WO2013001961A1 - Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor - Google Patents

Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor Download PDF

Info

Publication number
WO2013001961A1
WO2013001961A1 PCT/JP2012/063638 JP2012063638W WO2013001961A1 WO 2013001961 A1 WO2013001961 A1 WO 2013001961A1 JP 2012063638 W JP2012063638 W JP 2012063638W WO 2013001961 A1 WO2013001961 A1 WO 2013001961A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating adhesive
adhesive layer
electrode layer
positive electrode
Prior art date
Application number
PCT/JP2012/063638
Other languages
French (fr)
Japanese (ja)
Inventor
上羽悠介
澤田学
板谷昌治
堀川景司
福田恭丈
得原幸夫
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2013001961A1 publication Critical patent/WO2013001961A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an insulating adhesive layer composition, a power storage device element and a power storage device, and further relates to a power storage device element and a method of manufacturing a power storage device.
  • High energy density power storage devices represented by lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, and the like are, for example, sheet-shaped current collector foils (such as aluminum foil or copper foil) and active materials (activated carbon, A storage element formed by laminating a sheet-like electrode formed by coating a lithium composite oxide, carbon, etc.) via a sheet-like separator for preventing a short circuit due to contact between the electrodes;
  • the electrolyte solution has a structure accommodated in the exterior body.
  • a ceramic sheet formed by mixing an electrolyte and porous ceramics and forming a film with a binder is used as a separator material, and a positive electrode layer and a negative electrode layer are interposed through the ceramic sheet.
  • Patent Document 1 A stacked battery manufactured through a process of stacking and hot pressing the stacked body at once has been proposed.
  • the current collector metal 120 to which the activated carbon electrode 110 is bonded is opposed, and a separator 130 and an electrolytic solution (not shown) are interposed therebetween,
  • Electric double layer capacitor has been proposed (Patent Document 2).
  • Patent Document 3 As another power storage device, a power storage device (electric double layer capacitor) in which a separator, a current collector, and a polarizable electrode are integrated by a gasket made of an adhesive thermoplastic resin has been proposed (Patent Document). 3).
  • Patent Document 3 it is described that a thermoplastic resin having a polar functional group is used as the thermoplastic resin having adhesiveness constituting the gasket.
  • modified polypropylene and modified polyethylene have no electrolyte impregnation or permeability, so the electrolyte solution is preliminarily separated before separation (and depending on the case).
  • Electrode must be impregnated in advance, and cannot be applied to a manufacturing method in which an electrolytic solution is added after formation of the laminated body, and the manufacturing process becomes complicated.
  • the present invention solves the above-described problems, and includes an insulating adhesive layer composition for an electricity storage device that can impart electrolyte permeability and impregnation to a laminate, and the insulating adhesive layer composition. It is an object of the present invention to provide an element for an electricity storage device, an electricity storage device having good characteristics, and a method for producing them, including the insulating adhesive layer.
  • the element for the electricity storage device of the present invention is A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer An element,
  • the insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
  • the electricity storage device of the present invention A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer;
  • An electricity storage device comprising the laminate and a package in which the electrolytic solution is stored,
  • the insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
  • the method for producing an element for an electricity storage device of the present invention includes A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer
  • the positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer.
  • the method for manufacturing the electricity storage device of the present invention includes A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer;
  • a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer;
  • (1) The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are passed through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer.
  • the ratio ⁇ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by 0.7 ⁇
  • the insulating adhesive layer composition of the present invention has a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are bonded by an insulating adhesive layer.
  • the insulating adhesive layer composition of the present invention for the laminate constituting the electricity storage device as described above, a laminate capable of penetrating and impregnating the electrolyte from the outside to the inside of the laminate is obtained. It is possible to obtain an electricity storage device with excellent productivity.
  • the insulating adhesive layer made of a composite material that satisfies the requirement of 0.7 ⁇ ⁇ ⁇ 1.15 has the necessary adhesiveness, the positive electrode layer, the negative electrode layer, and the separator layer are integrated. A laminated body can be reliably formed, the production process can be simplified, and productivity can be improved.
  • the insulating adhesive layer may be disposed, for example, so as to surround the entire circumference of the separator layer, or may be disposed in a part of a region surrounding the entire circumference of the separator layer.
  • the separator layer is disposed so as to surround the entire circumference of the separator layer.
  • an insulating adhesive layer is disposed in such a manner as to penetrate through the central portion of the separator layer, and the positive electrode layer and the negative electrode layer facing each other are joined by the insulating adhesive layer via the separator layer. It is also possible to configure.
  • the element for an electricity storage device and the electricity storage device of the present invention are the laminated body in which the positive electrode layer and the negative electrode layer are laminated with the separator layer and the insulating adhesive layer interposed therebetween, and the insulating adhesive layer has the above-described insulation of the present invention. Since the separator layer can be designed optimally, the ionic resistance is low, the performance is high, the reliability is high, and the productivity is excellent. An electricity storage device can be obtained.
  • the positive electrode layer material and the negative electrode layer material are arranged so as to face each other with the separator layer material and the insulating adhesive layer material interposed therebetween, and are heated and pressurized.
  • the insulating property of the present invention described above is used as the insulating adhesive layer material at the stage of the formed laminate. Since the material for forming the adhesive layer composition is used, it is possible to efficiently manufacture a power storage device element having high performance and high reliability.
  • the method for producing an electricity storage device of the present invention is such that a positive electrode layer material and a negative electrode layer material are arranged so as to face each other with a separator layer material and an insulating adhesive layer material interposed therebetween, and heated and pressurized.
  • a material that can form the insulating adhesive layer composition of the present invention is used as the insulating adhesive layer material.
  • the resulting laminate is housed in a package together with the electrolyte, and the electrolyte is infiltrated and impregnated from the outside to the inside of the laminate, so it has high performance and high reliability. Devices can be manufactured efficiently.
  • the electrolyte solution can be penetrated and impregnated from the outside to the inside of the laminate by the insulating adhesive layer material as described above (that is, the material from which the insulating adhesive layer composition of the present invention is formed). ) Is used to form an insulating adhesive layer having the necessary liquid electrolyte-containing properties.
  • FIG. 2 is a cross-sectional plan view schematically illustrating an arrangement mode of a separator layer and an insulating adhesive layer of the electricity storage device of FIG. 1.
  • FIG. 4A and 4B are diagrams illustrating a state in which a positive electrode active material layer is formed on the positive electrode current collector layer illustrated in FIG.
  • (a) is a plan view and (b) is a front cross-sectional view. It is a figure which shows the state which formed the separator layer on the positive electrode electrical power collector layer shown in FIG. (a) is a figure which shows the positive electrode assembly sheet formed by arrange
  • the separator layer is required to have low ionic resistance, high adhesion, and high liquid content.
  • the separator layer and the insulating adhesive layer are interposed between the positive electrode layer and the negative electrode layer, and the insulating property of the separator layer is interposed between the separator layer and the insulating adhesive layer. It is possible to bond the positive electrode layer and the negative electrode layer without depending on the above, so that the separator layer is not required to have adhesiveness and the function as the separator layer is improved (high PVC, low ionic resistance). It is possible.
  • the present invention is characterized in that the insulating adhesive layer is made liquid-containing.
  • the insulating adhesive layer is made liquid-containing by using a resin in which inorganic fine particles (insulating fine particles) are mixed in an organic binder.
  • the stacked electricity storage device to which the present invention relates is usually used by being sealed in a package. Therefore, when the insulating adhesive layer has a liquid-containing property, since the electrolytic solution can pass through the insulating adhesive layer, the electrolytic solution contained in the entire package can be used. However, if the insulating adhesive layer is not liquid-containing, even if the inside of the package is filled with the electrolytic solution, the electrolytic solution around the laminated body cannot be effectively used because it cannot enter the laminated body. On the other hand, in the electricity storage device of the present invention in which the insulating adhesive layer is made liquid-containing, as a result of increasing the effective amount of the electrolyte used, for example, the more electrolyte there is like a lithium ion secondary battery. In an electricity storage device that is supposed to have high capacity, high rate characteristics, and long life, the characteristics can be improved efficiently.
  • a change over time such as a decrease in capacity in a lithium ion secondary battery is caused by a decomposition reaction of the electrolytic solution on the surface of the active material during a charge / discharge reaction, resulting in a depletion (dry up) of the electrolytic solution. Occur. Against this, it is possible to increase the amount of available electrolyte solution (effectively use the electrolyte solution contained between the package and the laminate) by providing liquid insulation to the insulating adhesive layer. This can contribute to higher capacity and longer life of devices.
  • a separator sheet pre-impregnated with an electrolytic solution is reduced in strength, and therefore, a method of injecting the electrolytic solution after lamination is desirable in production.
  • the insulating adhesive layer is provided with liquid content. Therefore, even when a structure in which an insulating adhesive layer is disposed so as to surround the separator layer is employed, it is possible to inject the electrolyte solution after lamination. As a result, it is possible to use a separator layer that is thinner, has a higher PVC, and has a lower ionic resistance than conventional ones, so that an electricity storage device with high characteristics can be obtained.
  • the insulating adhesive layer composition of the present invention suitable for use in an electricity storage device having the effects described above is chemically and electrochemically stable inside a lithium ion secondary battery, an electric double layer capacitor, or the like.
  • the inorganic fine particles are made of a composite material bound with a chemically and electrochemically stable organic binder inside a lithium ion secondary battery, an electric double layer capacitor, or the like.
  • Examples of the inorganic fine particles constituting the insulating adhesive layer composition of the present invention include oxides such as silica, alumina, titania and barium titanate, and nitrides such as silicon nitride and aluminum nitride.
  • Examples of the organic binder include polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), and the like.
  • the composite material can be obtained by casting a slurry prepared by using an inorganic fine particle, an organic binder, and a solvent using, for example, a ball mill on a base material by a doctor blade method or the like and drying the slurry.
  • Spherical alumina powder (average particle size 0.3 ⁇ m) was prepared as inorganic fine particles constituting the composite material for the insulating adhesive layer composition. Further, polyvinylidene fluoride (PVDF) was prepared as an organic binder constituting the composite material.
  • PVDF polyvinylidene fluoride
  • the PVC of the insulating adhesive layer after drying is 20, 25, 30, 32, 34, 36, 40, 46, 48, 50, 55, 60, 65, 70, 75%.
  • a composite material sheet was prepared.
  • NMP N-methyl-2-pyrrolidone
  • This slurry was coated on a PET (polyethylene terephthalate) film by a doctor blade method and then dried to obtain a composite material sheet having a thickness of 25 ⁇ m (a sheet corresponding to the insulating adhesive layer of the present invention).
  • the critical pigment volume concentration CPVC the critical pigment volume concentration at the time of heating and pressing, and the liquid content of the electrolytic solution were examined.
  • Liquid content of electrolyte solution The following was prepared as an electrolyte solution and used for the liquid content test.
  • a non-aqueous solvent a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, were mixed at a volume ratio of 3: 7 was used.
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • a non-aqueous electrolyte solution was prepared by dissolving to a concentration of.
  • FIG. 1 is a front sectional view showing an electricity storage device (electric double layer capacitor) according to an example (Example 2) of the present invention, and FIG. 2 schematically shows an arrangement mode of a separator layer and an insulating adhesive layer.
  • FIG. 1 is a front sectional view showing an electricity storage device (electric double layer capacitor) according to an example (Example 2) of the present invention, and FIG. 2 schematically shows an arrangement mode of a separator layer and an insulating adhesive layer.
  • FIG. 1 is a front sectional view showing an electricity storage device (electric double layer capacitor) according to an example (Example 2) of the present invention
  • FIG. 2 schematically shows an arrangement mode of a separator layer and an insulating adhesive layer.
  • the electric double layer capacitor A of Example 2 includes a positive electrode layer 21 provided with a positive electrode active material 21b on both surfaces of a positive electrode current collector layer 21a, and a negative electrode on both surfaces of a negative electrode current collector layer 41a.
  • the laminate 1 is formed by laminating a negative electrode layer 41 provided with an active material 41 b via a separator layer 11 and an insulating adhesive layer 31.
  • a positive external terminal electrode 21 t and a negative external terminal electrode 41 t are formed on the first end surface 2 and the second end surface 3 of the multilayer body 1.
  • this laminated body 1 is accommodated in the package 70 which consists of a cover body 70a and the base part 70b with electrolyte solution.
  • the package 70 is formed with a positive electrode package electrode 61 and a negative electrode package electrode 62 so as to go around from both ends to the lower surface side.
  • the insulating adhesive layer 31 is disposed in a region surrounding the separator layer 11, and the positive electrode layer 21 and the negative electrode
  • the layer 41 is laminated via the separator layer 11 and an insulating adhesive layer 31 disposed in a region surrounding the separator layer 11.
  • the positive electrode current collector layer 21 a constituting the positive electrode layer 21 and the negative electrode current collector layer 41 a constituting the negative electrode layer 41 are laminated via the insulating adhesive layer 31.
