JP2009021274A - Manufacturing method of printed wiring board, and member used therefor - Google Patents

Manufacturing method of printed wiring board, and member used therefor Download PDF

Info

Publication number
JP2009021274A
JP2009021274A JP2007180657A JP2007180657A JP2009021274A JP 2009021274 A JP2009021274 A JP 2009021274A JP 2007180657 A JP2007180657 A JP 2007180657A JP 2007180657 A JP2007180657 A JP 2007180657A JP 2009021274 A JP2009021274 A JP 2009021274A
Authority
JP
Japan
Prior art keywords
resin
metal
wiring board
printed wiring
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007180657A
Other languages
Japanese (ja)
Inventor
Isamu So
勇 曹
Tomohito Tanaka
智史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007180657A priority Critical patent/JP2009021274A/en
Publication of JP2009021274A publication Critical patent/JP2009021274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve quality etc., by charging resin in a core hole of a metal core without leaving any air bubble when a metal core printed wiring board is manufactured. <P>SOLUTION: Before a resin-impregnated sheet 21 is put over the metal core 11 having the core hole 13, a conductive metal coating portion 22 made of copper foil 22a is provided on one side 21b of the resin-impregnated sheet 21 on the opposite side from a surface facing the metal core 11 and an end surface 21c connecting with the one side 21b and at an outer peripheral edge part 21d of a base material opposition surface connecting with the lower end surface, thereby preventing resin from projecting during heating and pressing. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、プリント配線板に関し、より詳しくは、内部に気泡が存在しないようにすることができるプリント配線板の製造方法に関する。   The present invention relates to a printed wiring board, and more particularly to a method for manufacturing a printed wiring board capable of preventing air bubbles from being present inside.

プリント配線板の一例としてのメタルコアプリント配線板は、次のように製造されていた。まず、図13(a)に示したように、穴101aあけ加工がされたメタルコア101の両面にプリプレグ(樹脂含浸シート)102を重ねるとともに、これらプリプレグ102の上にそれぞれ金属箔103を重ねる。つぎに、これらを図13(b)に示したように、表面が平滑で厚手のステンレス板等の押圧板104で挟んで加熱加圧して、メタルコア101とプリプレグ102と金属箔103が積層一体化した金属張積層板105を得る。つづいて、この金属張積層板105に対して、周囲のトリミング、メタルコア101の穴101aに対応する位置に対しての穴(スルーホール)あけ、メッキ、パターン形成、レジスト処理等の所定の加工を行って製造する。   The metal core printed wiring board as an example of the printed wiring board has been manufactured as follows. First, as shown in FIG. 13A, prepregs (resin impregnated sheets) 102 are stacked on both surfaces of the metal core 101 that has been subjected to the hole 101 a drilling process, and metal foils 103 are stacked on the prepregs 102, respectively. Next, as shown in FIG. 13 (b), the metal core 101, the prepreg 102, and the metal foil 103 are laminated and integrated by sandwiching and pressing between them with a pressing plate 104 such as a thick stainless steel plate having a smooth surface. The obtained metal-clad laminate 105 is obtained. Subsequently, the metal-clad laminate 105 is subjected to predetermined processing such as peripheral trimming, drilling a hole (through hole) at a position corresponding to the hole 101a of the metal core 101, plating, pattern formation, resist processing, and the like. Go and manufacture.

ところで、上記の加熱加圧では、メタルコア101に樹脂からなる絶縁層を形成することを目的とするが、この加工時に、メタルコア101に予め形成された穴101aの中にプリプレグ102の樹脂を十分に充填させることが必要である。十分に充填させることができずに気泡106が残存した状態であると(図13(c),(d)参照)、メタルコア101との絶縁抵抗の劣化や、耐電圧性の低下、温度変化に伴う層間剥離(デラミネーション)といった問題が発生してしまう。   By the way, the above heat and pressure aims at forming an insulating layer made of resin on the metal core 101, but at the time of this processing, the resin of the prepreg 102 is sufficiently placed in the hole 101a formed in advance on the metal core 101. It is necessary to fill. If the air bubble 106 remains without being sufficiently filled (see FIGS. 13C and 13D), the insulation resistance with the metal core 101 deteriorates, the withstand voltage decreases, and the temperature changes. A problem such as delamination will occur.

このため、下記特許文献1に開示されているように、加熱加圧の加工を真空中で行うことがなされてきた。   For this reason, as disclosed in the following Patent Document 1, heating and pressurization has been performed in a vacuum.

しかし、メタルコアの穴の大きさや配置、数等によっては、図13(c)に示したように気泡105が残留することがある。   However, depending on the size, arrangement, number, etc. of the holes in the metal core, the bubbles 105 may remain as shown in FIG.

このため、下記特許文献2に開示されているように、コア孔(穴)の内径に対するその高さの比、即ちアスペクト比が12以下という条件で、最低溶融粘度600〜1000Pa・sのプリプレグを用いて成形圧を10kg/cm2以上にして加圧し、同時に加熱することが提案されている。 For this reason, as disclosed in the following Patent Document 2, a prepreg having a minimum melt viscosity of 600 to 1000 Pa · s is obtained under the condition that the ratio of the height to the inner diameter of the core hole (hole), that is, the aspect ratio is 12 or less. It has been proposed that the molding pressure be increased to 10 kg / cm 2 or more and heated simultaneously.

しかし、この場合でも、メタルコアの穴の密度が高いときには、樹脂を十分に充填できず、樹脂からなる絶縁被膜に気泡106ができる。   However, even in this case, when the density of the holes in the metal core is high, the resin cannot be sufficiently filled, and bubbles 106 are formed in the insulating coating made of the resin.

加熱加圧は、上述のように押圧板104で挟んで行うが、加熱加圧を行うと、図14に示したように、プリプレグ102の端から樹脂がはみ出すように変形が起るため、主に中心側t1と周縁部t2とで厚みにばらつきが生じていた。   The heating and pressurization is performed by sandwiching between the pressing plates 104 as described above. However, when the heating and pressurization is performed, deformation occurs so that the resin protrudes from the end of the prepreg 102 as shown in FIG. In the center side t1 and the peripheral part t2, the thickness was uneven.

また、反り返るように変形して厚みが増した縁の部分は、次工程の穴あけやメッキの工程で邪魔になるので、次工程に回す前に縁の部分をトリミングする必要があった。押圧板104を金属箔103より大きくすると周囲の厚みが増えるのを低減できるが、その場合には、はみ出た樹脂が押圧板に付着するのなどの問題もあった。   In addition, the edge portion that has been deformed so as to be warped and increased in thickness becomes a hindrance in the drilling or plating process of the next process, and therefore it is necessary to trim the edge part before passing to the next process. When the pressing plate 104 is made larger than the metal foil 103, an increase in the surrounding thickness can be reduced. However, in that case, there is a problem that the protruding resin adheres to the pressing plate.

