JP2009111107A - Electrode sheet and electrochemical capacitor using the same - Google Patents

Electrode sheet and electrochemical capacitor using the same Download PDF

Info

Publication number
JP2009111107A
JP2009111107A JP2007281123A JP2007281123A JP2009111107A JP 2009111107 A JP2009111107 A JP 2009111107A JP 2007281123 A JP2007281123 A JP 2007281123A JP 2007281123 A JP2007281123 A JP 2007281123A JP 2009111107 A JP2009111107 A JP 2009111107A
Authority
JP
Japan
Prior art keywords
electrode sheet
silicate
electrochemical capacitor
electrode
conductive adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007281123A
Other languages
Japanese (ja)
Inventor
Yuzuru Takahashi
譲 高橋
Takashi Kawaguchi
敬 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Original Assignee
Japan Pionics Ltd
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Pionics Ltd, Mitsubishi Gas Chemical Co Inc filed Critical Japan Pionics Ltd
Priority to JP2007281123A priority Critical patent/JP2009111107A/en
Publication of JP2009111107A publication Critical patent/JP2009111107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To remarkably suppress a rise of inner resistance by repetition of charging/discharging in an electrode sheet where a polarizing electrode is formed on a surface of a collector such as metal foil through a conductive bonding layer and in an electrochemical capacitor using the sheet. <P>SOLUTION: In the electrode sheet, a layer comprising active carbon and carbon black is formed on the surface of metal foil through the conductive bonding layer comprising silicate of alkali metal and/or silicate of alkaline earth metal. In the electrochemical capacitor, the electrode sheet is used. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電極シート及びそれを用いた電気化学キャパシタに関するものであり、さらに詳細には、金属箔等の集電体の表面に導電性接着層を介して分極性電極を形成する電極シート、及びそれを用いた電気化学キャパシタに関する。   The present invention relates to an electrode sheet and an electrochemical capacitor using the electrode sheet. More specifically, the electrode sheet forms a polarizable electrode on the surface of a current collector such as a metal foil via a conductive adhesive layer, And an electrochemical capacitor using the same.

近年、活性炭等の分極性電極と電解液の界面である電気二重層に電気を蓄積する電気二重層キャパシタ等の電気化学キャパシタが蓄電媒体として実用化され始めている。電気化学キャパシタの一般的な構成としては、金属箔等の集電体及び活性炭等の分極性電極からなる電極シートと、セパレータが交互に積層されて積層体が形成され、さらに電解液が含浸された積層体が容器に密封されて電気化学キャパシタセルとされる。   In recent years, electrochemical capacitors such as an electric double layer capacitor that accumulates electricity in an electric double layer that is an interface between a polarizable electrode such as activated carbon and an electrolytic solution have begun to be put into practical use as a storage medium. As a general structure of an electrochemical capacitor, an electrode sheet made of a current collector such as a metal foil and a polarizable electrode such as activated carbon and a separator are alternately laminated to form a laminate, and further impregnated with an electrolyte. The laminated body is sealed in a container to form an electrochemical capacitor cell.

また、電気化学キャパシタセルの製造は、電極シートとセパレータの積層体を、角型の電気化学キャパシタにおいてはサンドウィッチ状に、円筒型の電気化学キャパシタにおいてはロール状に形成し、集電体(正極体及び負極体)のリード部を各々の端子に接続し、積層体を容器に収納した後、容器の開口部から電解液を注入して積層体に電解液を含浸し、電極端子の先端を外部に露出した状態で容器を密封する方法が多く実施されている。   In addition, an electrochemical capacitor cell is manufactured by forming a laminate of an electrode sheet and a separator in a sandwich shape for a square electrochemical capacitor and in a roll shape for a cylindrical electrochemical capacitor. Lead body and negative electrode body) are connected to the respective terminals, and the laminate is stored in a container, and then an electrolyte is injected from the opening of the container to impregnate the laminate with the electrolyte, and the tip of the electrode terminal is Many methods have been implemented to seal the container while it is exposed to the outside.

このような電気化学キャパシタにおいて、電極シートは、一般的に金属箔等の集電体の表面に、導電性接着層を介して、活性炭を含む分極性電極を形成し製造される。従来から、分極性電極の構成成分としては、カーボンブラック等の導電性材料、活性炭、及び、ポリテトラフルオロエチレン、セルロース等のバインダーが多く使用される。また、導電性接着層の構成成分としては、集電体との接着強度を高めるために、通常はカーボンブラック等の導電性が良好な成分よりも、バインダー等の金属箔との接着性が良好となる成分が多く採用されている。   In such an electrochemical capacitor, the electrode sheet is generally manufactured by forming a polarizable electrode containing activated carbon on the surface of a current collector such as a metal foil via a conductive adhesive layer. Conventionally, conductive materials such as carbon black, activated carbon, and binders such as polytetrafluoroethylene and cellulose are often used as components of polarizable electrodes. In addition, as a constituent component of the conductive adhesive layer, in order to increase the adhesive strength with the current collector, it usually has better adhesion to a metal foil such as a binder than a component with good conductivity such as carbon black. Many ingredients are used.

電気化学キャパシタにおいては、前記の分極性電極及び導電性接着層の構成成分や接着方法等が、内部抵抗等重要な性能の良否を大きく左右する一要因となっている。そのため、優れた均一性、接着強度等を目標として、例えば特許文献1〜4に記載されたような分極性電極や導電性接着層のバインダー成分が現在までに数多く開発されてきた。
特開平9−270370号公報 特開平11−162794号公報 特開平11−329904号公報 特開2002−222741号公報
In an electrochemical capacitor, the components of the polarizable electrode and the conductive adhesive layer, the bonding method, and the like are factors that greatly influence the quality of important performance such as internal resistance. Therefore, many binder components for polarizable electrodes and conductive adhesive layers as described in Patent Documents 1 to 4, for example, have been developed with the aim of excellent uniformity and adhesive strength.
JP-A-9-270370 Japanese Patent Application Laid-Open No. 11-162794 JP 11-329904 A JP 2002-222741 A

しかしながら、いずれのバインダーを用いても、充放電の繰返しによる内部抵抗の上昇を大幅に改善することはできなかった。
従って、本発明が解決しようとする課題は、金属箔等の集電体の表面に導電性接着層を介して分極性電極を形成する電極シート、及びそれを用いた電気化学キャパシタにおいて、充放電の繰返しによる内部抵抗の上昇を大幅に抑制できるものを提供することである。
However, no increase in internal resistance due to repeated charge / discharge could be significantly improved by using any binder.
Therefore, the problem to be solved by the present invention is to charge and discharge an electrode sheet in which a polarizable electrode is formed on a surface of a current collector such as a metal foil via a conductive adhesive layer, and an electrochemical capacitor using the electrode sheet. It is to provide a device capable of greatly suppressing the increase in internal resistance due to repetition of the above.

本発明者らは、これらの課題を解決すべく鋭意検討した結果、導電性接着層のバインダー成分として、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩を用いることにより、充放電の繰返しによる電気化学キャパシタの内部抵抗の上昇を、従来のものに較べて大幅に抑制できることを見出し、本発明の電極シート及びそれを用いた電気化学キャパシタに到達した。   As a result of intensive investigations to solve these problems, the present inventors have used an alkali metal silicate and / or an alkaline earth metal silicate as a binder component of the conductive adhesive layer. The inventors have found that an increase in internal resistance of an electrochemical capacitor due to repeated discharge can be significantly suppressed as compared with the conventional one, and have reached the electrode sheet of the present invention and an electrochemical capacitor using the same.

すなわち本発明は、金属箔の表面に、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩を含む導電性接着層を介して、活性炭及びカーボンブラックを含む層を形成してなることを特徴とする電極シートである。
また、本発明は、前記の電極シートとセパレータが積層された積層体、及び電解液が、容器に密封された構成を備えてなることを特徴とする電気化学キャパシタでもある。
That is, in the present invention, a layer containing activated carbon and carbon black is formed on the surface of a metal foil via a conductive adhesive layer containing an alkali metal silicate and / or an alkaline earth metal silicate. This is an electrode sheet.
The present invention also provides an electrochemical capacitor comprising a laminate in which the electrode sheet and the separator are laminated, and an electrolyte solution sealed in a container.

本発明における導電性接着層は、バインダー成分として、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩を含むので、導電性を低下させることなく、分極性電極と集電体の接着強度を向上させることができる。その結果、充放電の繰返しによる電気化学キャパシタの内部抵抗の上昇が、従来のものに較べて大幅に小さくなり、電気化学キャパシタの寿命を大幅に延ばすことが可能である。   Since the conductive adhesive layer in the present invention contains an alkali metal silicate and / or an alkaline earth metal silicate as a binder component, the polarizable electrode and the current collector are not reduced without lowering the conductivity. Adhesive strength can be improved. As a result, the increase in the internal resistance of the electrochemical capacitor due to repeated charging and discharging is significantly smaller than that of the conventional one, and the lifetime of the electrochemical capacitor can be greatly extended.

本発明の電極シートは、電気二重層キャパシタ、リチウムイオン二次電池、ハイブリッド型の電池等の蓄電媒体において、金属箔等の集電体(または電極)の表面に導電性接着層を介して分極性電極を形成する電極シートに適用される。
また、本発明の電気化学キャパシタは、前記のような構成の電極シートを用いる角型の電気化学キャパシタ、円筒型の電気化学キャパシタのいずれにも適用することができる。
The electrode sheet of the present invention is distributed on the surface of a current collector (or electrode) such as a metal foil via a conductive adhesive layer in a power storage medium such as an electric double layer capacitor, a lithium ion secondary battery, or a hybrid battery. It is applied to an electrode sheet that forms a polar electrode.
In addition, the electrochemical capacitor of the present invention can be applied to both a rectangular electrochemical capacitor and a cylindrical electrochemical capacitor using the electrode sheet configured as described above.

本発明の電極シートの基本的な構成は、アルミ箔等の金属箔からなる集電体の表面に、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩を含む導電性接着層が形成され、さらにその外側表面に、活性炭及びカーボンブラックを含む層からなる分極性電極が形成されるものである。
また、本発明の電極シートの基本的な形態は、図1に示すように、導電性接着層及び分極性電極が、リード部1となる部分を除いた金属箔2の両面(斜線部)に形成されるものである。尚、導電性接着層及び分極性電極は、金属箔2の片面のみに形成して使用することもできる。
The basic structure of the electrode sheet of the present invention is that a conductive adhesive layer containing an alkali metal silicate and / or an alkaline earth metal silicate on the surface of a current collector made of a metal foil such as an aluminum foil Further, a polarizable electrode composed of a layer containing activated carbon and carbon black is formed on the outer surface thereof.
In addition, as shown in FIG. 1, the basic form of the electrode sheet of the present invention is that the conductive adhesive layer and the polarizable electrode are on both surfaces (shaded portions) of the metal foil 2 excluding the portion that becomes the lead portion 1. Is formed. Note that the conductive adhesive layer and the polarizable electrode can be formed and used only on one side of the metal foil 2.

本発明の電極シートに用いられるアルカリ金属のケイ酸塩としては、ケイ酸リチウム、ケイ酸ナトリウム、ケイ酸カリウム等を、アルカリ土類金属のケイ酸塩としては、ケイ酸カルシウムを例示することができる。これらは、2種類以上使用することもできる。また、本発明における導電性接着層は、これらのケイ酸塩のほか、黒鉛、カーボンブラック等の導電性成分が必要である。そのほか、活性炭、熱硬化性樹脂等が含まれていてもよいが、ケイ酸塩の導電性接着層全体に対する含有率は、通常は1〜80wt%、好ましくは2〜50wt%である。   Examples of the alkali metal silicate used in the electrode sheet of the present invention include lithium silicate, sodium silicate, potassium silicate and the like, and examples of the alkaline earth metal silicate include calcium silicate. it can. Two or more of these can be used. The conductive adhesive layer in the present invention requires a conductive component such as graphite and carbon black in addition to these silicates. In addition, although activated carbon, thermosetting resin, etc. may be contained, the content rate with respect to the whole electroconductive contact bonding layer of a silicate is 1-80 wt% normally, Preferably it is 2-50 wt%.

本発明において、金属箔の表面に導電性接着層を形成する方法については、特に限定されることはないが、例えば前記のような導電性接着層の構成成分を、水、水系溶媒、または有機溶媒に溶解あるいは分散させて塗工液を調製し、これを金属箔の表面に塗工し乾燥させることにより、金属箔の表面に導電性接着層を形成させることができる。導電性接着層の厚みは、通常は金属箔の厚みの2〜40%、好ましくは5〜25%である。導電性接着層の厚みが金属箔の厚みの2%未満の場合は、金属箔との接着強度が弱くなり、40%を超える場合は、電気化学キャパシタの内部抵抗の上昇を抑制する効果が少なくなる。   In the present invention, the method for forming the conductive adhesive layer on the surface of the metal foil is not particularly limited. For example, the constituent components of the conductive adhesive layer as described above may be water, an aqueous solvent, or an organic solvent. A conductive adhesive layer can be formed on the surface of the metal foil by preparing a coating solution by dissolving or dispersing in a solvent, coating the solution on the surface of the metal foil, and drying. The thickness of the conductive adhesive layer is usually 2 to 40%, preferably 5 to 25% of the thickness of the metal foil. When the thickness of the conductive adhesive layer is less than 2% of the thickness of the metal foil, the adhesive strength with the metal foil becomes weak, and when it exceeds 40%, the effect of suppressing the increase in the internal resistance of the electrochemical capacitor is small. Become.

また、本発明において、導電性接着層の表面に分極性電極を形成する方法についても、特に限定されることはないが、例えば、活性炭及びカーボンブラックを主成分として含む分極性電極の構成成分を、有機溶媒に溶解あるいは分散させて塗工液を製造し、これを導電性接着層の表面に塗工し乾燥させることにより、導電性接着層の表面に分極性電極を形成させることができる。しかし、本発明においては、分極性電極の構成成分として、活性炭(含有率:70〜90wt%程度)、カーボンブラック(含有率:3〜20wt%程度)、及びポリフッ化ビニリデン(含有率:5〜15wt%程度)を含むものが、より電気化学キャパシタの内部抵抗の上昇を抑制できる点で好ましい。   In the present invention, the method for forming the polarizable electrode on the surface of the conductive adhesive layer is not particularly limited. For example, the constituent components of the polarizable electrode containing activated carbon and carbon black as main components are used. A polarizable electrode can be formed on the surface of the conductive adhesive layer by dissolving or dispersing in an organic solvent to produce a coating liquid, coating the liquid on the surface of the conductive adhesive layer, and drying. However, in the present invention, activated carbon (content ratio: about 70 to 90 wt%), carbon black (content ratio: about 3 to 20 wt%), and polyvinylidene fluoride (content ratio: 5 to 5) are included as components of the polarizable electrode. It is preferable that it contains about 15 wt% in that the increase of the internal resistance of the electrochemical capacitor can be further suppressed.

本発明の電気化学キャパシタは、前述の電極シートを用いたものである。本発明において、電極シートとセパレータを積層する際は、図2に示すように、電極シートの正極体のリード部4及び負極体のリード部5が、各々正極端子6及び負極端子7に接続できるように積層される。その後、図3に示すように、積層体8は、少なくとも一辺に開口部を有するプラスチックフィルムで被覆された金属箔製の偏平状の容器9に収納されるが、電極端子が開口部側になるように収納される。尚、電気化学キャパシタの製造の際には、通常は電解液を注入する前に、積層体及び容器の乾燥処理が行なわれる   The electrochemical capacitor of the present invention uses the above electrode sheet. In the present invention, when laminating the electrode sheet and the separator, as shown in FIG. 2, the lead portion 4 of the positive electrode body and the lead portion 5 of the negative electrode body can be connected to the positive electrode terminal 6 and the negative electrode terminal 7, respectively. Are laminated. Thereafter, as shown in FIG. 3, the laminate 8 is housed in a flat container 9 made of a metal foil covered with a plastic film having an opening on at least one side, but the electrode terminal is on the opening side. Stored. When manufacturing an electrochemical capacitor, the laminated body and the container are usually dried before the electrolyte is injected.

本発明においては、次に容器に電解液を注入して電気化学キャパシタセルに電解液を含浸させるとともに、容器内を減圧処理して分極性電極に吸着されているガスを除去する操作が行なわれる。このようにすることにより、積層体に電解液を効率よく含浸することができる。また、必要に応じて、電解液の注入から容器の密封までの間に、分極性電極に含まれる水分や官能基を電気分解し除去するために、電極端子に通電して電解精製を行なうこともできる。
その後、例えば加熱された2本のヒートシールバーを、プラスチック製、金属箔製の偏平状容器を挟んだ状態で押圧することにより容器の密封が行なわれ、本発明の電気化学キャパシタが得られる。尚、本発明においては、電解液の注入から容器の密封まで、減圧下または不活性ガス雰囲気下で行なわれる。
In the present invention, an operation of injecting the electrolyte into the container and impregnating the electrochemical capacitor cell with the electrolyte and then depressurizing the inside of the container to remove the gas adsorbed on the polarizable electrode is performed. . By doing in this way, a laminated body can be efficiently impregnated with electrolyte solution. In addition, if necessary, between the injection of the electrolyte and the sealing of the container, the electrode terminal is energized and subjected to electrolytic purification in order to electrolyze and remove moisture and functional groups contained in the polarizable electrode. You can also.
Thereafter, the container is sealed by pressing, for example, two heated heat seal bars with a flat container made of plastic or metal foil interposed therebetween, and the electrochemical capacitor of the present invention is obtained. In the present invention, the process from injection of the electrolytic solution to sealing of the container is performed under reduced pressure or in an inert gas atmosphere.

次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.

[実施例1]
(電極シートの製作)
ミキサーに、ケイ酸カリウム2.3kg、黒鉛1kg、カーボンブラック0.2kg、及び陰イオン界面活性剤2%を含む1%アンモニア水6.5kgを投入した後、これらを撹拌して、導電性接着層用の塗工液を調製した。この塗工液を、片面塗工装置を用いて、幅150mm、厚さ30μmのアルミ箔の片面の中央部に105mmの幅で塗布した。アルミ箔の巻出し速度、巻取り速度は4m/minであった。また、塗工装置の熱風導入口から、120〜150℃の乾燥空気を導入して乾燥させた。他の片面も同様にして塗工した。その結果、アルミ箔の両側の表面に各々厚さ約4μmの導電性接着層が形成された。
[Example 1]
(Production of electrode sheet)
A mixer was charged with 2.3 kg of potassium silicate, 1 kg of graphite, 0.2 kg of carbon black, and 6.5 kg of 1% ammonia water containing 2% of an anionic surfactant, and then stirred to conduct conductive adhesion. A coating solution for the layer was prepared. This coating solution was applied with a width of 105 mm to the center of one side of an aluminum foil having a width of 150 mm and a thickness of 30 μm using a single-side coating apparatus. The unwinding speed and winding speed of the aluminum foil were 4 m / min. Moreover, 120-150 degreeC dry air was introduce | transduced from the hot air introduction port of the coating apparatus, and it was made to dry. The other side was coated in the same manner. As a result, conductive adhesive layers each having a thickness of about 4 μm were formed on both surfaces of the aluminum foil.

次に、ミキサーに、活性炭、カーボンブラック、ポリフッ化ビニリデンを投入した後、N,N−ジメチルホルムアミド(DMF)を含む有機溶媒を複数回に分けて注入し、混合して分極性電極用の塗工液を調製した。この塗工液を、片面塗工装置を用いて、前記のアルミ箔の導電性接着層の片側に塗布した。アルミ箔の巻出し速度、巻取り速度は4m/minであった。また、塗工装置の熱風導入口から、40〜150℃の乾燥空気を導入して乾燥させた。他の片面も同様にして塗工した。さらに、図1に示すような形状に切断して、導電性接着層の表面に厚さ約60〜70μmの分極性電極が形成された電極シートを得た。   Next, after putting activated carbon, carbon black, and polyvinylidene fluoride into the mixer, an organic solvent containing N, N-dimethylformamide (DMF) is injected in several portions, mixed, and coated for a polarizable electrode. A working solution was prepared. This coating liquid was applied to one side of the conductive adhesive layer of the aluminum foil using a single-side coating apparatus. The unwinding speed and winding speed of the aluminum foil were 4 m / min. Moreover, 40-150 degreeC dry air was introduce | transduced from the hot air introduction port of the coating apparatus, and it was made to dry. The other side was coated in the same manner. Furthermore, it cut | disconnected in the shape as shown in FIG. 1, and obtained the electrode sheet in which the polarizable electrode about 60-70 micrometers thick was formed in the surface of the electroconductive contact bonding layer.

(電気二重層キャパシタの製作)
前述のように製作された電極シートと、紙製のセパレータ(厚さ50μm)を、リード部が交互に正極及び負極の電極端子に接続できるように、合計30枚積層させて、リード部を除いた一辺が100mmの正方形の積層体(厚さ10mm)を製作した。次に、積層体の正極体のリード部及び負極体のリード部を、各々電極端子に溶接により接着した後、真空乾燥機を用いてこれらを160℃で24時間減圧乾燥した。
また、表面がプラスチックフィルムで被覆されたアルミ箔を基材とする一辺が150mmの正方形の偏平状の容器を、真空乾燥機を用いて105℃で15時間減圧乾燥した。この偏平状の容器は、一辺に開口部を有するものであった。
(Production of electric double layer capacitor)
A total of 30 electrode sheets manufactured as described above and a paper separator (thickness: 50 μm) are stacked so that the lead portions can be alternately connected to the positive and negative electrode terminals, and the lead portions are removed. A square laminate (thickness 10 mm) having a side of 100 mm was manufactured. Next, after the lead part of the positive electrode body and the lead part of the negative electrode body were bonded to the electrode terminals by welding, they were dried under reduced pressure at 160 ° C. for 24 hours using a vacuum dryer.
In addition, a square flat container having a side of 150 mm and having an aluminum foil whose surface was covered with a plastic film as a base material was dried under reduced pressure at 105 ° C. for 15 hours using a vacuum dryer. This flat container has an opening on one side.

積層体及び偏平状の容器を、窒素雰囲気下で室温まで冷却した後、図3に示すように、積層体を容器に挿入した。次に、プロピレンカーボネート溶媒にアンモニウム塩等を分散させた電解液90mlを、偏平状の容器の開口部から注入した。電解液の注入を終了した後、30分間真空ポンプにより減圧にして、積層体の減圧処理を行なった。また、この間、電極端子に通電して電解精製を行なった。その後、容器の開口部を150℃でヒートシールし、偏平状の容器を密封して電気二重層キャパシタを得た。   After the laminate and the flat container were cooled to room temperature in a nitrogen atmosphere, the laminate was inserted into the container as shown in FIG. Next, 90 ml of an electrolytic solution in which an ammonium salt or the like was dispersed in a propylene carbonate solvent was injected from the opening of a flat container. After completing the injection of the electrolytic solution, the laminate was decompressed by a vacuum pump for 30 minutes, and the laminate was decompressed. During this period, the electrode terminal was energized to perform electrolytic purification. Thereafter, the opening of the container was heat sealed at 150 ° C., and the flat container was sealed to obtain an electric double layer capacitor.

(電気二重層キャパシタの性能調査)
前記のように製作した電気二重層キャパシタ10個について、室温下(25℃)で0V−2.5Vの充放電(充電開始1時間後、30分かけて0Vまで放電)を10回繰返した後、内部抵抗を測定した結果、いずれも0.9〜1.1mΩであり、性能が優れていることが確認できた。
次に、この電気二重層キャパシタについて、60℃の環境下、2.5Vの充電を行ない、2000時間この状態を維持した(加速劣化試験)。その後、室温下(25℃)で0V−2.5Vの充放電(充電開始1時間後、30分かけて0Vまで放電)を10回繰返した後、内部抵抗を測定した。その結果、いずれも1.0〜1.3mΩであり、内部抵抗の上昇が小さいことが確認できた。
(Investigation of the performance of electric double layer capacitors)
After 10 electric double layer capacitors manufactured as described above were charged and discharged at 0 to 2.5 V at room temperature (25 ° C.) (1 hour after starting charging and discharging to 0 V over 30 minutes) 10 times. As a result of measuring the internal resistance, all were 0.9 to 1.1 mΩ, and it was confirmed that the performance was excellent.
Next, this electric double layer capacitor was charged at 2.5 V in an environment of 60 ° C., and this state was maintained for 2000 hours (accelerated deterioration test). Thereafter, charging and discharging at 0 V to 2.5 V (1 hour after starting charging, discharging to 0 V over 30 minutes) at room temperature (25 ° C.) was repeated 10 times, and then the internal resistance was measured. As a result, all were 1.0-1.3 mΩ, and it was confirmed that the increase in internal resistance was small.

[実施例2]
(電気二重層キャパシタの製作)
実施例1の電極シートの製作において、ケイ酸カリウムの替わりにケイ酸ナトリウムを用いたほかは、実施例1と同様にして導電性接着層用の塗工液を調製し、この塗工液を用いて実施例1と同様にして電極シートを製作した。
次にこの電極シートを用いたほかは、実施例1と同様にして電気二重層キャパシタを製作した。
[Example 2]
(Production of electric double layer capacitor)
In the production of the electrode sheet of Example 1, a coating solution for the conductive adhesive layer was prepared in the same manner as in Example 1 except that sodium silicate was used instead of potassium silicate. In the same manner as in Example 1, an electrode sheet was produced.
Next, an electric double layer capacitor was manufactured in the same manner as in Example 1 except that this electrode sheet was used.

(電気二重層キャパシタの性能調査)
前記のように製作した電気二重層キャパシタ10個について、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した結果、いずれも1.0〜1.2mΩであり、性能が優れていることが確認できた。
次に、この電気二重層キャパシタについて、60℃の環境下、2.5Vの充電を行ない、2000時間この状態を維持した。その後、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した。その結果、いずれも1.1〜1.3mΩであり、内部抵抗の上昇が小さいことが確認できた。
(Investigation of the performance of electric double layer capacitors)
Ten electric double layer capacitors manufactured as described above were repeatedly charged and discharged at 0 V to 2.5 V at room temperature (25 ° C.) 10 times, and the internal resistance was measured. It was confirmed that the performance was excellent.
Next, this electric double layer capacitor was charged at 2.5 V in an environment of 60 ° C., and this state was maintained for 2000 hours. Then, 0V-2.5V charging / discharging was repeated 10 times at room temperature (25 degreeC), Then, internal resistance was measured. As a result, all were 1.1 to 1.3 mΩ, and it was confirmed that the increase in internal resistance was small.

[実施例3]
(電気二重層キャパシタの製作)
実施例1の電極シートの製作において、ケイ酸カリウムの替わりにケイ酸カルシウムを用いたほかは、実施例1と同様にして導電性接着層用の塗工液を調製し、この塗工液を用いて実施例1と同様にして電極シートを製作した。
次にこの電極シートを用いたほかは、実施例1と同様にして電気二重層キャパシタを製作した。
[Example 3]
(Production of electric double layer capacitor)
In the production of the electrode sheet of Example 1, a coating liquid for the conductive adhesive layer was prepared in the same manner as in Example 1 except that calcium silicate was used instead of potassium silicate. In the same manner as in Example 1, an electrode sheet was produced.
Next, an electric double layer capacitor was manufactured in the same manner as in Example 1 except that this electrode sheet was used.

(電気二重層キャパシタの性能調査)
前記のように製作した電気二重層キャパシタ10個について、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した結果、いずれも1.0〜1.2mΩであり、性能が優れていることが確認できた。
次に、この電気二重層キャパシタについて、60℃の環境下、2.5Vの充電を行ない、2000時間この状態を維持した。その後、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した。その結果、いずれも1.1〜1.4mΩであり、内部抵抗の上昇が小さいことが確認できた。
(Investigation of the performance of electric double layer capacitors)
Ten electric double layer capacitors manufactured as described above were repeatedly charged and discharged at 0 V to 2.5 V at room temperature (25 ° C.) 10 times, and the internal resistance was measured. It was confirmed that the performance was excellent.
Next, this electric double layer capacitor was charged at 2.5 V in an environment of 60 ° C., and this state was maintained for 2000 hours. Then, 0V-2.5V charging / discharging was repeated 10 times at room temperature (25 degreeC), Then, internal resistance was measured. As a result, all were 1.1 to 1.4 mΩ, and it was confirmed that the increase in internal resistance was small.

[比較例1]
(電気二重層キャパシタの製作)
実施例1の電極シートの製作において、ケイ酸カリウムの替わりにセルロース系のバインダーを用いたほかは、実施例1と同様にして導電性接着層用の塗工液を調製し、この塗工液を用いて実施例1と同様にして電極シートを製作した。
次にこの電極シートを用いたほかは、実施例1と同様にして電気二重層キャパシタを製作した。
[Comparative Example 1]
(Production of electric double layer capacitor)
In the production of the electrode sheet of Example 1, a coating liquid for the conductive adhesive layer was prepared in the same manner as in Example 1 except that a cellulose binder was used instead of potassium silicate. An electrode sheet was prepared in the same manner as in Example 1.
Next, an electric double layer capacitor was manufactured in the same manner as in Example 1 except that this electrode sheet was used.

(電気二重層キャパシタの性能調査)
前記のように製作した電気二重層キャパシタ10個について、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した結果、いずれも1.0〜1.2mΩであり、性能が優れていることが確認できた。
次に、この電気二重層キャパシタについて、60℃の環境下、2.5Vの充電を行ない、2000時間この状態を維持した。その後、室温下(25℃)で0V−2.5Vの充放電を10回繰返した後、内部抵抗を測定した。その結果、いずれも1.7〜2.0mΩであり、内部抵抗の上昇が大きいことが確認できた。
(Investigation of the performance of electric double layer capacitors)
Ten electric double layer capacitors manufactured as described above were repeatedly charged and discharged at 0 V to 2.5 V at room temperature (25 ° C.) 10 times, and the internal resistance was measured. It was confirmed that the performance was excellent.
Next, this electric double layer capacitor was charged at 2.5 V in an environment of 60 ° C., and this state was maintained for 2000 hours. Then, 0V-2.5V charging / discharging was repeated 10 times at room temperature (25 degreeC), Then, internal resistance was measured. As a result, all were 1.7-2.0 mΩ, and it was confirmed that the increase in internal resistance was large.

以上のように、本発明の実施例の電気化学キャパシタは、充放電の繰返しによる内部抵抗の上昇が、比較例の電気化学キャパシタに較べて大幅に抑制できることが確認できた。   As described above, it was confirmed that the electrochemical capacitor of the example of the present invention can significantly suppress the increase in internal resistance due to repeated charging and discharging as compared with the electrochemical capacitor of the comparative example.

本発明の電極シートにおいて、塗液の塗布部分の一例を示す平面図The top view which shows an example of the application part of a coating liquid in the electrode sheet of this invention 本発明における積層体の一例示す斜視図The perspective view which shows an example of the laminated body in this invention 本発明の電気二重層キャパシタの一例を示す構成図Configuration diagram showing an example of an electric double layer capacitor of the present invention

符号の説明Explanation of symbols

1 リード部
2 金属箔
3 電極シート
4 正極体のリード部
5 負極体のリード部
6 正極端子
7 負極端子
8 積層体
9 容器
DESCRIPTION OF SYMBOLS 1 Lead part 2 Metal foil 3 Electrode sheet 4 Lead part of positive electrode body 5 Lead part of negative electrode body 6 Positive electrode terminal 7 Negative electrode terminal 8 Laminated body 9 Container

Claims (6)

金属箔の表面に、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩を含む導電性接着層を介して、活性炭及びカーボンブラックを含む層を形成してなることを特徴とする電極シート。   A layer containing activated carbon and carbon black is formed on the surface of the metal foil via a conductive adhesive layer containing alkali metal silicate and / or alkaline earth metal silicate. Electrode sheet. 導電性接着層が、アルカリ金属のケイ酸塩及び/またはアルカリ土類金属のケイ酸塩のほか、黒鉛及びカーボンブラックを含む請求項1に記載の電極シート。   The electrode sheet according to claim 1, wherein the conductive adhesive layer contains graphite and carbon black in addition to alkali metal silicate and / or alkaline earth metal silicate. アルカリ金属のケイ酸塩が、ケイ酸リチウム、ケイ酸ナトリウム、またはケイ酸カリウムである請求項1に記載の電極シート。   The electrode sheet according to claim 1, wherein the alkali metal silicate is lithium silicate, sodium silicate, or potassium silicate. アルカリ土類金属のケイ酸塩が、ケイ酸カルシウムである請求項1に記載の電極シート。   The electrode sheet according to claim 1, wherein the alkaline earth metal silicate is calcium silicate. 導電性接着層の厚みが、金属箔の厚みの2〜40%である請求項1に記載の電極シート。   The electrode sheet according to claim 1, wherein the thickness of the conductive adhesive layer is 2 to 40% of the thickness of the metal foil. 請求項1〜5のいずれかに記載の電極シートとセパレータが積層された積層体、及び電解液が、容器に密封された構成を備えてなることを特徴とする電気化学キャパシタ。   An electrochemical capacitor comprising a laminate in which the electrode sheet according to any one of claims 1 to 5 and a separator are laminated, and an electrolyte solution sealed in a container.
JP2007281123A 2007-10-30 2007-10-30 Electrode sheet and electrochemical capacitor using the same Pending JP2009111107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281123A JP2009111107A (en) 2007-10-30 2007-10-30 Electrode sheet and electrochemical capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281123A JP2009111107A (en) 2007-10-30 2007-10-30 Electrode sheet and electrochemical capacitor using the same

Publications (1)

Publication Number Publication Date
JP2009111107A true JP2009111107A (en) 2009-05-21

Family

ID=40779287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281123A Pending JP2009111107A (en) 2007-10-30 2007-10-30 Electrode sheet and electrochemical capacitor using the same

Country Status (1)

Country Link
JP (1) JP2009111107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055275A1 (en) * 2013-08-22 2015-02-26 Corning Incorporated Ceramic separator for ultracapacitors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282608A (en) * 1988-09-20 1990-03-23 Taiyo Yuden Co Ltd Electric double layer capacitor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282608A (en) * 1988-09-20 1990-03-23 Taiyo Yuden Co Ltd Electric double layer capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150055275A1 (en) * 2013-08-22 2015-02-26 Corning Incorporated Ceramic separator for ultracapacitors
US10121607B2 (en) * 2013-08-22 2018-11-06 Corning Incorporated Ceramic separator for ultracapacitors

Similar Documents

Publication Publication Date Title
JP4640013B2 (en) Electrode element manufacturing method and electrochemical element manufacturing method
JP4670430B2 (en) Electrochemical devices
JP4581888B2 (en) Electrode element manufacturing method and electrochemical element manufacturing method
WO2000013252A1 (en) Method for producing nonaqueous gel electrolyte cell
TW201547085A (en) Sheet-laminated lithium ion secondary battery and method for producing sheet-laminated lithium ion secondary battery
JPH10275747A (en) Electric double layer capacitor
JP5096851B2 (en) Method for manufacturing power storage device
JP2006332446A (en) Electric double layer capacitor
TW201037885A (en) Electrode film, electrode, method for manufacturing the electrode, and electrical storage device
TW201301635A (en) Separator having heat resistant insulation layers
JP2006261599A (en) Manufacturing method of electric double layer capacitor
TW201633590A (en) Current collector, method for producing current collector, electrode, lithium ion secondary battery, redox flow battery, and electric double layer capacitor
US11217826B2 (en) Methods of making sulfide-impregnated solid-state battery
JP5025936B2 (en) Method for producing electrode-porous sheet composite for electronic component
JP7209659B2 (en) Battery manufacturing method
JP4359809B2 (en) Storage element module and manufacturing method thereof
JP6672971B2 (en) Method of manufacturing electrode body
JP4699256B2 (en) Lithium secondary battery
JP2007087680A (en) Electrode-polyelectrolyte film complex for electronic component and its manufacturing method
JP2008282838A (en) Hybrid electric double layer capacitor
WO2013001961A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP6457272B2 (en) Method for reducing uneven charging of secondary battery and method for manufacturing secondary battery
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2010245086A (en) Method for manufacturing lithium ion capacitor
JP2009111107A (en) Electrode sheet and electrochemical capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Effective date: 20120223

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120227

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120926