  • the positive electrode active material layer 21b that constitutes 21 and the negative electrode active material layer 41b that constitutes the negative electrode layer 41 are laminated via the separator layer 11, and the positive electrode active material layer 21b and the negative electrode active material layer 41b are entirely separated by the separator layer 11.
  • the positive electrode current collector layer 21a and the negative electrode current collector layer 41a around the positive electrode active material layer 21b and the negative electrode active material layer 41b are laminated via the insulating adhesive layer 31. .
  • the insulating adhesive layer 31 is made of a composite material containing alumina ( ⁇ 0.3 ⁇ m), which is inorganic fine particles, and an organic binder. Its PVC is 40%, CPVC is 48%, and ⁇ is 0.83. An insulating adhesive layer composition having the requirements of the present invention is used. Below, the manufacturing method of this electric double layer capacitor A is demonstrated.
  • Step 1 (Preparation of current collector)
  • An aluminum layer having a thickness of 0.5 ⁇ m was formed by vapor deposition on a base material PET film coated with urethane as a release layer. Then, an etching mask resist was applied onto the surface of the formed aluminum layer by screen printing and dried.
  • the resist used was Ares SPR manufactured by Kansai Paint.
  • this film was immersed in an aqueous ferric chloride solution at 40 ° C., and the aluminum layer was patterned. Thereafter, the film is immersed in an organic solvent, the resist is peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxide layer on the surface of the aluminum layer, thereby removing the oxide layer shown in FIGS. As shown in FIG. 2, a plurality of positive electrode current collector layers 21 a were formed on the base PET film 100.
  • Step 2 (1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m), carbon black (Tokai Carbon Co., Ltd. “Toka Black # 3855”, BET specific surface area 90 m 2 / g) 2.7 g was weighed and put into a 1000 ml pot, and PSZ grinding media having a diameter of 2.0 mm and 286 g After adding deionized water, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
  • activated carbon BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 ⁇ m
  • carbon black Tokai Carbon Co., Ltd. “Toka Black # 3855”, BET specific surface area 90 m 2 / g) 2.7 g was weighed and put into a
  • CMC2260 carboxymethyl cellulose
  • 38.8 wt% aqueous solution of polyacrylate resin a 38.8 wt% aqueous solution of polyacrylate resin
  • the positive electrode active material layer 21b is a region that is receded from the first end surface 2 by a predetermined distance so as not to be directly connected to the positive electrode external terminal electrode 21t on the first end surface 2 of the multilayer body 1. To be formed. That is, when printing the active material layer slurry, the active material layer slurry was screen-printed so that an uncoated region having a predetermined width was formed from the cut surface when cut in Step 6 described later. . *
  • Step 3 (1) Preparation of separator layer slurry 50 g of silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m) and 50 g of methyl ethyl ketone as a solvent were charged into a 500 ml pot. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • silica manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 ⁇ m
  • PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • NMP N-methyl-2-pyrrolidone
  • PVDF polyvinylidene fluoride
  • Step 4 (1) Preparation of Slurry for Insulating Adhesive Layer 100 g of alumina (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.3 ⁇ m) is added to a 500 ml pot, and N-methyl-2-pyrrolidone (as a solvent) 80 g of NMP) was added. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill.
  • alumina manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.3 ⁇ m
  • NMP N-methyl-2-pyrrolidone
  • a negative electrode current collector layer 41a and a negative electrode layer 41 composed of a negative electrode active material layer 41b formed on the surface thereof, a separator layer 11, an insulating adhesive layer 31, and Was formed on the base material PET film 100.
  • the positive electrode assembly sheet 20 and the negative electrode assembly sheet 40 have a surface on which the separator layer 11 and the insulating adhesive layer 31 are formed (surface opposite to the base PET film 100 side). It arrange
  • the positive electrode assembly sheet 20 was thermocompression bonded so that the positions of the positive electrode current collectors 21a were opposed to each other in a lateral direction (upper side in FIG. 7).
  • the positive electrode negative electrode assembly sheet 51 by which the positive electrode assembly sheet 20 and the negative electrode assembly sheet 40 were joined is obtained.
  • the temperature of the pressure plate was 150 ° C.
  • the pressure of the pressure was 20 MPa
  • the pressure time was 30 seconds.
  • two positive and negative electrode aggregate sheets 51 are arranged so that one positive and negative electrode aggregate sheet 51 is opposite in the vertical direction, and the opposite surface side base material is disposed.
  • the PET sheet was peeled, both were joined, and thermocompression bonded, thereby producing an aggregate sheet laminate 52 as shown in FIG.
  • the pressure plate temperature was 150 ° C.
  • the pressurization pressure was 20 MPa
  • the pressurization time was 30 seconds.
  • the positive and negative electrode aggregate sheet 51 is opposed to the aggregate sheet laminate 52 and thermocompression bonded, so that a composite laminate 53 composed of three positive and negative electrode aggregate sheets 51 is formed as shown in FIG. 12. Was made.
  • thermocompression bonding of the positive electrode negative electrode assembly sheet 51 was repeated in the same manner, and the successive pressure bonding was performed.
  • the positive electrode layer 21 and the negative electrode layer 41 are laminated via the separator layer 11 and the insulating adhesive layer 31, and the positive electrode layer 21 and the negative electrode layer 41 are formed by the insulating adhesive layer 31.
  • a laminated assembly 50 joined was obtained.
  • the laminated body 50 was cut along a cutting line D1 in FIG. 14 with a dicer and separated into individual pieces, thereby producing the laminated body 1 having a structure as shown in FIG.
  • the dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm.
  • Step 7 Next, as shown in FIG. 16, a positive external terminal electrode 21t and a negative external terminal electrode 41t were formed on the first end surface 2 and the second end surface 3 of the laminate 1 by Al sputtering, respectively.
  • a conductive adhesive (not shown) containing gold as conductive particles is applied to the positive external terminal electrode 21t and the negative external terminal electrode 41t formed on the first end face 2 and the second end face 3 by dipping. did.
  • the laminate 1 is placed on the base portion 70 b of the package 70 so that the applied conductive adhesive is connected to the positive electrode package electrode 61 and the negative electrode package electrode 62, respectively. For 10 minutes to cure the conductive adhesive.
  • Step 9 an electrolytic solution was injected into the package 70 shown in FIG. 1 and sealed.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 70a made of a liquid crystal polymer is disposed on the upper surface of the base portion 70b of the package 70 in the same manner as the base portion 70b.
  • the base part 70b and the lid 70a were welded by irradiating laser along the frame part of the base part 70b of the package 70.
  • an electricity storage device (electric double layer capacitor) A having the configuration shown in FIG. 1 is obtained.
  • the separator layer 11, the positive electrode layer 21, the negative electrode layer 41, the insulating adhesive layer 31, and the like are drawn thick due to restrictions in drawing, but the actual dimensions are accurate. It is not enlarged or reduced.
  • the size or the positional relationship is appropriately modified or exaggerated so that the drawing is restricted or easily understood.
  • the insulating adhesive layer surrounding the separator layer is made of a composite material containing inorganic fine particles and an organic binder.
  • the necessary electrolyte solution permeability and liquid content are provided, it is possible to form a laminate in which the electrolyte solution can permeate and impregnate from the outside to the inside of the laminate. Therefore, an electric double layer capacitor excellent in productivity can be obtained.
  • the insulating adhesive layer made of a composite material that satisfies the requirement of 0.7 ⁇ ⁇ ⁇ 1.15 has the necessary adhesiveness, so that it has a laminated structure and has an excellent productivity. Can be obtained.
  • a function such as adhesiveness in the separator layer it is possible to design in pursuit of the function as the separator layer, and to improve the characteristics.
  • the electric double layer capacitor has been described as an example of the electricity storage device, but the present invention can also be applied to a lithium ion secondary battery, a lithium ion capacitor, and the like.
  • the positive electrode layer and the negative electrode layer are laminated via the separator layer and the insulating adhesive layer, and the positive electrode layer and the negative electrode layer are laminated via the insulating adhesive layer, together with the electrolytic solution. They have a common structure in that they are accommodated in the outer packaging material. In addition, for example, as a lithium ion secondary battery or a lithium ion capacitor, the thing of the following structures is illustrated.
  • a lithium ion secondary battery for example, an aluminum foil is used as a positive electrode current collector layer, and an electrode in which a mixture layer containing a lithium composite oxide is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode layer.
  • the negative electrode current collector layer for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as a negative electrode active material layer on the copper foil is used as the negative electrode layer.
  • a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer to form a laminate, and for example, 1 mol / l LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate.
  • a lithium ion secondary battery can be obtained by using the electrolyte as an electrolytic solution (nonaqueous electrolytic solution).
  • lithium ion capacitor for example, an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided as a positive electrode active material layer on the aluminum foil is used as the positive electrode layer.
  • the negative electrode current collector layer for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as a negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
  • a positive electrode layer and negative electrode layer, to form a separator layer and the insulating adhesive layer are laminated via a stack, for example, by dissolving LiPF 6 in 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate
  • a lithium ion capacitor can be obtained by using an electrolytic solution as an electrolytic solution (non-aqueous electrolytic solution).
  • the present invention is not limited to each of the above examples, and the positive electrode layer, the negative electrode layer, the separator layer, the constituent material and forming method of the insulating adhesive layer, the specific configuration of the power storage element (the positive electrode layer, Various types of applications and modifications can be made within the scope of the invention with respect to the negative electrode layer, separator layer, insulating adhesive layer stacking number and number of layers, etc. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are the following: an insulating-adhesive-layer composition for an electricity-storage device, wherein said composition allows a laminate to be permeated or impregnated by an electrolyte solution; a element for an electricity-storage device that exhibits good characteristics and is provided with an insulating adhesive layer comprising the aforementioned insulating-adhesive-layer composition; an electricity-storage device; and manufacturing methods therefor. [Solution] An insulating-adhesive-layer composition that comprises a composite of inorganic microparticles and an organic binder, with the ratio (Λ = PVC/CPVC) between the pigment volume concentration (PVC) of said composite and the critical pigment volume concentration (CPVC) thereof satisfying the relation 0.7 ≤ Λ ≤ 1.15, is used as the composition (insulating-adhesive-layer composition) constituting the insulating adhesive layer in an electricity-storage device (electric double-layer capacitor) (A) provided with a laminate (1) that has a structure wherein: a positive-electrode layer (21) and a negative-electrode layer (41) are laminated together with a separator layer (11) and an insulating adhesive layer (31) interposed therebetween; and said positive-electrode layer and negative-electrode layer are bonded together by said insulating adhesive layer.

Description

絶縁性接着層組成物、蓄電デバイス用素子、蓄電デバイス、およびそれらの製造方法Insulating adhesive layer composition, element for electricity storage device, electricity storage device, and production method thereof
 本発明は、絶縁性接着層組成物、蓄電デバイス用素子および蓄電デバイス、さらには、蓄電デバイス用素子および蓄電デバイスの製造方法に関する。 The present invention relates to an insulating adhesive layer composition, a power storage device element and a power storage device, and further relates to a power storage device element and a method of manufacturing a power storage device.
 リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層キャパシタなどに代表される高エネルギー密度の蓄電デバイスは、例えば、シート状の集電箔(アルミニウム箔または銅箔など)に、活物質(活性炭、リチウム複合酸化物、炭素など)を塗工することにより形成されたシート状の電極を、電極間の接触による短絡を防ぐためのシート状のセパレータを介して積層することにより構成された蓄電要素と、電解液とが、外装体内に収容された構造を有している。 High energy density power storage devices represented by lithium ion secondary batteries, lithium ion capacitors, electric double layer capacitors, and the like are, for example, sheet-shaped current collector foils (such as aluminum foil or copper foil) and active materials (activated carbon, A storage element formed by laminating a sheet-like electrode formed by coating a lithium composite oxide, carbon, etc.) via a sheet-like separator for preventing a short circuit due to contact between the electrodes; The electrolyte solution has a structure accommodated in the exterior body.
 そのような蓄電デバイスの1つとして、電解質と多孔性セラミックスとを混合してバインダとともにフィルム状に形成したセラミックシートをセパレータ用材料として用い、正極層と負極層とを、上記セラミックシートを介して積層し、積層体を一括してホットプレスする工程を経て製造される積層型電池が提案されている(特許文献1)。 As one of such power storage devices, a ceramic sheet formed by mixing an electrolyte and porous ceramics and forming a film with a binder is used as a separator material, and a positive electrode layer and a negative electrode layer are interposed through the ceramic sheet. A stacked battery manufactured through a process of stacking and hot pressing the stacked body at once has been proposed (Patent Document 1).