さらに、プリプレグ102は樹脂が半硬化状態であるので、メタルコア101に対して重ねたりする取り扱い時に、図13(b)に示したように、プリプレグの端面が脆く、樹脂の粉107…(切断粉等)が発生(粉落ち、粉飛散)し、作業環境を損ねるだけではなく、続く工程において異物として付着し、打痕などの不良の原因となり、歩留りの低下を起していた。
特開昭64−89592号公報 特開平10−322020号公報
Furthermore, since the resin is semi-cured in the prepreg 102, the end face of the prepreg is fragile and the resin powder 107 (cut powder) as shown in FIG. Etc.) (powder falling, powder scattering) and not only harming the working environment, but also adhered as foreign matter in the subsequent process, causing defects such as dents and causing a decrease in yield.
Japanese Unexamined Patent Publication No. 64-89592 JP-A-10-322020

そこで、この発明は、メタルコア等の基材における穴の配置等の条件による影響を受けることを極力少なくし、より確実に、気泡の残留をなくすことができるようにすることを主たる課題とする。   Accordingly, the main object of the present invention is to minimize the influence of conditions such as the arrangement of holes in a base material such as a metal core, and to more reliably eliminate the remaining of bubbles.

そのための手段は、穴あき基材に樹脂含浸シートを重ねたのち、これらを加熱加圧して上記の穴の中に樹脂含浸シートの樹脂を充填した状態で積層一体化するプリント配線板の製造方法であって、上記の樹脂含浸シートを基材に重ねる前段で、樹脂含浸シートにおける基材に対向する面と反対側の面と、この面から連続する端面と、この端面から連続する基材対向面の周囲部とに、金属被膜部を設けるプリント配線板の製造方法である。   For that purpose, a method for producing a printed wiring board is obtained by stacking and integrating a resin-impregnated sheet on a perforated substrate and then heating and pressurizing them to fill the resin in the resin-impregnated sheet into the hole. In the previous stage of stacking the resin-impregnated sheet on the base material, the surface of the resin-impregnated sheet opposite to the surface facing the base material, the end surface continuous from this surface, and the base material facing from this end surface This is a method for manufacturing a printed wiring board in which a metal film portion is provided around the surface.

上記金属被膜部は、金属箔の被覆やメッキ等の手段で設けられる。加熱加圧の前段で樹脂含浸シートに設けられた金属被膜部は、加熱加圧の際に、圧力を受けて変形する樹脂含浸シートの樹脂を内部に閉じ込めるように作用する。この結果、内部の圧力を高め、基材の穴の中への樹脂の充填を促進する。
上記基材は、たとえばメタルコアや両面プリント配線板等で構成される。
The metal coating portion is provided by means such as metal foil coating or plating. The metal coating portion provided on the resin-impregnated sheet before the heating and pressurization functions to confine the resin of the resin-impregnated sheet that is deformed by the pressure during the heating and pressurization. As a result, the internal pressure is increased and the filling of the resin into the holes of the base material is promoted.
The said base material is comprised, for example with a metal core, a double-sided printed wiring board, etc.

別の手段は、一方の面と、この面から連続する端面と、この端面から連続する反対側の面の周囲部とに、金属被膜部が設けられた樹脂含浸シートである。   Another means is a resin-impregnated sheet in which a metal coating portion is provided on one surface, an end surface continuous from this surface, and a peripheral portion of the opposite surface continuous from this end surface.

上記金属被膜部は、金属箔の被覆や金属メッキ等の手段で設けられる。加熱加圧による成形加工を受けるとき、金属被膜部が、圧力を受けて変形する樹脂含浸シートの樹脂を内部に閉じ込めるように作用し、内部の圧力を高めることができる。   The metal coating part is provided by means such as metal foil coating or metal plating. When receiving the forming process by heating and pressurization, the metal coating part acts to confine the resin of the resin-impregnated sheet that is deformed by receiving pressure, thereby increasing the internal pressure.

別の手段は、穴あき基材と、絶縁層を形成する樹脂含浸シートと、金属被膜層とが積層一体化された金属張積層板であって、積層一体化する前における上記樹脂含浸シートにおける基材に対向する面と反対側の面に、金属被膜部が形成されるとともに、樹脂含浸シートの端面と基材対向面の周囲部とにも、上記金属被膜部と一体の金属被膜部が形成された金属張積層板である。   Another means is a metal-clad laminate in which a perforated base material, a resin-impregnated sheet for forming an insulating layer, and a metal coating layer are laminated and integrated, and in the resin-impregnated sheet before lamination and integration A metal coating portion is formed on the surface opposite to the surface facing the substrate, and the metal coating portion integral with the metal coating portion is also formed on the end surface of the resin-impregnated sheet and the peripheral portion of the substrate facing surface. It is the formed metal-clad laminate.

上記金属被膜部は、金属箔の被覆や金属メッキ等の手段で設けられる。樹脂含浸シートに設けられた金属被膜部は、積層一体化する加熱加圧の際に、圧力を受けて変形する樹脂含浸シートの樹脂を内部に閉じ込めるように作用する。このため、内部の圧力が高まり、基材の穴の中への樹脂の充填が促進される。
上記基材は、たとえばメタルコアや両面プリント配線板等で構成される。
The metal coating part is provided by means such as metal foil coating or metal plating. The metal coating portion provided on the resin-impregnated sheet acts to confine the resin of the resin-impregnated sheet that is deformed by the pressure during heating and pressurization for stacking and integration. For this reason, an internal pressure increases and the filling of the resin in the hole of a base material is accelerated | stimulated.
The said base material is comprised, for example with a metal core, a double-sided printed wiring board, etc.

別の手段は、上記のプリント配線板の製造方法で製造され、基材がメタルコアであるメタルコアプリント配線板、または基材が両面プリント配線板である多層プリント配線板である。   Another means is a metal core printed wiring board manufactured by the above-described printed wiring board manufacturing method, wherein the base material is a metal core, or a multilayer printed wiring board where the base material is a double-sided printed wiring board.

以上のように、この発明によれば、樹脂含浸シートに設けられた金属被膜部が、積層一体化のための加熱加圧時に、樹脂を内側に閉じ込めて基材の穴の中への樹脂の流入を促進するので、樹脂の十分な充填が行える。この結果、気泡の残留をなくすことができる。   As described above, according to the present invention, the metal coating portion provided on the resin-impregnated sheet confines the resin inside and heats the resin into the hole in the base material when heating and pressurizing for lamination integration. Since the inflow is promoted, the resin can be sufficiently filled. As a result, residual bubbles can be eliminated.

