JP2006279003A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2006279003A
JP2006279003A JP2005128603A JP2005128603A JP2006279003A JP 2006279003 A JP2006279003 A JP 2006279003A JP 2005128603 A JP2005128603 A JP 2005128603A JP 2005128603 A JP2005128603 A JP 2005128603A JP 2006279003 A JP2006279003 A JP 2006279003A
Authority
JP
Japan
Prior art keywords
double layer
layer capacitor
electric double
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005128603A
Other languages
Japanese (ja)
Inventor
Yoshiharu Matsuda
好晴 松田
Masaji Ishikawa
正司 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSEI KK
Original Assignee
KENSEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSEI KK filed Critical KENSEI KK
Priority to JP2005128603A priority Critical patent/JP2006279003A/en
Publication of JP2006279003A publication Critical patent/JP2006279003A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor with a high electrostatic capacity. <P>SOLUTION: After an electric double layer capacitor is manufactured by using an electrode comprising activated carbon as a polarizable electrode and an aqueous solution with dissolved salt comprising group 1 and group 17 elements of a periodic table of elements as an electrolyte, a voltage impression process in the range of voltage from 0.4 V to 1.0 V is performed between a positive electrode and a negative electrode in such a state that heating is performed in the temperature range of room temperatures or the room temperature to 80°C. By this voltage impression process, oxygen content on the surface of the electrode is increased, and hydrophilic property is increased. Also, the pore volume of the activated carbon is increased. Such an electric double layer capacitor shows high electrostatic capacity, compared with the capacitor that has not received the voltage impression process. Moreover, dissolving organic matter that is compatible with water such as ethylene glycol in the electrolyte prevents the electrolyte from freezing even at -30°C. The electric double layer capacitor provided with such an electrolyte can considerably suppress a reduction in the electrostatic capacity due to a temperature drop. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、分極性電極と電解液の界面で形成される電気二重層キャパシタに関するものである。  The present invention relates to an electric double layer capacitor formed at an interface between a polarizable electrode and an electrolytic solution.

電気二重層キャパシタは、分極性電極と電解液から成り、対向した正負の電極の間に存在する電解液とで形成される電極と電解液界面の電気二重層に、電荷を蓄積するキャパシタの一種である。  An electric double layer capacitor is a type of capacitor that consists of a polarizable electrode and an electrolyte, and accumulates charge in the electric double layer at the interface between the electrode and the electrolyte formed by the electrolyte present between the opposing positive and negative electrodes. It is.

この電気二重層キャパシタは、主として電子機器のバックアップ電源として用いられてきているが、最近では二次電池や太陽電池とハイブリッド化して用いられており、サイクル寿命が長いという長所を有するため、益々その需要が高まっている。  Although this electric double layer capacitor has been mainly used as a backup power source for electronic equipment, it has recently been used in a hybrid form with a secondary battery or a solar battery and has an advantage of a long cycle life. Demand is increasing.

しかし、さらに広い用途に適用させるために、高容量化、高出力化、高エネルギー密度化が求められている。  However, higher capacity, higher output, and higher energy density are required in order to apply to a wider range of applications.

正極と負極の間に介在させる電解液としては、プロピレンカーボネート若しくはγ−ブチロラクトン等の非プロトン性有機溶媒に、テトラエチルアンモニウムテトラフルオロボレート、トリエチルメチルアンモニウムテトラフルオロボレート或いは、テトラエチルホスホニウムテトラフルオロボレート等を溶解させた非水系有機溶液(特許文献1)、または硫酸、塩酸、中性塩、塩基等の水溶液が用いられている(特許文献2、3)。  As an electrolytic solution interposed between the positive electrode and the negative electrode, tetraethylammonium tetrafluoroborate, triethylmethylammonium tetrafluoroborate, tetraethylphosphonium tetrafluoroborate, etc. are dissolved in an aprotic organic solvent such as propylene carbonate or γ-butyrolactone. A non-aqueous organic solution (Patent Document 1) or an aqueous solution of sulfuric acid, hydrochloric acid, neutral salt, base, or the like is used (Patent Documents 2 and 3).

電解液の中に位置するセパレーターとしては、ガラス繊維不織布、ポリプロピレン不織布等が用いられている。  As the separator located in the electrolyte, a glass fiber nonwoven fabric, a polypropylene nonwoven fabric or the like is used.

正極および負極に用いる活性化炭素を用いた分極性電極としては、従来では例えば、活性化炭素繊維に集電体を溶射或いは、蒸着法で密着させた電極、活性化炭素粉末にフッ素樹脂を少量混合して集電体にプレス成形した電極、活性化炭素粉末に少量のアセチレンブラック、接着剤と、揮発性の溶剤を混入して作製したペーストを導電性ゴム電極に圧着した後加熱、加圧してシート状にした電極等が用いられている。  Conventionally, as a polarizable electrode using activated carbon used for the positive electrode and the negative electrode, for example, an electrode obtained by spraying a current collector on activated carbon fiber or adhering by an evaporation method, or a small amount of fluorocarbon resin on activated carbon powder. An electrode that is mixed and press-molded into a current collector, and a paste prepared by mixing a small amount of acetylene black, an adhesive, and a volatile solvent into activated carbon powder is pressed onto a conductive rubber electrode, and then heated and pressurized. A sheet-like electrode or the like is used.

有機電解液中に分極性電極が浸されている電気二重層キャパシタの炭素電極の静電容量を大きくするために、分極性電極が黒鉛類似の微結晶炭素を有する非多孔性炭素により形成され、静電容量が電圧印加により前記黒鉛類似の微結晶炭素の層間に電解質イオンが溶媒を伴ってインターカレートすることにより電気二重層を形成することを利用する電気二重層キャパシタが提案されている(特許文献4)。  In order to increase the capacitance of the carbon electrode of the electric double layer capacitor in which the polarizable electrode is immersed in an organic electrolyte, the polarizable electrode is formed of non-porous carbon having microcrystalline carbon similar to graphite, There has been proposed an electric double layer capacitor that uses an electric capacity to form an electric double layer by intercalating electrolyte ions with a solvent between layers of microcrystalline carbon similar to graphite by applying a voltage ( Patent Document 4).