 また、他の蓄電デバイスとして、図17に示すように、活性炭電極110を接着した集電金属120を対向させるとともに、これらの間にセパレータ130および電解液(図示せず)を介在させ、さらに、集電金属120の最外周部に変成ポリプロピレンまたは変成ポリエチレンなどの熱接着部140を予め接着し、該熱接着部140を加熱して集電金属120を相互に接着し、密封してなる蓄電デバイス(電気二重層キャパシタ)が提案されている(特許文献2)。 Further, as another power storage device, as shown in FIG. 17, the current collector metal 120 to which the activated carbon electrode 110 is bonded is opposed, and a separator 130 and an electrolytic solution (not shown) are interposed therebetween, A power storage device formed by preliminarily bonding a thermal bonding portion 140 such as modified polypropylene or modified polyethylene to the outermost peripheral portion of the current collecting metal 120, heating the heat bonding portion 140 to bond the current collecting metal 120 to each other, and sealing them. (Electric double layer capacitor) has been proposed (Patent Document 2).
 また、さらに他の蓄電デバイスとして、セパレータ、集電体、分極性電極を、接着性を有する熱可塑性樹脂からなるガスケットによって一体化した蓄電デバイス(電気二重層キャパシタ)が提案されている(特許文献3)。
 なお、特許文献3においては、ガスケットを構成する接着性を備えた熱可塑性樹脂として、極性官能基を有する熱可塑性樹脂を使用することが記載されている。
As another power storage device, a power storage device (electric double layer capacitor) in which a separator, a current collector, and a polarizable electrode are integrated by a gasket made of an adhesive thermoplastic resin has been proposed (Patent Document). 3).
In Patent Document 3, it is described that a thermoplastic resin having a polar functional group is used as the thermoplastic resin having adhesiveness constituting the gasket.
 しかしながら、上記特許文献1の積層型電池の場合、電解質を混合したセラミックシートを正極層や負極層と積層する工程で、セラミックシートを単独で扱うことが必要になる場合があり、セラミックシートにはある程度以上の強度が求められる。しかし、セラミックシートの強度を確保しようとすると、セパレータの低抵抗(低イオン抵抗)化のために要求される、セラミックシートの薄層化や、セラミック粉体比率を高くすること(高PVC化)が制約されるという問題点がある。すなわち、電解液、セラミック、およびバインダが共存するセラミックシートの強度を確保しようとすると、薄層化や高PVC化が犠牲にされ、セパレータの低抵抗(低イオン抵抗)化を図るのが難しいという問題点がある。 However, in the case of the laminated battery of Patent Document 1, it may be necessary to handle the ceramic sheet alone in the step of laminating the ceramic sheet mixed with the electrolyte with the positive electrode layer or the negative electrode layer. A certain level of strength is required. However, in order to ensure the strength of the ceramic sheet, it is required to reduce the separator's resistance (low ionic resistance), to make the ceramic sheet thinner and to increase the ceramic powder ratio (higher PVC). There is a problem that is restricted. That is, if the strength of the ceramic sheet in which the electrolyte, ceramic and binder coexist is ensured, it is difficult to reduce the resistance (low ionic resistance) of the separator at the expense of thinning and high PVC. There is a problem.
 また、上記特許文献2の蓄電デバイス(電気二重層キャパシタ)の場合、変性ポリプロピレンや変性ポリエチレンは、電解液の含浸性・浸透性が全くないため、積層前に予め電解液をセパレータ(および場合によっては電極)に含浸させておく必要があり、積層体形成後に電解液を後添加するような製造方法には対応できず、製造工程が複雑になるという問題点がある。 In addition, in the case of the electricity storage device (electric double layer capacitor) of Patent Document 2 above, modified polypropylene and modified polyethylene have no electrolyte impregnation or permeability, so the electrolyte solution is preliminarily separated before separation (and depending on the case). Electrode) must be impregnated in advance, and cannot be applied to a manufacturing method in which an electrolytic solution is added after formation of the laminated body, and the manufacturing process becomes complicated.
 また、上記特許文献3の電気二重層キャパシタの場合、接着層としてガスケットを使用するようにしているが、ガスケットを構成する熱可塑性樹脂は、電解液の含液性や浸透性は有していない。そのため上述の特許文献2の場合と同様の問題点がある。 Further, in the case of the electric double layer capacitor disclosed in Patent Document 3, a gasket is used as an adhesive layer, but the thermoplastic resin constituting the gasket does not have an electrolyte solution-containing property or permeability. . Therefore, there is a problem similar to that in the case of Patent Document 2 described above.
特開平6-231796号公報Japanese Patent Application Laid-Open No. 6-231796 特開2002-313679号公報JP 2002-313679 A 特開2005-109293号公報JP 2005-109293 A
 本発明は、上記課題を解決するものであり、積層体に電解液の浸透性や含浸性を付与することが可能な蓄電デバイス用の絶縁性接着層組成物、該絶縁性接着層組成物からなる絶縁性接着層を備えた、特性の良好な蓄電デバイス用素子、蓄電デバイス、およびそれらの製造方法を提供することを目的とする。 The present invention solves the above-described problems, and includes an insulating adhesive layer composition for an electricity storage device that can impart electrolyte permeability and impregnation to a laminate, and the insulating adhesive layer composition. It is an object of the present invention to provide an element for an electricity storage device, an electricity storage device having good characteristics, and a method for producing them, including the insulating adhesive layer.
 上記課題を解決するため、本発明の絶縁性接着層組成物は、
 正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイスの前記絶縁性接着層を構成する組成物であって、
 無機微粒子と有機バインダを含む複合材料からなり、
 前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすこと
 を特徴としている。
In order to solve the above problems, the insulating adhesive layer composition of the present invention is:
An electricity storage device comprising a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer A composition constituting the insulating adhesive layer,
Composed of a composite material containing inorganic fine particles and an organic binder,
The following formula (1) of the composite material:
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
It is characterized by satisfying these requirements.
 また、本発明の蓄電デバイス用素子は、
 正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイス用素子であって、
 前記絶縁性接着層に、請求項1記載の絶縁性接着層組成物が用いられていること
 を特徴としている。
The element for the electricity storage device of the present invention is
A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer An element,
The insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
 また、本発明の蓄電デバイスは、
 正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスであって、
 前記絶縁性接着層に、請求項1記載の絶縁性接着層組成物が用いられていること
 を特徴としている。
Further, the electricity storage device of the present invention,
A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer; An electricity storage device comprising the laminate and a package in which the electrolytic solution is stored,
The insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
 また、本発明の蓄電デバイス用素子の製造方法は、
 正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイス用素子の製造方法において、
 前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータ層となるセパレータ層用材料および前記絶縁性接着層となる絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより前記正極層、前記負極層、前記セパレータ層、および前記絶縁性接着層とが一体化した前記積層体を形成する工程を備えているとともに、
 前記絶縁性接着層材料として、前記積層体を形成する工程を経て得られる前記積層体の前記絶縁性接着層が、無機微粒子と有機バインダを含む複合材料からなり、かつ、前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすことになるような絶縁性接着層材料を用いること
 を特徴としている。
In addition, the method for producing an element for an electricity storage device of the present invention includes
A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer In the manufacturing method of the element,
The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer. And forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated by heating and pressurizing,
As the insulating adhesive layer material, the insulating adhesive layer of the laminate obtained through the step of forming the laminate is composed of a composite material containing inorganic fine particles and an organic binder, and the composite material includes: Equation (1):
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
It is characterized by using an insulating adhesive layer material that satisfies the above requirements.
 また、本発明の蓄電デバイスの製造方法は、
 正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスの製造方法において、
 (1)前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータ層となるセパレータ層用材料および前記絶縁性接着層となる絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより前記正極層、前記負極層、前記セパレータ層、および前記絶縁性接着層とが一体化した前記積層体を形成する工程であって、前記絶縁性接着層材料として、前記積層体を形成する工程を経て得られる前記積層体の前記絶縁性接着層が、無機微粒子と有機バインダを含む複合材料からなり、かつ、前記複合材料の、下記の式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
 (ただし、Λ=PVC/CPVC)
の要件を満たすことになるような絶縁性接着層材料を用いて前記積層体を形成する工程と、
 (2)前記積層体を、前記電解液とともに、前記パッケージ内に収容し、前記電解液を前記積層体の外部から内部へ浸透・含浸させる工程と
 を具備することを特徴としている。
In addition, the method for manufacturing the electricity storage device of the present invention includes
A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer; In a method for manufacturing an electricity storage device comprising the laminate and a package in which the electrolytic solution is stored,
(1) The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are passed through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer. The step of forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated by disposing them so as to face each other and heating and pressurizing the insulating layer. As the adhesive layer material, the insulating adhesive layer of the laminate obtained through the step of forming the laminate is composed of a composite material containing inorganic fine particles and an organic binder, and the composite material has the following formula ( 1):
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
0.7 ≦ Λ ≦ 1.15 (2)
(However, Λ = PVC / CPVC)
Forming the laminate using an insulating adhesive layer material that will satisfy the requirements of
(2) The method further comprises the steps of: housing the laminated body together with the electrolytic solution in the package; and impregnating and impregnating the electrolytic solution from the outside to the inside of the laminated body.
 本発明の絶縁性接着層組成物は、正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、正極層と負極層とが絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイスの、上記絶縁性接着層を構成する組成物であって、無機微粒子と有機バインダを含む複合材料からなり、かつ、複合材料の顔料体積濃度PVCと、臨界顔料体積濃度CPVCとの比Λ(=PVC/CPVC)が、0.7≦Λ≦1.15の要件を満たすように構成されており、接着性を有し、かつ、必要な電解液の浸透性や含液性を備えている。したがって、上述のような蓄電デバイスを構成する積層体に、本発明の絶縁性接着層組成物を用いることにより、電解液を積層体の外部から内部へ浸透・含浸させることが可能な積層体を備えた、生産性に優れた蓄電デバイスを得ることが可能になる。 The insulating adhesive layer composition of the present invention has a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are bonded by an insulating adhesive layer. A composition constituting the insulating adhesive layer of an electricity storage device having a laminate, comprising a composite material containing inorganic fine particles and an organic binder, and a pigment volume concentration PVC of the composite material and a critical pigment volume concentration The ratio Λ (= PVC / CPVC) with CPVC is configured so as to satisfy the requirement of 0.7 ≦ Λ ≦ 1.15, has adhesiveness, and has a necessary electrolyte permeability and content. It has liquidity. Therefore, by using the insulating adhesive layer composition of the present invention for the laminate constituting the electricity storage device as described above, a laminate capable of penetrating and impregnating the electrolyte from the outside to the inside of the laminate is obtained. It is possible to obtain an electricity storage device with excellent productivity.
 すなわち、0.7≦Λ≦1.15の要件を満たすような複合材料からなる絶縁性接着層は、必要な接着性を備えているため、正極層、負極層、セパレータ層が一体化された積層体を確実に形成することが可能になり、生産工程を簡略化して、生産性を向上させることができる。 That is, since the insulating adhesive layer made of a composite material that satisfies the requirement of 0.7 ≦ Λ ≦ 1.15 has the necessary adhesiveness, the positive electrode layer, the negative electrode layer, and the separator layer are integrated. A laminated body can be reliably formed, the production process can be simplified, and productivity can be improved.
 また、セパレータ層に接着性などの機能を求める必要がないので、セパレータ層としての特性や機能を追求した設計を行うことが可能になり、蓄電デバイスとしての特性の向上を図ることができる。 In addition, since it is not necessary to obtain functions such as adhesiveness in the separator layer, it is possible to design in pursuit of the characteristics and functions as the separator layer, and it is possible to improve the characteristics as the electricity storage device.
 なお、本発明において、絶縁性接着層は、例えばセパレータ層の全周を取り囲むように配設されていてもよく、セパレータ層の全周を取り囲む領域の一部に配設されていてもよい。ただし、正極層と負極層の接合安定性や、積層体の信頼性を確保する見地からは、セパレータ層の全周を取り囲むように配設されていることが好ましい。
 なお、場合によっては、セパレータ層の中央部を貫通するような態様で絶縁性接着層を配設し、この絶縁性接着層により、セパレータ層を介して対向する正極層と負極層を接合するように構成することも可能である。
In the present invention, the insulating adhesive layer may be disposed, for example, so as to surround the entire circumference of the separator layer, or may be disposed in a part of a region surrounding the entire circumference of the separator layer. However, from the viewpoint of ensuring the bonding stability between the positive electrode layer and the negative electrode layer and the reliability of the laminate, it is preferable that the separator layer is disposed so as to surround the entire circumference of the separator layer.
In some cases, an insulating adhesive layer is disposed in such a manner as to penetrate through the central portion of the separator layer, and the positive electrode layer and the negative electrode layer facing each other are joined by the insulating adhesive layer via the separator layer. It is also possible to configure.
 また、本発明の蓄電デバイス用素子および蓄電デバイスは、正極層と負極層とがセパレータ層および絶縁性接着層を介して積層された積層体において、絶縁性接着層に、上述の本発明の絶縁性接着層組成物を用いるようにしているので、セパレータ層を最適な設計とすることが可能で、イオン抵抗が低く、高性能で、信頼性が高く、生産性に優れた蓄電デバイス用素子および蓄電デバイスを得ることができる。 In addition, the element for an electricity storage device and the electricity storage device of the present invention are the laminated body in which the positive electrode layer and the negative electrode layer are laminated with the separator layer and the insulating adhesive layer interposed therebetween, and the insulating adhesive layer has the above-described insulation of the present invention. Since the separator layer can be designed optimally, the ionic resistance is low, the performance is high, the reliability is high, and the productivity is excellent. An electricity storage device can be obtained.
