily impregnated, and the laminate is laminated in terms of workability. It is preferable to carry out between the body container storage and the electrolyte injection.

本発明に使用される有機溶液としては、通常はその沸点温度が40℃〜140℃程度の有機溶液が用いられる。これらの有機溶液としては、例えば、プロピルエーテル、メチルブチルエーテル、エチルプロピルエーテル、エチルブチルエーテル、酸化トリメチレン、テトラヒドロフラン、テトラヒドロピラン等のエーテル、メチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール、アセトン、エチルメチルケトン、iso-プロピルメチルケトン、iso-ブチルメチルケトン等のケトン、プロピルアミン、ブチルアミン、ジエチルアミン、ジプロピルアミン、トリエチルアミン等のアミン、酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル、ヘキサン、ヘプタン、オクタン、ノナン、デカン、シクロヘキサン、シクロヘプタン、シクロオクタン、シクロノナン、シクロデカン等の炭化水素等を挙げることができる。また、これらを2種類以上含んだ有機溶液を使用することもできる。   As the organic solution used in the present invention, an organic solution having a boiling temperature of about 40 ° C. to 140 ° C. is usually used. Examples of these organic solutions include ethers such as propyl ether, methyl butyl ether, ethyl propyl ether, ethyl butyl ether, trimethylene oxide, tetrahydrofuran, and tetrahydropyran, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, and butyl alcohol, acetone, Ketones such as ethyl methyl ketone, iso-propyl methyl ketone and iso-butyl methyl ketone, amines such as propylamine, butylamine, diethylamine, dipropylamine and triethylamine, esters such as ethyl acetate, propyl acetate and butyl acetate, hexane and heptane , Hydrocarbons such as octane, nonane, decane, cyclohexane, cycloheptane, cyclooctane, cyclononane, and cyclodecane. Moreover, the organic solution containing 2 or more types of these can also be used.

本発明においては、その他、電解液に含まれる成分と同一の成分を含む有機溶液、電解液と同一の成分の有機溶液を使用することができる。いずれの有機溶液を使用する場合であっても、これらは低濃度になるまで水分が除去された有機溶液であり、通常は100ppm以下、好ましくは50ppm以下、さらに好ましくは10ppm以下まで水分が除去された有機溶液である。有機溶液に含まれる水分を除去する方法としては、塩化カルシウム、シリカゲル、合成ゼオライト等の乾燥剤、あるいはポリジメチルシロキサンを含むパーベイパレーション膜、透析膜等を使用する方法が挙げられる。   In the present invention, an organic solution containing the same component as the component contained in the electrolytic solution and an organic solution having the same component as the electrolytic solution can be used. Regardless of which organic solution is used, these are organic solutions from which moisture has been removed to a low concentration, and are usually removed to 100 ppm or less, preferably 50 ppm or less, more preferably 10 ppm or less. Organic solution. Examples of the method for removing water contained in the organic solution include a method using a desiccant such as calcium chloride, silica gel, synthetic zeolite, or a pervaporation membrane containing dimethylsiloxane, a dialysis membrane, or the like.

本発明において、有機溶液による含浸処理は、2回以上行なうこともできる。例えば、1回目の含浸処理には、エーテル類、アルコール類、ケトン類、アミン類、エステル類、または炭化水素類を使用し、2回目の含浸処理には、電解液と同一の成分の有機溶液を使用することができる。また、複数回の含浸処理を行なう場合は、各含浸処理の間に減圧処理を行なうことにより、効率よく含浸処理を行なうことができる。   In the present invention, the impregnation treatment with an organic solution can be performed twice or more. For example, ethers, alcohols, ketones, amines, esters, or hydrocarbons are used for the first impregnation treatment, and an organic solution having the same components as the electrolytic solution is used for the second impregnation treatment. Can be used. In addition, when performing the impregnation treatment a plurality of times, the impregnation treatment can be efficiently performed by performing the decompression treatment between the respective impregnation treatments.

