JPH0282608A - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH0282608A
JPH0282608A JP63233553A JP23355388A JPH0282608A JP H0282608 A JPH0282608 A JP H0282608A JP 63233553 A JP63233553 A JP 63233553A JP 23355388 A JP23355388 A JP 23355388A JP H0282608 A JPH0282608 A JP H0282608A
Authority
JP
Japan
Prior art keywords
conductive
electric double
double layer
layer capacitor
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63233553A
Other languages
Japanese (ja)
Inventor
Nobuyuki Harada
原田 延幸
Yoshiyuki Aoshima
青嶋 良幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP63233553A priority Critical patent/JPH0282608A/en
Publication of JPH0282608A publication Critical patent/JPH0282608A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PURPOSE:To reduce the change rate of an electrostatic capacity and to improve reliability by applying a polarizable electrode and a collecting electrode with a silicate compound conductive inorganic bond layer containing conductive substance such as silicate alkali, graphite, carbon black, etc. CONSTITUTION:Silicate compound conductive inorganic bond layers 12, 12' for applying both polarizable electrodes 11, 11' and conductive collecting electrodes 13, 13' are provided therebetween. The layers 12, 12' contain silicate compound substance and conductive substance. The silicate compound includes as main ingredient silicate alkali represented by a formula X2.SiO2 (where X is alkali metal, n is 0.5-8). The conductive substance used includes graphite, furnace black, etc., by a furnace type incomplete combustion method. The conductive inorganic bond is applied to one or both of the polarizable electrode or electrode material before impregnating with electrolyte, the collecting electrodes, both are superposed as they are or under pressure in an undried state, then dried, and solidified to form the layers 12, 12'.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気二重層コンデンサに係り、詳しくは分極
性電極と集電電極の間の結着剤層を改善したものに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electric double layer capacitor, and more particularly to an improved binder layer between a polarizable electrode and a current collecting electrode.

r従来の技術] 電気二重層コンデンサは、従来のコンデンサに比較して
単位体積当たり数千倍にも及ぶ静電容量を持っているた
め、コンデンサと電池の両方の機能を有することかでき
、例えば後者よりの応用例としてバックアップ用電源に
用いられている。
rPrior art] Electric double layer capacitors have a capacitance per unit volume that is several thousand times greater than that of conventional capacitors, so they can function as both a capacitor and a battery, such as As an example of the latter application, it is used as a backup power source.

この電気二重層コンデンサは、第6図に示すように、多
孔質セパレータ1を介した分極性電極2.3からなる構
成体を金属ケース4に載置し、ガスケット5を介して金
属キャップ6を重ね、カシメ封口したものである。
As shown in FIG. 6, this electric double layer capacitor is constructed by placing a structure consisting of polarizable electrodes 2 and 3 through a porous separator 1 in a metal case 4, and attaching a metal cap 6 through a gasket 5. They are stacked and crimped to seal.

また、第7図に示すように、第6図の構造の分極性電極
1と金属ケース4の間に導電性接着剤7、分極性電極2
と金属キャップ6の間に導電性接着剤8を設けた例も知
られている。例えば特開昭59−3915号公報、特開
昭62−2O0715号公報には、上記導電性接着剤と
して黒鉛、カーボンブランク等の導電性物質とセルロー
ス、ポリビニルアルコール等のバインダーをエタノール
等の有機溶剤と混合して調製したものが記載されている
Further, as shown in FIG. 7, a conductive adhesive 7 is placed between the polarizable electrode 1 and the metal case 4 having the structure shown in FIG.
An example in which a conductive adhesive 8 is provided between the metal cap 6 and the metal cap 6 is also known. For example, JP-A No. 59-3915 and JP-A No. 62-2O0715 disclose that the conductive adhesive is a conductive material such as graphite or carbon blank, a binder such as cellulose or polyvinyl alcohol, and an organic solvent such as ethanol. The product prepared by mixing with is described.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、第6図に示す電気二重層コンデンサの場
合には、分極性電極と金属ケース、分極性電極と金属キ
ャンプは単に接触しているに過ぎないので、高温負荷試
験(70℃で2.4v電圧を印加して1000時間保持
する)を行った場合、内部インピーダンスが増大すると
いう問題点を生じる。
However, in the case of the electric double layer capacitor shown in FIG. If a voltage is applied and held for 1000 hours), a problem arises in that the internal impedance increases.