 また、本発明の蓄電デバイス用素子の製造方法は、正極層用材料と負極層用材料とを、セパレータ層用材料および絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより正極層、負極層、セパレータ層、および絶縁性接着層とが一体化した積層体を形成するにあたって、絶縁性接着層材料として、形成された積層体の段階で上述の本発明の絶縁性接着層組成物が形成されるような材料を用いるようにしているので、高性能で、信頼性の高い、蓄電デバイス用素子を効率よく製造することができる。 Further, in the method for producing an element for an electricity storage device of the present invention, the positive electrode layer material and the negative electrode layer material are arranged so as to face each other with the separator layer material and the insulating adhesive layer material interposed therebetween, and are heated and pressurized. Thus, in forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated, the insulating property of the present invention described above is used as the insulating adhesive layer material at the stage of the formed laminate. Since the material for forming the adhesive layer composition is used, it is possible to efficiently manufacture a power storage device element having high performance and high reliability.
 また、本発明の蓄電デバイスの製造方法は、正極層用材料と負極層用材料とを、セパレータ層用材料および絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより正極層、負極層、セパレータ層、および絶縁性接着層とが一体化した積層体を形成するにあたって、絶縁性接着層材料として、本発明の絶縁性接着層組成物が形成されるような材料を用いるとともに、得られた積層体を、電解液とともに、パッケージ内に収容し、電解液を積層体の外部から内部へ浸透・含浸させるようにしているので、高性能で、信頼性の高い、蓄電デバイスを効率よく製造することができる。 In addition, the method for producing an electricity storage device of the present invention is such that a positive electrode layer material and a negative electrode layer material are arranged so as to face each other with a separator layer material and an insulating adhesive layer material interposed therebetween, and heated and pressurized. In forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated, a material that can form the insulating adhesive layer composition of the present invention is used as the insulating adhesive layer material. The resulting laminate is housed in a package together with the electrolyte, and the electrolyte is infiltrated and impregnated from the outside to the inside of the laminate, so it has high performance and high reliability. Devices can be manufactured efficiently.
 なお、電解液を積層体の外部から内部へ浸透・含浸させることができるのは、上記のような絶縁性接着層材料(すなわち、本発明の絶縁性接着層組成物が形成されるような材料)を用いて、必要な電解液含液性を有する絶縁性接着層を形成するようにしていることによる。 The electrolyte solution can be penetrated and impregnated from the outside to the inside of the laminate by the insulating adhesive layer material as described above (that is, the material from which the insulating adhesive layer composition of the present invention is formed). ) Is used to form an insulating adhesive layer having the necessary liquid electrolyte-containing properties.
本発明の一実施例(実施例2)にかかる蓄電デバイス用(電気二重層キャパシタ用)の構成を模式的に示す正面断面図である。It is front sectional drawing which shows typically the structure for the electrical storage device (for electric double layer capacitors) concerning one Example (Example 2) of this invention. 図1の蓄電デバイスのセパレータ層と絶縁性接着層の配設態様を模式的に示す平面断面図である。FIG. 2 is a cross-sectional plan view schematically illustrating an arrangement mode of a separator layer and an insulating adhesive layer of the electricity storage device of FIG. 1. 本発明の実施例2にかかる蓄電デバイス用素子の製造方法の一工程において、基材フィルム上に正極集電体層を形成した状態を示す図であって、(a)は平面図、(b)は正面断面図である。In one process of the manufacturing method of the element for electrical storage devices concerning Example 2 of this invention, it is a figure which shows the state which formed the positive electrode electrical power collector layer on the base film, Comprising: (a) is a top view, (b) ) Is a front sectional view. 図3に示した正極集電体層上に正極活物質層を形成した状態を示す図であって、(a)は平面図、(b)は正面断面図である。4A and 4B are diagrams illustrating a state in which a positive electrode active material layer is formed on the positive electrode current collector layer illustrated in FIG. 3, wherein (a) is a plan view and (b) is a front cross-sectional view. 図4に示した正極集電体層上にセパレータ層を形成した状態を示す図である。It is a figure which shows the state which formed the separator layer on the positive electrode electrical power collector layer shown in FIG. (a)は図5で示したセパレータ層の周囲に絶縁性接着層を配設することにより形成した正極集合シートを示す図、(b)は同様にして形成した負極集合シートを示す図である。(a) is a figure which shows the positive electrode assembly sheet formed by arrange | positioning an insulating contact bonding layer around the separator layer shown in FIG. 5, (b) is a figure which shows the negative electrode assembly sheet formed similarly. . 正極集合シートと、負極集合シートを互いに対向させて配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the positive electrode assembly sheet and the negative electrode assembly sheet facing each other. 正極集合シートと負極集合シートを接合することにより形成した正負極集合シート示す図である。It is a figure which shows the positive / negative electrode assembly sheet formed by joining a positive electrode assembly sheet and a negative electrode assembly sheet. 一対の正負極集合シートを互いに対向させて配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned a pair of positive / negative electrode assembly sheet so as to oppose each other. 一対の正負極集合シートを接合して形成した集合シート積層体を示す図である。It is a figure which shows the assembly sheet laminated body formed by joining a pair of positive and negative electrode assembly sheet. 図10の集合シート積層体に正負極集合シートを対向させて配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the positive / negative electrode assembly sheet facing the assembly sheet laminated body of FIG. 図10の集合シート積層体と正負極集合シートとを接合して形成した複合積層体を示す図である。It is a figure which shows the composite laminated body formed by joining the aggregate sheet laminated body of FIG. 10, and positive and negative electrode aggregate sheets. 本発明の実施例で作製した積層集合体の構成を模式的に示す正面断面図である。It is front sectional drawing which shows typically the structure of the laminated assembly produced in the Example of this invention. 図13の積層集合体を分割する工程を説明する正面断面図である。It is front sectional drawing explaining the process of dividing | segmenting the laminated assembly of FIG. 図13の積層集合体を分割して得た積層体の構成を示す正面断面図である。It is front sectional drawing which shows the structure of the laminated body obtained by dividing | segmenting the laminated assembly of FIG. 図15の積層体に正負極外部端子電極を形成した状態を示す正面断面図である。It is front sectional drawing which shows the state which formed the positive / negative external terminal electrode in the laminated body of FIG. 従来の蓄電デバイス(電気二重層キャパシタ)を示す図である。It is a figure which shows the conventional electrical storage device (electric double layer capacitor).
 以下に本発明の実施の形態を示して、本発明の特徴とするところを詳しく説明する。 Hereinafter, embodiments of the present invention will be shown, and features of the present invention will be described in detail.
 積層型の蓄電デバイスにおいては、セパレータ層が、低イオン抵抗、高接着性、高含液性を備えていることが要求される。しかし一般的に、PVCが高くなるほど低イオン抵抗、高含液性になる一方で、接着性は低下する。
 そこで、本発明では、セパレータ層の周辺部に接着層(本発明における絶縁性接着層)を導入することで、接着性を補うようにしている。
In a stacked electricity storage device, the separator layer is required to have low ionic resistance, high adhesion, and high liquid content. However, generally, the higher the PVC, the lower the ionic resistance and the higher the liquid content, while the adhesiveness decreases.
Therefore, in the present invention, the adhesiveness is compensated by introducing an adhesive layer (insulating adhesive layer in the present invention) around the separator layer.
 すなわち、本発明においては、正極層と負極層の間に、セパレータ層と絶縁性接着層を介在させ、この絶縁性接着層により、セパレータ層を間に介在させた状態で、セパレータ層の接着性に依存することなく、正極層と負極層を接着することができるようにして、セパレータ層に接着性を求めず、セパレータ層としての機能を向上させる(高PVC化、低イオン抵抗化)ことを可能にしている。 That is, in the present invention, the separator layer and the insulating adhesive layer are interposed between the positive electrode layer and the negative electrode layer, and the insulating property of the separator layer is interposed between the separator layer and the insulating adhesive layer. It is possible to bond the positive electrode layer and the negative electrode layer without depending on the above, so that the separator layer is not required to have adhesiveness and the function as the separator layer is improved (high PVC, low ionic resistance). It is possible.
 また、本発明は、絶縁性接着層に含液性を持たせたことを特徴としている。一般に、接着剤には樹脂単体が用いられるが、その場合、高い接着性は実現されるが、含液性はほとんど期待できないのが実情である。そこで、本発明においては、有機バインダに、無機微粒子(絶縁性微粒子)を混合した樹脂を用いることにより、絶縁性接着層に含液性を持たせるようにしている。 In addition, the present invention is characterized in that the insulating adhesive layer is made liquid-containing. In general, a single resin is used as an adhesive, and in that case, high adhesiveness is realized, but the actual situation is that liquid content can hardly be expected. Therefore, in the present invention, the insulating adhesive layer is made liquid-containing by using a resin in which inorganic fine particles (insulating fine particles) are mixed in an organic binder.
 しかし、含液性と接着性はトレードオフの関係にあり、適切なPVCを選択することが必要である。PVCが低いほど(すなわち、絶縁性粒子(例えばアルミナ(Al23)粒子やシリカ(SiO2)粒子など)の割合が少ないほど)自由に動ける高分子鎖が増えるため接着性は向上するが、高分子鎖の柔軟性により空隙は埋まり、含液性が低下する。また、PVCが高くなると、接着性が低下し、含液性が増大する。これに対し本発明では、自由に動く高分子鎖と空隙のバランスを適切に調節することで、高い接着性と含液性を両立させるようにしている。 However, there is a trade-off between liquid content and adhesiveness, and it is necessary to select an appropriate PVC. Although the lower the PVC (that is, the smaller the proportion of insulating particles (for example, alumina (Al 2 O 3 ) particles, silica (SiO 2 ) particles, etc.)), the number of polymer chains that can move freely increases, the adhesion improves. The voids are filled by the flexibility of the polymer chain, and the liquid content is lowered. Moreover, when PVC becomes high, adhesiveness will fall and a liquid-containing property will increase. On the other hand, in the present invention, the balance between the freely moving polymer chain and the voids is appropriately adjusted to achieve both high adhesiveness and liquid content.
 本発明が関連する積層型の蓄電デバイスは、通常パッケージに封止されて使用される。そのため、絶縁性接着層が含液性を有している場合、絶縁性接着層を電解液が通過できるために、パッケージ全体に含まれる電解液を使用することができる。しかし、絶縁性接着層に含液性がない場合、例えパッケージ内を電解液で満たしたとしても、積層体の周囲にある電解液は、積層体内に侵入できないため有効に利用されない。これに対し、絶縁性接着層に含液性を持たせた本発明の蓄電デバイスにおいては、電解液の有効使用量が増える結果、例えば、リチウムイオン2次電池のように、電解液が多いほど、高容量、高レート特性、長寿命になるとされているような蓄電デバイスにおいて、効率よく特性を向上させることができる。 The stacked electricity storage device to which the present invention relates is usually used by being sealed in a package. Therefore, when the insulating adhesive layer has a liquid-containing property, since the electrolytic solution can pass through the insulating adhesive layer, the electrolytic solution contained in the entire package can be used. However, if the insulating adhesive layer is not liquid-containing, even if the inside of the package is filled with the electrolytic solution, the electrolytic solution around the laminated body cannot be effectively used because it cannot enter the laminated body. On the other hand, in the electricity storage device of the present invention in which the insulating adhesive layer is made liquid-containing, as a result of increasing the effective amount of the electrolyte used, for example, the more electrolyte there is like a lithium ion secondary battery. In an electricity storage device that is supposed to have high capacity, high rate characteristics, and long life, the characteristics can be improved efficiently.
 また、例えば、リチウムイオン2次電池における容量低下などの経時変化は、充放電反応時に、活物質表面で電解液の分解反応等が生じ、電解液の枯渇(ドライアップ)が結果として生じることにより起こる。 
 これに対しても、絶縁性接着層に含液性を与えることで、利用できる電解液量を増やす(パッケージと積層体間に含まれる電解液を有効に使用する)ことが可能になり、蓄電デバイスの高容量化や長寿命化に寄与することができる。
In addition, for example, a change over time such as a decrease in capacity in a lithium ion secondary battery is caused by a decomposition reaction of the electrolytic solution on the surface of the active material during a charge / discharge reaction, resulting in a depletion (dry up) of the electrolytic solution. Occur.
Against this, it is possible to increase the amount of available electrolyte solution (effectively use the electrolyte solution contained between the package and the laminate) by providing liquid insulation to the insulating adhesive layer. This can contribute to higher capacity and longer life of devices.