本発明において、積層体またはその構成材料への有機溶液の含浸方法については特に制限されることはないが、積層体の組立て前または組立て直後に含浸処理する場合は、例えば不活性ガス雰囲気下で含浸処理用の容器に有機溶液を入れ、積層体またはその構成材料をこれに浸漬することにより行われる。また、積層体の容器収納から電解液の注入までの間に含浸処理する場合は、例えば容器の開口部から有機溶媒を供給するための細管及び排出するための細管を挿入し、有機溶媒供給口及び有機溶媒排出口と連通する循環経路に有機溶液を流通させるとともに、該循環経路の少なくとも1箇所において、パーベイパレーション膜等を用いて有機溶液に混入した水分を除去しながら行われる。その際、電極端子に通電して電解精製を行なうこともできる。   In the present invention, the impregnation method of the organic solution in the laminate or the constituent material thereof is not particularly limited. However, when the impregnation treatment is performed before or immediately after the assembly of the laminate, for example, in an inert gas atmosphere. It is carried out by putting the organic solution in a container for impregnation treatment and immersing the laminate or its constituent material in the container. When impregnation is performed between container storage of the laminate and injection of the electrolyte, for example, a thin tube for supplying an organic solvent and a thin tube for discharging are inserted from the opening of the container, and an organic solvent supply port is inserted. In addition, the organic solution is circulated through a circulation path communicating with the organic solvent outlet, and at least one portion of the circulation path is removed while removing moisture mixed in the organic solution using a pervaporation membrane or the like. At that time, the electrode terminal can be energized to perform electrolytic purification.

含浸処理の際の有機溶液の温度は、通常は室温またはその近辺の温度(0〜100℃程度)であるが、上限は有機溶液の沸点を超えない温度である。また、有機溶液の圧力は、通常は常圧またはその近辺の圧力(90〜110KPa)であるが、110〜1000KPa(絶対圧力)程度の加圧下で操作することが、有機溶液を容易に活性炭等の細孔内に浸透できる点で好ましい。また、含浸処理の際に、積層体またはその構成材料、あるいは有機溶液に超音波振動等の振動を付与することもできる。積層体の組立て前または組立て直後に含浸処理する場合は、含浸処理終了後、積層体またはその構成材料が、不活性ガス等水分の含水率が極めて少ないガス雰囲気下で有機溶液から取出され、続いて乾燥処理される。   The temperature of the organic solution during the impregnation treatment is usually room temperature or a temperature in the vicinity thereof (about 0 to 100 ° C.), but the upper limit is a temperature not exceeding the boiling point of the organic solution. Further, the pressure of the organic solution is usually normal pressure or a pressure in the vicinity thereof (90 to 110 KPa), but the organic solution can be easily activated by operating under a pressure of about 110 to 1000 KPa (absolute pressure). It is preferable in that it can penetrate into the pores. In addition, during the impregnation treatment, vibration such as ultrasonic vibration can be imparted to the laminate, the constituent material thereof, or the organic solution. When the impregnation treatment is performed before or immediately after assembling the laminate, after the impregnation treatment, the laminate or its constituent material is taken out from the organic solution in a gas atmosphere having a very low moisture content such as an inert gas, and subsequently. And dried.

本発明においては、有機溶液による含浸処理及び積層体の容器への収納が完了した後、容器の開口部から電解液が注入され、続いて容器内が減圧され、積層体の減圧処理が行なわれる。この減圧処理により、活性炭等の分極性電極に吸着されているガスが除去されるとともに、積層体に電解液を効率よく含浸することができる。また、必要に応じて、電解液の注入から容器の密封までの間に、分極性電極に含まれる水分や官能基を電気分解し除去するために、電極端子に通電して電解精製を行なうこともできる。積層体の減圧処理後、例えば加熱された2本のヒートシールバーを、容器を挟んだ状態で押圧することにより容器の密封が行なわれ、図3に示すような構成の電気二重層キャパシタが得られる。尚、本発明においては、電解液の注入から容器の密封まで、乾燥された不活性ガス雰囲気下で行なわれる。   In the present invention, after the impregnation treatment with the organic solution and the storage of the laminate in the container are completed, the electrolytic solution is injected from the opening of the container, and then the inside of the container is decompressed, and the laminate is decompressed. . By this decompression treatment, the gas adsorbed on the polarizable electrode such as activated carbon is removed, and the laminate can be efficiently impregnated with the electrolytic solution. In addition, if necessary, between the injection of the electrolyte and the sealing of the container, the electrode terminal is energized and subjected to electrolytic purification in order to electrolyze and remove moisture and functional groups contained in the polarizable electrode. You can also. After the laminate is depressurized, the container is sealed by pressing, for example, two heated heat-seal bars with the container sandwiched therebetween, and an electric double layer capacitor configured as shown in FIG. 3 is obtained. It is done. In the present invention, the process from injection of the electrolytic solution to sealing of the container is performed in a dry inert gas atmosphere.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

活性炭、カーボンブラック、PTFE等の混合物からなる分極性電極にアルミ箔を貼り合わせた正極体、負極体と、紙製のセパレータを、正極体のリード部及び負極体のリード部が、各々電極端子に接続できるように、合計30枚積層させて、図1に示すような一辺が100mmの正方形の積層体(厚さ15mm)を得た。次に、正極体のリード部及び負極体のリード部を、各々電極端子に溶接により接着して図2に示すような積層体を製作した。尚、積層体の下端部(電極端子とは反対側の部分)の先端は、有機溶液を効率よく含浸できるように、側面から見て積層体の構成材料が扇形状に開けるようにした。   A positive electrode body, a negative electrode body, and a paper separator made by bonding aluminum foil to a polarizable electrode made of a mixture of activated carbon, carbon black, PTFE, and the like, and a lead portion of the positive electrode body and a lead portion of the negative electrode body are respectively electrode terminals. In total, 30 sheets were stacked so that they could be connected to each other to obtain a square laminate (thickness 15 mm) having a side of 100 mm as shown in FIG. Next, the lead portion of the positive electrode body and the lead portion of the negative electrode body were respectively bonded to the electrode terminals by welding to produce a laminate as shown in FIG. Note that, at the tip of the lower end portion (the portion opposite to the electrode terminal) of the laminate, the constituent material of the laminate was opened in a fan shape when viewed from the side so that the organic solution could be efficiently impregnated.

前記の積層体を、窒素雰囲気下、下端部の先端が側面から見て扇形状に開いた状態で、処理容器に充填された脱水処理済のテトラヒドロフランに浸漬するとともに、テトラヒドロフランに超音波振動を付与して有機溶液による積層体の含浸処理を10分間行なった。その後、積層体をテトラヒドロフランから取出し、さらに真空乾燥機を用いて160℃で1時間減圧乾燥した。尚、従来から行なわれている乾燥は、160℃で10時間以上の減圧乾燥である。   The laminated body is immersed in dehydrated tetrahydrofuran filled in a processing vessel with the tip of the lower end opened in a fan shape when viewed from the side under a nitrogen atmosphere, and ultrasonic vibration is applied to tetrahydrofuran. Then, the laminate was impregnated with an organic solution for 10 minutes. Thereafter, the laminate was taken out from tetrahydrofuran and further dried under reduced pressure at 160 ° C. for 1 hour using a vacuum dryer. Conventionally, drying is performed under reduced pressure at 160 ° C. for 10 hours or more.

表面をポリエチレンフィルムで被覆したアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、窒素雰囲気下、脱水処理済のテトラヒドロフランが充填された処理容器に浸漬するとともに、テトラヒドロフランに超音波振動を付与して有機溶液による容器の含浸処理を10分間行なった。その後、容器をテトラヒドロフランから取出し、さらに真空乾燥機を用いて80℃で1時間減圧乾燥した。   A square flat container with a side of 150 mm made of aluminum foil whose surface is coated with a polyethylene film is immersed in a treatment container filled with dehydrated tetrahydrofuran in a nitrogen atmosphere, and ultrasonic waves are added to tetrahydrofuran. The container was impregnated with an organic solution for 10 minutes while applying vibration. Thereafter, the container was taken out from tetrahydrofuran and further dried under reduced pressure at 80 ° C. for 1 hour using a vacuum dryer.