電気二重層キャパシタのエネルギー密度を向上させるために、黒鉛類似の層状構造を持つ微結晶炭素を含有していて、賦活処理することで電気二重層キャパシタ用の黒鉛類似の微結晶炭素でその層間距離が黒鉛よりもやや長い0.343nm以下の構造を持つ炭素から構成される電極を用いることも提案されている(特許文献5)。  In order to improve the energy density of the electric double layer capacitor, it contains microcrystalline carbon with a layer structure similar to graphite, and the interlayer distance of the microcrystalline carbon similar to graphite for electric double layer capacitor by activation treatment It has also been proposed to use an electrode composed of carbon having a structure of 0.343 nm or less, which is slightly longer than graphite (Patent Document 5).

さらに、キャパシタの性能を上げるために、活性炭の表面に黒鉛質炭素材料を被着させた複合多孔性材料を主とする負極と、活性炭を主とする正極と、非水溶媒にリチウム塩電解質を溶解した非水電解液を用いた非水系リチウムイオンを含んだ電解液を用いる蓄電素子も提案されている(特許文献6)。
特開2004−335875号公報 特開平9−293649号公報 特開2002−289477号公報 特開2002−025867号公報 特開2003−051430号公報 特開2004−079321号公報
Furthermore, in order to improve the performance of the capacitor, a negative electrode mainly composed of a composite porous material having a graphitic carbon material deposited on the surface of activated carbon, a positive electrode mainly composed of activated carbon, and a lithium salt electrolyte in a non-aqueous solvent. A power storage element using an electrolyte containing nonaqueous lithium ions using a dissolved nonaqueous electrolyte has also been proposed (Patent Document 6).
JP 2004-335875 A Japanese Patent Laid-Open No. 9-293649 JP 2002-289477 A JP 2002-025867 A JP 2003-051430 A JP 2004-079321 A

本発明は、従来から要望されている電気二重層キャパシタの単位重量或いは単位容積当たりの静電容量を大きくすることを目的とする。  An object of the present invention is to increase the electrostatic capacity per unit weight or unit volume of an electric double layer capacitor that has been conventionally demanded.

さらに、寒冷地において低温でも使用可能な高電気容量の電気二重層キャパシタを提供することをも目的とする。  It is another object of the present invention to provide an electric double layer capacitor having a high electric capacity that can be used at low temperatures in cold regions.

また、価格の低い、経済性の高い、安全な電気二重層キャパシタを提供することをも目的とする。  It is another object of the present invention to provide an electric double layer capacitor that is inexpensive, highly economical, and safe.

第1の発明は、分極性電極として活性化炭素、電解液として元素の周期表の1族と17族の元素からなる塩を溶解した水溶液を電解液として備えた電気二重層キャパシタであって、電気二重層キャパシタ組立て後、室温、0.4V〜1.0Vの電圧で電圧印加処理を行うことにより、作製されることを特徴とする。元素の周期表の17族元素のイオンを含む水溶液からなる電解液と活性化炭素電極を備えた電気二重層キャパシタに、前記電圧を印加すると電極表面が酸化され、表面の酸素成分が増加し、親水性が強くなる。それと同時に、活性化炭素の細孔容積も増加する。このように電解液中にハロゲン化物イオンを含んでいる電解液に浸された活性化炭素電極に、電圧印加することによって改良された活性化炭素電極へは、電解液中のイオンの吸脱着量が増加する。しかも水は有機溶媒よりも粘度が低く、イオンの吸脱着の速度も速く、このような電解液を用いる電気二重層キャパシタでは、充放電の速度が増大する。従って、元素の周期表の1族と17族の元素からなる塩を溶解した水溶液を電解液に使用し、電極に分極性電極を備えた電気二重層キャパシタに組立て後、電圧印加処理をすることにより静電容量の大きいキャパシタを作製することができる。  A first invention is an electric double layer capacitor comprising an activated carbon as a polarizable electrode and an aqueous solution in which a salt composed of elements of Groups 1 and 17 of the periodic table of elements is dissolved as an electrolytic solution. After the electric double layer capacitor is assembled, it is manufactured by performing a voltage application process at room temperature and a voltage of 0.4 V to 1.0 V. When the voltage is applied to an electric double layer capacitor having an electrolytic solution composed of an aqueous solution containing ions of group 17 elements of the periodic table of elements and an activated carbon electrode, the electrode surface is oxidized, and the oxygen component on the surface increases. Increases hydrophilicity. At the same time, the pore volume of activated carbon increases. Thus, the activated carbon electrode immersed in the electrolytic solution containing halide ions in the electrolytic solution, and the activated carbon electrode improved by applying a voltage, the adsorption / desorption amount of ions in the electrolytic solution Will increase. Moreover, water has a lower viscosity than organic solvents, and the rate of adsorption and desorption of ions is faster. In an electric double layer capacitor using such an electrolyte, the charge / discharge rate is increased. Therefore, an aqueous solution in which a salt composed of elements of Group 1 and Group 17 of the periodic table of elements is dissolved is used as an electrolytic solution, and an electric double layer capacitor having a polarizable electrode as an electrode is assembled, and then a voltage application process is performed. Thus, a capacitor having a large capacitance can be manufactured.

本発明に係わる電解液の一つである3.5mol/l臭化ナトリウム水溶液の電気伝導率は、25℃にて199mS/cmであるが、有機電解液の0.65mol/lトリエチルメチルアンモニウムテトラフロロボレートを溶解したプロピレンカーボネートの25℃における電気伝導率は、11mS/cm(文献:電子とイオンの機能化学シリーズVol.2、大容量電気二重層キャパシタの最前線、262頁、エヌ・ティー・エス、2002年刊)である。従って、本発明に用いる電解液は電気伝導率が高く、このような電解液を用いた電気二重層キャパシタは、IR損も小さく、高い静電容量が得られる。  The electric conductivity of a 3.5 mol / l sodium bromide aqueous solution, which is one of the electrolytic solutions according to the present invention, is 199 mS / cm at 25 ° C., but the organic electrolytic solution 0.65 mol / l triethylmethylammonium tetra The electric conductivity at 25 ° C. of propylene carbonate in which fluoroborate is dissolved is 11 mS / cm (literature: functional chemistry series of electrons and ions Vol.2, the forefront of large-capacity electric double layer capacitors, page 262, NT. S, 2002). Therefore, the electrolytic solution used in the present invention has a high electrical conductivity, and an electric double layer capacitor using such an electrolytic solution has a small IR loss and a high capacitance.

第2の発明は、第1の発明の電圧印加を室温〜80℃の温度範囲で行うことにより作製されることを特徴とする。第1の発明の電気二重層キャパシタ組立て後の電圧印加処理の電圧印加時の温度を室温〜80℃の温度範囲で行うことにより、電圧印加処理効果と処理速度を高め、キャパシタの静電容量を大きくする。  The second invention is produced by applying the voltage of the first invention in a temperature range of room temperature to 80 ° C. The voltage application processing temperature after the electric double layer capacitor assembly of the first invention is performed in the temperature range of room temperature to 80 ° C., thereby improving the voltage application processing effect and processing speed, and increasing the capacitance of the capacitor. Enlarge.

前述した電圧印加処理の時間は、1時間でも効果が認められるが3時間以上が好ましく、経過時間とともに作製される電気二重層キャパシタの静電容量は増大する。7日間以上の電圧印加処理の静電容量の増大に対する効果は、7日間処理した場合に比べて増大はわずかである。  Although the effect of the voltage application process described above is recognized even if it is 1 hour, it is preferably 3 hours or more, and the capacitance of the electric double layer capacitor produced increases with the elapsed time. The effect of the voltage application treatment for 7 days or more on the increase in the capacitance is slight compared with the case of the treatment for 7 days.

電圧印加処理に際しての印加電圧は0.4V以上が必要で、0.5V〜1.0Vの範囲が好ましい。  The applied voltage in the voltage application process needs to be 0.4 V or more, and is preferably in the range of 0.5 V to 1.0 V.

第3の発明は、第1の発明または第2の発明に記載の電気二重層キャパシタにおいて、元素の周期表の第1族と第17族の元素からなる塩を溶解した電解液のうち、臭化ナトリウム、臭化カリウム、塩化ナトリウム、或いはこれらの混合物を溶解した水溶液を電解液として備えていることを特徴とする。  According to a third invention, in the electric double layer capacitor according to the first invention or the second invention, an odor is included in the electrolytic solution in which a salt composed of an element of Group 1 and Group 17 of the periodic table of elements is dissolved. An aqueous solution in which sodium chloride, potassium bromide, sodium chloride, or a mixture thereof is dissolved is provided as an electrolytic solution.

第4の発明は、第1の発明または第2の発明に記載の電気二重層キャパシタにおいて、臭化ナトリウム、臭化カリウム、またはこれらの混合物を含む水溶液に、水に可溶性の有機物を溶解させることによって作製される−30℃でも氷結しない水系電解液を用いることを特徴とする。  According to a fourth invention, in the electric double layer capacitor according to the first invention or the second invention, an organic substance soluble in water is dissolved in an aqueous solution containing sodium bromide, potassium bromide, or a mixture thereof. An aqueous electrolyte solution that is not frozen even at −30 ° C. is used.

第5の発明は、第1の発明または第2の発明或いは第4の発明に記載の電気二重層キャパシタにおいて、臭化ナトリウム、臭化カリウム、またはこれらの混合物を含む水溶液に、エチレングリコール又はその同族体を溶解させた電解液を用いることを特徴とする。  According to a fifth invention, in the electric double layer capacitor according to the first invention, the second invention or the fourth invention, ethylene glycol or a solution thereof is added to an aqueous solution containing sodium bromide, potassium bromide, or a mixture thereof. An electrolytic solution in which a homolog is dissolved is used.

第6の発明は、第1の発明または第2の発明に記載の電気二重層キャパシタにおいて、硫酸、または他の無機酸、或いは水酸化カリウムまたは他の無機塩基、を含む水溶液に、臭化ナトリウム、臭化カリウム、或いはこれらの混合物を溶解した電解液を用いることを特徴とする。  A sixth invention is the electric double layer capacitor according to the first or second invention, wherein sodium bromide is added to an aqueous solution containing sulfuric acid or other inorganic acid, or potassium hydroxide or other inorganic base. In addition, an electrolytic solution in which potassium bromide or a mixture thereof is dissolved is used.

第7の発明は、第1の発明または第2の発明に記載の電気二重層キャパシタにおいて、臭化マグネシウムまたは過塩素酸ナトリウム或いは他の中性塩またはそれらの混合物を含む水溶液に、臭化ナトリウム、臭化カリウム、或いはこれらの混合物、及びエチレングリコール又はその同族体を、溶解させることによって得られる電解液を用いることを特徴とする。  A seventh invention is the electric double layer capacitor according to the first invention or the second invention, wherein sodium bromide is added to an aqueous solution containing magnesium bromide, sodium perchlorate, other neutral salt or a mixture thereof. , Potassium bromide, or a mixture thereof, and an electrolytic solution obtained by dissolving ethylene glycol or a homologue thereof.

電解液中の各成分の混合割合は、電解液全体を100質量部としたとき、イオン性物質が5〜40質量部の範囲、水に相溶性がある有機物が20〜80質量部の範囲、残部が水であることが好ましい。  The mixing ratio of each component in the electrolytic solution is such that when the entire electrolytic solution is 100 parts by mass, the ionic substance is in the range of 5 to 40 parts by mass, the organic material compatible with water is in the range of 20 to 80 parts by mass, The balance is preferably water.

電解液中に位置するセパレーターにはポリプロピレン不織布、ガラス繊維不織布などを用いることができる。  A polypropylene nonwoven fabric, a glass fiber nonwoven fabric, etc. can be used for the separator located in electrolyte solution.

第1の発明においては、活性化炭素電極の表面の細孔容積の増大と親水性が高められることによるイオンの吸脱着が電荷蓄積の増加の原因となっている。従って、黒鉛に類似した構造のイオンのインターカレーションを伴う電極とは電荷蓄積の機構が異なり、イオンの吸脱着の速度が速く、高い電流密度での充放電も可能となる。  In the first invention, the increase in the pore volume on the surface of the activated carbon electrode and the adsorption / desorption of ions due to the increase in hydrophilicity cause the increase in charge accumulation. Therefore, the electrode has a charge accumulation mechanism different from that of an electrode with intercalation of ions having a structure similar to that of graphite, and the speed of adsorption / desorption of ions is high, and charging / discharging at a high current density is also possible.

第2の発明においては、第1の発明の電気二重層キャパシタ組立て後の電圧印加処理の電圧印加時の温度を室温〜80℃の温度範囲で行うことにより、電圧印加処理効果を高め、キャパシタの静電容量を大きくすることができる。  In the second invention, the voltage application processing temperature after the assembly of the electric double layer capacitor of the first invention is performed in the temperature range of room temperature to 80 ° C., so that the voltage application processing effect is enhanced. Capacitance can be increased.

第3の発明においては、この種の電解液を用いることにより、前述した電圧印加処理によるキャパシタの静電容量の向上が著しくなる。  In the third invention, by using this type of electrolytic solution, the capacitance of the capacitor is remarkably improved by the voltage application process described above.

第4の発明においては、第3の発明における電解液の成分に加えて、水に可溶性の有機物を溶解させて調製される水系電解液を用いることによって、−30℃でも作動可能な電気二重層キャパシタを作製することができる。  In the fourth invention, in addition to the components of the electrolytic solution in the third invention, an electric double layer that can operate even at −30 ° C. by using an aqueous electrolytic solution prepared by dissolving an organic substance soluble in water A capacitor can be manufactured.

第5の発明においては、第4の発明の−30℃でも氷結しない電解液を調製する際に用いる水に可溶性の有機物として、エチレングリコール又はその同族体を溶解させ調製される水系電解液を用いることによって、−30℃でも作動可能で安全で安価な、電気二重層キャパシタを作製することができる。  In the fifth invention, an aqueous electrolyte prepared by dissolving ethylene glycol or a homologue thereof is used as the water-soluble organic substance used in preparing the electrolyte that does not freeze even at −30 ° C. of the fourth invention. Thus, a safe and inexpensive electric double layer capacitor that can operate even at −30 ° C. can be manufactured.

第6の発明においては、水系電解液の成分に元素の周期表の1族と17族の元素からなる塩の他に、硫酸または他の無機酸、或いは水酸化カリウムまたは他の無機塩基を加えて調製される水系電解液を用いることによって電気伝導率の高い水系電解液を用いて内部抵抗の低い電気二重層キャパシタを作製することができる。  In the sixth invention, sulfuric acid or other inorganic acid, or potassium hydroxide or other inorganic base is added to the components of the aqueous electrolyte solution in addition to the salt composed of the elements of Groups 1 and 17 of the periodic table of elements. By using the aqueous electrolyte prepared in this manner, an electric double layer capacitor having a low internal resistance can be produced using an aqueous electrolyte having a high electrical conductivity.

第7の発明においては、水系電解液にて臭化ナトリウム、臭化カリウム、或いはこれらの混合物、臭化マグネシウムまたは過塩素酸ナトリウム、或いは他の中性塩、及びエチレングリコールまたはその同族体を溶解させて調製した電解液を用いることによって、安全で安価で−30℃でも使用することができる電気二重層キャパシタを作製することができる。  In the seventh invention, sodium bromide, potassium bromide, or a mixture thereof, magnesium bromide or sodium perchlorate, or other neutral salt, and ethylene glycol or a homologue thereof are dissolved in an aqueous electrolyte. By using the prepared electrolytic solution, an electric double layer capacitor that is safe and inexpensive and can be used even at −30 ° C. can be produced.

以上、第1の発明〜第7の発明に係わる電気二重層キャパシタは、通常の大気中の環境下で製作され、乾燥した環境下で製作される電気二重層キャパシタと比較して、それの製造装置の価格は非常に低くなる。また、水溶液は引火や発火することもなく安全性が高い。  As described above, the electric double layer capacitor according to the first to seventh inventions is manufactured in a normal atmospheric environment and manufactured in comparison with an electric double layer capacitor manufactured in a dry environment. The price of the equipment is very low. Also, the aqueous solution is highly safe without being ignited or ignited.

また、水溶液系電解液を備えた電気二重層キャパシタの長所である高出力に加えて、単位重量或いは単位容積当たりの静電容量が大きく、低温でも使用可能で安全性が高い電気二重層キャパシタを安価で提供することができる。  In addition to high output, which is an advantage of an electric double layer capacitor with an aqueous electrolyte, an electric double layer capacitor that has high capacitance per unit weight or unit volume and can be used even at low temperatures and has high safety. It can be provided at low cost.

本発明の電気二重層キャパシタは、分極性電極として活性化炭素を備え、電解液として元素の周期表の1族と17族の元素からなる塩を含む水溶液を用いる。さらに低温でも使用可能とすることが必要な時には、前記水溶液にエチレングリコールなどの水に可溶性の有機物を溶解させた電解液を用いる。電気二重層キャパシタは組立て後、室温或いは加温して電圧印加処理することによって単位重量或いは単位容積当たりの静電容量が高くなる。これにより、水溶液系電解液を用いて製造コストを安くすると同時に高い静電容量の高出力で、かつ低温でも使用可能な安全性の高い電気二重層キャパシタを提供できる。  The electric double layer capacitor of the present invention includes activated carbon as a polarizable electrode, and uses an aqueous solution containing a salt composed of elements of Groups 1 and 17 of the periodic table of elements as an electrolyte. When it is necessary to make it usable even at a low temperature, an electrolytic solution in which an organic substance soluble in water such as ethylene glycol is dissolved in the aqueous solution is used. The electric double layer capacitor is increased in capacitance per unit weight or unit volume by being subjected to voltage application treatment after being assembled at room temperature or heated. Thereby, the manufacturing cost can be reduced by using the aqueous electrolyte, and at the same time, an electric double layer capacitor having high capacitance and high output and high safety that can be used even at low temperatures can be provided.

本発明を実施するための最良の形態の一例としては、分極性電極として活性化炭素繊維をカーボンペーストで不溶性金属集電体に接着して電極を作製し、この電極2枚の間にセパレーターを挟み、電解液を含浸させてエンドプレートを用いて押圧して電気二重層キャパシタを組立てる。電解液には3.5mol/l臭化ナトリウム水溶液を用いる。電気二重層キャパシタは組立て後、0.7Vまで2.5mA/cmの電流密度で充電した後0.7Vの定電圧を72時間印加して電気二重層キャパシタを作製する。As an example of the best mode for carrying out the present invention, an activated carbon fiber is bonded to an insoluble metal current collector as a polarizable electrode with a carbon paste, and a separator is provided between the two electrodes. The electric double layer capacitor is assembled by sandwiching, impregnating with an electrolytic solution, and pressing using an end plate. A 3.5 mol / l sodium bromide aqueous solution is used as the electrolytic solution. After the electric double layer capacitor is assembled, it is charged at a current density of 2.5 mA / cm 2 to 0.7 V, and then a constant voltage of 0.7 V is applied for 72 hours to produce an electric double layer capacitor.

−30℃で作動可能な電気二重層キャパシタは、前記の電気二重層キャパシタの電解液の溶媒に水とエチレングリコール混合液(容積比2:1)を用いることにより作製することができる。  An electric double layer capacitor operable at −30 ° C. can be produced by using a mixed solution of water and ethylene glycol (volume ratio 2: 1) as the solvent of the electrolytic solution of the electric double layer capacitor.

本発明の電気二重層キャパシタの具体例を図1及び図2に示す。図1は断面図、図2は上方から見た平面図である。正極1及び負極2の間にセパレーター3が位置している。これら電極とセパレーターに電解液が含浸されている。正極1と負極2は、それぞれ不溶性金属箔からなる集電体4及び5に接触し電気的につながっている。電解液を密閉するために絶縁性室枠ガスケット6が配置されている。これら全体が絶縁性エンドプレート7によってボルト8及びナット9を用いて押圧されている。  Specific examples of the electric double layer capacitor of the present invention are shown in FIGS. 1 is a cross-sectional view, and FIG. 2 is a plan view seen from above. A separator 3 is located between the positive electrode 1 and the negative electrode 2. These electrodes and separator are impregnated with an electrolytic solution. The positive electrode 1 and the negative electrode 2 are in contact with and electrically connected to current collectors 4 and 5 made of insoluble metal foil, respectively. An insulating chamber frame gasket 6 is disposed to seal the electrolyte. All of these are pressed by the insulating end plate 7 using bolts 8 and nuts 9.

以下、本発明を実施例によって具体的に説明するが、本発明はこれらによって限定されない。  EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited by these.

分極性電極として、直径1cmの円盤状の活性化炭素繊維の不織布(東洋紡績製BW555E)をカーボンペーストで直径1cmの円形板状の不溶性金属集電体に接着して電極を作製し、この電極2枚の間に、ガラス繊維不織布製セパレーター(アドバンテック製GB−100R)を挟み、電解液を含浸させて絶縁性エンドプレートで押圧し、図1に示される構造の電気二重層キャパシタを組立てた。電解液には3.5mol/l臭化ナトリウム水溶液を用いた。活性化炭素繊維布の目付は18mg/cm、比表面積は1350m/g、かさ密度は0.42g/ml、1〜10nmの細孔径の細孔体積0.730ml/g、酸性基量は1.68mmol/gであった。前記電気二重層キャパシタを組立て後、70℃にて2.5mA/cmで0.7Vまで定電流充電を行い、その後72時間定電圧0.7Vを印加して、電気二重層キャパシタを作製した。25℃の下で0.4V〜0.8Vの電圧範囲で、10mA/cmの電流密度で充放電をした場合の1000サイクル目の放電過程での静電容量は1.33Fであった。As a polarizable electrode, a 1 cm diameter disc-shaped activated carbon fiber non-woven fabric (BW555E manufactured by Toyobo Co., Ltd.) was bonded to a circular plate-shaped insoluble metal current collector having a diameter of 1 cm with a carbon paste to produce an electrode. A glass fiber nonwoven separator (GB-100R manufactured by Advantech) was sandwiched between the two sheets, impregnated with an electrolytic solution and pressed with an insulating end plate, and an electric double layer capacitor having the structure shown in FIG. 1 was assembled. A 3.5 mol / l sodium bromide aqueous solution was used as the electrolytic solution. The weight of the activated carbon fiber cloth is 18 mg / cm 2 , the specific surface area is 1350 m 2 / g, the bulk density is 0.42 g / ml, the pore volume of pore diameter of 1 to 10 nm is 0.730 ml / g, and the amount of acidic groups is It was 1.68 mmol / g. After assembling the electric double layer capacitor, constant current charging was performed at 70 ° C. and 2.5 mA / cm 2 to 0.7 V, and then a constant voltage of 0.7 V was applied for 72 hours to produce an electric double layer capacitor. . The electrostatic capacity in the discharge process at the 1000th cycle when charging / discharging at a current density of 10 mA / cm 2 in a voltage range of 0.4 V to 0.8 V at 25 ° C. was 1.33 F.

電気二重層キャパシタ製作時の電圧印加処理の温度を25℃にした以外は、実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は1.02Fであった。  Except that the temperature of the voltage application process at the time of manufacturing the electric double layer capacitor was 25 ° C., the experiment was performed under the same conditions as in Example 1. As a result, the capacitance of the electric double layer capacitor manufactured by the voltage application process was 1.02F. Met.

電気二重層キャパシタの充放電した場合の放電容量測定時の電流密度を2.5mA/cmにした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は1.40Fであった。As a result of experimenting under the same conditions as in Example 1 except that the current density at the time of measuring the discharge capacity when charging / discharging the electric double layer capacitor was 2.5 mA / cm 2 , the electric double layer capacitor manufactured by applying voltage application The capacitance of was 1.40F.

電気二重層キャパシタの充放電した場合の放電容量測定時の電流密度を50mA/cmにした以外は、実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は1.04Fであった。As a result of experimenting under the same conditions as in Example 1 except that the current density at the time of measuring the discharge capacity when charging / discharging the electric double layer capacitor was 50 mA / cm 2 , the electric double layer capacitor manufactured by applying voltage was processed. The capacitance was 1.04F.

電気二重層キャパシタ製作時の電圧印加処理時の電圧印加時間を1時間にした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.87Fであった。  As a result of an experiment under the same conditions as in Example 1 except that the voltage application time during the voltage application process at the time of manufacturing the electric double layer capacitor was 1 hour, the capacitance of the electric double layer capacitor manufactured by the voltage application process was 0 .87F.

電気二重層キャパシタ製作時の電圧印加処理時の電圧印加時間を6時間にした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.91Fであった。  As a result of an experiment under the same conditions as in Example 1 except that the voltage application time during the voltage application process during the manufacture of the electric double layer capacitor was 6 hours, the capacitance of the electric double layer capacitor manufactured through the voltage application process was 0 .91F.

電気二重層キャパシタ製作時の電圧印加処理時の電圧印加時間を24時間にした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.93Fであった。  As a result of an experiment under the same conditions as in Example 1 except that the voltage application time during the voltage application process at the time of manufacturing the electric double layer capacitor was 24 hours, the capacitance of the electric double layer capacitor manufactured by the voltage application process was 0 .93F.

電気二重層キャパシタの電解液の溶媒を水とエチレングリコール混合溶液(容積比2:1)にした以外は実施例1と同じ条件で実験した結果、電圧印加処理して作製した電気二重層キャパシタの静電容量は0.68Fであった。  As a result of experimenting under the same conditions as in Example 1 except that the solvent of the electrolytic solution of the electric double layer capacitor was a mixed solution of water and ethylene glycol (volume ratio 2: 1), the electric double layer capacitor produced by applying the voltage was processed. The capacitance was 0.68F.

電気二重層キャパシタの充放電と放電容量測定を−30℃で行った以外は実施例6と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.44Fであった。  As a result of experimenting under the same conditions as in Example 6 except that charge / discharge of the electric double layer capacitor and measurement of the discharge capacity were performed at −30 ° C., the capacitance of the electric double layer capacitor manufactured by applying the voltage was 0.44F. Met.

電気二重層キャパシタの電解液を3.5mol/l塩化ナトリウム水溶液にし、充放電の電圧範囲を0V〜0.9Vとした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.86Fであった。  As a result of experimenting under the same conditions as in Example 1 except that the electrolytic solution of the electric double layer capacitor was changed to 3.5 mol / l sodium chloride aqueous solution and the charge / discharge voltage range was changed to 0 V to 0.9 V, the voltage was applied and manufactured. The capacitance of the electric double layer capacitor was 0.86F.

電気二重層キャパシタの電解液を3.5mol/l臭化カリウム水溶液にした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.78Fであった。  As a result of an experiment under the same conditions as in Example 1 except that the electrolytic solution of the electric double layer capacitor was changed to a 3.5 mol / l potassium bromide aqueous solution, the capacitance of the electric double layer capacitor manufactured by applying the voltage was 0. 78F.

電気二重層キャパシタの電解液を(2.0mol臭化ナトリウム+1.5mol塩化ナトリウム)/lにした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.96Fであった。  As a result of experimenting under the same conditions as in Example 1 except that the electrolytic solution of the electric double layer capacitor was changed to (2.0 mol sodium bromide + 1.5 mol sodium chloride) / l, the electric double layer capacitor manufactured by applying the voltage was processed. The capacitance was 0.96F.

電気二重層キャパシタの分極性電極に直径5μm、表面積1830m/gの活性化炭素粒子とアセチレンブラックおよびフッ素樹脂系接着剤(重量比85:5:10)を混合した後、加熱、加圧成形した活性化炭素シート層の厚さは250μmで、目付21mg/cmのシート(ジャパンゴアテックス製Excelleratorシート電極)を、不溶性金属集電体に圧着した電極を用いた以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は1.02Fであった。After mixing activated carbon particles having a diameter of 5 μm and a surface area of 1830 m 2 / g, acetylene black and a fluororesin-based adhesive (weight ratio 85: 5: 10) into a polarizable electrode of an electric double layer capacitor, heating and pressure molding The thickness of the activated carbon sheet layer was 250 μm, and the same as Example 1 except that an electrode obtained by pressure bonding a sheet having a basis weight of 21 mg / cm 2 (Excelcellor sheet electrode manufactured by Japan Gore-Tex) to an insoluble metal current collector was used. As a result of the experiment under the conditions, the electrostatic capacitance of the electric double layer capacitor manufactured by applying the voltage was 1.02F.

電気二重層キャパシタの充放電の電圧範囲を0V〜0.9Vにした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は1.10Fであった。  As a result of experimenting under the same conditions as in Example 1 except that the voltage range of charging / discharging of the electric double layer capacitor was set to 0V to 0.9V, the capacitance of the electric double layer capacitor manufactured by applying the voltage was 1.10F. Met.

電気二重層キャパシタ製作時の電解液に(2mol硫酸+1.65mol臭化ナトリウム)/l水溶液を用い、充放電の電圧範囲を0V〜0.9Vとした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.97Fであった。  An experiment was performed under the same conditions as in Example 1 except that (2 mol sulfuric acid + 1.65 mol sodium bromide) / l aqueous solution was used as the electrolytic solution for manufacturing the electric double layer capacitor, and the charge / discharge voltage range was changed from 0 V to 0.9 V. As a result, the capacitance of the electric double layer capacitor manufactured by applying the voltage was 0.97F.

電気二重層キャパシタ製作時の電解液に(4mol水酸化カリウム+1.65mol臭化ナトリウム)/l水溶液を用い、充放電の電圧範囲を0V〜0.9Vとした以外は実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.99Fであった。  The same conditions as in Example 1 were used except that (4 mol potassium hydroxide + 1.65 mol sodium bromide) / l aqueous solution was used as the electrolytic solution during the production of the electric double layer capacitor, and the charge / discharge voltage range was changed from 0 V to 0.9 V. As a result of the experiment, the capacitance of the electric double layer capacitor manufactured by applying the voltage was 0.99F.

電気二重層キャパシタの充放電測定を80℃、充放電測定の電位範囲を0V〜0.9Vで行った以外は、実施例1と同じ条件で実験した結果、電圧印加処理して製作した電気二重層キャパシタの静電容量は0.83Fであった。  As a result of experimenting under the same conditions as Example 1 except that the charge / discharge measurement of the electric double layer capacitor was performed at 80 ° C. and the potential range of the charge / discharge measurement was 0V to 0.9V, The capacitance of the multilayer capacitor was 0.83F.

〔比較例1〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例1と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.82Fであった。
[Comparative Example 1]
The electric double layer capacitor was manufactured under the same conditions as in Example 1 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the capacitance of the electric double layer capacitor was 0.82F.

〔比較例2〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例15と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.71Fであった。
[Comparative Example 2]
The electric double layer capacitor was manufactured under the same conditions as in Example 15 except that no voltage application treatment was performed when the electric double layer capacitor was manufactured. As a result, the capacitance of the electric double layer capacitor was 0.71F.

〔比較例3〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例8と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.60Fであった。
[Comparative Example 3]
The electric double layer capacitor was manufactured and measured under the same conditions as in Example 8 except that no voltage application treatment was performed when the electric double layer capacitor was manufactured. As a result, the electric double layer capacitor had a capacitance of 0.60F.

〔比較例4〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例9と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.40Fであった。
[Comparative Example 4]
The electric double layer capacitor was manufactured and measured under the same conditions as in Example 9 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the capacitance of the electric double layer capacitor was 0.40F.

〔比較例5〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例10と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.60Fであった。
[Comparative Example 5]
The electric double layer capacitor was manufactured and measured under the same conditions as in Example 10 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the electric double layer capacitor had a capacitance of 0.60F.

〔比較例6〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例11と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.56Fであった。
[Comparative Example 6]
The electric double layer capacitor was manufactured under the same conditions as in Example 11 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the capacitance of the electric double layer capacitor was 0.56F.

〔比較例7〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例14と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.71Fであった。
[Comparative Example 7]
The electric double layer capacitor was manufactured under the same conditions as in Example 14 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the capacitance of the electric double layer capacitor was 0.71F.

〔比較例8〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例16と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.59Fであった。
[Comparative Example 8]
The electric double layer capacitor was manufactured and measured under the same conditions as in Example 16 except that no voltage application treatment was performed at the time of manufacturing the electric double layer capacitor. As a result, the capacitance of the electric double layer capacitor was 0.59F.

〔比較例9〕
電気二重層キャパシタの製作時に電圧印加処理をしなかった以外は、実施例13と同じ条件で製作し、測定した結果電気二重層キャパシタの静電容量は0.71Fであった。
[Comparative Example 9]
The electric double layer capacitor was manufactured under the same conditions as in Example 13 except that the voltage application treatment was not performed when the electric double layer capacitor was manufactured. As a result, the capacitance of the electric double layer capacitor was 0.71F.

以上から活性化炭素電極と水溶液系電解液を用いる電気二重層キャパシタを組立てた後、電圧印加処理を行うことにより、高静電容量、高出力に加えて低温でも使用可能で安全性が高く、製作費も安い電気二重層キャパシタを提供できる。  From the above, after assembling an electric double layer capacitor using an activated carbon electrode and an aqueous electrolyte, by applying voltage application treatment, it can be used at low temperature in addition to high capacitance, high output, and high safety, An electric double layer capacitor can be provided at a low manufacturing cost.

本発明を適用した電気二重層キャパシタの断面図である。It is sectional drawing of the electric double layer capacitor to which this invention is applied. 本発明を適用した電気二重層キャパシタの上方から見た平面図である。It is the top view seen from the upper part of the electric double layer capacitor to which this invention is applied.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレーター
4 集電体
5 集電体
6 ガスケット
7 エンドプレート
8 締付けボルト
9 ナット
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Current collector 5 Current collector 6 Gasket 7 End plate 8 Tightening bolt 9 Nut

Claims (7)

分極性電極として活性化炭素、電解液として元素の周期律表の1族と17族の元素からなる塩を溶解した水溶液を電解液として備えた電気二重層キャパシタであって、電気二重層キャパシタ組立て後、室温、0.4V〜1.0Vの電圧で電圧印加処理を行うことにより、作製されることを特徴とする電気二重層キャパシタ。  An electric double layer capacitor comprising an activated carbon as a polarizable electrode and an aqueous solution in which a salt composed of elements of groups 1 and 17 of the periodic table of elements is dissolved as an electrolytic solution. Thereafter, an electric double layer capacitor produced by performing a voltage application process at room temperature and a voltage of 0.4 V to 1.0 V. 請求項1の電圧印加を室温〜80℃の温度範囲で行うことにより作製されることを特徴とする電気二重層キャパシタ。  An electric double layer capacitor produced by applying the voltage of claim 1 in a temperature range of room temperature to 80 ° C. 臭化ナトリウム、臭化カリウム、塩化ナトリウム、或いはこれらの混合物を含む水溶液を電解液として用いることを特徴とする請求項1または2に記載の電気二重層キャパシタ。  The electric double layer capacitor according to claim 1 or 2, wherein an aqueous solution containing sodium bromide, potassium bromide, sodium chloride, or a mixture thereof is used as an electrolytic solution. 臭化ナトリウム、臭化カリウム、または、これらの混合物を含む水溶液に、水に可溶性の有機物を溶解させることによって作製される−30℃でも氷結しない水系電解液を用いることを特徴とする請求項1または2に記載の電気二重層キャパシタ。  2. An aqueous electrolyte solution which is prepared by dissolving an organic substance soluble in water in an aqueous solution containing sodium bromide, potassium bromide or a mixture thereof, and which does not freeze even at −30 ° C. Or the electric double layer capacitor of 2. 臭化ナトリウム、臭化カリウム、またはこれらの混合物を含む水溶液に、エチレングリコール又はその同族体を溶解させた電解液を用いることを特徴とする請求項1または2或いは、請求項4に記載の電気二重層キャパシタ。  5. The electricity according to claim 1, 2 or 4, wherein an electrolytic solution in which ethylene glycol or a homologue thereof is dissolved in an aqueous solution containing sodium bromide, potassium bromide, or a mixture thereof is used. Double layer capacitor. 硫酸、または他の無機酸、或いは水酸化カリウム、または他の無機塩基、を含む水溶液に、臭化ナトリウム、臭化カリウム、或いはこれらの混合物を溶解した電解液を用いることを特徴とする請求項1または2に記載の電気二重層キャパシタ。  An electrolyte solution in which sodium bromide, potassium bromide, or a mixture thereof is dissolved in an aqueous solution containing sulfuric acid, other inorganic acid, potassium hydroxide, or other inorganic base is used. 3. The electric double layer capacitor according to 1 or 2. 臭化マグネシウムまたは過塩素酸ナトリウム、或いは他の中性塩またはそれらの混合物を含む水溶液に、臭化ナトリウム、臭化カリウム、或いはこれらの混合物、及びエチレングリコール又はその同族体を、溶解させることによって得られる電解液を用いることを特徴とする請求項1または2に記載の電気二重層キャパシタ。  By dissolving sodium bromide, potassium bromide, or a mixture thereof, and ethylene glycol or a homologue thereof in an aqueous solution containing magnesium bromide or sodium perchlorate, or other neutral salts or mixtures thereof. 3. The electric double layer capacitor according to claim 1, wherein the obtained electrolytic solution is used.
JP2005128603A 2005-03-29 2005-03-29 Electric double layer capacitor Pending JP2006279003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005128603A JP2006279003A (en) 2005-03-29 2005-03-29 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005128603A JP2006279003A (en) 2005-03-29 2005-03-29 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2006279003A true JP2006279003A (en) 2006-10-12

Family

ID=37213377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005128603A Pending JP2006279003A (en) 2005-03-29 2005-03-29 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2006279003A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574149A3 (en) * 2011-09-20 2013-08-28 Toshiba Lighting & Technology Corporation LED lighting circuit and led luminaire
KR101416810B1 (en) * 2012-11-01 2014-07-09 비나텍주식회사 Super-Capacitor including a bipolar laminating collector and Manufacturing Method thereof
CN112614701A (en) * 2020-11-23 2021-04-06 中国科学院福建物质结构研究所 Bromine ion enhanced carbon-based supercapacitor and preparation method thereof
CN112927949A (en) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 Water system mixed electrolyte and application thereof in zinc ion mixed super capacitor
WO2021149063A1 (en) * 2020-01-26 2021-07-29 Eexion Energy Ltd. Electrodes for electrochemical capacitors based on surface-modified carbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2574149A3 (en) * 2011-09-20 2013-08-28 Toshiba Lighting & Technology Corporation LED lighting circuit and led luminaire
KR101416810B1 (en) * 2012-11-01 2014-07-09 비나텍주식회사 Super-Capacitor including a bipolar laminating collector and Manufacturing Method thereof
CN112927949A (en) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 Water system mixed electrolyte and application thereof in zinc ion mixed super capacitor
WO2021149063A1 (en) * 2020-01-26 2021-07-29 Eexion Energy Ltd. Electrodes for electrochemical capacitors based on surface-modified carbon
CN112614701A (en) * 2020-11-23 2021-04-06 中国科学院福建物质结构研究所 Bromine ion enhanced carbon-based supercapacitor and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5939990B2 (en) Method for producing long-life negative electrode plate and supercapacitor using the negative electrode plate
KR101036378B1 (en) Electrode for electric double layer capacitor, method for producing same, electric double layer capacitor, and conductive adhesive
EP1142831B1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
KR100880552B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
US8593787B2 (en) Electrochemical capacitor having lithium containing electrolyte
JP4878881B2 (en) Electrode for electric double layer capacitor and electric double layer capacitor
EP1860673B1 (en) Production method for electric double layer capacitor
EP2565887B1 (en) Polarizable electrode material for electric double layer capacitor having improved withstand voltage, and electric double layer capacitor using same
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
Azaïs Manufacturing of industrial supercapacitors
TW201526049A (en) Low resistance ultracapacitor electrode and manufacturing method thereof
EP2665074B1 (en) Electrochemical cell
KR101038869B1 (en) Electrode for capacitor and electric double layer capacitor comprising the same
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP2006279003A (en) Electric double layer capacitor
JP4931239B2 (en) Power storage device
JP2014064030A (en) Electrochemical capacitor
WO2013146464A1 (en) Electrode material, and capacitor and secondary battery using said electrode material
JP2013143422A (en) Lithium ion capacitor
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
JP2013065851A (en) Electrode active material, method for preparing the same, and electrochemical capacitor including the same
KR100342069B1 (en) Preparing method of electrode made by Rice Hull Activated Carbon and Application for Electric Double Layer Capacitor
RU2592863C1 (en) Supercapacitor with inorganic solid electrolyte and carbon electrodes
JP3182167U (en) Coin-type carbon nanotube film capacitor
KR102116279B1 (en) Manufacturing method of electrode active material for ultracapacitor, manufacturing method of ultracapacitor electrode and manufacturing method of ultracapacitor