 また、電解液を予め含浸させたセパレータシートは強度が低下するため、積層後に電解液を注液する方法が製造上望ましいが、本発明のように、絶縁性接着層に含液性を与えることにより、セパレータ層を取り囲むように絶縁性接着層が配設された構造を採用した場合にも、積層後の電解液の注液が可能になる。その結果、より薄く、PVCの高い、従来よりも低イオン抵抗のセパレータ層を使用することが可能になり、高特性の蓄電デバイスを得ることができるようになる。
 すなわち、絶縁性接着層のΛ(=PVC/CPVC)を、0.7≦Λ≦1.15の範囲とすることにより、例えば、逐次圧着による方法で、積層圧着を行って積層体を作製する場合に、タクトタイムの短時間化を図りつつ、蓄電デバイスの高容量化、長寿命化を実現することが可能になる。また、生産性を高めて、低コストで積層型の蓄電デバイスを製造することが可能になる。
In addition, a separator sheet pre-impregnated with an electrolytic solution is reduced in strength, and therefore, a method of injecting the electrolytic solution after lamination is desirable in production. However, as in the present invention, the insulating adhesive layer is provided with liquid content. Therefore, even when a structure in which an insulating adhesive layer is disposed so as to surround the separator layer is employed, it is possible to inject the electrolyte solution after lamination. As a result, it is possible to use a separator layer that is thinner, has a higher PVC, and has a lower ionic resistance than conventional ones, so that an electricity storage device with high characteristics can be obtained.
That is, by setting Λ (= PVC / CPVC) of the insulating adhesive layer in a range of 0.7 ≦ Λ ≦ 1.15, for example, a method of sequential pressure bonding is used to perform a multilayer pressure bonding to produce a stacked body. In this case, it is possible to increase the capacity and the life of the power storage device while shortening the tact time. Further, it becomes possible to increase productivity and manufacture a stacked electricity storage device at low cost.
 上述のような効果を奏する蓄電デバイスに用いるのに適した本発明の絶縁性接着層組成物は、リチウムイオン2次電池や電気二重層キャパシタなどの内部において、化学的および電気化学的に安定な無機微粒子が、リチウムイオン2次電池や電気二重層キャパシタなどの内部において化学的および電気化学的に安定な有機バインダで結着された複合材料からなる。 The insulating adhesive layer composition of the present invention suitable for use in an electricity storage device having the effects described above is chemically and electrochemically stable inside a lithium ion secondary battery, an electric double layer capacitor, or the like. The inorganic fine particles are made of a composite material bound with a chemically and electrochemically stable organic binder inside a lithium ion secondary battery, an electric double layer capacitor, or the like.
 そして、本発明の絶縁性接着層組成物を構成する無機微粒子としては、例えばシリカ、アルミナ、チタニア、チタン酸バリウムなどの酸化物、窒化ケイ素、窒化アルミニウムなどの窒化物、が挙げられる。
 また有機バインダとしてはポリフッ化ビニリデン(PVDF)、ポリフッ化ビニリデンとヘキサフルオロプロピレンの共重合体(PVDF-HFP)などが挙げられる。
Examples of the inorganic fine particles constituting the insulating adhesive layer composition of the present invention include oxides such as silica, alumina, titania and barium titanate, and nitrides such as silicon nitride and aluminum nitride.
Examples of the organic binder include polyvinylidene fluoride (PVDF), a copolymer of polyvinylidene fluoride and hexafluoropropylene (PVDF-HFP), and the like.
 また、複合材料としては、式(1):
 PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
 (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
 で表される顔料体積濃度PVC(Pigment Volume Concentration)と、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVC(Critical Pigment Volume Concentration)との比Λが、下記の式(2):
 0.7≦Λ≦1.15 ……(2)
の要件を満たすものが用いられる。
Moreover, as a composite material, Formula (1):
PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
(However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
The ratio Λ between the pigment volume concentration PVC (Pigment Volume Concentration) represented by the formula (2) and the critical pigment volume concentration CPVC (Critical Pigment Volume Concentration), which is the maximum pigment volume concentration at which voids are considered to be zero, is ):
0.7 ≦ Λ ≦ 1.15 (2)
Those satisfying the above requirements are used.
 なお、Λとは、"Reduced Pigment Volume Concentration"のことであり、下記の式(3)で表される。
  Λ=PVC/CPVC ……(3)
Note that Λ is “Reduced Pigment Volume Concentration” and is represented by the following equation (3).
Λ = PVC / CPVC (3)
 また、上記空隙は以下のように密度法により評価した。
 所定のサイズに打ち抜いた試料の厚みおよび重量を測定し、重量を体積で除することで密度を算出した。そして密度の実測値と、複合材料シートの組成から計算される理論的な密度より、次式により空隙率を算出した。
(空隙率)={1-(密度の実測値)/(理論的な密度)}×100
The voids were evaluated by the density method as follows.
The thickness and weight of a sample punched into a predetermined size were measured, and the density was calculated by dividing the weight by the volume. Then, the porosity was calculated by the following formula from the measured density value and the theoretical density calculated from the composition of the composite material sheet.
(Void ratio) = {1− (actual value of density) / (theoretical density)} × 100
 なお、複合材料は、無機微粒子と、有機バインダと、溶剤とを、例えばボールミルなどを用いて調製したスラリーを、ドクターブレード法などで基材上に流延し、乾燥することにより得られる。 The composite material can be obtained by casting a slurry prepared by using an inorganic fine particle, an organic binder, and a solvent using, for example, a ball mill on a base material by a doctor blade method or the like and drying the slurry.
 以下、本発明の実施例を示して本発明をさらに詳細に説明する。
 [絶縁性接着層組成物からなるシートの作製と評価]
 絶縁性接着層組成物用の複合材料を構成する無機微粒子として球状アルミナ粉末(平均粒子径0.3μm)を用意した。
 また、複合材料を構成する有機バインダとして、ポリフッ化ビニリデン(PVDF)を用意した。
Hereinafter, the present invention will be described in more detail with reference to examples of the present invention.
[Production and Evaluation of Sheet of Insulating Adhesive Layer Composition]
Spherical alumina powder (average particle size 0.3 μm) was prepared as inorganic fine particles constituting the composite material for the insulating adhesive layer composition.
Further, polyvinylidene fluoride (PVDF) was prepared as an organic binder constituting the composite material.
 そして、以下に説明する方法により、乾燥後における絶縁性接着層のPVCが、20,25,30,32,34,36,40,46,48,50,55,60,65,70,75%となるような複合材料シートを作製した。 Then, by the method described below, the PVC of the insulating adhesive layer after drying is 20, 25, 30, 32, 34, 36, 40, 46, 48, 50, 55, 60, 65, 70, 75%. A composite material sheet was prepared.
 500mlのポットに無機微粒子と、溶剤であるN-メチル-2-ピロリドン(NMP)を投入した。さらに5mmφのPSZ製粉砕メディアを入れ、転動ボールミルを用いて4時間混合し、分散を行った。その後、PVDF(ポリフッ化ビニリデン)のNMP(N-メチル-2-ピロリドン)溶液を所定量を添加して、転動ボールミルを用いて2時間混合しスラリーを調製した。 Into a 500 ml pot, inorganic fine particles and a solvent N-methyl-2-pyrrolidone (NMP) were charged. Furthermore, PSZ grinding media having a diameter of 5 mmφ were put, and mixed for 4 hours using a rolling ball mill to perform dispersion. Thereafter, a predetermined amount of an NMP (N-methyl-2-pyrrolidone) solution of PVDF (polyvinylidene fluoride) was added and mixed for 2 hours using a rolling ball mill to prepare a slurry.
 このスラリーをPET(ポリエチレンテレフタレート)フィルム上にドクターブレード法にて塗工した後、乾燥して厚みが25μmの複合材料シート(本発明の絶縁性接着層に相当するシート)を得た。 This slurry was coated on a PET (polyethylene terephthalate) film by a doctor blade method and then dried to obtain a composite material sheet having a thickness of 25 μm (a sheet corresponding to the insulating adhesive layer of the present invention).
 それから、複合材料シート(以下、「絶縁性接着層シート」ともいう)を評価するため、臨界顔料体積濃度CPVC、加熱加圧時の接着性、電解液の含液性を調べた。 Then, in order to evaluate the composite material sheet (hereinafter also referred to as “insulating adhesive layer sheet”), the critical pigment volume concentration CPVC, the adhesiveness at the time of heating and pressing, and the liquid content of the electrolytic solution were examined.
 (1)臨界顔料体積濃度CPVC(密度法)
 上述のようにして作製した絶縁性接着層シートについて、密度法により測定したCPVCは48%であった。
(1) Critical pigment volume concentration CPVC (density method)
The CPVC measured by the density method for the insulating adhesive layer sheet produced as described above was 48%.
 (2)加熱加圧時の接着性
 プレス装置にシートの乾燥表面が接着面となるように設置し、150℃、20MPaで2分間加熱加圧して絶縁性接着層シートどうしを接合した。このときの絶縁性接着層シート間の剥離力が1.0mN/mm以上のものは接着性良好とした。
 上述のようにして作製した絶縁性接着層シートのうち、PVCが55%(Λ=1.15)以下の絶縁性接着層シートは接着性が良好であったが、PVCが55%(Λ=1.25)以上のものは接着性が不良であった。
(2) Adhesiveness at the time of heating and pressurizing The insulating adhesive layer sheets were bonded to each other by being heated and pressed at 150 ° C. and 20 MPa for 2 minutes in a press apparatus so that the dry surface of the sheet becomes an adhesive surface. At this time, those having a peeling force of 1.0 mN / mm or more between the insulating adhesive layer sheets were considered to have good adhesiveness.
Among the insulating adhesive layer sheets produced as described above, the insulating adhesive layer sheet having a PVC of 55% (Λ = 1.15) or less had good adhesion, but the PVC was 55% (Λ = 1.25) The above materials had poor adhesion.
 (3)電解液の含液性
 電解液としては以下のものを調製し含液性試験に用いた。
(非水系電解液の作製)
 非水系溶媒として、環状カーボネートであるエチレンカーボネート(EC)とジエチルカーボネート(DEC)とを3:7の体積比で混合した混合溶媒を用い、この混合溶媒に電解質のLiPF6を1mol・l-1の濃度になるように溶解させて、非水電解液を作製した。
(3) Liquid content of electrolyte solution The following was prepared as an electrolyte solution and used for the liquid content test.
(Preparation of non-aqueous electrolyte)
As a non-aqueous solvent, a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC), which are cyclic carbonates, were mixed at a volume ratio of 3: 7 was used. In this mixed solvent, 1 mol·l −1 of electrolyte LiPF 6 was used. A non-aqueous electrolyte solution was prepared by dissolving to a concentration of.
 そして、1cm×1cm×25μm(厚み)の、乾燥済みの絶縁性接着層シートを25℃にて電解液に浸漬し、24時間後の重量増加を測定することにより含液性を評価した。10%以上質量増加したセパレータシートを含液性が良好であるとした。 Then, 1 cm × 1 cm × 25 μm (thickness) of the dried insulating adhesive layer sheet was immersed in an electrolytic solution at 25 ° C., and the liquid content was evaluated by measuring the weight increase after 24 hours. A separator sheet having a mass increase of 10% or more was considered to have good liquid-containing properties.
 PVCが34%(Λ=0.70)以上のものは含液性が良好であったが、PVCが32%(Λ=0.67)以下のものは含液性が不良であった。 When the PVC was 34% (Λ = 0.70) or more, the liquid-containing property was good, but when the PVC was 32% (Λ = 0.67) or less, the liquid-containing property was poor.
 図1は、本発明の実施例(実施例2)にかかる蓄電デバイス(電気二重層キャパシタ)を示す正面断面図、図2は、セパレータ層と絶縁性接着層の配設態様を模式的に示す平面断面図である。 FIG. 1 is a front sectional view showing an electricity storage device (electric double layer capacitor) according to an example (Example 2) of the present invention, and FIG. 2 schematically shows an arrangement mode of a separator layer and an insulating adhesive layer. FIG.
 この実施例2の電気二重層キャパシタAは、図1に示すように、正極集電体層21aの両面に正極活物質21bを設けた正極層21と、負極集電体層41aの両面に負極活物質41bを設けた負極層41とを、セパレータ層11および絶縁性接着層31を介して積層することにより形成された積層体1を備えている。積層体1の第1の端面2および第2の端面3には、正極外部端子電極21tおよび負極外部端子電極41tが形成されている。そして、この積層体1が、電解液とともに、蓋体70a、ベース部70bからなるパッケージ70に収容されている。また、パッケージ70には、両端から下面側に回り込むように、正極パッケージ電極61および負極パッケージ電極62が形成されている。 As shown in FIG. 1, the electric double layer capacitor A of Example 2 includes a positive electrode layer 21 provided with a positive electrode active material 21b on both surfaces of a positive electrode current collector layer 21a, and a negative electrode on both surfaces of a negative electrode current collector layer 41a. The laminate 1 is formed by laminating a negative electrode layer 41 provided with an active material 41 b via a separator layer 11 and an insulating adhesive layer 31. A positive external terminal electrode 21 t and a negative external terminal electrode 41 t are formed on the first end surface 2 and the second end surface 3 of the multilayer body 1. And this laminated body 1 is accommodated in the package 70 which consists of a cover body 70a and the base part 70b with electrolyte solution. Further, the package 70 is formed with a positive electrode package electrode 61 and a negative electrode package electrode 62 so as to go around from both ends to the lower surface side.