また、第7図に示す構造の電気二重層コンデンサは、導
電性接着剤を用いて分極性電極と金属ケース、分極性電
極と金属キャンプを接着させているので、製造当初の電
気二重層コンデンサの内部インピーダンス等の特性は良
いが、上記高温負荷試験を行った後の内部インピーダン
スが増大するという問題があった。これは、高温で長期
に保持された場合、導電性接着剤のバインダーが有機物
からなるため、電解液に溶解、膨潤し、分極性電極や金
属ケース、金属キャンプに対する接触抵抗が増すためと
考えられる。
In addition, the electric double layer capacitor with the structure shown in Figure 7 uses a conductive adhesive to bond the polarizable electrode and the metal case, and the polarizable electrode and the metal camp. Although the characteristics such as internal impedance were good, there was a problem that the internal impedance increased after the above-mentioned high-temperature load test. This is thought to be because when kept at high temperatures for a long period of time, the binder of the conductive adhesive is made of organic matter, which dissolves and swells in the electrolyte, increasing contact resistance to polarizable electrodes, metal cases, and metal camps. .

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記課題を解決するために、非電子伝導性か
つイオン透過性の多孔質セパ、レークと、該多孔質セパ
レータの少なくとも一方の側に設けられる分極性電極と
の構成体の両側に導電性集電電極を有する電気二重層コ
ンデンサにおいて、上記分極性電極と導電性集電電極の
間に両者を結着させる珪酸化合物系導電性無機質結着剤
層を設けたことを特徴とする電気二重層コンデンサを提
供するものである。珪酸化合物系導電性無機質結着剤層
としては珪酸アルカリと黒鉛、カーボンブラック等の導
電性物質を含有する結着剤を使用したものが挙げられる
In order to solve the above-mentioned problems, the present invention has been provided on both sides of a structure of a non-electronically conductive and ion-permeable porous separator, a rake, and a polarizable electrode provided on at least one side of the porous separator. An electric double layer capacitor having a conductive current collecting electrode, characterized in that a silicate compound-based conductive inorganic binder layer is provided between the polarizable electrode and the conductive current collecting electrode to bind both. It provides a double layer capacitor. Examples of the silicate compound-based conductive inorganic binder layer include those using a binder containing an alkali silicate and a conductive substance such as graphite or carbon black.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明において、珪酸化合物系導電性無機質結着剤層は
珪酸化合物質と導電性物質を少なくとも含有する。
In the present invention, the silicate compound-based conductive inorganic binder layer contains at least a silicate compound material and a conductive material.

珪酸化合物としては、一般式X2O・nSiO2(但し
、Xはアルカリ金属、nは0.5〜8を示す)で示され
る珪酸アルカリを主成分にしたものが挙げられる。具体
的には、 Na2O・n 5i02(n=0.5〜4.0)、K2
O−n 5i02 (n=1.8〜3.8)、Li2O
・n 5i02(n=3.0〜8.0)が挙げられる。
Examples of the silicic acid compound include those whose main component is an alkali silicate represented by the general formula X2O.nSiO2 (where X is an alkali metal and n is 0.5 to 8). Specifically, Na2O・n 5i02 (n=0.5-4.0), K2
O-n 5i02 (n=1.8-3.8), Li2O
-n 5i02 (n=3.0-8.0).

これらのn(アルカリ金属酸化物に対するモル比)のも
のは工業的に生産されているため安価に使用できる。こ
れらの珪酸アルカリは単独でも用いられるが、2種以上
併用することもできる。
These n (molar ratio to alkali metal oxide) products are industrially produced and can be used at low cost. These alkali silicates can be used alone, but two or more types can also be used in combination.

また、本発明で使用される導電性物質としては、黒鉛、
ファーネス式不完全燃焼法によるファーネスブランク、
ランプブランクや、吸熱分解法によルサーマルブランク
、発熱分解法によるアセチレンブラック、コンタクト式
不完全燃焼法によるチャンネルブランク、ディスクブラ
ック、ロールブラック等が挙げられる。また、レゾール
型フェノール樹脂、レゾール7ノボラツク型フエノール
樹脂、変性フェノール樹脂、レーヨン、ポリアクリルニ
トリル、ピッチ系樹脂といった高分子材料を炭素化した
炭素質からなる球状、無定形、繊維状のものも使用でき
、さらに純粋金属、合金の粉末、繊維状のものも使用で
きる。これらは、単独のみならず2種以上併用しても用
いられる。
Furthermore, the conductive substances used in the present invention include graphite,
Furnace blank made using the furnace incomplete combustion method,
Examples include lamp blanks, thermal blanks produced by endothermic decomposition methods, acetylene blacks produced by exothermic decomposition methods, channel blanks produced by contact incomplete combustion methods, disk blacks, and roll blacks. We also use spherical, amorphous, and fibrous materials made of carbonized polymer materials such as resol-type phenolic resin, resol-7 novolac-type phenolic resin, modified phenolic resin, rayon, polyacrylonitrile, and pitch-based resin. Furthermore, pure metals, alloy powders, and fibrous materials can also be used. These may be used not only alone but also in combination of two or more.