また、加熱加圧時に、金属被膜部が樹脂含浸シートの端面を押えるので、圧縮された樹脂の変形による逃げを抑制し、厚みの均一化を図ることができる。   Moreover, since the metal coating part presses the end surface of the resin-impregnated sheet at the time of heating and pressing, escape due to deformation of the compressed resin can be suppressed and the thickness can be made uniform.

さらに、樹脂含浸シートの端面に金属被膜部が形成されているので、半硬化状態の樹脂を有する樹脂含浸シートの端部を保護することができる。この結果、粉落ち、粉飛散を防止することができ、不良品の発生をなくし、歩留りを向上できる。   Furthermore, since the metal film part is formed in the end surface of the resin-impregnated sheet, the end part of the resin-impregnated sheet having a semi-cured resin can be protected. As a result, powder falling and powder scattering can be prevented, generation of defective products can be eliminated, and yield can be improved.

そのうえ、樹脂含浸シートの端面が金属被膜部で覆われており、変形を抑えるので、端面部分を切除することなく、そのままの状態で次工程に移行させることができ、作業効率を高めることができる。   In addition, since the end surface of the resin-impregnated sheet is covered with a metal coating portion and the deformation is suppressed, the end surface portion can be transferred to the next process as it is without cutting off, and work efficiency can be improved. .

この発明を実施するための一形態を、以下図面を用いて説明する。
図1は、プリント配線板の一例としてのメタルコアプリント配線板の製造工程を示す説明図である。まず、図1(a)〜(j)に従って工程の概略を説明してから、要部の説明を行う。
An embodiment for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is an explanatory view showing a manufacturing process of a metal core printed wiring board as an example of a printed wiring board. First, an outline of the process will be described according to FIGS. 1A to 1J, and then the main part will be described.

メタルコア11の材料としては、銅やアルミニウムからなる矩形の金属板12が用いられる(a)。   As a material of the metal core 11, a rectangular metal plate 12 made of copper or aluminum is used (a).

この金属板12に対して機械的にコア孔(穴)13をあけ、水洗などの脱脂処理、続いて、表面を粗くする粗化加工を施すことで、メタルコア11が得られる(b)。   A metal core 11 is obtained by mechanically opening a core hole (hole) 13 in the metal plate 12 and performing a degreasing process such as washing with water, followed by a roughening process to roughen the surface (b).

次に、メタルコア11の両面に、金属被膜部付きの樹脂含浸シート21を配置する。金属被膜部22は、導電性で、樹脂含浸シート21におけるメタルコア11と反対側の面と、外周縁部とに設けられている(c)。   Next, resin impregnated sheets 21 with metal coating portions are arranged on both surfaces of the metal core 11. The metal coating portion 22 is conductive and is provided on the surface of the resin impregnated sheet 21 opposite to the metal core 11 and the outer peripheral edge portion (c).

そして、この状態で、真空中において加熱加圧を行い、メタルコア11のコア孔13の中に樹脂含浸シート21の溶けた樹脂を充填する。樹脂が固化するとメタルコア11の両面に絶縁層21aが形成された1枚の金属張積層板31となる(d)。   In this state, heat and pressure are applied in a vacuum, and the resin in which the resin-impregnated sheet 21 is melted is filled in the core hole 13 of the metal core 11. When the resin is solidified, it becomes a single metal-clad laminate 31 in which insulating layers 21a are formed on both surfaces of the metal core 11 (d).

この後、金属張積層板31の樹脂充填部位に、メタルコア11のコア孔13よりも小径で厚み方向に貫通するスルーホール31aを開ける(e)。   Thereafter, a through hole 31a having a smaller diameter than the core hole 13 of the metal core 11 and penetrating in the thickness direction is opened in the resin-filled portion of the metal-clad laminate 31 (e).

つづいて、スルーホール31aの内面に銅メッキ層32を形成する。メッキは無電解メッキと電解メッキからなる。この銅メッキ層32と金属被膜部22とよりなる層で回路パターン層31bが形成される(f)。   Subsequently, a copper plating layer 32 is formed on the inner surface of the through hole 31a. The plating consists of electroless plating and electrolytic plating. A circuit pattern layer 31b is formed by the layer composed of the copper plating layer 32 and the metal coating portion 22 (f).

この回路パターン層31bの上の所定部位にはマスク33をかけ(g)、マスク33のかかっていない部分の回路パターン層31bを除去する(h)。   A predetermined portion on the circuit pattern layer 31b is covered with a mask 33 (g), and the portion of the circuit pattern layer 31b not covered with the mask 33 is removed (h).

この後、上記のマスク33を除去し(i)、表面の所定部位に、回路の一部を絶縁するためのソルダーレジスト34を形成する(j)。   Thereafter, the mask 33 is removed (i), and a solder resist 34 for insulating a part of the circuit is formed at a predetermined portion of the surface (j).

最後に、外形加工を行い、適宜、プリフラックスやはんだレベラー等のコーティングをかけ、メタルコアプリント配線板として完成させる。   Finally, external processing is performed, and a coating such as a preflux or a solder leveler is applied as appropriate to complete a metal core printed wiring board.

つぎに、上記の工程(c)において使用する樹脂含浸シート21(図2(a))と、これをメタルコア11に積層した金属張積層板31(図2(b))について説明する。   Next, the resin-impregnated sheet 21 (FIG. 2A) used in the step (c) and the metal-clad laminate 31 (FIG. 2B) obtained by laminating the resin-impregnated sheet 21 on the metal core 11 will be described.

樹脂含浸シート21は、ガラス基布に熱硬化性の樹脂を含浸させて加熱乾燥して作製し、切断してから使用されるが、この切断後に、上記の金属被膜部22を構成するための銅箔22aで被覆する(図3)。   The resin-impregnated sheet 21 is prepared by impregnating a glass base fabric with a thermosetting resin and dried by heating. After the cutting, the resin-impregnated sheet 21 is used for constituting the metal coating portion 22. Cover with copper foil 22a (FIG. 3).

すなわち、図3に示したように、樹脂含浸シート21よりも一回りほど大きい矩形に形成された銅箔22aを用い(図3(a))、図3(b)、(c)に示したように、樹脂含浸シート21の片面21bと、この片面21bから連続する4つの端面21c…と、これら4つの端面21c…から連続する反対側の面の外周縁部21dとを覆うように被覆を行う。上記の反対側の面の外周縁部21dにおける被覆範囲は、最後の外形加工において切除する範囲内にとどめる。樹脂含浸シート21の端部は金属被膜部22で覆われているので、従来のように端面から粉が落ちたりすることはなく、不良の発生を回避して歩留りの向上を図ることができる。   That is, as shown in FIG. 3, the copper foil 22a formed in a rectangular shape that is slightly larger than the resin-impregnated sheet 21 is used (FIG. 3 (a)), as shown in FIGS. 3 (b) and 3 (c). As described above, the coating is provided so as to cover the one surface 21b of the resin-impregnated sheet 21, the four end surfaces 21c continuous from the one surface 21b, and the outer peripheral edge portion 21d of the opposite surface continuous from the four end surfaces 21c. Do. The covering range in the outer peripheral edge 21d on the opposite surface is kept within the range to be cut in the final outer shape processing. Since the end portion of the resin-impregnated sheet 21 is covered with the metal coating portion 22, powder does not fall from the end surface as in the conventional case, and it is possible to avoid the occurrence of defects and improve the yield.

このように、銅箔22aを被覆した樹脂含浸シート21を、図3(d)に示したように、樹脂含浸シート21が露出している側の面をメタルコア11に向けて重ねる。   In this way, the resin-impregnated sheet 21 coated with the copper foil 22 a is overlapped with the surface on which the resin-impregnated sheet 21 is exposed facing the metal core 11 as shown in FIG.

樹脂含浸シート21の大きさはメタルコア11よりも一回り大きく設定され、金属被膜部22におけるメタルコア11に対向する面の内周側の一部がメタルコアに重合する大きさに設定される。   The size of the resin impregnated sheet 21 is set to be slightly larger than that of the metal core 11, and is set to a size such that a part of the inner peripheral side of the surface facing the metal core 11 in the metal coating portion 22 is superposed on the metal core.

つづいて、図4(a)に示したように樹脂含浸シート21よりも大きいステンレス板41で挟んで真空中において加熱加圧を行うと、図4(b)に示したように、樹脂含浸シート21の樹脂が溶けてメタルコア11のコア孔13の中に侵入する。すなわち、コア孔13に樹脂が充填される。   Subsequently, as shown in FIG. 4 (a), when heated and pressurized in a vacuum sandwiched between stainless plates 41 larger than the resin-impregnated sheet 21, as shown in FIG. 4 (b), the resin-impregnated sheet The resin 21 melts and enters the core hole 13 of the metal core 11. That is, the core hole 13 is filled with resin.

このとき、樹脂含浸シート21の端面21c…は、図4(b)に示したように金属被膜部22で覆われており、この金属被膜部22は、端面21c…を挟んで両面に連続したものであるので、樹脂含浸シート21が圧縮されても、樹脂が端面からはみ出すように変形することはない。このため、メタルコア11のコア孔13の中への樹脂の充填は、内部の樹脂の圧力が高い状態で一気に行え、気泡が残留することを防止できる。   At this time, the end surfaces 21c of the resin impregnated sheet 21 are covered with the metal coating portion 22 as shown in FIG. 4B, and the metal coating portions 22 are continuous on both sides with the end surface 21c interposed therebetween. Therefore, even when the resin-impregnated sheet 21 is compressed, the resin does not deform so as to protrude from the end face. For this reason, the filling of the resin into the core hole 13 of the metal core 11 can be performed at a stretch while the pressure of the internal resin is high, and bubbles can be prevented from remaining.

また、上記のように樹脂がはみ出すような変形がないので、金属張積層板31の厚みが均一になる。   Moreover, since there is no deformation | transformation which resin protrudes as mentioned above, the thickness of the metal-clad laminated board 31 becomes uniform.

上述のように加熱加圧を行うときのステンレス板41は、樹脂含浸シート21よりも大きい(図4(a)参照)ので、このことによっても縁部分の厚みの変化が抑えられる。その上、樹脂含浸シート21の端面を中心とする外周部分が露出しないように金属被膜部22で覆われているので、樹脂のはみ出しを阻止できる。この結果、樹脂がステンレス板41に付着することはなく、樹脂除去などの手間を省くことが可能である。   As described above, the stainless steel plate 41 when heating and pressurizing is larger than the resin-impregnated sheet 21 (see FIG. 4A), and this also suppresses a change in the thickness of the edge portion. In addition, since the outer peripheral portion around the end surface of the resin-impregnated sheet 21 is covered with the metal coating portion 22 so as not to be exposed, it is possible to prevent the resin from protruding. As a result, the resin does not adhere to the stainless steel plate 41, and it is possible to save troubles such as resin removal.

さらに、縁部分の厚みの変化が抑えられるので、従来のように縁の部分を切除(トリミング)することなく、図5に示したように、この状態のまま次の工程に移行し、上述の所定の加工を終えてから外形加工を行う。つまり、従来のような縁の部分をトリミングする工程や端面を研磨する工程を省くことができ、工数の削減を図り、作業効率を高めることができる。図5(b)中、32は銅メッキ層で、特に32aがスルーホールメッキである。   Further, since the change in the thickness of the edge portion is suppressed, the state moves to the next step as shown in FIG. 5 without cutting out (trimming) the edge portion as in the prior art. After finishing the predetermined processing, external processing is performed. That is, the conventional step of trimming the edge portion and the step of polishing the end face can be omitted, and the number of steps can be reduced and the working efficiency can be increased. In FIG. 5B, 32 is a copper plating layer, and in particular, 32a is through-hole plating.

図6(a)は他の例に係る樹脂含浸シートの斜視図、図6(b)は要部の断面図であり、この図に示すように、樹脂含浸シート21金属被膜部22は、銅メッキ22bによって形成することもできる。   FIG. 6A is a perspective view of a resin-impregnated sheet according to another example, and FIG. 6B is a cross-sectional view of the main part. As shown in FIG. It can also be formed by plating 22b.

0.4mm厚のメタルコア11の両面に、0.07mm厚の銅箔22aで図2や図3のように被覆した0.2mm厚の樹脂含浸シート21を加熱加圧して金属張積層板31(以下、「本実施例品」という。)を製造し、気泡の有無と厚さを検査した。   A 0.2 mm thick resin impregnated sheet 21 coated with 0.07 mm thick copper foil 22a on both sides of a 0.4 mm thick metal core 11 as shown in FIGS. Hereinafter, it is referred to as “product of this example”), and the presence or absence of bubbles and the thickness thereof were inspected.

比較例として、0.4mm厚のメタルコアの両面に、0.2mm厚の樹脂含浸シートと0.07mm厚の銅箔を順に、単純に平行に積み重ねたものを同一の条件で加熱加圧して金属張積層板(以下、「比較例品」という。)を製造し、同様に気泡の有無と厚さを検査した。   As a comparative example, a 0.2 mm thick resin-impregnated sheet and a 0.07 mm thick copper foil are sequentially stacked in parallel on both sides of a 0.4 mm thick metal core and heated and pressed under the same conditions. A tension laminate (hereinafter referred to as “comparative product”) was produced, and the presence and thickness of bubbles were similarly inspected.

なお、コア孔13の配置等による効果を検証するため、ユニットと平均開口比という概念を採用し、メタルコア11として図7に示したようなテストコア14を使用した。   In order to verify the effect of the arrangement of the core holes 13 and the like, the concept of unit and average aperture ratio was adopted, and the test core 14 as shown in FIG.

ここで、開口比は、以下のように計算される。
図8に示したように、コア孔Aとコア孔Bを想定した場合に、開口比=ピッチP/直径Dを算出する。これがコア孔Aとコア孔Bとの開口比である。なおコア孔A,Bは円形、楕円形、長円形などいろいろな形が想定され、さらにそのようなコア孔がいろいろな向きに配置されていることが想定されるが、いずれの場合も図8に示すように、コア孔Aとコア孔Bの重心Oa,Ob(円形の場合には中心)同士を結ぶ直線上のそれぞれの直経Da,Dbのうち大きいほうの直径を直径Dとして採用し、該重心Oa,Ob同士の距離をピッチPとして採用することで一般化されている。
Here, the aperture ratio is calculated as follows.
As shown in FIG. 8, when the core hole A and the core hole B are assumed, the aperture ratio = pitch P / diameter D is calculated. This is the opening ratio between the core hole A and the core hole B. The core holes A and B are assumed to have various shapes such as a circular shape, an elliptical shape, and an oval shape, and it is assumed that such core holes are arranged in various directions. As shown in Fig. 5, the larger diameter of the straight diameters Da and Db on the straight line connecting the centroids Oa and Ob (centers in the case of a circle) of the core hole A and the core hole B is adopted as the diameter D. The distance between the centroids Oa and Ob is generalized by adopting the distance P as the pitch P.

そしてユニットは、コア孔同士が隣接状態に形成された集団であり、より詳細には、あるコア孔Aについて隣接するコア孔Bの開口比が2.5以内となる場合にはコア孔Bもコア孔Aと同じユニットに含まれるコアである、と判断する。   The unit is a group in which the core holes are formed adjacent to each other, and more specifically, when the opening ratio of the adjacent core hole B with respect to a certain core hole A is within 2.5, the core hole B is also It is determined that the core is included in the same unit as the core hole A.

また、このようなユニットについて平均開口比とは、ユニットの中心に近いいずれか一つのコア孔Aに着目し、その周囲に存在する全てのコア孔(隣接するコア孔に限定されない)についてコア孔との開口比を個別に計算し、そのうち開口比が2.5以内のすべてのコア孔のみを選択し、その平均値をそのユニットの平均開口比と称する。   In addition, with respect to such a unit, the average aperture ratio refers to any one of the core holes A close to the center of the unit, and the core holes for all the core holes (not limited to the adjacent core holes) existing around the core hole A. The aperture ratio is calculated individually, and only the core holes having an aperture ratio of 2.5 or less are selected, and the average value is referred to as the average aperture ratio of the unit.

なお、あるコア孔を基準にして周囲のすべてのコア孔の開口比を算出してみたときに全て2.5より大きくなる場合は、そのコア孔は独立したものであり、上記のユニットに該当しないものとし、平均開口比の算出の対象外とする。   If the opening ratios of all the surrounding core holes are calculated based on a certain core hole and all become larger than 2.5, the core hole is independent and falls under the above unit. Not to be calculated and excluded from the calculation of the average aperture ratio.

また、実際に使用されないコア孔が生じる場合には、そのコア孔も上記のユニットの対象となるコア孔から外すものとする。   In addition, when a core hole that is not actually used is generated, the core hole is also removed from the core hole that is the target of the unit.

図7に示したテストコア14は340mm×510mmの大きさで、このテストコア14において、丸穴は、内径が2.6mm、3.6mm、4.6mm、6.8mmの4種類の大きさがあり、それぞれの丸穴は同じ大きさの丸穴をそれぞれ5個×5個で配置して1つのユニットとして配置され、また、長穴は幅が2.5mmであって長さが6.9mm、9.1mm、11.3mm、13.5mm、15.7mm、17.9mmの6種類の大きさがあり、それぞれの長穴は同じ大きさの長穴をそれぞれ4列で配置して1つのユニットとして配置されている。   The test core 14 shown in FIG. 7 has a size of 340 mm × 510 mm, and in this test core 14, the round hole has four types of inner diameters of 2.6 mm, 3.6 mm, 4.6 mm, and 6.8 mm. Each round hole is arranged as a single unit by arranging 5 × 5 round holes of the same size, and the long hole has a width of 2.5 mm and a length of 6. There are 6 sizes of 9mm, 9.1mm, 11.3mm, 13.5mm, 15.7mm, 17.9mm, and each slot has 1 slot with the same size. Arranged as one unit.

内径が2.6mmの第1の長穴13aについては、「行」方向(x方向)で3.8mmのピッチ、「列」方向(y方向)で5.8mmのピッチとした第1のユニット51と、「行」方向で3.8mmのピッチ、「列」方向で4.8mmのピッチとした第2のユニット52と、「行」方向で3.8mmのピッチ、「列」方向で3.8mmのピッチとした第3のユニット53が列方向に隣接して配置されている。この場合、第1の丸穴13aについての第1、2及び3のユニッ51,52,53の列方向の平均開口比はそれぞれ2.45,2.10,1.76となる。   For the first slot 13a having an inner diameter of 2.6 mm, the first unit has a pitch of 3.8 mm in the “row” direction (x direction) and a pitch of 5.8 mm in the “column” direction (y direction). 51, a second unit 52 having a pitch of 3.8 mm in the “row” direction and a pitch of 4.8 mm in the “column” direction, a pitch of 3.8 mm in the “row” direction, and 3 in the “column” direction. A third unit 53 having a pitch of .8 mm is arranged adjacent to each other in the column direction. In this case, the average aperture ratios in the column direction of the first, second and third units 51, 52 and 53 for the first round hole 13a are 2.45, 2.10 and 1.76, respectively.

内径が3.6mmの第2の丸穴13bについては、「行」方向で4.8mmのピッチ、「列」方向で6.8mmのピッチとした第1のユニット54と、「行」方向で4.8mmのピッチ、「列」方向で5.8mmのピッチとした第2のユニット55と、「行」方向で4.8mmのピッチ、「列」方向で4.8mmのピッチとした第3のユニット56が列方向に隣接して配置されている。この場合、第2の丸穴13bについての第1、2及び3のユニット54,55,56の列方向の平均開口比はそれぞれ2.10,1.85,1.61となる。   Regarding the second round hole 13b having an inner diameter of 3.6 mm, the first unit 54 having a pitch of 4.8 mm in the “row” direction and a pitch of 6.8 mm in the “column” direction, A second unit 55 having a pitch of 4.8 mm and a pitch of 5.8 mm in the “column” direction, and a third unit 55 having a pitch of 4.8 mm in the “row” direction and a pitch of 4.8 mm in the “column” direction. Are arranged adjacent to each other in the column direction. In this case, the average aperture ratios in the column direction of the first, second and third units 54, 55 and 56 for the second round hole 13b are 2.10, 1.85 and 1.61, respectively.

内径が4.6mmの第3の丸穴13cについては、「行」方向で5.8mmのピッチ、「列」方向で7.8mmのピッチとした第1のユニット57と、「行」方向で5.8mmのピッチ、「列」方向で6.8mmのピッチとした第2のユニット58と、「行」方向で5.8mmのピッチ、「列」方向で5.8mmのピッチとした第3のユニット59が列方向に隣接して配置されている。この場合、第3の丸穴13cについての第1、2及び3のユニット17,18,19の列方向の平均開口比はそれぞれ1.90,1.71,1.52となる。   For the third round hole 13c having an inner diameter of 4.6 mm, a first unit 57 having a pitch of 5.8 mm in the “row” direction and a pitch of 7.8 mm in the “column” direction; A second unit 58 having a pitch of 5.8 mm and a pitch of 6.8 mm in the “column” direction, and a third unit 58 having a pitch of 5.8 mm in the “row” direction and a pitch of 5.8 mm in the “column” direction. Are arranged adjacent to each other in the column direction. In this case, the average aperture ratios in the column direction of the first, second, and third units 17, 18, and 19 for the third round hole 13c are 1.90, 1.71, and 1.52, respectively.

内径が6.8mmの第4の丸穴13dについては、「行」方向で7.8mmのピッチ、「列」方向で9.8mmのピッチとした第1のユニット60と、「行」方向で7.8mmのピッチ、「列」方向で8.8mmのピッチとした第2のユニット61と、「行」方向で7.8mmのピッチ、「列」方向で7.8mmのピッチとした第3のユニット62が列方向に隣接して配置されている。この場合、第4の丸穴13cについての第1、2及び3のユニット60,61,62の列方向の平均開口比はそれぞれ1.64,1.51,1.38となる。   For the fourth round hole 13d having an inner diameter of 6.8 mm, the first unit 60 having a pitch of 7.8 mm in the “row” direction and a pitch of 9.8 mm in the “column” direction; A second unit 61 having a pitch of 7.8 mm and a pitch of 8.8 mm in the “column” direction, and a third unit 61 having a pitch of 7.8 mm in the “row” direction and a pitch of 7.8 mm in the “column” direction. Are arranged adjacent to each other in the column direction. In this case, the average aperture ratios in the column direction of the first, second, and third units 60, 61, and 62 for the fourth round hole 13c are 1.64, 1.51, and 1.38, respectively.

また、第1〜第6の長穴4e〜4jについては、それぞれ、「列」方向で3.5mmのピッチとした第1のユニット63と、5.28mmのピッチとした第2のユニット64と、6.2mmのピッチとした第3のユニット65と、7.2mmとした第4のユニット66が隣接して配置されている。各長穴13e〜13jの第1のユニット63の平均開口比は1.4、第2のユニット64の平均開口比は2.08、第3のユニット65の平均開口比は2.48、第4のユニット66の平均開口比は2.88となる。   The first to sixth elongated holes 4e to 4j are respectively a first unit 63 having a pitch of 3.5 mm in the “row” direction and a second unit 64 having a pitch of 5.28 mm. , A third unit 65 having a pitch of 6.2 mm and a fourth unit 66 having a pitch of 7.2 mm are disposed adjacent to each other. The average aperture ratio of the first unit 63 of each of the long holes 13e to 13j is 1.4, the average aperture ratio of the second unit 64 is 2.08, the average aperture ratio of the third unit 65 is 2.48, The average aperture ratio of the four units 66 is 2.88.

このテストコア14に積層する樹脂含浸シートとしてのプリプレグには、樹脂分47%、49%、51%、53%の日立化成工業株式会社製のMCL−BE−67G(HHFQ)を使用した。   MCL-BE-67G (HHFQ) manufactured by Hitachi Chemical Co., Ltd. having a resin content of 47%, 49%, 51% and 53% was used for the prepreg as a resin-impregnated sheet laminated on the test core 14.

実験では、銅箔付きの樹脂含浸シートをテストコアの両面に重ねた状態のものを10セット積み重ねて、5段真空ホットプレスのうちの1段目に入れて真空度10〜20torr以下の環境で図9に示すような温度と圧力に調整して加熱、加圧した。5段真空ホットプレスとして、株式会社名機製作所製の装置を使用した。   In the experiment, 10 sets of resin-impregnated sheets with copper foil stacked on both sides of the test core were stacked and placed in the first stage of a 5-stage vacuum hot press in an environment with a degree of vacuum of 10 to 20 torr or less. Heating and pressurization were performed while adjusting the temperature and pressure as shown in FIG. An apparatus manufactured by Meiki Seisakusho Co., Ltd. was used as a 5-stage vacuum hot press.

図9に示すように、常温T0から130℃の一次温度T1まで所定の昇温速度で加熱温度を変化させて樹脂を溶かし、同時に一次圧力P1として10kgf/cm2で所定時間加圧する。続いて、加熱温度を一次温度T1である120℃〜130℃で20〜30分間保持するとともに、圧力をたとえば30kgf/cm2の二次圧力P2まで昇圧する。これにより樹脂がコア孔に流れ込む。さらに、二次圧力P2である30kgf/cm2を保持したままで昇温速度2.0〜3.5℃/分で二次温度T2、たとえば170℃以上まで加熱温度を上げ、その後に加熱温度170℃、加圧力30kgf/cm2を40分間以上保持して樹脂を硬化させ、ついで、温度を常温T0になるまで冷却する。 As shown in FIG. 9, the resin is melted by changing the heating temperature from room temperature T 0 to primary temperature T 1 of 130 ° C. at a predetermined rate of temperature increase, and simultaneously pressurized as primary pressure P 1 at 10 kgf / cm 2 for a predetermined time. . Subsequently, the heating temperature is maintained at 120 to 130 ° C., which is the primary temperature T 1 , for 20 to 30 minutes, and the pressure is increased to a secondary pressure P 2 of , for example, 30 kgf / cm 2 . As a result, the resin flows into the core hole. Further, while maintaining the secondary pressure P 2 of 30 kgf / cm 2 , the heating temperature is increased to a secondary temperature T 2 , for example, 170 ° C. or higher at a temperature rising rate of 2.0 to 3.5 ° C./min, and then the heating is performed. The resin is cured by maintaining the temperature at 170 ° C. and the applied pressure of 30 kgf / cm 2 for 40 minutes or more, and then cooled until the temperature reaches room temperature T 0 .

そして、一次温度T1までの昇温速度を2.0℃/分とした場合と、3.5℃/分とした場合の2つについて実験を行った。 And experiment was conducted about two cases, when the rate of temperature increase to the primary temperature T 1 was 2.0 ° C./min and when it was 3.5 ° C./min.

この結果、気泡の有無について、図10に示すような結果が得られた。   As a result, the results as shown in FIG. 10 were obtained for the presence or absence of bubbles.

すなわち、全体として開口比の値が低い部分では気泡ができ、樹脂分が多いほど気泡ができない傾向にあるが、比較例品においては、開口比の値が最も低い1.32においてはどうしても気泡が残留してしまう。   That is, as a whole, there is a tendency that bubbles are formed at a portion where the value of the opening ratio is low, and bubbles increase as the resin content increases. However, in the comparative example product, bubbles are inevitably generated at 1.32 where the value of the opening ratio is the lowest. It will remain.

一方、本発明品の場合には、開口比の値が最も低い1.32の場合でも気泡が残留せず、全体として気泡の発生レベルを抑えることができることが判る。   On the other hand, in the case of the product of the present invention, it is understood that bubbles do not remain even when the aperture ratio value is 1.32 which is the lowest, and the generation level of bubbles can be suppressed as a whole.

厚さについては、金属張積層板の不要部分を切除した後に、図11に示したような9点について測定した。9点とは、金属張積層板の周囲から内側に10mmの位置に引いた各辺に平行な4本の線71…の交点(四隅部分)と、中心を通り長辺方向および短辺方向に沿って延びる2本の線72,72が上記の線と交わる点(各辺の中間部分近傍)と、中心73である。   The thickness was measured at nine points as shown in FIG. 11 after cutting out unnecessary portions of the metal-clad laminate. Nine points are the intersection (four corners) of four lines 71 parallel to each side drawn at a position of 10 mm inward from the periphery of the metal-clad laminate, and in the long side direction and short side direction through the center. The two lines 72, 72 extending along the line are a point where the above line intersects (near the middle part of each side) and a center 73.

結果は、図12に示す通りである。厚さの値は、9点の位置に対応させている。   The results are as shown in FIG. The thickness value is made to correspond to nine positions.

この表に示すように、本発明品の場合には、最低値が0.93mmで、最高値が0.97mmであった。そして平均は、0.95mmであって、公称値0.94に近いものとなった。   As shown in this table, in the case of the product of the present invention, the minimum value was 0.93 mm and the maximum value was 0.97 mm. The average was 0.95 mm, which was close to the nominal value of 0.94.

一方、比較例品の場合には、最低値が0.92mmで、最高値が0.99であって、平均値は0.96であった。   On the other hand, in the case of the comparative product, the minimum value was 0.92 mm, the maximum value was 0.99, and the average value was 0.96.

標準偏差(STD)を見ると、本発明品では比較例品に比較して1/2に低減し、厚さのばらつきが少なく、より平らな金属張積層板を製造することができたことが判る。   Looking at the standard deviation (STD), the product of the present invention was reduced by half compared to the comparative product, and there was little variation in thickness, and a flatter metal-clad laminate could be manufactured. I understand.

以上の説明では、基材がメタルコア11の場合について述べたが、基材が両面プリント配線板であってもよく、この場合には合計4層の導体を持つ多層プリント配線板が得られる。   In the above description, the case where the base material is the metal core 11 has been described. However, the base material may be a double-sided printed wiring board, and in this case, a multilayer printed wiring board having a total of four layers of conductors is obtained.

この発明の構成と、上記の一形態の構成との対応において、
この発明の穴は、上記のコア孔13に対応し、
以下同様に、
メタルコアに対向する面と反対側の面、及び一方の面は、片面21bに対応し、
反対側の面から連続する端面は、端面21cに対応し、
基材対向面の周囲部は、反対側の面の外周縁部21dに対応するも、
この発明は上記の構成のみに限定されるものではなく、その他の形態を採用することができる。
In correspondence between the configuration of the present invention and the configuration of the above-described one form,
The hole of the present invention corresponds to the core hole 13 described above,
Similarly,
The surface opposite to the surface facing the metal core and one surface correspond to the one surface 21b,
The end surface continuous from the opposite surface corresponds to the end surface 21c,
The peripheral portion of the substrate facing surface corresponds to the outer peripheral edge portion 21d of the opposite surface,
The present invention is not limited to the above configuration, and other forms can be adopted.

メタルコア基板の製造工程の概略を示す説明図。Explanatory drawing which shows the outline of the manufacturing process of a metal core board | substrate. 樹脂含浸シート及び金属張積層板の斜視図。The perspective view of a resin impregnation sheet | seat and a metal-clad laminated board. 樹脂含浸シート及び金属張積層板の構造を示す斜視図。The perspective view which shows the structure of a resin impregnation sheet | seat and a metal-clad laminated board. 作用状態の断面図。Sectional drawing of an action state. 作用状態の断面図。Sectional drawing of an action state. 他の例に係る樹脂含浸シートの説明図。Explanatory drawing of the resin impregnation sheet | seat which concerns on another example. テストコアの平面図。The top view of a test core. 開口比を説明するための説明図。Explanatory drawing for demonstrating aperture ratio. 加熱加圧条件を示す説明図。Explanatory drawing which shows heating-pressing conditions. 気泡の有無を示す表。A table showing the presence or absence of bubbles. 厚さの測定点を示す説明図。Explanatory drawing which shows the measurement point of thickness. 厚さのデータを示す表。Table showing thickness data. 従来技術の問題点を示す断面図。Sectional drawing which shows the problem of a prior art. 従来技術の問題点を示す断面図。Sectional drawing which shows the problem of a prior art.

符号の説明Explanation of symbols

11…メタルコア
13…コア孔
21…樹脂含浸シート
21b…片面
21c…端面
21d…反対側の面の外周縁部
22…金属被膜部
22a…銅箔
22b…銅メッキ
31…金属張積層板
DESCRIPTION OF SYMBOLS 11 ... Metal core 13 ... Core hole 21 ... Resin impregnation sheet | seat 21b ... One side 21c ... End surface 21d ... Outer peripheral edge part 22 ... Metal coating part 22a ... Copper foil 22b ... Copper plating 31 ... Metal-clad laminate

Claims (11)

穴あき基材に樹脂含浸シートを重ねたのち、これらを加熱加圧して上記の穴の中に樹脂含浸シートの樹脂を充填した状態で積層一体化するプリント配線板の製造方法であって、
上記の樹脂含浸シートを基材に重ねる前段で、樹脂含浸シートにおける基材に対向する面と反対側の面と、この面から連続する端面と、この端面から連続する基材対向面の周囲部とに、金属被膜部を設ける
プリント配線板の製造方法。
A method for producing a printed wiring board in which a resin-impregnated sheet is stacked on a perforated base material, and these are heated and pressed to be laminated and integrated in a state where the resin of the resin-impregnated sheet is filled in the hole,
Before the resin-impregnated sheet is overlaid on the substrate, the surface of the resin-impregnated sheet opposite to the surface facing the substrate, the end surface continuous from this surface, and the peripheral portion of the substrate facing surface continuous from this end surface And a method of manufacturing a printed wiring board in which a metal coating is provided.
前記金属被膜部を、金属箔の被覆で設ける
請求項1に記載のプリント配線板の製造方法。
The method for producing a printed wiring board according to claim 1, wherein the metal coating portion is provided by coating with a metal foil.
前記金属被膜部を、メッキで設ける
請求項1に記載のプリント配線板の製造方法。
The method for manufacturing a printed wiring board according to claim 1, wherein the metal coating portion is provided by plating.
前記基材がメタルコアであり、当該プリント配線板がメタルコアプリント配線板である
請求項1から請求項3のうちのいずれか一項に記載のプリント配線板の製造方法。
The said base material is a metal core, The said printed wiring board is a metal core printed wiring board, The manufacturing method of the printed wiring board as described in any one of Claims 1-3.
前記基材が両面プリント配線板であり、当該プリント配線板が多層プリント配線板である
請求項1から請求項3のうちのいずれか一項に記載のプリント配線板の製造方法。
The method for producing a printed wiring board according to any one of claims 1 to 3, wherein the substrate is a double-sided printed wiring board, and the printed wiring board is a multilayer printed wiring board.
一方の面と、この面から連続する端面と、この端面から連続する反対側の面の周囲部とに、金属被膜部が設けられた
樹脂含浸シート。
A resin-impregnated sheet in which a metal coating portion is provided on one surface, an end surface continuous from this surface, and a peripheral portion of the opposite surface continuous from this end surface.
穴あき基材と、絶縁層を形成する樹脂含浸シートと、金属被膜層とが積層一体化された金属張積層板であって、
積層一体化する前における上記樹脂含浸シートにおける基材に対向する面と反対側の面に、金属被膜部が形成されるとともに、
樹脂含浸シートの端面と基材対向面の周囲部とにも、上記金属被膜部と一体の金属被膜部が形成された
金属張積層板。
A metal-clad laminate in which a perforated base material, a resin-impregnated sheet for forming an insulating layer, and a metal coating layer are laminated and integrated,
On the surface opposite to the surface facing the base material in the resin-impregnated sheet before being laminated and integrated, a metal film portion is formed,
A metal-clad laminate in which a metal coating part integral with the metal coating part is also formed on the end face of the resin-impregnated sheet and the peripheral part of the substrate facing surface.
前記基材がメタルコアであり、当該金属張積層板がメタルコア積層板である
請求項7に記載の金属張積層板。
The metal-clad laminate according to claim 7, wherein the base material is a metal core, and the metal-clad laminate is a metal-core laminate.
前記基材が両面配線プリント配線板であり、当該金属張積層板が多層積層板である
請求項7に記載の金属張積層板。
The metal-clad laminate according to claim 7, wherein the substrate is a double-sided printed circuit board and the metal-clad laminate is a multilayer laminate.
前記請求項1、2または3に記載のプリント配線板の製造方法で製造され、基材がメタルコアである
メタルコアプリント配線板。
A metal core printed wiring board manufactured by the method for manufacturing a printed wiring board according to claim 1, 2, or 3, wherein the substrate is a metal core.
前記請求項1、2または3に記載のプリント配線板の製造方法で製造され、基材が両面プリント配線板である
多層プリント配線板。
A multilayer printed wiring board produced by the method for producing a printed wiring board according to claim 1, 2, or 3, wherein the substrate is a double-sided printed wiring board.
JP2007180657A 2007-07-10 2007-07-10 Manufacturing method of printed wiring board, and member used therefor Pending JP2009021274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007180657A JP2009021274A (en) 2007-07-10 2007-07-10 Manufacturing method of printed wiring board, and member used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007180657A JP2009021274A (en) 2007-07-10 2007-07-10 Manufacturing method of printed wiring board, and member used therefor

Publications (1)

Publication Number Publication Date
JP2009021274A true JP2009021274A (en) 2009-01-29

Family

ID=40360695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007180657A Pending JP2009021274A (en) 2007-07-10 2007-07-10 Manufacturing method of printed wiring board, and member used therefor

Country Status (1)

Country Link
JP (1) JP2009021274A (en)

Similar Documents

Publication Publication Date Title
JP2008124370A (en) Method of manufacturing multilayer printed wiring board
JP4297163B2 (en) Multilayer circuit board manufacturing method
JPWO2007069510A1 (en) Intermediate material for manufacturing circuit board and method for manufacturing circuit board using the same
JP2018001764A (en) Metal-clad laminate and method for manufacturing the same, method for manufacturing printed wiring board, and method for manufacturing multilayer printed circuit board
US10674615B2 (en) Method for manufacturing wiring board
TW201424501A (en) Package structure and method for manufacturing same
US7172925B2 (en) Method for manufacturing printed wiring board
JPH09289128A (en) Manufacture of multilayer board for printed coil
JP5194951B2 (en) Circuit board manufacturing method
KR101617270B1 (en) Process for producing metal-clad laminate, and printed wiring board
JP5385967B2 (en) Wiring board and manufacturing method thereof
JP2009021274A (en) Manufacturing method of printed wiring board, and member used therefor
JP5001868B2 (en) Multilayer board manufacturing method
JP4462057B2 (en) Inner layer circuit member, multilayer wiring circuit board using the same, and manufacturing method thereof
JP2008085111A (en) Wiring board and manufacturing method therefor
JP2008235640A (en) Circuit board and circuit board manufacturing method
CN115230261A (en) Copper-clad plate manufacturing method
KR20100111144A (en) Method for manufacturing multi layer printed circuit board
JP5662853B2 (en) Manufacturing method of flexible printed wiring board
JP4595900B2 (en) Method for producing multilayer metal foil-clad laminate
JP3749201B2 (en) Method for manufacturing printed wiring board
JPH11274720A (en) Manufacture of multilayer-laminated board
JP2010109042A (en) Cushioning material for manufacturing circuit board
JP5353027B2 (en) Circuit board manufacturing method
KR101084253B1 (en) Method of manufacturing multi layer printed circuit board