 そして、この実施例の電気二重層キャパシタAにおいては、図1,2に示すように、絶縁性接着層31は、セパレータ層11の周囲を取り囲む領域に配設されており、正極層21および負極層41は、セパレータ層11と、セパレータ層11の周囲を取り囲む領域に配設された絶縁性接着層31を介して積層されている。 In the electric double layer capacitor A of this embodiment, as shown in FIGS. 1 and 2, the insulating adhesive layer 31 is disposed in a region surrounding the separator layer 11, and the positive electrode layer 21 and the negative electrode The layer 41 is laminated via the separator layer 11 and an insulating adhesive layer 31 disposed in a region surrounding the separator layer 11.
 より具体的には、この実施例では、正極層21を構成する正極集電体層21aと負極層41を構成する負極集電体層41aが絶縁性接着層31を介して積層され、正極層21を構成する正極活物質層21bと負極層41を構成する負極活物質層41bがセパレータ層11を介して積層され、正極活物質層21bと負極活物質層41bとは全領域がセパレータ層11を介して対向し、かつ、正極活物質層21bと負極活物質層41bの周囲の正極集電体層21aと負極集電体層41aとが、絶縁性接着層31を介して積層されている。 More specifically, in this embodiment, the positive electrode current collector layer 21 a constituting the positive electrode layer 21 and the negative electrode current collector layer 41 a constituting the negative electrode layer 41 are laminated via the insulating adhesive layer 31. The positive electrode active material layer 21b that constitutes 21 and the negative electrode active material layer 41b that constitutes the negative electrode layer 41 are laminated via the separator layer 11, and the positive electrode active material layer 21b and the negative electrode active material layer 41b are entirely separated by the separator layer 11. And the positive electrode current collector layer 21a and the negative electrode current collector layer 41a around the positive electrode active material layer 21b and the negative electrode active material layer 41b are laminated via the insulating adhesive layer 31. .
 そして、絶縁性接着層31としては、無機微粒子であるアルミナ(φ0.3μm)と、有機バインダとを含む複合材料からなり、そのPVCが40%、CPVCが48%で、Λが0.83の、本発明の要件を備えた絶縁性接着層組成物が用いられている。
 以下に、この電気二重層キャパシタAの製造方法について説明する。
The insulating adhesive layer 31 is made of a composite material containing alumina (φ0.3 μm), which is inorganic fine particles, and an organic binder. Its PVC is 40%, CPVC is 48%, and Λ is 0.83. An insulating adhesive layer composition having the requirements of the present invention is used.
Below, the manufacturing method of this electric double layer capacitor A is demonstrated.
 [工程1(集電体の作製)]
 離形層としてウレタンが塗布された基材PETフィルム上に、厚さ0.5μmのアルミニウム層を蒸着により形成した。それから、形成されたアルミニウム層の表面に、スクリーン印刷によりエッチングマスクレジストをパターン塗布し、乾燥した。なお、レジストは関西ペイント製アレスSPRを用いた。
[Step 1 (Preparation of current collector)]
An aluminum layer having a thickness of 0.5 μm was formed by vapor deposition on a base material PET film coated with urethane as a release layer. Then, an etching mask resist was applied onto the surface of the formed aluminum layer by screen printing and dried. The resist used was Ares SPR manufactured by Kansai Paint.
 その後、このフィルムを40℃の塩化第二鉄水溶液に浸漬し、アルミニウム層をパターニングした。その後、このフィルムを有機溶剤中に浸漬し、レジストを剥離した後、硫酸とフッ酸の混合水溶液に浸漬して、アルミニウム層表面の酸化層を取り除くことにより、図3(a),(b)に示すように、複数の正極集電体層21aを基材PETフィルム100上に形成した。 Thereafter, this film was immersed in an aqueous ferric chloride solution at 40 ° C., and the aluminum layer was patterned. Thereafter, the film is immersed in an organic solvent, the resist is peeled off, and then immersed in a mixed aqueous solution of sulfuric acid and hydrofluoric acid to remove the oxide layer on the surface of the aluminum layer, thereby removing the oxide layer shown in FIGS. As shown in FIG. 2, a plurality of positive electrode current collector layers 21 a were formed on the base PET film 100.
 [工程2] (1)活物質層用スラリーの作製
 活性炭(BET比表面積1668m2/g、平均細孔直径1.83nm、平均粒子径(D50)1.26μm)29.0gと、カーボンブラック(東海カーボン株式会社製「トーカブラック#3855」、BET比表面積90m2/g)2.7gとを秤量して、1000mlのポットに投入し、さらに直径2.0mmのPSZ製粉砕メディアおよび286gの脱イオン水を投入した後、転動ボールミルを用いて150rpmで4時間混合して分散を行った。
 それから、ポットに3.0gのカルボキシメチルセルロース(ダイセル化学工業株式会社製「CMC2260」)と38.8wt%のポリアクリレート樹脂水溶液2.0gを投入し、さらに2時間混合することにより活物質層用スラリーを作製した。
[Step 2] (1) Preparation of slurry for active material layer 29.0 g of activated carbon (BET specific surface area 1668 m 2 / g, average pore diameter 1.83 nm, average particle diameter (D 50 ) 1.26 μm), carbon black (Tokai Carbon Co., Ltd. “Toka Black # 3855”, BET specific surface area 90 m 2 / g) 2.7 g was weighed and put into a 1000 ml pot, and PSZ grinding media having a diameter of 2.0 mm and 286 g After adding deionized water, the mixture was dispersed by mixing at 150 rpm for 4 hours using a rolling ball mill.
Then, 3.0 g of carboxymethyl cellulose (“CMC2260” manufactured by Daicel Chemical Industries, Ltd.) and 2.0 g of a 38.8 wt% aqueous solution of polyacrylate resin are added to the pot, and further mixed for 2 hours to obtain a slurry for the active material layer. Was made.
 (2)活物質層用スラリーの塗工
 版厚8μmの#500メッシュスクリーン印刷版を使用し、図3(a),(b)に示した正極集電体層21a上の活物質層塗工部に上記の方法で作製した活物質層用スラリーをスクリーン印刷し、100℃にて30分間乾燥して、厚さ6μmの正極活物質層21bを形成することにより、図4(a),(b)に示すように、正極集電体層21aと正極活物質層21bとを備えた正極層21を形成した。
(2) Application of slurry for active material layer Application of active material layer on positive electrode current collector layer 21a shown in FIGS. 3 (a) and 3 (b) using a # 500 mesh screen printing plate with a plate thickness of 8 μm 4 (a), (4) by forming a positive electrode active material layer 21b having a thickness of 6 μm by screen printing the slurry for active material layer produced by the above method on the part and drying at 100 ° C. for 30 minutes. As shown to b), the positive electrode layer 21 provided with the positive electrode collector layer 21a and the positive electrode active material layer 21b was formed.
 なお、正極活物質層21bは、図1に示すように、積層体1の第1の端面2において正極外部端子電極21tに直接接続されないように第1の端面2から所定の距離だけ後退した領域に形成されるようにした。すなわち、活物質層用スラリーを印刷するにあたり、後述の工程6において切断されたときに、その切断面から所定の幅の未塗工領域が形成されるように活物質層用スラリーをスクリーン印刷した。  In addition, as shown in FIG. 1, the positive electrode active material layer 21b is a region that is receded from the first end surface 2 by a predetermined distance so as not to be directly connected to the positive electrode external terminal electrode 21t on the first end surface 2 of the multilayer body 1. To be formed. That is, when printing the active material layer slurry, the active material layer slurry was screen-printed so that an uncoated region having a predetermined width was formed from the cut surface when cut in Step 6 described later. . *
 [工程3]
 (1)セパレータ層用スラリーの作製 500mlのポットにシリカ(電気化学工業(株)製、平均粒子径(D50)0.7μm)を50gと、溶剤としてメチルエチルケトンを50g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。その後、有機バインダ溶液として、ポリフッ化ビニリデン(PVDF)のNMP(N-メチル-2-ピロリドン)溶液(クレハ製 L#1120、分子量28万、12wt%溶液)を投入し、転動ボールミルを用いて150rpmで4時間混合し、セパレータ層用スラリー(セパレータ層用材料)を作製した。
[Step 3]
(1) Preparation of separator layer slurry 50 g of silica (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.7 μm) and 50 g of methyl ethyl ketone as a solvent were charged into a 500 ml pot. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill. Thereafter, an NMP (N-methyl-2-pyrrolidone) solution of polyvinylidene fluoride (PVDF) (Kureha L # 1120, molecular weight 280,000, 12 wt% solution) was added as an organic binder solution, and a rolling ball mill was used. Mixing was performed at 150 rpm for 4 hours to prepare a separator layer slurry (separator layer material).
 (2)セパレータ層用スラリーの塗工
 版厚8μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製したセパレータ層用スラリーを正極層21上(詳しくは正極活物質層21b上)に塗工し、120℃にて30分間乾燥することにより、厚さ3μmのセパレータ層11を形成した(図5)。
(2) Coating of slurry for separator layer Using a # 500 mesh screen printing plate having a plate thickness of 8 μm, the slurry for separator layer prepared by the above method is applied on positive electrode layer 21 (specifically, on positive electrode active material layer 21b). The separator layer 11 having a thickness of 3 μm was formed by coating and drying at 120 ° C. for 30 minutes (FIG. 5).
 [工程4]
 (1)絶縁性接着層用スラリーの作製
 500mlのポットにアルミナ(電気化学工業(株)製、平均粒子径(D50)0.3μm)を100gと、溶剤としてN-メチル-2-ピロリドン(NMP)を80g投入した。さらに直径5mmのPSZ製粉砕メディアを入れ、転動ボールミルを用いて150rpmで16時間混合し、分散を行った。その後、PVDF(ポリフッ化ビニリデン)-HFP(ヘキサフルオロプロピレン)のバインダ溶液(アルケマ製 Kynar2801、20wt%NMP溶液)を170g投入し、転動ボールミルを用いて150rpmで4時間混合し、乾燥後のPVCが40%、Λが0.83となるような絶縁性接着層用スラリーを作製した。
[Step 4]
(1) Preparation of Slurry for Insulating Adhesive Layer 100 g of alumina (manufactured by Denki Kagaku Kogyo Co., Ltd., average particle size (D 50 ) 0.3 μm) is added to a 500 ml pot, and N-methyl-2-pyrrolidone (as a solvent) 80 g of NMP) was added. Further, PSZ grinding media having a diameter of 5 mm were put, and the mixture was dispersed by mixing at 150 rpm for 16 hours using a rolling ball mill. Thereafter, 170 g of a binder solution of PVDF (polyvinylidene fluoride) -HFP (hexafluoropropylene) (Kynar 2801, 20 wt% NMP solution manufactured by Arkema) was added, mixed for 4 hours at 150 rpm using a rolling ball mill, and dried PVC A slurry for an insulating adhesive layer having a thickness of 40% and an Λ of 0.83 was prepared.
 (2)絶縁性接着層用スラリーの塗工
 版厚8μmの#500メッシュスクリーン印刷版を使用し、上記の方法で作製した絶縁性接着層用スラリーをセパレータ層11を取り囲む領域の正極集電体層21aおよび基材PETフィルム100上に塗工し、120℃にて30分間乾燥し、厚さ10μmの絶縁性接着層31を形成した。
 以上のようにして、図6(a)に示すように、正極集電体層21aとその表面に形成された正極活物質層21bからなる正極層21と、セパレータ層11と、絶縁性接着層31とを備えた正極集合シート20を基材PETフィルム100上に形成した。
(2) Application of slurry for insulating adhesive layer Positive electrode current collector in region surrounding separator layer 11 using # 500 mesh screen printing plate having a plate thickness of 8 μm and slurry for insulating adhesive layer produced by the above method The coating was applied onto the layer 21a and the base PET film 100, and dried at 120 ° C. for 30 minutes to form an insulating adhesive layer 31 having a thickness of 10 μm.
As described above, as shown in FIG. 6 (a), the positive electrode current collector layer 21a and the positive electrode layer 21 including the positive electrode active material layer 21b formed on the surface thereof, the separator layer 11, and the insulating adhesive layer The positive electrode assembly sheet 20 provided with 31 was formed on the base material PET film 100.
 同様にして、図6(b)に示すように、負極集電体層41aとその表面に形成された負極活物質層41bからなる負極層41と、セパレータ層11と、絶縁性接着層31とを備えた負極集合シート40を基材PETフィルム100上に形成した。 Similarly, as shown in FIG. 6 (b), a negative electrode current collector layer 41a and a negative electrode layer 41 composed of a negative electrode active material layer 41b formed on the surface thereof, a separator layer 11, an insulating adhesive layer 31, and Was formed on the base material PET film 100.