上記珪酸アルカリと導電性物質との固形分としての組成
比は、珪酸アルカリに対して導電性物質5〜2O0重量
%が好ましく、より好ましくは10〜150重量%であ
る。
The solid composition ratio of the alkali silicate and the conductive substance is preferably 5 to 200% by weight, more preferably 10 to 150% by weight of the alkali silicate.

これらの珪酸化合物と導電性物質は主成分として用いら
れるが、さらに他の成分として少なくとも溶媒が加えら
れることにより、導電性無機質結着剤とされる。この溶
媒には水、水に溶解する有機溶剤その他の有機溶剤が用
いられるが、結着剤中の組成比としては、珪酸アルカリ
4重量部、導電性物質1.2M量部、水11M量部が好
ましい。
These silicic acid compounds and conductive substances are used as main components, and by adding at least a solvent as another component, a conductive inorganic binder is obtained. Water, an organic solvent that dissolves in water, and other organic solvents are used as the solvent, and the composition ratio in the binder is 4 parts by weight of alkali silicate, 1.2 M parts of the conductive material, and 11 M parts of water. is preferred.

このようにして製造される導電性無機質結着剤は、分極
性電極又はその電解液含浸前の電極素材、集電電極の一
方又は両方に塗布され、未乾燥状態で両者がそのまま又
は圧を加えて重ねられ、ついで乾燥されて固化され、珪
酸化合物系導電性無機質結着剤層が形成される。この場
合の乾燥温度は室温から2O0°Cが好ましく、より好
ましくは70〜150℃である。
The conductive inorganic binder produced in this way is applied to one or both of the polarizable electrode, the electrode material before it is impregnated with electrolyte, and the current collecting electrode, and both are left in an undried state either as is or by applying pressure. They are stacked together and then dried and solidified to form a silicate compound-based conductive inorganic binder layer. The drying temperature in this case is preferably from room temperature to 200°C, more preferably from 70 to 150°C.

導電性無機質結着剤層の厚さとしては5〜50μmが好
ましい。
The thickness of the conductive inorganic binder layer is preferably 5 to 50 μm.

導電性無機質結着剤を塗布する塗布手段としてはスクリ
ーン印刷法、ローラ転写法、スプレー法等がある。この
際アルコール、セロソルブ等の有機溶剤を加え、塗布面
に対する濡れを良(するようにしても良い。
Application methods for applying the conductive inorganic binder include a screen printing method, a roller transfer method, and a spray method. At this time, an organic solvent such as alcohol or cellosolve may be added to improve wetting of the coated surface.

本発明において、分極性電極は活性炭、電解液を少なく
とも含み、これに必要に応じて導電性物質、バインダー
を含有する。これらの活性炭、電解液、導電性物質、バ
インダーについては、特開昭63−190318号公報
、特願昭62−2O9216号明!lII書に記載され
ているものが例示できる。
In the present invention, the polarizable electrode contains at least activated carbon and an electrolytic solution, and optionally contains a conductive substance and a binder. Regarding these activated carbon, electrolytic solution, conductive substance, and binder, see Japanese Patent Application Laid-open No. 190318/1982 and Japanese Patent Application No. 2009216/1983! Examples include those described in Book III.

〔作用〕[Effect]

分極性電極と集電電極の間に設けた導電性無機質結着剤
層は、無機質結着剤を使用しているので、高温、長期に
わたって電解液に接触しても熔解、膨潤等のことがなく
、安定に保持できる。
The conductive inorganic binder layer provided between the polarizable electrode and the current collecting electrode uses an inorganic binder, so it will not melt or swell even if it comes into contact with the electrolyte at high temperatures and for long periods of time. It can be held stably without any problems.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described based on the drawings.

実施例1 活性炭100M量部、カーボンブランク2O重量部、4
弗化工チレン樹脂デイスバージヨン15重量部、エタノ
ール10M量部加えて混練し、この混練物を成形機を用
いてシート状に成形し、第1図に示すように2つの分極
性電極の電極素材11a 、ll’aを作製した。これ
らの電極素材のそれぞれの片面に次の導電性無機質結着
剤をスクリーン印刷法により塗布し、導電性無機質結着
剤塗布層12a 、12’aを形成した。
Example 1 Activated carbon 100M parts, carbon blank 2O parts by weight, 4
15 parts by weight of fluoroethylene resin diversion and 10 M parts of ethanol were added and kneaded, and the kneaded product was formed into a sheet using a molding machine to form electrode materials 11a for two polarizable electrodes as shown in FIG. , ll'a was created. The following conductive inorganic binder was applied to one side of each of these electrode materials by screen printing to form conductive inorganic binder coating layers 12a and 12'a.

珪酸ソーダ3号          10重量部(珪酸
ソーダ(Na2O・nSiO2:n=3.12)分40
%で他は水) (日本化学工業■製) カーボンブラック          2重量部(商品
名トーカブランク苛5500) 水(/IJン交樗本)         5重量部次に
金属ケース13に導電性無機質結着剤塗布層12a、金
属キャップ14に導電性無機質結着剤塗布層12′aを
それぞれ重ね、90℃、1時間乾燥させることにより結
着させる。このようにして一対のコンデンサ部材15.
15゛を作製する。
Sodium silicate No. 3 10 parts by weight (Sodium silicate (Na2O・nSiO2: n=3.12) min. 40
% and the rest is water) (manufactured by Nihon Kagaku Kogyo ■) 2 parts by weight of carbon black (trade name: Toka Blank Iru 5500) 5 parts by weight of water (/IJ's Co., Ltd.) Next, conductive inorganic binder was added to the metal case 13. The conductive inorganic binder coating layer 12'a is overlaid on the coating layer 12a and the metal cap 14, respectively, and is bonded by drying at 90° C. for 1 hour. In this way, a pair of capacitor members 15.
Make 15゛.

これらのコンデンサ部材15.15”の電極素材12a
、12゛aに電解液(過塩素酸テトラエチルアンモニウ
ムを0.5モル濃度含むプロピレンカーボネート接液)
を真空含浸 (10torr下で1時間)させ、第1図
(ロ)のように予め上記と同様の電解液を含浸させであ
る0、1鶴のポリプロピレン製多孔質セパレータ14を
挟持する。
Electrode material 12a of these capacitor members 15.15"
, electrolyte solution (propylene carbonate containing 0.5 molar concentration of tetraethylammonium perchlorate) in 12゛a.
is impregnated in vacuum (under 10 torr for 1 hour), and as shown in FIG. 1(b), a porous separator 14 made of polypropylene of 0.1 and 1.0 mm, which has been previously impregnated with the same electrolytic solution as above, is sandwiched therebetween.

このようにして第1図(ロ)に示すように、多孔質セパ
レータ14の両側の分極性電極11.11’ を導電性
無機質結着剤層(厚さ2Oμm )12.12’ によ
り金属ケース13、金属キャップ13°に結着させ、こ
れらの周側をガスケット16を介してカシメて封口した
電気二重層コンデンサが出来上がる。この場合は金属ケ
ース、金属キャップは集電電極を兼ねている。
In this way, as shown in FIG. 1(b), the polarizable electrodes 11.11' on both sides of the porous separator 14 are connected to the metal case 13 by the conductive inorganic binder layer (20 μm thick) 12.12'. , and a metal cap 13°, and their peripheral sides are caulked and sealed via a gasket 16 to complete an electric double layer capacitor. In this case, the metal case and metal cap also serve as current collecting electrodes.

この電気二重層コンデンサについて、高温負荷試験(7
0℃で2.4v電圧を1000時間印加)を行い、その
負荷前と1000時間負荷後の電気二重層コンデンサの
内部インピーダンス(Ω)と静電容量を次のようにして
求めた。
This electric double layer capacitor was subjected to a high temperature load test (7
A voltage of 2.4 V was applied for 1000 hours at 0° C.), and the internal impedance (Ω) and capacitance of the electric double layer capacitor before and after loading for 1000 hours were determined as follows.

すなわち、静電容量の測定は、第3図に示す測定回路の
供試料端子17.18にサンプルの電気二重層コンデン
サを接続する。この状態でスイッチを端子19側に接続
させ、2.4vに達した後から定電圧充電に切り換え、
30分間充電させる。その後、スイッチを端子2O側に
切り換え、第4図に示すように5mAで定電流放電し、
電圧計21で1.5vになった時刻T1と、1.OVに
なった時刻T2とを測定する。これらの測定値から次式
により静電容量を求める。
That is, to measure capacitance, a sample electric double layer capacitor is connected to sample terminals 17 and 18 of the measurement circuit shown in FIG. In this state, connect the switch to the terminal 19 side, and after reaching 2.4V, switch to constant voltage charging,
Charge for 30 minutes. After that, switch the switch to the terminal 2O side and discharge at a constant current of 5 mA as shown in Figure 4.
The time T1 when the voltmeter 21 reached 1.5V, and 1. The time T2 when the temperature becomes OV is measured. Calculate the capacitance from these measured values using the following formula.

i:電流(Amp) Tl、T2:時間(分) このようにして求めた静電容量の高温負荷試験後のその
試験前に対する変化率(%)を求め、第1表に示す。
i: Current (Amp) Tl, T2: Time (minutes) The rate of change (%) of the capacitance thus obtained after the high temperature load test with respect to before the test was determined and shown in Table 1.

また、内部インピーダンスの測定に当たっては、上記サ
ンプルの電気二重層コンデンサについて70℃、2.4
v、1000時間電圧を印加する試験(高温負荷試験)
の前後において、市販のLCRメータ(YHP4274
A)を用い、IKHz、10mA、常温で衛測定し、そ
の結果を第1表に示す。
In addition, when measuring the internal impedance, the electric double layer capacitor of the above sample was heated at 70℃ and 2.4℃.
v, test of applying voltage for 1000 hours (high temperature load test)
A commercially available LCR meter (YHP4274
A) was used for measurement at IKHz, 10 mA, and room temperature, and the results are shown in Table 1.

実施例2 実施例1において、珪酸ソーダとして、Na2O・0.
55i02を用いた以外は同様にして電気二重層コンデ
ンサを作製し、実施例1と同様に測定して求めた結果を
第1表に示す。
Example 2 In Example 1, Na2O.0.
An electric double layer capacitor was produced in the same manner except that 55i02 was used, and the results obtained by measuring in the same manner as in Example 1 are shown in Table 1.

実施例3 実施例1において、珪酸ソーダとして、Na2O・4.
O5i02を用い、導電性物質としてカーボンブラック
の代わりにフェノール系炭素繊維(日本カイノール製)
を用いた以外は同様にして電気二重層コンデンサを作製
し、実施例1と同様に測定して求めた結果を第1表に示
す。
Example 3 In Example 1, Na2O.4.
O5i02 is used, and phenolic carbon fiber (manufactured by Nippon Kynor) is used instead of carbon black as the conductive material.
An electric double layer capacitor was produced in the same manner except that 1 was used, and the results were measured in the same manner as in Example 1, and the results are shown in Table 1.

実施例4 実施例1において、珪酸ソーダの代わりに珪酸カリ(K
2O・2,85iOz)を用い、導電性物質としてカー
ボンブランクの代わりにフェノール系炭素繊維(日本カ
イノール製)を用いた以外は同様にして電気二重層コン
デンサを作製し、実施例1と同様に測定して求めた結果
を第1表に示す。
Example 4 In Example 1, potassium silicate (K
An electric double layer capacitor was prepared in the same manner as in Example 1, except that phenolic carbon fiber (manufactured by Nippon Kynor) was used instead of the carbon blank as the conductive material. The results obtained are shown in Table 1.

実施例5 実施例1において、カーボンブランクを2重量部の代わ
りに0.2重量部用いた以外は同様にして電気二重層コ
ンデンサを作製し、実施例1と同様に測定して求めた結
果を第1表に示す。
Example 5 An electric double layer capacitor was produced in the same manner as in Example 1 except that 0.2 parts by weight of carbon blank was used instead of 2 parts by weight, and the results were obtained by measuring in the same manner as in Example 1. Shown in Table 1.

実施例6 実施例1において、導電性無機質結着剤の珪酸ソーダ3
号に代えて、コロイダルシリカ(商品名シリカドール二
日本化学工業@製の珪酸ソーダを主成分にするもの)を
用いた以外は同様にして電気二重層コンデンサを作製し
、実施例1と同様に測定して求めた結果を第1表に示す
Example 6 In Example 1, the conductive inorganic binder sodium silicate 3
An electric double layer capacitor was produced in the same manner as in Example 1, except that colloidal silica (product name Silica Doll II, manufactured by Nippon Chemical Industry @, whose main component is sodium silicate) was used instead of No. The measured results are shown in Table 1.

実施例7 実施例1において、導電性無機質結着剤の珪酸ソーダ3
号に代えて、オルガノゾル(商品名03CAL:触媒化
成工業側製の珪酸ソーダを主成分とするエタノール液)
とし、水に代えてエタノールを用いた以外は同様にして
電気二重層コンデンサを作製し、実施例1と同様に測定
して求めた結果を第1表に示す。
Example 7 In Example 1, the conductive inorganic binder sodium silicate 3
In place of the number, organosol (product name 03CAL: ethanol liquid whose main component is sodium silicate manufactured by Catalysts and Chemicals)
An electric double layer capacitor was prepared in the same manner except that ethanol was used instead of water, and the results were measured in the same manner as in Example 1. Table 1 shows the results.

比較例1 珪酸化合物系導電性無機質結着剤層を設けなかった以外
は実施例1と同様にして電気二重層コンデンサを作製し
、実施例1と同様に測定して求めた結果を第1表に示す
Comparative Example 1 An electric double layer capacitor was manufactured in the same manner as in Example 1 except that the silicate compound-based conductive inorganic binder layer was not provided, and the results obtained by measuring in the same manner as in Example 1 are shown in Table 1. Shown below.

比較例2 珪酸化合物系導電性無機質結着剤の代わりに導電性有機
質接着剤(カーボンブラック3重量部、セルロース7重
量部、エタノール5重量部の混合物)を使用した以外は
実施例1と同様にして電気二重層コンデンサを作製し、
実施例1と同様に測定して求めた結果を第1表に示す。
Comparative Example 2 Same as Example 1 except that a conductive organic adhesive (a mixture of 3 parts by weight of carbon black, 7 parts by weight of cellulose, and 5 parts by weight of ethanol) was used instead of the silicate compound-based conductive inorganic binder. Fabricate an electric double layer capacitor using
Table 1 shows the results obtained by measuring in the same manner as in Example 1.

表1 実施例8 実施例1と同様に、第2図に示すように分極性電極の電
極素材22a 、22’aを作製する。つづいて筒状の
未加硫絶縁性ブチルゴムのガスケント(外径15寵、内
径io田、厚さ0.5 tmン24.24’  と、カ
ーボンブラックとブチルゴムを練り合わせた未加硫導電
性ブチルゴムシート(直径150、厚さ0.2um)2
5.25’ と、ポリプロピレン製の多孔質セパレータ
26(直径13n、厚さ0,1mm)を用意する。
Table 1 Example 8 Similarly to Example 1, electrode materials 22a and 22'a of polarizable electrodes are prepared as shown in FIG. Next, a cylindrical unvulcanized insulating butyl rubber Gaskent (outer diameter 15 cm, inner diameter 10 mm, thickness 0.5 tm 24.24') and an unvulcanized conductive butyl rubber sheet made by kneading carbon black and butyl rubber. (Diameter 150, thickness 0.2um) 2
5.25' and a porous separator 26 made of polypropylene (diameter 13n, thickness 0.1 mm) are prepared.

このような準備を行った後、上記電極素材22a、22
゛aのそれぞれの片面に実施例1と同様に導電性無機結
着剤を塗布し導電性無機結着剤塗布層27a、27゛a
を形成し、これらのそれぞれの塗布層を上記未加硫導電
性ブチルゴムシート25a 、25’aのそれぞれに同
心円に重ねて70℃、1時間乾燥させる。
After making such preparations, the electrode materials 22a, 22
A conductive inorganic binder is applied to one side of each of the conductive inorganic binders 27a and 27a in the same manner as in Example 1.
These coating layers are concentrically stacked on each of the unvulcanized conductive butyl rubber sheets 25a and 25'a and dried at 70° C. for 1 hour.

これにより分層性電極と未加硫導電性ブチルゴムシート
は結着される。
As a result, the layered electrode and the unvulcanized conductive butyl rubber sheet are bonded together.

ついで、上記分極性電極を結着した未加硫導電性ブチル
ゴムシート25a 、25’aのそれぞれに上記ガスケ
ット24.24′のそれぞれを周面が一致するように載
置し、それぞれの電極素材22a 、 22”aに電解
液(30%濃度の硫酸溶液)を真空含浸(10−2to
rr下で1時間)させる。ついでこれらは上記多孔質セ
パレータ26を介して未加硫導電性ブチルゴムシートを
外側にして対向され、さらに5 Kg/ ctAの圧力
で加圧した状態で12O℃、5時間放置することにより
加硫処理される。これにより第2図(ロ)に示すように
集電電極25.25′  と分極性電極22.22′を
導電性無機質結着剤層27.27′で結着させた基本セ
ルができあがる。
Next, the gaskets 24 and 24' are placed on each of the unvulcanized conductive butyl rubber sheets 25a and 25'a to which the polarizable electrodes are bound, so that their circumferential surfaces coincide with each other, and the respective electrode materials 22a are placed. , 22”a was vacuum impregnated with electrolyte (30% sulfuric acid solution) (10-2
Incubate under rr for 1 hour). Next, these were placed facing each other with the unvulcanized conductive butyl rubber sheet outside through the porous separator 26, and were further vulcanized by being left at 120°C for 5 hours under a pressure of 5 kg/ctA. be done. As a result, as shown in FIG. 2(b), a basic cell is completed in which the current collecting electrode 25, 25' and the polarizable electrode 22, 22' are bound together by the conductive inorganic binder layer 27, 27'.

図示省略したが、ステンレス製の上下2つの部材からな
る封止用容器に上記基本セルを6個重ね、これら上下部
材の端部をポリプロピレン製ガスケットを介してカシメ
、電気二重層コンデンサを作製する。
Although not shown, six of the basic cells described above are stacked on a sealing container consisting of two upper and lower members made of stainless steel, and the ends of these upper and lower members are caulked via a polypropylene gasket to produce an electric double layer capacitor.

この電気二重層コンデンサについて、高温負荷試験(7
0°Cで5.5vの電圧を1000時間印加)前後の内
部インピーダンス(Ω)と静電容量を測定し、静電容量
についてはその変化率を実施例1と同様に求めた。その
結果を第2表に示す。
This electric double layer capacitor was subjected to a high temperature load test (7
The internal impedance (Ω) and capacitance were measured before and after applying a voltage of 5.5 V at 0° C. for 1000 hours, and the rate of change in capacitance was determined in the same manner as in Example 1. The results are shown in Table 2.

なお、内部インピーダンスは実施例1と同様にして求め
、静電容量は第3図の回路を用い、第5図に示すように
サンプルの電気二重層コンデンサに5.5vの定電圧充
電を30分行ってから5 mAで定電流放電し、3.O
vになった時刻T、と、2.5vになった時刻T2を測
定し、実施例1で使用した式から求めた。
The internal impedance was determined in the same manner as in Example 1, and the capacitance was determined by using the circuit shown in Figure 3 and charging the sample electric double layer capacitor with a constant voltage of 5.5V for 30 minutes as shown in Figure 5. After that, discharge at a constant current of 5 mA, and 3. O
The time T when the voltage became V and the time T2 when the voltage became 2.5 V were measured and calculated from the formula used in Example 1.

比較例3 実施例8において、導電性無機質結着剤層を設けなかっ
た以外は同様にして電気二重層コンデンサを作製し、実
施例8と同様にして求めた結果を第2表に示す。
Comparative Example 3 An electric double layer capacitor was produced in the same manner as in Example 8 except that the conductive inorganic binder layer was not provided, and the results obtained in the same manner as in Example 8 are shown in Table 2.

上記結果から、実施例のものはいずれも静電容量変化率
が少ないのみならず、高温負荷試験後の内部インピーダ
ンスの増加割合も少ないことがわかる。
From the above results, it can be seen that all of the examples have not only a small rate of change in capacitance, but also a small rate of increase in internal impedance after the high-temperature load test.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、分極性電極と集電電極とを珪酸化合物
系導電性無機質結着剤層により結着させたので、珪酸化
合物系導電性無機質結着剤層が熱に安定であり、かつ電
解液に熔解、膨潤することがないので、高温下に長期使
用されてもその内部インピーダンスの増加を少なくでき
、これにより静電容量の変化率を少なくして高い信頼性
を確保できる。
According to the present invention, since the polarizable electrode and the current collecting electrode are bound together by the silicate compound-based conductive inorganic binder layer, the silicate compound-based conductive inorganic binder layer is stable to heat, and Since it does not dissolve or swell in the electrolytic solution, it is possible to reduce the increase in internal impedance even when used at high temperatures for a long period of time, thereby reducing the rate of change in capacitance and ensuring high reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)は本発明の一実施例の電気二重層コンデン
サの製造方法における製造過程を示す断面図、同図(ロ
)はその完成図、第2図(イ)は本発明の第二の実施例
の電気二重層コンデンサの製造方法における製造過程を
示す断面図、同図(ロ)はその完成図、第3図はコンデ
ンサの静電容量測定回路図、第4図はその一動作説明図
、第5図はその他の動作説明図、第6図は従来の電気二
重層コンデンサの断面図、第7図は従来の他の電気二重
層コンデンサの断面図である。 図中、II、11′、22.22’ は分極性電極、1
2.12’ 、27.27゛ は珪酸化合物系導電性無
機質結着剤層、13は集電電極兼用金属ケース、13′
は集電電極兼用全屈キャップ、25.25゛ は集電電
極である。 昭和63年09月2O日
FIG. 1(a) is a cross-sectional view showing the manufacturing process in the method for manufacturing an electric double layer capacitor according to an embodiment of the present invention, FIG. 1(b) is a completed view, and FIG. A sectional view showing the manufacturing process in the method for manufacturing an electric double layer capacitor according to the second embodiment, Figure (b) is a completed diagram, Figure 3 is a capacitance measurement circuit diagram of the capacitor, and Figure 4 is one operation thereof. FIG. 5 is an explanatory diagram of another operation, FIG. 6 is a sectional view of a conventional electric double layer capacitor, and FIG. 7 is a sectional view of another conventional electric double layer capacitor. In the figure, II, 11', 22.22' are polarizable electrodes, 1
2.12' and 27.27' are silicate compound-based conductive inorganic binder layers, 13 is a metal case that also serves as a current collecting electrode, and 13'
25.25゛ is the current collecting electrode. September 20, 1988

Claims (4)

【特許請求の範囲】[Claims] (1)非電子伝導性かつイオン透過性の多孔質セパレー
タと、該多孔質セパレータの少なくとも一方の側に設け
られる分極性電極との構成体の両側に導電性集電電極を
有する電気二重層コンデンサにおいて、上記分極性電極
と導電性集電電極の間に両者を結着させる珪酸化合物系
導電性無機質結着剤層を設けたことを特徴とする電気二
重層コンデンサ。
(1) An electric double layer capacitor having conductive current collecting electrodes on both sides of a structure consisting of a non-electronically conductive and ion permeable porous separator and a polarizable electrode provided on at least one side of the porous separator. An electric double layer capacitor characterized in that a silicate compound-based conductive inorganic binder layer is provided between the polarizable electrode and the conductive current collecting electrode to bind them together.
(2)珪酸化合物系導電性無機質結着剤層は珪酸アルカ
リと導電性物質とを含有する結着剤を用いて形成される
ことを特徴とする請求項1記載の電気二重層コンデンサ
(2) The electric double layer capacitor according to claim 1, wherein the silicate compound-based conductive inorganic binder layer is formed using a binder containing an alkali silicate and a conductive substance.
(3)珪酸アルカリは一般式X_2O・nSiO_2(
但しXはアルカリ金属、nは0.5〜8を示す)で示さ
れることを特徴とする請求項2記載の電気二重層コンデ
ンサ。
(3) Alkali silicate has the general formula X_2O・nSiO_2(
3. The electric double layer capacitor according to claim 2, wherein X is an alkali metal and n is 0.5 to 8.
(4)導電性物質は黒鉛、カーボンブラック、合成高分
子を炭素化した炭素質、又は金属の1種又は2種以上か
らなることを特徴とする請求項2又は3記載の電気二重
層コンデンサ。
(4) The electric double layer capacitor according to claim 2 or 3, wherein the conductive substance is made of one or more of graphite, carbon black, carbonaceous material obtained by carbonizing a synthetic polymer, or metal.
JP63233553A 1988-09-20 1988-09-20 Electric double layer capacitor Pending JPH0282608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63233553A JPH0282608A (en) 1988-09-20 1988-09-20 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63233553A JPH0282608A (en) 1988-09-20 1988-09-20 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JPH0282608A true JPH0282608A (en) 1990-03-23

Family

ID=16956867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63233553A Pending JPH0282608A (en) 1988-09-20 1988-09-20 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH0282608A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111107A (en) * 2007-10-30 2009-05-21 Japan Pionics Co Ltd Electrode sheet and electrochemical capacitor using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009111107A (en) * 2007-10-30 2009-05-21 Japan Pionics Co Ltd Electrode sheet and electrochemical capacitor using the same

Similar Documents

Publication Publication Date Title
US5150283A (en) Electric double layer capacitor and method for producing the same
US5455999A (en) Method for making electrochemical device
US6094338A (en) Electric double-layer capacitor
US5646815A (en) Electrochemical capacitor with electrode and electrolyte layers having the same polymer and solvent
JP2007012596A (en) Electrode for lead-acid battery, lead-acid battery and manufacturing method of lead-acid battery
CN102804300A (en) Electrical energy storage device containing an electroactive separator
JP2016534564A (en) Separators based on fibrous ceramic materials for ultracapacitors, EDLCs, hybrid capacitors, fuel cells and batteries
KR20040100991A (en) Electric double layer capacitor and electric double layer capacitor stacked body
JP3509735B2 (en) Cylindrical electric double layer capacitor
JPS62200715A (en) Electric double-layer capacitor
JPH0282608A (en) Electric double layer capacitor
JP2006279003A (en) Electric double layer capacitor
JP3364460B2 (en) Electrochemical capacitor
JP2666848B2 (en) Carbon paste electrode
US20020036883A1 (en) Activated carbon for electric double layer capacitor
JPH1140467A (en) Electric double layer capacitor
JPH021104A (en) Electric double layer capacitor
JP2000138142A (en) Electric double layer capacitor
JP2507125B2 (en) Electric double layer capacitor and manufacturing method thereof
JPH0266918A (en) Electric double layer capacitor
JPH07307250A (en) Electric double-layer capacitor
JPH05304047A (en) Polarized electrode and manufacture thereof
JPH02192108A (en) Electric double layer capacitor
JP3070796B2 (en) Manufacturing method of polarized electrode
JPH03192715A (en) Electric double-layer capacitor