積層体及び偏平状の容器を、窒素雰囲気下で室温まで冷却した後、積層体を容器に挿入した。次に、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液90mlを容器に注入した。電解液の注入を終了した後、容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、容器の開口部を外側から150℃で加熱加圧して容器を密封し電気二重層キャパシタを得た。
この電気二重層キャパシタの25℃、2.7V充電における静電容量及び内部抵抗を測定した結果、各々1520F、3.1mΩであり、性能が優れていることが確認できた。また、1時間充填、30分放電を20回繰返した後に静電容量及び内部抵抗を再度測定した結果、いずれも前記の1%以内の差の値であり、劣化は確認できなかった。
After the laminate and the flat container were cooled to room temperature under a nitrogen atmosphere, the laminate was inserted into the container. Next, 90 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was poured into the container. After the injection of the electrolytic solution was completed, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, the opening of the container was heated and pressurized at 150 ° C. from the outside to seal the container and obtain an electric double layer capacitor.
As a result of measuring the capacitance and the internal resistance at 25 ° C. and 2.7 V charge of this electric double layer capacitor, it was 1520F and 3.1 mΩ, respectively, and it was confirmed that the performance was excellent. Moreover, as a result of measuring the electrostatic capacity and the internal resistance again after repeating the charging for 1 hour and the discharging for 30 minutes 20 times, both were values of the difference within 1%, and deterioration could not be confirmed.

活性炭、カーボンブラック、PTFE等の混合物からなる分極性電極にアルミ箔を貼り合わせた正極体、負極体と、紙製のセパレータを、正極体のリード部及び負極体のリード部が、各々電極端子に接続できるように、合計30枚積層させて、図1に示すような一辺が100mmの正方形の積層体(厚さ15mm)を得た。次に、正極体のリード部及び負極体のリード部を、各々電極端子に溶接により接着して図2に示すような積層体を製作した。この積層体を、真空乾燥機を用いて160℃で1時間減圧乾燥した。   A positive electrode body, a negative electrode body, and a paper separator made by bonding aluminum foil to a polarizable electrode made of a mixture of activated carbon, carbon black, PTFE, and the like, and a lead portion of the positive electrode body and a lead portion of the negative electrode body are respectively electrode terminals. In total, 30 sheets were stacked so that they could be connected to each other to obtain a square laminate (thickness 15 mm) having a side of 100 mm as shown in FIG. Next, the lead portion of the positive electrode body and the lead portion of the negative electrode body were respectively bonded to the electrode terminals by welding to produce a laminate as shown in FIG. This laminate was dried under reduced pressure at 160 ° C. for 1 hour using a vacuum dryer.

また、表面をポリエチレンフィルムで被覆したアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、真空乾燥機を用いて80℃で15時間減圧乾燥した。偏平状の容器は、一辺に開口部を有するものであった。積層体と偏平状の容器を、窒素雰囲気下で室温まで冷却した後、積層体を電極端子が容器の開口部(貼り合せ部)側になるように偏平状の容器に挿入した。また、容器の開口部から有機溶媒を供給するための細管及び排出するための細管を挿入した。   Further, a square flat container having a side of 150 mm and having an aluminum foil whose surface was coated with a polyethylene film as a base material was dried under reduced pressure at 80 ° C. for 15 hours using a vacuum dryer. The flat container has an opening on one side. After the laminate and the flat container were cooled to room temperature under a nitrogen atmosphere, the laminate was inserted into the flat container so that the electrode terminals were on the opening (bonding portion) side of the container. In addition, a thin tube for supplying the organic solvent and a thin tube for discharging were inserted from the opening of the container.

有機溶媒として電解液90mlを容器に注入して積層体に10分間含浸するとともに、電極端子に通電して電解精製を行なった。次に、電解液を排出し容器内を5分間真空ポンプにより減圧した。続いて、偏平状の容器内に窒素を供給し、有機溶媒の注入、排出、容器内の減圧を10回繰返した。最後は容器内を30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。その後、容器の開口部を外側から150℃で加熱加圧して容器を密封し電気二重層キャパシタを得た。
この電気二重層キャパシタの25℃、2.7V充電における静電容量及び内部抵抗を測定した結果、各々1490F、3.0mΩであり、性能が優れていることが確認できた。また、1時間充填、30分放電を20回繰返した後に静電容量及び内部抵抗を再度測定した結果、いずれも前記の1%以内の差の値であり、劣化は確認できなかった。
90 ml of an electrolytic solution as an organic solvent was poured into the container and the laminate was impregnated for 10 minutes, and the electrode terminals were energized for electrolytic purification. Next, the electrolytic solution was discharged, and the inside of the container was depressurized with a vacuum pump for 5 minutes. Subsequently, nitrogen was supplied into the flat container, and the injection and discharge of the organic solvent and the decompression in the container were repeated 10 times. Finally, the inside of the container was decompressed with a vacuum pump for 30 minutes, and the laminate was decompressed. Thereafter, the opening of the container was heated and pressurized at 150 ° C. from the outside to seal the container and obtain an electric double layer capacitor.
As a result of measuring the electrostatic capacity and the internal resistance at 25 ° C. and 2.7 V charge of this electric double layer capacitor, they were 1490 F and 3.0 mΩ, respectively, and it was confirmed that the performance was excellent. Moreover, as a result of measuring the electrostatic capacity and the internal resistance again after repeating the charging for 1 hour and the discharging for 30 minutes 20 times, both were values of the difference within 1%, and deterioration could not be confirmed.

以上のように、本発明の電気二重層キャパシタは、積層体またはその構成材料の乾燥時間を大幅に短縮できることがわかった。   As described above, it was found that the electric double layer capacitor of the present invention can greatly shorten the drying time of the multilayer body or its constituent materials.

本発明における積層体の一例示す斜視図The perspective view which shows an example of the laminated body in this invention 本発明における図1以外の積層体の一例示す斜視図The perspective view which shows an example of laminated bodies other than FIG. 1 in this invention. 本発明における電気二重層キャパシタの一例を示す構成図Configuration diagram showing an example of an electric double layer capacitor in the present invention

符号の説明Explanation of symbols

1 正極体
2 負極体
3 正極体のリード部
4 負極体のリード部
5 正極端子
6 負極端子
7 積層体
8 容器
DESCRIPTION OF SYMBOLS 1 Positive electrode body 2 Negative electrode body 3 Lead part of positive electrode body 4 Lead part of negative electrode body 5 Positive electrode terminal 6 Negative electrode terminal 7 Laminated body 8 Container

Claims (10)

正極体、負極体、及びセパレータからなる積層体を容器に収納し、該容器に電解液を注入して該積層体に含浸した後、該容器を正極体の端子の先端及び負極体の端子の先端が外部に露出した状態で密封する電気二重層キャパシタの製造方法であって、積層体に電解液を含浸する前に、積層体またはその構成材料を有機溶液により含浸処理して、該積層体またはその構成材料から水分を除去する工程を含むことを特徴とする電気二重層キャパシタの製造方法。   A laminated body composed of a positive electrode body, a negative electrode body, and a separator is housed in a container, and an electrolyte is injected into the container to impregnate the laminated body, and then the container is connected to the tip of the terminal of the positive electrode body and the terminal of the negative electrode body. A method of manufacturing an electric double layer capacitor that is sealed with a tip exposed to the outside, wherein the laminate or its constituent material is impregnated with an organic solution before the laminate is impregnated with an electrolytic solution, Or the manufacturing method of the electrical double layer capacitor characterized by including the process of removing a water | moisture content from the constituent material. 有機溶液による含浸処理を、積層体の組立て前に行なう請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the impregnation treatment with an organic solution is performed before assembly of the multilayer body. 有機溶液による含浸処理を、積層体の容器収納から電解液の注入までの間に行なう請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the impregnation treatment with the organic solution is performed between container storage of the laminate and injection of the electrolytic solution. 有機溶液による含浸処理は、容器の有機溶媒供給口及び有機溶媒排出口と連通する循環経路に有機溶液を流通させるとともに、該循環経路の少なくとも1箇所において、有機溶液に混入した水分を除去しながら行なう請求項3に記載の電気二重層キャパシタの製造方法。   The impregnation treatment with the organic solution distributes the organic solution in a circulation path communicating with the organic solvent supply port and the organic solvent discharge port of the container, and removes water mixed in the organic solution in at least one place of the circulation path. The manufacturing method of the electric double layer capacitor of Claim 3 to perform. 有機溶液による含浸処理は、複数回行ない、各含浸処理の間に減圧処理を行なう請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the impregnation treatment with the organic solution is performed a plurality of times, and the decompression treatment is performed between the impregnation treatments. 有機溶液による含浸処理は、積層体、その構成材料、または有機溶液に振動を付与しながら行なう請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the impregnation treatment with the organic solution is performed while applying vibration to the laminate, the constituent material thereof, or the organic solution. 有機溶液が、エーテル類、アルコール類、ケトン類、アミン類、エステル類、及び炭化水素類から選ばれる一種以上である請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the organic solution is one or more selected from ethers, alcohols, ketones, amines, esters, and hydrocarbons. 有機溶液が、電解液に含まれる成分と同一の成分を含む溶液である請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the organic solution is a solution containing the same component as the component contained in the electrolytic solution. 有機溶液が電解液である請求項1に記載の電気二重層キャパシタの製造方法。   The method for producing an electric double layer capacitor according to claim 1, wherein the organic solution is an electrolytic solution. 有機溶液に含まれる水分の含有率が100ppm以下である請求項1に記載の電気二重層キャパシタの製造方法。
The method for producing an electric double layer capacitor according to claim 1, wherein the content of water contained in the organic solution is 100 ppm or less.
JP2006045071A 2006-02-22 2006-02-22 Manufacturing method of electric double layer capacitor Pending JP2007227519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006045071A JP2007227519A (en) 2006-02-22 2006-02-22 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006045071A JP2007227519A (en) 2006-02-22 2006-02-22 Manufacturing method of electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2007227519A true JP2007227519A (en) 2007-09-06

Family

ID=38549062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006045071A Pending JP2007227519A (en) 2006-02-22 2006-02-22 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2007227519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109355A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp Electrical double-layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010109355A (en) * 2008-09-30 2010-05-13 Nippon Chemicon Corp Electrical double-layer capacitor

Similar Documents

Publication Publication Date Title
WO2000016354A1 (en) Method for manufacturing large-capacity electric double-layer capacitor
JP2000252171A (en) Manufacture of electric double-layer capacitor
JP2004510315A (en) Impregnated separator for electrochemical cell and method for producing the same
JP4623840B2 (en) Manufacturing method of electric double layer capacitor
JP2009188003A (en) Manufacturing method of capacitor
JP2007227519A (en) Manufacturing method of electric double layer capacitor
JP2006179547A (en) Electric double layer capacitor and its manufacturing process
JP2007049030A (en) Method of manufacturing electrochemical device
JP2006324284A (en) Method for manufacturing electrochemical capacitor
JP4044295B2 (en) Batteries, electric double layer capacitors and methods for producing them
JP2009021388A (en) Method of manufacturing electronic double-layer capacitor
JP2009021093A (en) Manufacturing method for battery or capacitor
JP2006196562A (en) Electric double layer capacitor
JPWO2021033697A5 (en)
JP3716081B2 (en) Electric double layer capacitor and manufacturing method thereof
JP4672956B2 (en) Manufacturing method of electric double layer capacitor
JP2003100572A (en) Electric double layer capacitor and method for manufacturing the same
JP3763052B2 (en) Manufacturing method of aluminum solid electrolytic capacitor
JP2006222256A (en) Electric-double-layer capacitor
JP2006261196A (en) Electric double layer capacitor
JP2009289766A (en) Electric double-layer capacitor module
JP4760203B2 (en) Electric double layer capacitor
JP2009111107A (en) Electrode sheet and electrochemical capacitor using the same
JP3963642B2 (en) Manufacturing method of electric double layer capacitor
JP2006135119A (en) Square-shaped electrode cell and its manufacturing method, and electric double layer capacitor using the same