 [工程5]
 そして、正極集合シート20と負極集合シート40とを、図7に示すように、セパレータ層11や絶縁性接着層31が形成された面(基材PETフィルム100側とは逆側の面)が互いに対向するように配設し、熱圧着する。このとき、正極集合シート20を、正極集電体21aの位置が互いに左右方向(図7上)にずれるような態様で対向させ、熱圧着した。
 これにより、図8に示すように、正極集合シート20と負極集合シート40とが接合された正極負極集合シート51が得られる。
 なお、熱圧着は、加圧板の温度を150℃、加圧の圧力を20MPaとし、加圧時間はそれぞれ30秒とした。
[Step 5]
Then, as shown in FIG. 7, the positive electrode assembly sheet 20 and the negative electrode assembly sheet 40 have a surface on which the separator layer 11 and the insulating adhesive layer 31 are formed (surface opposite to the base PET film 100 side). It arrange | positions so that it may mutually oppose, and thermocompression bonding. At this time, the positive electrode assembly sheet 20 was thermocompression bonded so that the positions of the positive electrode current collectors 21a were opposed to each other in a lateral direction (upper side in FIG. 7).
Thereby, as shown in FIG. 8, the positive electrode negative electrode assembly sheet 51 by which the positive electrode assembly sheet 20 and the negative electrode assembly sheet 40 were joined is obtained.
In thermocompression bonding, the temperature of the pressure plate was 150 ° C., the pressure of the pressure was 20 MPa, and the pressure time was 30 seconds.
 次に、図9に示すように、2つの正極負極集合シート51どうしを、一方の正極負極集合シート51が、上下方向が逆向きになるようにして配置するとともに、対向する面側の基材PETフィルムを剥離して両者を接合させ、熱圧着することにより、図10に示すような集合シート積層体52を作製した。
 熱圧着は、加圧板の温度を150℃、加圧の圧力を20MPaとし、加圧時間はそれぞれ30秒とした。
Next, as shown in FIG. 9, two positive and negative electrode aggregate sheets 51 are arranged so that one positive and negative electrode aggregate sheet 51 is opposite in the vertical direction, and the opposite surface side base material is disposed. The PET sheet was peeled, both were joined, and thermocompression bonded, thereby producing an aggregate sheet laminate 52 as shown in FIG.
In the thermocompression bonding, the pressure plate temperature was 150 ° C., the pressurization pressure was 20 MPa, and the pressurization time was 30 seconds.
 それから、図11に示すように、集合シート積層体52に正極負極集合シート51を対向させ、熱圧着することにより、図12に示すように、3つの正極負極集合シート51からなる複合積層体53を作製した。 Then, as shown in FIG. 11, the positive and negative electrode aggregate sheet 51 is opposed to the aggregate sheet laminate 52 and thermocompression bonded, so that a composite laminate 53 composed of three positive and negative electrode aggregate sheets 51 is formed as shown in FIG. 12. Was made.
 その後、同様にして正極負極集合シート51の熱圧着を繰り返し、逐次圧着を行った。これにより、図13に示すような、正極層21と負極層41が、セパレータ層11および絶縁性接着層31を介して積層され、かつ、正極層21と負極層41が絶縁性接着層31によって接合された積層集合体50を得た。 Then, the thermocompression bonding of the positive electrode negative electrode assembly sheet 51 was repeated in the same manner, and the successive pressure bonding was performed. Thus, as shown in FIG. 13, the positive electrode layer 21 and the negative electrode layer 41 are laminated via the separator layer 11 and the insulating adhesive layer 31, and the positive electrode layer 21 and the negative electrode layer 41 are formed by the insulating adhesive layer 31. A laminated assembly 50 joined was obtained.
 [工程6]
 次に、積層集合体50を、ダイサーにより図14の裁断線D1に沿って裁断し、個片化することにより、図15に示すような構造を有する積層体1を作製した。
 この積層体1の寸法は、長さ4.7mm、幅3.3mmとした。
[Step 6]
Next, the laminated body 50 was cut along a cutting line D1 in FIG. 14 with a dicer and separated into individual pieces, thereby producing the laminated body 1 having a structure as shown in FIG.
The dimensions of the laminate 1 were a length of 4.7 mm and a width of 3.3 mm.
 [工程7]
 次に、図16に示すように、積層体1の第1の端面2に正極外部端子電極21tを、第2の端面3に負極外部端子電極41tを、それぞれAlスパッタにより形成した。
 [工程8]
 第1の端面2および第2の端面3に形成された、正極外部端子電極21tおよび負極外部端子電極41tに、導電性粒子として金を含有する導電性接着剤(図示せず)をディッピングにより塗布した。それから、図1に示すように、塗布した導電性接着剤がそれぞれ正極パッケージ電極61および負極パッケージ電極62に接続されるように、積層体1をパッケージ70のベース部70bに配置して、170℃で10分加熱して、導電性接着剤を硬化させた。
[Step 7]
Next, as shown in FIG. 16, a positive external terminal electrode 21t and a negative external terminal electrode 41t were formed on the first end surface 2 and the second end surface 3 of the laminate 1 by Al sputtering, respectively.
[Step 8]
A conductive adhesive (not shown) containing gold as conductive particles is applied to the positive external terminal electrode 21t and the negative external terminal electrode 41t formed on the first end face 2 and the second end face 3 by dipping. did. Then, as shown in FIG. 1, the laminate 1 is placed on the base portion 70 b of the package 70 so that the applied conductive adhesive is connected to the positive electrode package electrode 61 and the negative electrode package electrode 62, respectively. For 10 minutes to cure the conductive adhesive.
 [工程9]
 そして、図1に示すパッケージ70の内部に電解液を注液して、封止した。ここでは、電解液として、1-エチル-3-メチルイミダゾリウムテトラフルオロボレートを減圧下で注液し、パッケージ70のベース部70b上面に、ベース部70bと同じく液晶ポリマー製の蓋体70aを配置し、パッケージ70のベース部70bの枠体部分に沿ってレーザー照射することにより、ベース部70bと蓋体70aを溶着した。
 これにより、図1に示すような構成を備えた蓄電デバイス(電気二重層キャパシタ)Aが得られる
[Step 9]
Then, an electrolytic solution was injected into the package 70 shown in FIG. 1 and sealed. Here, 1-ethyl-3-methylimidazolium tetrafluoroborate is injected as an electrolytic solution under reduced pressure, and a lid 70a made of a liquid crystal polymer is disposed on the upper surface of the base portion 70b of the package 70 in the same manner as the base portion 70b. Then, the base part 70b and the lid 70a were welded by irradiating laser along the frame part of the base part 70b of the package 70.
As a result, an electricity storage device (electric double layer capacitor) A having the configuration shown in FIG. 1 is obtained.
 なお、以上の説明で参照した図1~16では、作図上の制約により、セパレータ層11、正極層21、負極層41、および絶縁性接着層31などを厚く描いているが、実寸法を正確に拡大または縮小したものではない。
 また、明細書に添付した他の図面についても、大きさ、または、位置関係を作図上の制約または理解し易いように適宜変形または誇張して示している。
In FIGS. 1 to 16 referred to in the above description, the separator layer 11, the positive electrode layer 21, the negative electrode layer 41, the insulating adhesive layer 31, and the like are drawn thick due to restrictions in drawing, but the actual dimensions are accurate. It is not enlarged or reduced.
In addition, in other drawings attached to the specification, the size or the positional relationship is appropriately modified or exaggerated so that the drawing is restricted or easily understood.
 [電気二重層キャパシタAの電気化学特性]
 以上のようにして作製した電気二重層キャパシタAの電気化学特性は、直流容量が4.37mFであった。
[Electrochemical characteristics of electric double layer capacitor A]
As for the electrochemical characteristics of the electric double layer capacitor A produced as described above, the DC capacity was 4.37 mF.
 なお、図1に示すような構成を備えた、この実施例2の電気二重層キャパシタAにおいては、セパレータ層を取り囲む絶縁性接着層が、無機微粒子と有機バインダを含む複合材料からなり、複合材料の顔料体積濃度PVCと、臨界顔料体積濃度CPVCとの比Λ(=PVC/CPVC)が、0.7≦Λ≦1.15の要件を満たすように構成されており、接着性を有し、かつ、必要な電解液の浸透性や含液性を備えているため、電解液を積層体の外部から内部へ浸透・含浸させることが可能な積層体を形成することができる。したがって、生産性に優れた電気二重層キャパシタを得ることができる。 In the electric double layer capacitor A of Example 2 having the configuration shown in FIG. 1, the insulating adhesive layer surrounding the separator layer is made of a composite material containing inorganic fine particles and an organic binder. The ratio Λ (= PVC / CPVC) between the pigment volume concentration PVC and the critical pigment volume concentration CPVC satisfies the requirement of 0.7 ≦ Λ ≦ 1.15, and has adhesiveness. In addition, since the necessary electrolyte solution permeability and liquid content are provided, it is possible to form a laminate in which the electrolyte solution can permeate and impregnate from the outside to the inside of the laminate. Therefore, an electric double layer capacitor excellent in productivity can be obtained.
 また、0.7≦Λ≦1.15の要件を満たす複合材料からなる絶縁性接着層は、必要な接着性を備えているので、積層構造を有し、生産性に優れた電気二重層キャパシタを得ることができる。
 また、セパレータ層に接着性などの機能を求める必要がないので、セパレータ層としての機能を追求した設計を行うことが可能になり、特性の向上を図ることができる。
In addition, the insulating adhesive layer made of a composite material that satisfies the requirement of 0.7 ≦ Λ ≦ 1.15 has the necessary adhesiveness, so that it has a laminated structure and has an excellent productivity. Can be obtained.
In addition, since it is not necessary to obtain a function such as adhesiveness in the separator layer, it is possible to design in pursuit of the function as the separator layer, and to improve the characteristics.
 上記実施例では、蓄電デバイスとして、電気二重層キャパシタを例にとって説明したが、本発明は、リチウムイオン二次電池、リチウムイオンキャパシタなどにも適用することができる。 In the above embodiment, the electric double layer capacitor has been described as an example of the electricity storage device, but the present invention can also be applied to a lithium ion secondary battery, a lithium ion capacitor, and the like.
 いずれの蓄電デバイスにおいても、正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、かつ、正極層と負極層とが絶縁性接着層を介して積層され、電解液とともに外包材内に収容されるという点で共通の構造を有している。
 なお、例えば、リチウムイオン二次電池、あるいは、リチウムイオンキャパシタとしては、以下のような構成のものが例示される。
In any power storage device, the positive electrode layer and the negative electrode layer are laminated via the separator layer and the insulating adhesive layer, and the positive electrode layer and the negative electrode layer are laminated via the insulating adhesive layer, together with the electrolytic solution. They have a common structure in that they are accommodated in the outer packaging material.
In addition, for example, as a lithium ion secondary battery or a lithium ion capacitor, the thing of the following structures is illustrated.
<リチウムイオン二次電池>
 リチウムイオン二次電池では、正極集電体層として、例えば、アルミニウム箔を用い、そのアルミニウム箔上にリチウム複合酸化物を含む合剤層を正極活物質層として設けた電極を正極層として用いる。
 また、負極集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層として設けた電極を負極層として用いる。
 そして、正極層と負極層とを、セパレータ層および絶縁性接着層を介して積層して積層体を形成するとともに、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPF6を溶解させたものを電解液(非水電解液)として使用することにより、リチウムイオン二次電池を得ることができる。
<Lithium ion secondary battery>
In a lithium ion secondary battery, for example, an aluminum foil is used as a positive electrode current collector layer, and an electrode in which a mixture layer containing a lithium composite oxide is provided on the aluminum foil as a positive electrode active material layer is used as a positive electrode layer.
In addition, as the negative electrode current collector layer, for example, a copper foil is used, and an electrode in which a mixture layer containing graphite is provided as a negative electrode active material layer on the copper foil is used as the negative electrode layer.
Then, a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer to form a laminate, and for example, 1 mol / l LiPF 6 is dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate. A lithium ion secondary battery can be obtained by using the electrolyte as an electrolytic solution (nonaqueous electrolytic solution).
<リチウムイオンキャパシタ>
 リチウムイオンキャパシタでは、正極集電体層として、例えば、アルミニウム箔を用い、そのアルミニウム箔上に活性炭を含む合剤層を正極活物質層として設けた電極を正極層として用いる。
 また、負極集電体層として、例えば、銅箔を用い、その銅箔上にグラファイトを含む合剤層を負極活物質層として設けた電極を負極層とし、その負極層にさらにリチウムイオンをプレドープする。
 そして、正極層と負極層とを、セパレータ層および絶縁性接着層を介して積層された積層体を形成するとともに、例えば、エチレンカーボネートとジエチルカーボネートの混合溶媒に1mol/lのLiPF6を溶解させたものを電解液(非水電解液)として使用することにより、リチウムイオンキャパシタを得ることができる。
<Lithium ion capacitor>
In the lithium ion capacitor, for example, an aluminum foil is used as the positive electrode current collector layer, and an electrode in which a mixture layer containing activated carbon is provided as a positive electrode active material layer on the aluminum foil is used as the positive electrode layer.
Further, as the negative electrode current collector layer, for example, a copper foil is used, and an electrode provided with a mixture layer containing graphite as a negative electrode active material layer on the copper foil is used as a negative electrode layer, and lithium ions are further pre-doped into the negative electrode layer. To do.
Then, a positive electrode layer and negative electrode layer, to form a separator layer and the insulating adhesive layer are laminated via a stack, for example, by dissolving LiPF 6 in 1 mol / l in a mixed solvent of ethylene carbonate and diethyl carbonate A lithium ion capacitor can be obtained by using an electrolytic solution as an electrolytic solution (non-aqueous electrolytic solution).
 なお、本発明は、上記の各実施例に限定されるものではなく、正極層や負極層、セパレータ層、絶縁性接着層の構成材料や形成方法、蓄電要素の具体的な構成(正極層、負極層、セパレータ層、絶縁性接着層の積層態様や積層数など)、電解液の種類、外包材の構成や構造材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 Note that the present invention is not limited to each of the above examples, and the positive electrode layer, the negative electrode layer, the separator layer, the constituent material and forming method of the insulating adhesive layer, the specific configuration of the power storage element (the positive electrode layer, Various types of applications and modifications can be made within the scope of the invention with respect to the negative electrode layer, separator layer, insulating adhesive layer stacking number and number of layers, etc. It is.
1        積層体
2        第1の端面
3        第2の端面
11       セパレータ層
20       正極集合シート
21       正極層
21a      正極集電体層
21b      正極活物質層
21t      正極外部端子電極
31       絶縁性接着層
40       負極集合シート
41       負極層
41a      負極集電体層
41b      負極活物質層
41t      負極外部端子電極
50       積層集合体
51       正極負極集合シート
52       集合シート積層体
53       複合積層体
61       正極パッケージ電極
62       負極パッケージ電極
70       パッケージ
70a      蓋体
70b      ベース部
100      基材PETフィルム
A        電気二重層キャパシタ
D1       裁断線
DESCRIPTION OF SYMBOLS 1 Laminate 2 1st end surface 3 2nd end surface 11 Separator layer 20 Positive electrode assembly sheet 21 Positive electrode layer 21a Positive electrode collector layer 21b Positive electrode active material layer 21t Positive electrode external terminal electrode 31 Insulating adhesive layer 40 Negative electrode assembly sheet 41 Negative electrode Layer 41a negative electrode current collector layer 41b negative electrode active material layer 41t negative electrode external terminal electrode 50 laminated assembly 51 positive electrode negative electrode assembly sheet 52 aggregate sheet laminate 53 composite laminate 61 positive electrode package electrode 62 negative electrode package electrode 70 package 70a lid 70b base Part 100 Base PET Film A Electric Double Layer Capacitor D1 Cutting Line

Claims (5)

  1.  正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイスの前記絶縁性接着層を構成する組成物であって、
     無機微粒子と有機バインダを含む複合材料からなり、
     前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすこと
     を特徴とする絶縁性接着層組成物。
    An electricity storage device comprising a laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer A composition constituting the insulating adhesive layer,
    Composed of a composite material containing inorganic fine particles and an organic binder,
    The following formula (1) of the composite material:
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    An insulating adhesive layer composition characterized by satisfying the above requirements.
  2.  正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイス用素子であって、
     前記絶縁性接着層に、請求項1記載の絶縁性接着層組成物が用いられていること
     を特徴とする蓄電デバイス用素子。
    A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer An element,
    An element for an electricity storage device, wherein the insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
  3.  正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスであって、
     前記絶縁性接着層に、請求項1記載の絶縁性接着層組成物が用いられていること
     を特徴とする蓄電デバイス。
    A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer; An electricity storage device comprising the laminate and a package in which the electrolytic solution is stored,
    The electrical storage device, wherein the insulating adhesive layer composition according to claim 1 is used for the insulating adhesive layer.
  4.  正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体を備えた蓄電デバイス用素子の製造方法において、
     前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータ層となるセパレータ層用材料および前記絶縁性接着層となる絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより前記正極層、前記負極層、前記セパレータ層、および前記絶縁性接着層とが一体化した前記積層体を形成する工程を備えているとともに、
     前記絶縁性接着層材料として、前記積層体を形成する工程を経て得られる前記積層体の前記絶縁性接着層が、無機微粒子と有機バインダを含む複合材料からなり、かつ、前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすことになるような絶縁性接着層材料を用いること
     を特徴とする蓄電デバイス用素子の製造方法。
    A positive electrode layer and a negative electrode layer are stacked via a separator layer and an insulating adhesive layer, and the power storage device includes a laminate having a structure in which the positive electrode layer and the negative electrode layer are bonded by the insulating adhesive layer In the manufacturing method of the element,
    The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are opposed to each other through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer. And forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated by heating and pressurizing,
    As the insulating adhesive layer material, the insulating adhesive layer of the laminate obtained through the step of forming the laminate is composed of a composite material containing inorganic fine particles and an organic binder, and the composite material includes: Equation (1):
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    An insulating adhesive layer material that satisfies the above requirements is used. A method for manufacturing an element for an electricity storage device.
  5.  正極層と負極層とが、セパレータ層および絶縁性接着層を介して積層され、前記正極層と前記負極層とが前記絶縁性接着層により接着された構造を有する積層体と、電解液と、前記積層体と前記電解液が収納されるパッケージとを備えた蓄電デバイスの製造方法において、
     (1)前記正極層となる正極層用材料と前記負極層となる負極層用材料とを、前記セパレータ層となるセパレータ層用材料および前記絶縁性接着層となる絶縁性接着層材料を介して対向するように配置し、加熱・加圧することにより前記正極層、前記負極層、前記セパレータ層、および前記絶縁性接着層とが一体化した前記積層体を形成する工程であって、前記絶縁性接着層材料として、前記積層体を形成する工程を経て得られる前記積層体の前記絶縁性接着層が、無機微粒子と有機バインダを含む複合材料からなり、かつ、前記複合材料の、下記の式(1):
     PVC=(無機微粒子の体積)/(無機微粒子の体積+有機バインダの体積)×100 ……(1)
     (ただし、無機微粒子の体積=無機微粒子の重量/無機微粒子の密度、有機バインダの体積=有機バインダの重量/有機バインダの密度)
     で表される顔料体積濃度PVCと、空隙がゼロと考えられる最大の顔料体積濃度である臨界顔料体積濃度CPVCとの比Λが、下記の式(2):
     0.7≦Λ≦1.15 ……(2)
     (ただし、Λ=PVC/CPVC)
    の要件を満たすことになるような絶縁性接着層材料を用いて前記積層体を形成する工程と、
     (2)前記積層体を、前記電解液とともに、前記パッケージ内に収容し、前記電解液を前記積層体の外部から内部へ浸透・含浸させる工程と
     を具備することを特徴とする蓄電デバイスの製造方法。
    A laminate having a structure in which a positive electrode layer and a negative electrode layer are laminated via a separator layer and an insulating adhesive layer, and the positive electrode layer and the negative electrode layer are adhered by the insulating adhesive layer; In a method for manufacturing an electricity storage device comprising the laminate and a package in which the electrolytic solution is stored,
    (1) The positive electrode layer material to be the positive electrode layer and the negative electrode layer material to be the negative electrode layer are passed through the separator layer material to be the separator layer and the insulating adhesive layer material to be the insulating adhesive layer. The step of forming the laminate in which the positive electrode layer, the negative electrode layer, the separator layer, and the insulating adhesive layer are integrated by disposing them so as to face each other and heating and pressurizing the insulating layer. As the adhesive layer material, the insulating adhesive layer of the laminate obtained through the step of forming the laminate is composed of a composite material containing inorganic fine particles and an organic binder, and the composite material has the following formula ( 1):
    PVC = (volume of inorganic fine particles) / (volume of inorganic fine particles + volume of organic binder) × 100 (1)
    (However, the volume of the inorganic fine particles = the weight of the inorganic fine particles / the density of the inorganic fine particles, the volume of the organic binder = the weight of the organic binder / the density of the organic binder)
    The ratio Λ between the pigment volume concentration PVC represented by the formula (2) and the critical pigment volume concentration CPVC, which is the maximum pigment volume concentration at which voids are considered to be zero, is given by
    0.7 ≦ Λ ≦ 1.15 (2)
    (However, Λ = PVC / CPVC)
    Forming the laminate using an insulating adhesive layer material that will satisfy the requirements of
    (2) A process for storing the laminate together with the electrolytic solution in the package, and impregnating and impregnating the electrolytic solution from the outside to the inside of the laminated body. Method.
PCT/JP2012/063638 2011-06-28 2012-05-28 Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor WO2013001961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-142475 2011-06-28
JP2011142475 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013001961A1 true WO2013001961A1 (en) 2013-01-03

Family

ID=47423862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/063638 WO2013001961A1 (en) 2011-06-28 2012-05-28 Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor

Country Status (2)

Country Link
TW (1) TW201302971A (en)
WO (1) WO2013001961A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091635A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Method for manufacturing power storage device
WO2016161088A2 (en) 2015-03-31 2016-10-06 Fundamental Solutions Corporation Biosensor system for the rapid detection of analytes
WO2016167156A1 (en) * 2015-04-16 2016-10-20 株式会社村田製作所 Laminate power storage device
US10163570B2 (en) 2015-04-15 2018-12-25 Murata Manufacturing Co., Ltd. Power storage device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111341A (en) * 1997-09-30 1999-04-23 Sony Corp Gel electrolyte secondary battery
JPH11185773A (en) * 1997-12-18 1999-07-09 Sony Corp Gelled electrolyte cell
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11111341A (en) * 1997-09-30 1999-04-23 Sony Corp Gel electrolyte secondary battery
JPH11185773A (en) * 1997-12-18 1999-07-09 Sony Corp Gelled electrolyte cell
JPH11297360A (en) * 1998-04-08 1999-10-29 Tdk Corp Manufacture of sheet electrode/electrolyte structural body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016091635A (en) * 2014-10-30 2016-05-23 三菱マテリアル株式会社 Method for manufacturing power storage device
WO2016161088A2 (en) 2015-03-31 2016-10-06 Fundamental Solutions Corporation Biosensor system for the rapid detection of analytes
US10163570B2 (en) 2015-04-15 2018-12-25 Murata Manufacturing Co., Ltd. Power storage device
WO2016167156A1 (en) * 2015-04-16 2016-10-20 株式会社村田製作所 Laminate power storage device
JPWO2016167156A1 (en) * 2015-04-16 2017-11-24 株式会社村田製作所 Stacked electricity storage device
US10163581B2 (en) 2015-04-16 2018-12-25 Murata Manufacturing Co., Ltd. Laminated power storage device

Also Published As

Publication number Publication date
TW201302971A (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5867044B2 (en) Insulating adhesive layer and power storage device using the same
JP4623039B2 (en) Electrochemical element
JP4293501B2 (en) Electrochemical devices
JP5768881B2 (en) Electric storage device element and electric storage device
TWI466365B (en) An insulating layer with heat-resistant insulation
KR101860601B1 (en) Separator having heat-resistant insulating layer and electric device comprising the same
JP2012528456A (en) Lithium battery using nanoporous separator layer
JP4008508B2 (en) Method for producing lithium ion secondary battery
WO2017057762A1 (en) Electrode portion of lithium ion secondary battery, lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
JP5880555B2 (en) Power storage device separator, power storage device element, power storage device, and method for manufacturing the same
US9847518B2 (en) Separator with heat-resistant insulation layer
WO2013077162A1 (en) Separator for electrical device, and electrical device using same
JP5477609B2 (en) Electric storage device and manufacturing method thereof
WO2013001961A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP2009032398A (en) Electrode body for battery and its manufacturing method
WO2013001962A1 (en) Insulating-adhesive-layer composition, element for electricity-storage device, electricity-storage device, and manufacturing methods therefor
JP2007087680A (en) Electrode-polyelectrolyte film complex for electronic component and its manufacturing method
JP5845896B2 (en) Power storage device
JP2006086148A (en) Electric double layer capacitor and its manufacturing method
JP5829564B2 (en) Electrode structure and power storage device using the same
WO2012002359A1 (en) Energy storage device and method of producing same
JP2012014884A (en) Nonaqueous secondary battery
JP2010192885A (en) Manufacturing method of capacitor, and capacitor
JP2004253243A (en) Plate type battery and its manufacturing method
JP2013131675A (en) Separator of power storage device, insulating adhesive layer, composition for use therein, element for power storage device, power storage device, and manufacturing method of element for power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP