JP2009005583A - Alternate-current high electric-field sterilization device for fluid food material - Google Patents

Alternate-current high electric-field sterilization device for fluid food material Download PDF

Info

Publication number
JP2009005583A
JP2009005583A JP2007167226A JP2007167226A JP2009005583A JP 2009005583 A JP2009005583 A JP 2009005583A JP 2007167226 A JP2007167226 A JP 2007167226A JP 2007167226 A JP2007167226 A JP 2007167226A JP 2009005583 A JP2009005583 A JP 2009005583A
Authority
JP
Japan
Prior art keywords
food material
flow path
high electric
electric field
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007167226A
Other languages
Japanese (ja)
Other versions
JP4842890B2 (en
Inventor
Hiroshi Hoshino
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2007167226A priority Critical patent/JP4842890B2/en
Publication of JP2009005583A publication Critical patent/JP2009005583A/en
Application granted granted Critical
Publication of JP4842890B2 publication Critical patent/JP4842890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alternate-current high electric-field sterilization device for fluid food material as a continuous-type one, suppressed from generating sparks, even when subjecting a high-viscosity fluid food material, such as, mayonnaise to sterilization. <P>SOLUTION: The alternate-current high electric-field sterilization device for fluid food material is structured by forming a flow path through which the fluid food material flows in a direction parallel to a pair of parallel electrode plates, between the plates; and loading alternate-current high voltage between the electrode plates to sterilize the fluid food material in the flow path. The electrode plates are equipped with a heat elimination means for drawing heat from the fluid food material which flows, in contact with the surface at the flow path side of the plate. The heat elimination means is provided with a fin member, made of well thermal-conductive material at the face opposite to the flow path of the electrode plate for example, and is provided with a blowing means for blowing cool air to the fin member. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明は、果汁やジャム、肉汁、野菜スープ、牛乳、マヨネーズ等の各種流動性食品材料(飲料を含む)を、交流高電界殺菌法によって連続的に殺菌する装置に関するものである。   The present invention relates to an apparatus for continuously sterilizing various fluid food materials (including beverages) such as fruit juice, jam, meat juice, vegetable soup, milk, mayonnaise and the like by an alternating current high electric field sterilization method.

一般に、各種の液体食品材料を殺菌するための方法としては、液体食品材料を加熱して高温により殺菌する方法が多用されている。この場合、連続的に液体食品材料を殺菌する装置としては、管路内に液体食品材料を連続的に流しながら、その管路を外側から適宜の加熱手段により加熱して、管路内の液体食品材料を間接的に加熱することにより殺菌する方式のものが一般的である。   In general, as a method for sterilizing various liquid food materials, a method in which the liquid food material is heated and sterilized at a high temperature is frequently used. In this case, as an apparatus for continuously sterilizing the liquid food material, the liquid food material is continuously flowed into the pipeline, while the pipeline is heated from the outside by an appropriate heating means, and the liquid in the pipeline is In general, food materials are sterilized by indirectly heating them.

ところで上述のように外部からの加熱によって液体食品材料を殺菌する場合、その温度に液体食品材料をある程度の時間保持しておく必要がある。特に加熱温度が低ければ、加熱保持時間を長くして確実に殺菌されるようにする必要がある。一方、加熱温度を相対的に高温とすれば、加熱保持時間を相対的に短くすることが可能であるが、加熱温度が高温となれば、液体食品材料中の有用な成分、例えばビタミンC等の栄養成分が破壊されたり、香りをもたらす香気成分や色調をもたらす色調成分が破壊されたり変化したりしてしまって、商品価値を損なってしまうおそれがあるから、加熱温度を高温にするにも限界がある。   By the way, when the liquid food material is sterilized by heating from the outside as described above, it is necessary to hold the liquid food material at that temperature for a certain period of time. In particular, if the heating temperature is low, it is necessary to extend the heat holding time to ensure sterilization. On the other hand, if the heating temperature is relatively high, it is possible to relatively shorten the heating and holding time. However, if the heating temperature is high, useful ingredients in the liquid food material, such as vitamin C, etc. The nutritional components of the product may be destroyed, and the fragrance component that brings about the fragrance and the color component that produces the color tone may be destroyed or changed, which may impair the commercial value. There is a limit.

したがって外部加熱により液体食品材料を殺菌する場合、液体食品材料中の栄養成分や香り、色が損なわれない程度の温度で、ある程度長い時間保持することが必須である。例えば外部加熱方式により115℃で殺菌する場合、充分に殺菌するためには4分以上保持する必要があるとされている。そしてこのような外部加熱を適用して連続方式により加熱殺菌する場合は、外部から加熱する部分の管路を長くすることにより、その加熱部中に液体食品材料が滞在する時間を充分に確保せざるを得ず、そのため加熱装置全体のライン長が長くならざるを得ないから、設備全体が大型化して、設備コストが大きくならざるを得なかった。   Therefore, when the liquid food material is sterilized by external heating, it is essential to hold the liquid food material for a long time at a temperature at which the nutritional components, fragrance, and color in the liquid food material are not impaired. For example, when sterilizing at 115 ° C. by an external heating method, it is said that it is necessary to hold for 4 minutes or more in order to sufficiently sterilize. And when applying such external heating and heat sterilization by a continuous method, it is possible to secure a sufficient time for the liquid food material to stay in the heating part by lengthening the pipe line of the part heated from the outside. Therefore, the line length of the entire heating device has to be long, so that the entire equipment is enlarged and the equipment cost is inevitably increased.

ところで最近に至り、対向する狭い電極間に液体食品材料を通過させるとともに、その電極間に交流の高電圧を印加して、電極間に生じる交流高電界によって殺菌する方法、すなわちいわゆる交流高電界殺菌法が、例えば特許文献1、特許文献2等によって提案されている。   By the way, recently, a liquid food material is passed between narrow electrodes facing each other, and a high voltage of alternating current is applied between the electrodes and sterilized by an alternating high electric field generated between the electrodes, that is, so-called alternating high electric field sterilization. The method is proposed by patent document 1, patent document 2, etc., for example.

この交流高電界殺菌法によれば、電極間を液体食品材料が通過する際に液体食品材料が高温により加熱殺菌されるばかりでなく、交流高電界による殺菌効果が与えられ、そのため液体食品材料を高温に曝す時間を短時間とすることが可能となり、その結果食品材料成分の破壊や変化を最小限に抑えることが可能となる。   According to this AC high electric field sterilization method, when the liquid food material passes between the electrodes, the liquid food material is not only sterilized by heating at a high temperature, but also a sterilizing effect due to the AC high electric field is provided. It is possible to shorten the time of exposure to high temperature, and as a result, it is possible to minimize the destruction and change of food material components.

前述の特許文献1や特許文献2には、交流高電界殺菌技術の基本的な考え方は示されているものの、この交流高電界殺菌技術を、液体食品製造メーカーにおいて実際の量産的規模での液体食品製造過程に導入するべく、完全連続化を行なって大量の液体食品材料を効率良く連続殺菌を行なうには種々の不都合があり、特に連続的に流れる液体食品材料に交流高電界を印加する電極部分付近の具体的構成については、未だ実用化できる程度には至っていなかった。   Although the basic concept of the alternating current high electric field sterilization technology is shown in the above-mentioned patent document 1 and patent document 2, this alternating current high electric field sterilization technology is applied to liquid food manufacturers on an actual mass production scale. There are various inconveniences for efficient continuous sterilization of a large amount of liquid food material by carrying out complete continuation in order to introduce it into the food production process, especially an electrode that applies an alternating high electric field to liquid food material that flows continuously The specific configuration in the vicinity of the portion has not yet reached a practical level.

そこで本発明者等は、量産的規模での交流高電界殺菌方法の実用化に向けて、その装置の研究開発を続けている。そしてその開発過程において、連続的に供給される液体食品材料に交流高電界を印加するに適した電極部分付近の具体的構成として、図6、図7に示すような装置を、特願2006−270634において提案し、実用化に向けての更なる実験・検討を重ねている。   Therefore, the present inventors have continued research and development of the apparatus for practical application of the alternating current high electric field sterilization method on a mass production scale. In the development process, as a specific configuration in the vicinity of the electrode portion suitable for applying an alternating high electric field to the liquid food material that is continuously supplied, an apparatus as shown in FIGS. It is proposed in 270634, and further experiments and examinations for practical use are repeated.

ここで図6、図7に示される装置について説明すれば、チタン等の耐食性導電材料からなる平行一対の電極11A、11Bの間に、PEEK樹脂等の耐熱性を有する電気絶縁材料からなる全体として平板状のスペーサ板13が挟まれており、そのスペーサ板13には、一方の板面から他方の板面まで貫通しかつ板面に沿った方向(図示の例では上下方向)に伸びる長孔15が形成されている。この長孔15は、後述するように電極板間流路17を区画形成するためのものであり、平面的に見て全体として長円形状に形成されるとともに、その長さ方向の端部の内面(湾曲面)が、それぞれテーパー面15A、15Bとされている。   Here, the apparatus shown in FIGS. 6 and 7 will be described. As a whole, a heat insulating material such as PEEK resin is interposed between a pair of parallel electrodes 11A and 11B made of a corrosion resistant conductive material such as titanium. A flat spacer plate 13 is sandwiched, and the spacer plate 13 penetrates from one plate surface to the other plate surface and extends in a direction along the plate surface (vertical direction in the illustrated example). 15 is formed. As will be described later, this elongated hole 15 is for defining and forming a flow path 17 between the electrode plates. The elongated hole 15 is formed in an oval shape as a whole in plan view, and is formed at the end in the length direction. The inner surfaces (curved surfaces) are tapered surfaces 15A and 15B, respectively.

さらに前記一対の電極板11A、11Bのうちの一方の電極板11Aには、スペーサ板13の長孔15の一方の端部15Aに対応する位置に流入口19Aが形成され、また他方の電極板11Bには、スペーサ板13の長孔15の他方の端部15Bに対応する位置に流出口19Bが形成されている。また電極板11Aの流入口19Aの外側には、フランジ付き中空短円筒状の導入部材21Aが、絶縁パッキング23Aを介して複数のビス25により取付けられており、電極板11Bの流出口19Bの外側には、同様にフランジ付き中空短円筒状の導出部材21Bが、絶縁パッキング23Bを介して複数のビス27により取付けられている。   Furthermore, in one electrode plate 11A of the pair of electrode plates 11A and 11B, an inlet 19A is formed at a position corresponding to one end 15A of the long hole 15 of the spacer plate 13, and the other electrode plate is formed. An outlet 19 </ b> B is formed in 11 </ b> B at a position corresponding to the other end 15 </ b> B of the long hole 15 of the spacer plate 13. In addition, a flanged hollow short cylindrical introduction member 21A is attached to the outside of the inlet 19A of the electrode plate 11A with a plurality of screws 25 via an insulating packing 23A, and the outside of the outlet 19B of the electrode plate 11B. Similarly, a flanged hollow short cylindrical lead-out member 21B is attached with a plurality of screws 27 via an insulating packing 23B.

そしてスペーサ板13における電極板11A、11Bに対向する各面の所定の位置、すなわち長孔15の周縁部に対応する位置には、その長孔15の周縁部に沿って長円形状に連続するOリング嵌入用の凹溝29A、凹溝29Bが形成されている。そしてこれらの凹溝29A、29Bに、それぞれシリコンゴム等の耐熱性に優れた絶縁性電気絶縁材料からなるOリング31A、31Bの横断面の少なくとも一部を嵌入させた状態で、電極板11A、11Bの片側もしくは両側から絶縁ワッシャ33を介して複数のビス(あるいはボルト・ナット)35により両電極11A、11B間を締め付けて、Oリング31A、31Bを弾性圧縮変形させた状態で全体として装置が組立てられる。このとき、スペーサ板13の長孔15により形成される電極板間流路17は、外部に対して電極板11A、11Bとスペーサ板13との間がOリング31A、31Bによってシールされることになる。   Then, at a predetermined position on each surface of the spacer plate 13 facing the electrode plates 11 </ b> A and 11 </ b> B, that is, at a position corresponding to the peripheral edge of the long hole 15, the ellipse continues along the peripheral edge of the long hole 15. A concave groove 29A and a concave groove 29B for inserting an O-ring are formed. The electrode plates 11A, 29A, 29B are fitted with at least part of the cross-sections of the O-rings 31A, 31B made of an insulating electrical insulating material having excellent heat resistance such as silicon rubber in the concave grooves 29A, 29B. The apparatus as a whole is in a state where the O-rings 31A and 31B are elastically compressed and deformed by tightening between the electrodes 11A and 11B by a plurality of screws (or bolts and nuts) 35 from one side or both sides of the 11B through an insulating washer 33. Assembled. At this time, the flow path 17 between the electrode plates formed by the long holes 15 of the spacer plate 13 is sealed between the electrode plates 11A and 11B and the spacer plate 13 by the O-rings 31A and 31B. Become.

なお電極板11A、11Bにおけるビス貫通孔37には、絶縁カラー39が挿着されている。また電極板11A、11Bにおける符号41の部分は、ビス螺合用のねじ孔であり、さらにスペーサ板13における符号43の部分は、ビス挿通用の貫通孔である。   Insulating collars 39 are inserted into the screw through holes 37 in the electrode plates 11A and 11B. Moreover, the part of the code | symbol 41 in electrode plate 11A, 11B is a screw hole for screw screwing, and the part of the code | symbol 43 in the spacer plate 13 is a through-hole for screw insertion.

以上のような図10〜図13に示す装置を用いて液体食品材料を交流高電界法により殺菌するにあたっては、殺菌すべき対象となる液体食品材料を外部から導入部材21Aに連続的に導入する。導入部材21Aに連続的に導入された液体食品材料は、電極板11Aの流入口19Aを経て、スペーサ板13の長孔15によって区画形成された電極板間流路17に流入し、その流路17内を長孔15の長さ方向に沿って流れて、電極板11Bの流出口19Bを経て、導出部材21Bから外部へ排出される。そしてその間、電極板11A、11Bの間に交流高電圧を加えることによって、長孔15内の流路17中において液体食品材料の殺菌が連続的に行なわれる。ここで、電極板11A、11Bの間に加える交流高電圧は、電極板11A、11Bの間の間隔(≒スペーサ板13の厚み)の1mm当り50乃至100V以上、通常は1mm当り数百Vから1000V以上の高電圧とする。また電極板11A、11B間の間隔自体は、流量等によっても異なるが、0.5mm程度から20mm程度の狭い幅とするのが一般的であり、したがって実際に電極板11A、11B間に加える電圧は、少なくとも数百V以上、通常は1000〜2000V以上の著しく高い電圧となる。   When the liquid food material is sterilized by the AC high electric field method using the apparatus shown in FIGS. 10 to 13 as described above, the liquid food material to be sterilized is continuously introduced from the outside into the introduction member 21A. . The liquid food material continuously introduced into the introduction member 21A passes through the inlet 19A of the electrode plate 11A and flows into the inter-electrode plate flow path 17 defined by the long holes 15 of the spacer plate 13, and the flow path. 17 flows along the length direction of the long hole 15 and is discharged from the outlet member 21B to the outside through the outlet 19B of the electrode plate 11B. In the meantime, by applying an alternating high voltage between the electrode plates 11A and 11B, the liquid food material is continuously sterilized in the flow path 17 in the long hole 15. Here, the AC high voltage applied between the electrode plates 11A and 11B is 50 to 100 V or more per 1 mm of the distance between the electrode plates 11A and 11B (≈the thickness of the spacer plate 13), usually from several hundred V per 1 mm. High voltage of 1000V or higher. Further, although the interval between the electrode plates 11A and 11B itself varies depending on the flow rate or the like, it is generally a narrow width of about 0.5 mm to about 20 mm, and therefore the voltage actually applied between the electrode plates 11A and 11B. Becomes a remarkably high voltage of at least several hundred V or more, usually 1000 to 2000 V or more.

また液体食品材料に対する交流高電圧印加時間、すなわち流路17内における液体食品材料の滞留時間は、対象物によっても異なるが、通常は1秒以内、例えば0.1秒の極めて短い時間とするのが一般的である。
特許第2848591号公報 特許第2964037号公報
Also, the AC high voltage application time for the liquid food material, that is, the residence time of the liquid food material in the flow path 17 varies depending on the object, but is usually within 1 second, for example, an extremely short time of 0.1 second. Is common.
Japanese Patent No. 2848591 Japanese Patent No. 2964037

交流高電界殺菌法では、前述のように極めて狭い電極板間の流路において高電圧を印加するところから、電極板間でスパークが発生しやすいという根本的な問題がある。   In the AC high electric field sterilization method, since a high voltage is applied in the flow path between extremely narrow electrode plates as described above, there is a fundamental problem that sparks are easily generated between the electrode plates.

このように電極板間でスパークが発生すれば、電極板の表面が急激に著しい高温となって局部的に溶融もしくは損傷したり、また電極表面に液体食品材料成分が焦げ付いて液体食品材料の品質劣化を招いたりしてしまう。またスパークが発生すれば、急激に過大電流が流れて電源出力が急激に不安定となったり、電極装置が損傷したりして、そのまま安定した運転を行なうことが困難となる。また前述のように一旦スパークの発生により電極表面が局部的に溶融したり電極表面に食品材料成分が焦げ付いたりした電極を、そのまま再使用もしくは連続使用すれば、電極表面に生じた凹凸によってさらにスパークが発生しやすくなって、実際上運転が全く不可能となってしまう。   If sparks occur between the electrode plates in this way, the surface of the electrode plates suddenly becomes extremely hot and locally melts or is damaged, or the liquid food material components burn on the electrode surface and the quality of the liquid food material It will cause deterioration. In addition, if a spark is generated, an excessively large current flows and the power output suddenly becomes unstable, or the electrode device is damaged, making it difficult to perform stable operation as it is. In addition, as described above, once the electrode surface is locally melted due to the occurrence of sparks or the food material component is burnt on the electrode surface, if the electrode is reused or continuously used, the sparks generated by the unevenness on the electrode surface further spark. Is likely to occur, and the operation is practically impossible at all.

ここで、交流高電界殺菌装置の電源には、過大電流が流れないように安全装置を設けておくことが多く、その場合スパークの発生により過大電流が流れれば、直ちに電源が停止されるが、その場合でも、操業の一時的停止を招いて生産性を阻害してしまう。また仮に電源装置が停止されたとしても、スパーク発生から電源停止までの間において電極表面に食品材料成分が焦げ付いたり、電極表面が局部的に溶融もしくは損傷したりすることにより、電極の再使用が困難となることが多いのである。   Here, the power source of the AC high electric field sterilizer is often provided with a safety device so that an excessive current does not flow. In this case, if an excessive current flows due to the occurrence of a spark, the power supply is immediately stopped. Even in this case, the operation is temporarily stopped and productivity is hindered. Even if the power supply is shut down, it is possible to reuse the electrode due to food material components scorching on the electrode surface or local melting or damage of the electrode surface during the period from the occurrence of spark to the power shutdown. It is often difficult.

したがって交流高電界殺菌法を実用化するにあたっては、スパークの発生を可及的に抑制することが重要な課題となっている。   Therefore, in putting the AC high electric field sterilization method into practical use, it is an important issue to suppress the generation of sparks as much as possible.

ところで電極間に交流高電界を印加した場合、対向する電極の表面に尖った部分(エッジ部分)が存在すると、その部分に電流集中が生じて、スパークが一層発生しやすくなる。そこで前述の図6、図7に示す特願2006−270634の提案の交流高電界殺菌装置では、Oリング31A、31Bを嵌入させる凹溝29A、29Bの形成位置を、電極板11A、11Bの側ではなく、スペーサ板13の側とすることによって、電極板11A、11Bの表面に存在するエッジ部分を少なくし、かつまた流入口19A、流出口19Bに対向する電極面をスペーサ板13のテーパー面15A、15Bで覆うこととし、これによってスパークの発生を従来よりも格段に少なくすることが可能となった。   When an alternating high electric field is applied between the electrodes, if there is a pointed portion (edge portion) on the surface of the opposing electrode, current concentration occurs in that portion, and sparks are more likely to occur. Therefore, in the proposed AC high electric field sterilization apparatus of Japanese Patent Application No. 2006-270634 shown in FIG. 6 and FIG. 7, the formation positions of the concave grooves 29A and 29B into which the O-rings 31A and 31B are inserted are arranged on the side of the electrode plates 11A and 11B. Rather than being on the spacer plate 13 side, the edge portions existing on the surfaces of the electrode plates 11A and 11B are reduced, and the electrode surfaces facing the inlet 19A and outlet 19B are tapered surfaces of the spacer plate 13. By covering with 15A and 15B, it was possible to significantly reduce the occurrence of sparks as compared with the prior art.

しかるに本発明者等がさらに実験・検討を進めたところ、水に近い液体などの低粘度の流動性食品材料の場合には、確かに前記提案の考え方によりスパークの発生を極めて少なくすることが可能となったが、比較的高粘度の流動性食品材料、例えばマヨネーズ等の場合には、ある程度はスパークの発生を抑制することはできても、実用可能な程度までには至っていないことが判明した。   However, as a result of further experiments and examinations by the present inventors, in the case of a low-viscosity fluid food material such as a liquid close to water, it is possible to significantly reduce the occurrence of sparks by the above-mentioned idea. However, in the case of a fluid food material having a relatively high viscosity, such as mayonnaise, it has been found that although it can suppress the occurrence of sparks to some extent, it has not reached a practical level. .

したがってこの発明は、比較的高粘度の流動性食品材料を対象とする場合でも、スパークの発生頻度を抑え、これにより比較的高粘度の流動性食品材料に対しても交流高電界殺菌法を実際に適用し得るようにした装置を提供することを課題としている。   Therefore, the present invention suppresses the frequency of occurrence of sparks even when a relatively high viscosity fluid food material is targeted, and thus the AC high electric field sterilization method is actually applied to a relatively high viscosity fluid food material. It is an object to provide an apparatus that can be applied to the above.

本発明者等が交流高電界殺菌装置における電極間でのスパーク発生状況について実験・検討を重ねたところ、流路内における電極板表面近くの領域において流動性食品材料が過加熱される現象、すなわち流路内の中心部領域と電極板表面近くの領域とで温度差(いわゆる温度ムラ)が生じ、その電極板表面近くで過加熱された流動性食品材料に突沸が生じて、突沸による気泡がスパークを引起す主原因となっていることが知見された。そして特にこの種の交流高電界殺菌装置では、電極板間の間隔が0.5〜20mm程度と、著しく狭いため、微細な気泡が発生しただけでも、スパークが生起されてしまうことが知見された。   When the inventors repeated experiments and examinations on the occurrence of sparks between the electrodes in the AC high electric field sterilizer, a phenomenon in which the fluid food material is overheated in the region near the electrode plate surface in the flow path, that is, A temperature difference (so-called temperature unevenness) occurs between the central area in the flow path and the area near the electrode plate surface, bumping occurs in the fluid food material heated near the electrode plate surface, and bubbles due to bumping are generated. It was found that this is the main cause of sparks. And especially in this kind of alternating current high electric field sterilizer, since the interval between the electrode plates is remarkably narrow, about 0.5 to 20 mm, it has been found that even if fine bubbles are generated, sparks are generated. .

さらに、比較的高粘度の流動性食品材料を対象とした場合、電極板表面に対する粘性抵抗が大きいため、流動性食品材料の流速が電極板表面に接して流れる領域で、電極板間の中心部付近よりも著しく小さくなり(いわゆる層流が生じ)、流路断面方向に流速のばらつきが発生してしまうが、このようにして電極板表面近くの領域で流動性食品材料の流速が小さくなれば、その領域では流動性食品材料の自己抵抗発熱により過加熱される傾向が強まり、その結果気泡の発生、ひいてはスパークの発生が生じやすいことが判明した。   Furthermore, when a relatively high viscosity fluid food material is targeted, the viscous resistance to the electrode plate surface is large, so the flow rate of the fluid food material flows in contact with the electrode plate surface in the center between the electrode plates. It becomes significantly smaller than the vicinity (so-called laminar flow occurs), and the flow velocity varies in the direction of the cross section of the flow path. If the flow velocity of the fluid food material is reduced in the region near the electrode plate surface in this way, In that region, it became clear that the tendency of overheating due to the self-resistance heat generation of the flowable food material became stronger, and as a result, the generation of bubbles and consequently the occurrence of sparks was likely to occur.

そしてこのような本発明者等の新規な知見に基づき、比較的粘度の高い流動性食品材料について、スパークの発生を招くことなく交流高電界殺菌を行ない得る装置を開発するべく、鋭意実験・検討を重ねた結果、流動性食品材料に交流高電圧を印加するための電極板に、その電極板の流路側の面に接して流れる流動性食品材料から熱を奪うための抜熱手段を設けておくことによって、比較的粘度の高い流動性食品材料でも、スパークの発生を招くことなく安定して交流高電界殺菌を行ない得ることを見出し、この発明をなすに至ったのである。   And based on such novel knowledge of the present inventors, in order to develop a device that can perform AC high electric field sterilization without causing the occurrence of sparks on a fluid food material having a relatively high viscosity, intensive experiments and examinations As a result, the electrode plate for applying an alternating high voltage to the flowable food material is provided with a heat removal means for removing heat from the flowable food material flowing in contact with the flow path side surface of the electrode plate. As a result, it has been found that even a fluid food material having a relatively high viscosity can be stably sterilized with an alternating current and high electric field without causing the occurrence of sparks, and the present invention has been made.

具体的には、請求項1の発明の交流高電界殺菌装置は、平行一対の電極板間に、その電極板の板面と平行な方向に流動性食品材料を流す流路を区画形成しておき、流路内において前記一対の電極板間に交流高電圧を印加して、流路内の流動性食品材料を殺菌するようにした交流高電界殺菌装置において、前記一対の電極板に、その電極板の流路側の面に接して流れる流動性食品材料から熱を奪うための抜熱手段を設けたことを特徴とするものである。   Specifically, the AC high electric field sterilizer according to the invention of claim 1 defines a flow path for flowing a fluid food material in a direction parallel to the plate surface of the electrode plate between a pair of parallel electrode plates. In the AC high electric field sterilization apparatus in which an alternating high voltage is applied between the pair of electrode plates in the flow path to sterilize the flowable food material in the flow path, A heat removal means is provided for removing heat from the fluid food material flowing in contact with the flow path side surface of the electrode plate.

また請求項2の発明の交流高電界殺菌装置は、請求項1に記載の交流高電界殺菌装置において、前記抜熱手段として、前記一対の電極板における流路に対し反対側の面に、その面から突出する良熱伝導性材料からなるフィン部材が設けられていることを特徴とするものである。   Moreover, the AC high electric field sterilization apparatus of the invention of claim 2 is the AC high electric field sterilization apparatus according to claim 1, wherein the heat removal means is provided on a surface opposite to the flow path in the pair of electrode plates. A fin member made of a highly heat-conductive material protruding from the surface is provided.

そしてまた請求項3の発明の交流高電界殺菌装置は、請求項2に記載の交流高電界殺菌装置において、さらに前記フィン部材に対して冷風を吹き付けるための送風手段を有していることを特徴とするものである。   The AC high electric field sterilizer according to the invention of claim 3 is the AC high electric field sterilizer according to claim 2, further comprising a blowing means for blowing cold air to the fin member. It is what.

さらに請求項4の発明の交流高電界殺菌装置は、請求項3に記載の交流高電界殺菌装置において、さらに、前記各電極板の温度を検出するための電極板温度検出手段と、流路の出口において流動性食品材料の温度を検出するための食品材料出口温度検出手段とを備え、かつ前記送風手段には、電極板温度検出手段と食品材料出口温度検出手段の検出温度に応じて送風を制御する制御手段が設けられていることを特徴とするものである。   Furthermore, the AC high electric field sterilizer according to the invention of claim 4 is the AC high electric field sterilizer according to claim 3, further comprising electrode plate temperature detecting means for detecting the temperature of each electrode plate, Food material outlet temperature detecting means for detecting the temperature of the flowable food material at the outlet, and the air blowing means sends air according to the detection temperatures of the electrode plate temperature detecting means and the food material outlet temperature detecting means. Control means for controlling is provided.

さらにまた請求項5の発明の交流高電界殺菌装置は、請求項1に記載の交流高電界殺菌装置において、前記各電極板に冷却媒体通路が設けられており、その冷却媒体通路に液体冷媒を流すことにより電極板の流路側の面に接して流れる流動性食品材料から抜熱するように構成したことを特徴とするものである。   Furthermore, the AC high electric field sterilizer according to the invention of claim 5 is the AC high electric field sterilizer according to claim 1, wherein a cooling medium passage is provided in each of the electrode plates, and a liquid refrigerant is supplied to the cooling medium passage. It is configured to remove heat from the flowable food material flowing in contact with the flow path side surface of the electrode plate by flowing.

またさらに請求項6の発明の交流高電界殺菌装置は、請求項1〜請求項5のいずれかの請求項に記載の交流高電界殺菌装置において、前記平行一対の電極板間に、電気絶縁性材料からなるスペーサ板が挟まれており、そのスペーサ板には、一方の板面から他方の板面まで貫通しかつ板面に沿った方向に伸びる流露区画形成用の長孔が形成され、かつ前記一対の電極板のうちの一方の電極板には、スペーサ板の長孔の一方の端部に対応する位置に流入口が開口形成され、また他方の電極板には、スペーサ板の長孔の他方側の端部に対応する位置に流出口が形成されて、前記流入口からスペーサ板の長孔を経て流出口に至る流路が区画形成されていることを特徴とするものである。   Furthermore, the AC high electric field sterilizer according to the invention of claim 6 is the AC high electric field sterilizer according to any one of claims 1 to 5, wherein an electrical insulating property is provided between the pair of parallel electrode plates. A spacer plate made of a material is sandwiched, and the spacer plate is formed with a long hole for forming a dew compartment that penetrates from one plate surface to the other plate surface and extends in a direction along the plate surface, and One electrode plate of the pair of electrode plates has an inflow opening formed at a position corresponding to one end of the long hole of the spacer plate, and the other electrode plate has a long hole of the spacer plate. An outflow port is formed at a position corresponding to the other end of the gas flow channel, and a flow path from the inflow port to the outflow port through the long hole of the spacer plate is defined.

また請求項7の発明の交流高電界殺菌装置は、請求項1〜請求項5のいずれかの請求項に記載の交流高電界殺菌装置において、平行一対の電極板の間に電気絶縁性材料からなるスペーサ板が挟まれており、そのスペーサ板には、その一方の板面から他方の板面まで貫通しかつ板面に沿った方向に伸びる流路区画用の長孔が形成されており、前記一対の電極板のうちの一方の電極板には、スペーサ板の長孔の一方側の端部に対応する位置に流入口が開口形成され、他方の電極板には、スペーサ板の長孔の他方側の端部に対応する位置に流出口が開口形成されて、前記流入口からスペーサ板の長孔を経て流出口に至る流路が区画形成され、さらにスペーサ板の長孔の周縁部分とそれに対応する前記各電極板との間には、それぞれ弾性絶縁材料からなるOリングが介挿され、両電極板間を締め付けることによって前記Oリングにより前記流路が外部に対してシールされた構成とされており、前記流入口から流路内に殺菌対象となる液体食品材料を連続的に導入し、かつ前記流出口から連続的に流路内の液体食品材料を排出するとともに、前記一対の電極板間に交流高電圧を印加して、流路内の液体食品材料を殺菌するように構成されており、さらに前記スペーサ板の両板面における長孔の周縁部分に、それぞれ長孔の周方向に沿って連続する凹溝を形成するとともに、その凹溝に対応する電極板の表面は平坦面としておき、前記凹溝にOリングの横断面の少なくとも一部を嵌入させて、スペーサ板と電極板との間をOリングによりシールするようにしたことを特徴とするものである。   An AC high electric field sterilization apparatus according to a seventh aspect of the invention is the AC high electric field sterilization apparatus according to any one of the first to fifth aspects, wherein the spacer is made of an electrically insulating material between a pair of parallel electrode plates. A plate is sandwiched, and the spacer plate is formed with a long hole for a flow path partition that extends from one plate surface to the other plate surface and extends in a direction along the plate surface. In one of the electrode plates, an inflow opening is formed at a position corresponding to one end of the long hole of the spacer plate, and the other of the long holes of the spacer plate is formed in the other electrode plate. An outlet is formed at a position corresponding to the end on the side, a flow path from the inlet to the outlet through the elongated hole of the spacer plate is formed, and the peripheral portion of the elongated hole of the spacer plate and Between each of the corresponding electrode plates, an elastic insulating material is used. An O-ring is inserted, and the flow path is sealed to the outside by the O-ring by tightening between both electrode plates, and the liquid to be sterilized from the inlet to the flow path Liquid food material in the flow path is introduced by continuously introducing the food material and discharging the liquid food material in the flow path continuously from the outlet and applying an alternating high voltage between the pair of electrode plates. Constructed to sterilize the material, and further, in the peripheral edge portion of the long hole on both plate surfaces of the spacer plate, each forming a continuous groove along the circumferential direction of the long hole, corresponding to the groove The surface of the electrode plate is a flat surface, and at least part of the cross section of the O-ring is fitted into the concave groove so that the space between the spacer plate and the electrode plate is sealed by the O-ring. To do.

そしてまた請求項8の発明の交流高電界殺菌装置は、請求項7に記載の交流高電界殺菌装置において、前記スペーサ板における長孔の長さ方向両端部の内面がテーパー面とされ、電極板の流入口および流出口が、それぞれ流路側において前記テーパー面に対向するように構成したことを特徴とするものである。   The AC high electric field sterilization apparatus according to claim 8 is the AC high electric field sterilization apparatus according to claim 7, wherein inner surfaces of both end portions in the length direction of the long holes in the spacer plate are tapered surfaces. The inflow port and the outflow port are configured to face the tapered surface on the flow path side.

この発明の流動性食品材料はの交流高電界殺菌装置によれば、電極板に抜熱手段を設けておくことによって、電極板の流路側の表面に接する流動性食品材料の過度な温度上昇を抑え、これによって粘度が比較的高い流動性食品材料の場合でも、電極板表面での突沸の発生を抑えて、スパークの発生を防止することができ、そのためスパークにより電極板表面が溶融もしくは損傷したり、流動性食品材料が電極板表面に焦げ付いたりすることを有効に防止でき、また操業を安定化することができ、したがって交流高電界殺菌法を、マヨネーズ等の比較的粘度の高い流動性食品材料に対しても実際に適用可能となった。   According to the AC high electric field sterilization apparatus of the fluid food material of the present invention, an excessive temperature rise of the fluid food material in contact with the surface of the electrode plate on the flow path side is provided by providing a heat removal means on the electrode plate. Therefore, even in the case of a fluid food material having a relatively high viscosity, the occurrence of bumping on the surface of the electrode plate can be suppressed and the occurrence of sparks can be prevented, so that the electrode plate surface is melted or damaged by the spark. It is possible to effectively prevent the fluid food material from scorching on the electrode plate surface and to stabilize the operation. Therefore, the AC high electric field sterilization method is applied to the fluid food with relatively high viscosity such as mayonnaise. It can be applied to materials.

図1〜図3にこの発明の交流高電界殺菌装置の一実施例の構成を示す。なお図1、図2において、図6、図7に示した先行技術による交流高電界殺菌装置の構成要素と同一の要素については同一の符号を付し、その詳細は省略する。   1 to 3 show the configuration of an embodiment of the AC high electric field sterilizer according to the present invention. 1 and 2, the same components as those of the prior art AC high electric field sterilizer shown in FIGS. 6 and 7 are denoted by the same reference numerals, and the details thereof are omitted.

図1〜図3においては、各電極板11A、11Bの外表面(流路17に対して反対側の面)には、電極板11A、11B間の流路17のうち、流入口19A、流出口19Bの付近を除いた部分の可及的に広い面積に渡って、熱伝導性の良好な材料、例えばアルミニウム材料からなる薄板状の熱拡散用シート51が、その外表面に面接触するように設けられており、さらにその熱拡散用シート51の表側には、抜熱手段として、複数(図示の例では各電極板についてそれぞれ4個)のフィン部材53が並列状に配置されている。これらのフィン部材53は、アルミニウム材料等の良熱伝導材料からなるものであり、板状の基部53Aから直角状に複数枚の薄板状のフィン部53Bが相互に平行に突出するように作られている。そしてこれらの各フィン部材53と熱拡散用シート51は、これらを貫通するビス55によって電極板11A、11Bに固定されている。   In FIG. 1 to FIG. 3, an inlet 19 </ b> A of the flow path 17 between the electrode plates 11 </ b> A and 11 </ b> B is provided on the outer surface (surface opposite to the flow path 17) of each electrode plate 11 </ b> A and 11 </ b> B. A sheet-shaped heat diffusion sheet 51 made of a material having a good thermal conductivity, for example, an aluminum material, is in surface contact with the outer surface of the portion excluding the vicinity of the outlet 19B as much as possible. Further, a plurality of fin members 53 (four for each electrode plate in the illustrated example) are arranged in parallel on the front side of the heat diffusion sheet 51 as heat extraction means. These fin members 53 are made of a good heat conductive material such as an aluminum material, and are formed such that a plurality of thin plate-like fin portions 53B protrude in parallel with each other at right angles from the plate-like base portion 53A. ing. Each fin member 53 and the thermal diffusion sheet 51 are fixed to the electrode plates 11A and 11B by screws 55 penetrating them.

さらに、図1〜図3には示していないが、前記フィン部53Bに対応する位置には、フィン部53Bに対して冷風(通常は常温の空気もしくは予め常温より低温に冷却した空気)を吹付けるための送風手段、例えば送風ファンが設けられている。   Although not shown in FIGS. 1 to 3, cold air (usually air at normal temperature or air previously cooled to a temperature lower than normal temperature) is blown to the fin portion 53B at a position corresponding to the fin portion 53B. Blowing means for attaching, for example, a blower fan is provided.

以上に説明した点以外の構成、特に内部の流路部分の構成については、図6、図7に示した先行技術による交流高電界殺菌装置と同様である。但し、図1〜図3では、図面の簡略化のため、図6、図7に示されている導入部材21A、導出部材21B、ビス35を取外した状態で示している。   The configuration other than the points described above, in particular, the configuration of the internal flow path portion, is the same as that of the AC high electric field sterilizer according to the prior art shown in FIGS. However, in FIGS. 1 to 3, for simplification of the drawings, the introduction member 21 </ b> A, the lead-out member 21 </ b> B, and the screw 35 shown in FIGS. 6 and 7 are removed.

以上のところにおいて、電極板11A、11B間に交流高電圧を印加しながら、殺菌すべき対象となる流動性食品材料を外部から流入口19Aを経て流路17内に連続的に導入すれば、既に図6、図7について説明したように、流路17内において流動性食品材料の交流高電界殺菌が連続的になされる。このとき、流路17内では、流動性食品材料の有する固有抵抗によって発熱して温度上昇するが、既に述べたように電極板11A、11B近くの領域では、電極板11A、11Bの間の中央位置(流路中心位置)付近と比較して、より高温となる傾向を示すが、電極板11A、11Bの外面側には熱拡散用シート51を介してフィン部材53が取付けられており、そのため電極板11A、11Bの近傍を流れる流動性食品材料の熱は、電極板11A、11Bから熱拡散用シート51を経てフィン部材53に熱伝導により伝達され、表面積が大きいフィン部材53のフィン部53Bによって外部空間に放熱される。このとき、図示しない前記送風手段を作動させて、フィン部53Bに冷風を吹付けておけば、フィン部53Bからの放熱効果を一層高めることができる。このようにして電極板11A、11Bの近傍の流動性食品材料から抜熱することにより、その付近で流動性食品材料が高温となることが防止される。   In the above place, if an alternating current high voltage is applied between the electrode plates 11A and 11B, a fluid food material to be sterilized is continuously introduced from the outside into the flow path 17 through the inlet 19A. As already described with reference to FIGS. 6 and 7, the alternating high electric field sterilization of the fluid food material is continuously performed in the flow path 17. At this time, in the flow path 17, heat is generated due to the inherent resistance of the fluid food material and the temperature rises. However, as already described, in the region near the electrode plates 11 A and 11 B, the center between the electrode plates 11 A and 11 B is Compared with the vicinity of the position (flow path center position), the temperature tends to be higher, but the fin member 53 is attached to the outer surface side of the electrode plates 11A and 11B via the heat diffusion sheet 51. The heat of the fluid food material flowing in the vicinity of the electrode plates 11A and 11B is transferred by heat conduction from the electrode plates 11A and 11B to the fin member 53 through the heat diffusion sheet 51, and the fin portion 53B of the fin member 53 having a large surface area. Radiates heat to the external space. At this time, if the air blowing means (not shown) is operated to blow cool air to the fin portion 53B, the heat radiation effect from the fin portion 53B can be further enhanced. By removing heat from the fluid food material in the vicinity of the electrode plates 11A and 11B in this manner, the fluid food material is prevented from reaching a high temperature in the vicinity thereof.

ここで、例えばマヨネーズの如く比較的粘度が高い流動性食品材料の場合には、既に述べたように電極板11A、11Bの表面に沿った領域で粘性抵抗により流速が小さくなっていわゆる層流が生じ、そのため電極板11A、11Bの表面に接している部分では、電極板11A、11Bに接している時間が、中央部付近よりも格段に長くなり、その結果電極板11A、11B付近で流動性食品材料が過度に温度上昇する傾向を示してしまうが、前述のようにフィン部材53、さらには送風手段による抜熱作用により、電極板11A、11Bを介してその電極板11A、11Bに接する領域の流動性食品材料の熱が奪われるから、粘度の高い流動性食品材料の場合も、電極板11A、11Bに接している部分で過度に温度上昇することを回避することができ、その結果、その付近での流動性食品材料の突沸(気泡の発生)によってスパークが生じてしまうことを有効に防止できるのである。   Here, for example, in the case of a fluid food material having a relatively high viscosity such as mayonnaise, as already described, the flow velocity becomes small due to viscous resistance in the region along the surface of the electrode plates 11A and 11B, so-called laminar flow occurs. For this reason, in the portions in contact with the surfaces of the electrode plates 11A and 11B, the time in contact with the electrode plates 11A and 11B becomes much longer than in the vicinity of the central portion, and as a result, the fluidity in the vicinity of the electrode plates 11A and 11B. Although the food material tends to excessively rise in temperature, the region contacting the electrode plates 11A and 11B via the electrode plates 11A and 11B by the heat removal action by the fin member 53 and further the air blowing means as described above. Since the heat of the fluid food material is taken away, even in the case of a fluid food material having a high viscosity, it is avoided that the temperature rises excessively at the portions in contact with the electrode plates 11A and 11B. It can, as a result, it can effectively prevent the spark occurs by bumping of liquid food material in the vicinity of its (generation of bubbles).

また、電極板11A、11B間の間隔は、前述のように0.5〜20mm程度と極めて狭く、電極板11A、11Bの表面付近の流動性食品材料が過度に温度上昇して突沸によりその狭い電極間に気泡が発生すれば、電極板11A、11B間における電界の分布が不均一となって、均一な殺菌効果が得られなくなるおそれがあるが、このような事態の発生をも防止して、確実かつ安定して高い殺菌効果を維持することができる。   Further, the distance between the electrode plates 11A and 11B is extremely narrow as about 0.5 to 20 mm as described above, and the fluid food material near the surface of the electrode plates 11A and 11B rises excessively and becomes narrow due to bumping. If bubbles occur between the electrodes, the electric field distribution between the electrode plates 11A and 11B becomes non-uniform, and there is a risk that a uniform sterilization effect cannot be obtained. It is possible to maintain a high bactericidal effect reliably and stably.

さらに、電極板の側から抜熱することにより、電極板に接している流動性食品材料の温度よりも電極板の温度が低くなるため、電極板表面で流動性食品材料のスケーリング(焦げ付きもしくは凝固、変性)が生じることも防止される。すなわち、電極板の温度が流動性食品材料の温度より高い場合には、流動性食品材料が電極板表面に接した状態で焦げ付きや凝固によるスケーリングが生じやすいが、両者間の温度差を逆転させておくことにより、スケーリングの発生をも防止することができるのである。   Furthermore, by removing heat from the side of the electrode plate, the temperature of the electrode plate becomes lower than the temperature of the fluid food material in contact with the electrode plate. , Denaturation) is also prevented. That is, when the temperature of the electrode plate is higher than the temperature of the fluid food material, the fluid food material is likely to be scorched or scaled due to solidification in contact with the electrode plate surface, but the temperature difference between the two is reversed. By doing so, the occurrence of scaling can also be prevented.

なお、前述のように送風手段を作動させて、フィン部材53に冷風を吹付け、いわゆる衝風冷却(強制空冷)を行なうことにより、抜熱効果は格段に高くなるが、この場合送風手段に、その動作を制御するための制御手段、例えばオンオフ制御する制御手段、あるいは風量(ファンの回転量)を制御する制御手段を設けておくことが望ましい。このように送風手段に制御手段を設けておけば、電極板温度や流路出口側における流動性食品材料の温度などに応じて送風手段を制御して抜熱効果を調整することにより、より確実にスパークの発生を防止することができる。すなわち、スパーク発生防止のためには抜熱効果が高い方が有利であるが、過度に抜熱効果を高めれば、流動性食品材料の全体的な温度上昇量も少なくなって、加熱不足により充分な殺菌効果が得られなくなることもあり、したがって適度に抜熱することが望まれる。そこで前述のように電極板温度や流路出口における流動性食品材料の温度などに応じて送風手段を制御することにより抜熱効果を調整し、これにより適度に抜熱して加熱不足が生じることなく、スパークの発生を確実に防止することが可能となる。   It should be noted that by operating the air blowing means as described above and blowing cool air to the fin member 53 and performing so-called blast cooling (forced air cooling), the heat removal effect is remarkably enhanced. It is desirable to provide control means for controlling the operation, for example, control means for on / off control, or control means for controlling the air volume (fan rotation amount). If the control means is provided in the air blowing means in this way, it is more reliable by adjusting the heat removal effect by controlling the air blowing means according to the electrode plate temperature or the temperature of the flowable food material on the outlet side of the flow path. In addition, the occurrence of sparks can be prevented. That is, in order to prevent the occurrence of sparks, it is advantageous to have a high heat removal effect. However, if the heat removal effect is excessively increased, the overall temperature rise of the flowable food material is reduced, which is sufficient due to insufficient heating. Therefore, it may be difficult to obtain a proper sterilizing effect, and therefore it is desirable to remove heat moderately. Therefore, as described above, the heat removal effect is adjusted by controlling the air blowing means according to the electrode plate temperature or the temperature of the flowable food material at the outlet of the flow path, so that heat is appropriately removed without causing insufficient heating. It is possible to reliably prevent the occurrence of sparks.

具体的には、例えば図4に示すように、一方の電極板11Aにおける流出口19Bに対応する位置、および他方の電極板11Bにおける流入口19Aに対応する位置のそれぞれに、各電極板の背面側から表面近くの位置まで細いセンサ挿入孔61A、61Bを形成しておき、そのセンサ挿入孔61A、61Bに、電極板温度検出手段として熱電対等の温度センサ63A、63Bをその先端(検出部)が電極板表面近くに位置するように挿入しておく。一方、流出口19Bの出口付近のほぼ中心位置には、流動性食品材料の温度を検出するための食品材料出口温度検出手段として、温度センサ65を配置しておく。そして図示しない送風手段の制御部において、電極板温度検出手段としての温度センサ63A、63Bによる検出温度TA1、TA2のそれぞれが、食品材料出口検出手段としての温度センサ65の検出温度TBを上廻らないように、送風手段をオンオフ制御するか、もしくはその風量(ファンの回転数)を制御する構成とする。ここで、温度センサ63A、63Bによって検出される電極板温度TA1、TA2は、各電極板11A、11Bの流路側表面に近い部分の温度であり、したがって流路17内における電極板表面に接する領域での流動性食品材料の温度に近いと言うことができる。一方温度センサ65によって検出される温度TBは、流路17の出口における流動性食品材料の全体的な平均的な温度とみなすことができる。したがってTA1、TA2がTBを上廻らないように制御することは、結果的に、流路17における電極板表面に接する領域での流動性食品材料の温度と、流路の中心領域における流動性食品材料の温度との差が大きくならないように制御することを意味する。   Specifically, for example, as shown in FIG. 4, the back surface of each electrode plate is placed at a position corresponding to the outflow port 19B in one electrode plate 11A and a position corresponding to the inflow port 19A in the other electrode plate 11B. Thin sensor insertion holes 61A and 61B are formed from the side to the position near the surface, and temperature sensors 63A and 63B such as thermocouples are used as electrode plate temperature detection means in the sensor insertion holes 61A and 61B. Is inserted so as to be positioned near the surface of the electrode plate. On the other hand, a temperature sensor 65 is arranged as a food material outlet temperature detecting means for detecting the temperature of the fluid food material at a substantially central position near the outlet of the outlet 19B. And in the control part of the ventilation means which is not shown in figure, each of detection temperature TA1 and TA2 by temperature sensor 63A, 63B as electrode plate temperature detection means does not exceed detection temperature TB of temperature sensor 65 as food material exit detection means. Thus, it is set as the structure which controls on / off of a ventilation means or controls the air volume (rotation speed of a fan). Here, the electrode plate temperatures TA1 and TA2 detected by the temperature sensors 63A and 63B are temperatures near the flow path side surface of the electrode plates 11A and 11B, and are therefore regions in contact with the electrode plate surface in the flow path 17. It can be said that the temperature is close to the temperature of the fluid food material. On the other hand, the temperature TB detected by the temperature sensor 65 can be regarded as the overall average temperature of the flowable food material at the outlet of the flow path 17. Therefore, controlling TA1 and TA2 so as not to exceed TB results in the temperature of the fluid food material in the region in contact with the electrode plate surface in the channel 17 and the fluid food in the center region of the channel. This means that the difference from the temperature of the material is controlled so as not to become large.

実際に上述のような制御を行なうにあたっては、初期状態では送風手段をオフ状態としておき、TA1およびTA2とTBとを比較して、TA1、TA2のうちのいずれか少なくとも一方がTBを越えたときに送風手段をオン動作させて強制空冷を開始するように構成すれば良い。もちろん送風手段をオンとするTA1、TA2とTBとの設定温度差は適宜定めることができ、例えばTA1、TA2がTBよりも2℃以上高くなったときに送風手段をオン状態とするように設定しても良い。あるいはまた、TA1、TA2とTBとの温度差に応じて連続的もしくは段階的に送風手段の風量を変えるように制御しても良い。   When actually performing the control as described above, the blower is turned off in the initial state, and when TA1 and TA2 are compared with TB, at least one of TA1 and TA2 exceeds TB The forced air cooling may be started by turning on the air blowing means. Of course, the set temperature difference between TA1, TA2 and TB that turns on the blowing means can be determined as appropriate. For example, the setting is made so that the blowing means is turned on when TA1 and TA2 are 2 ° C. or more higher than TB. You may do it. Alternatively, it may be controlled to change the air volume of the blowing means continuously or stepwise according to the temperature difference between TA1, TA2 and TB.

なお図4の例では、図2の例とは異なり電極板温度の検出位置との関係から、スペーサ板13にテーパー面15A、15Bを形成していないが、場合によっては図2の例と同様にスペーサ板13にテーパー面15A、15Bを形成しておき、電極板温度検出位置を若干移動させても良いことはもちろんである。   In the example of FIG. 4, unlike the example of FIG. 2, the tapered surfaces 15 </ b> A and 15 </ b> B are not formed on the spacer plate 13 because of the relationship with the detection position of the electrode plate temperature. Of course, the tapered surfaces 15A and 15B may be formed on the spacer plate 13, and the electrode plate temperature detection position may be slightly moved.

さらに、流動性食品材料の初期温度(流入口19Aに流入する流動性食品材料の温度)が高い場合には、電極板表面付近を流れる流動性食品材料の温度も必然的に高くなって、突沸によるスパークも発生しやすくなるから、流入口19A付近において流動性食品材料の初期温度を測定し(あるいはそれ以前の流路で測定し)、その初期温度に応じて送風手段の風量を制御することも可能である。   Furthermore, when the initial temperature of the fluid food material (the temperature of the fluid food material flowing into the inlet 19A) is high, the temperature of the fluid food material flowing in the vicinity of the electrode plate surface inevitably increases. Therefore, the initial temperature of the fluid food material is measured in the vicinity of the inlet 19A (or measured in the previous flow path), and the air volume of the blowing means is controlled according to the initial temperature. Is also possible.

そのほか、目標加熱温度差(流入側の温度と流出側の温度との差)を大きくするべく、電極間の電圧もしくは電流を大きくすることもあるが、この場合もこのような場合も突沸によるスパークが発生しやすくなるところから、電源装置における電圧もしくは電流に応じて送風手段の風量を制御することもできる。   In addition, the voltage or current between the electrodes may be increased in order to increase the target heating temperature difference (difference between the inflow side temperature and the outflow side temperature). Therefore, the air volume of the blowing means can be controlled according to the voltage or current in the power supply device.

なお上述の実施例では、抜熱手段として空冷方式を適用しており、この空冷方式は、他の抜熱手段、例えば水冷あるいは油冷等と比較してコスト面で最も有利であるが、場合によっては水もしくは油等の液体冷媒を用いて抜熱する構成としても良い。   In the above-described embodiment, the air cooling method is applied as the heat removal means, and this air cooling method is most advantageous in terms of cost compared with other heat removal means such as water cooling or oil cooling. Depending on the situation, the heat may be removed using a liquid refrigerant such as water or oil.

例えば図5に示すように電極板11A(11B)に、その内部を貫通する複数の貫通孔71を板面に平行に形成しておき、これらの貫通孔71の相互の間を電極板外部においてU字状結合管73によって結合して、全体として液体冷却媒体通路75とし、この液体冷却媒体通路75に、その一端側の流入口77Aから他端側の流出口77Bに向けて、冷却水もしくは冷却オイル等の液体冷媒を連続的に流すようにすれば良い。   For example, as shown in FIG. 5, in the electrode plate 11A (11B), a plurality of through holes 71 penetrating the inside thereof are formed in parallel to the plate surface, and the space between these through holes 71 is outside the electrode plate. The U-shaped coupling pipe 73 is combined to form a liquid cooling medium passage 75 as a whole, and the cooling water or the liquid cooling medium passage 75 is supplied from the inlet 77A on one end side to the outlet 77B on the other end side. A liquid refrigerant such as cooling oil may be continuously flowed.

またもちろん、電極板11A、11Bの外面側に、別途冷却用ジャケットを設けて、そのジャケット内に冷却水もしくは冷却オイルを流すようにしても良い。   Of course, a separate cooling jacket may be provided on the outer surface side of the electrode plates 11A and 11B, and cooling water or cooling oil may flow through the jacket.

なお液体冷却媒体として水を用いる場合には、一方の電極板の側の冷却水の循環系路と他方の電極板の側の冷却水の循環系路とを全く別にしておくことが必要である。すなわち、両方の電極板の冷却水を共通にした場合には、冷却水を介して電極板間が電気的にショートされてしまうおそれがあるからであり、したがって冷却水系路を完全に電気的に分離・絶縁させておく必要がある。   When water is used as the liquid cooling medium, it is necessary to completely separate the cooling water circulation system on the one electrode plate side and the cooling water circulation system on the other electrode plate side. is there. That is, if the cooling water of both electrode plates is made common, there is a possibility that the electrode plates may be electrically short-circuited via the cooling water, and therefore the cooling water path is completely electrically connected. Must be separated and insulated.

以下に図1〜図3に示す交流高電界殺菌装置を用いた実験例を示す。   The experiment example using the alternating current high electric field sterilizer shown in FIGS.

流動性食品材料としてマヨネーズを用い、電極板の対向面積20mm2、流路長さ4mm、電極板間間隔5mmとし、入口側の流動性食品材料の平均温度と出口側の流動性食品材料の平均温度との差ΔTがほぼ10℃となるように電圧を500Vに設定して、流量120L/hr、流速133cm/secで交流高電界殺菌を実施した。またこの実験においては、電極板表面近くの領域における流動性食品材料の温度は、これを直接測定することは困難であるため、電極板における流出口近くの部分における電極板内部(表面近く)の部分の温度を測定し、この出口側電極板温度を電極板表面近くの領域における流動性食品材料の温度T1とみなすこととした。なお、別に、流出口から出た箇所において流動性食品材料の温度を測定し、これを平均的な流動性食品材料の出口側温度(出口側平均温度)T2とみなした。 Mayonnaise is used as the flowable food material, the opposing area of the electrode plate is 20 mm 2 , the flow path length is 4 mm, and the gap between the electrode plates is 5 mm. The average temperature of the flowable food material on the inlet side and the average of the flowable food material on the outlet side The high voltage electric field sterilization was carried out at a flow rate of 120 L / hr and a flow rate of 133 cm / sec with the voltage set to 500 V so that the difference ΔT with respect to temperature was approximately 10 ° C. In this experiment, it is difficult to directly measure the temperature of the flowable food material in the region near the electrode plate surface. Therefore, the temperature inside the electrode plate (near the surface) in the portion near the outlet of the electrode plate is difficult. The temperature of the portion was measured, and this outlet side electrode plate temperature was regarded as the temperature T1 of the fluid food material in the region near the electrode plate surface. Separately, the temperature of the fluid food material was measured at the location exiting from the outlet, and this was regarded as the average outlet side temperature (outlet side average temperature) T2 of the fluid food material.

その結果、フィン部材を全く設けていない場合においては、T1とT2との差は約15℃であるが、フィン部材を設けた場合にはT1とT2との差は約10℃程度に縮小されることが判明した。さらに、送風ファンを作動させることにより、T1とT2との差は1℃以内に縮小されることが判明した。   As a result, when no fin member is provided, the difference between T1 and T2 is about 15 ° C., but when the fin member is provided, the difference between T1 and T2 is reduced to about 10 ° C. Turned out to be. Furthermore, it has been found that the difference between T1 and T2 is reduced within 1 ° C. by operating the blower fan.

このようにT1とT2との温度差が縮小されたことは、電極板表面近くの領域での流動性食品材料の温度と、流路中心部付近の領域での流動性食品材料の温度との差が小さくなったことを意味する。すなわち、流路中心部付近に対して、電極板表面付近において流動性食品材料が過度に加熱されなかったことを意味する。したがってこの実施例から、この発明の効果が明らかである。   The reduction in the temperature difference between T1 and T2 in this way is that the temperature of the fluid food material in the region near the electrode plate surface and the temperature of the fluid food material in the region near the center of the flow path. It means that the difference has become smaller. That is, it means that the fluid food material was not excessively heated in the vicinity of the electrode plate surface with respect to the vicinity of the center portion of the flow path. Therefore, the effect of the present invention is clear from this embodiment.

この発明の一実施例の交流高電界殺菌装置の正面図である。It is a front view of the alternating current high electric field sterilizer of one Example of this invention. 図1に示される交流高電界殺菌装置の部分切欠正面図である。It is a partial notch front view of the alternating current high electric field sterilizer shown by FIG. 図1に示される交流高電界殺菌装置の左側面図である。It is a left view of the alternating current high electric field sterilizer shown by FIG. この発明の他の実施例の交流高電界殺菌装置の部分切欠正面図である。It is a partial notch front view of the alternating current high electric field sterilizer of other Examples of this invention. この発明のさらに他の実施例の交流高電界殺菌装置における電極板の部分切欠側面図である。It is a partial notch side view of the electrode plate in the alternating current high electric field sterilizer of further another Example of this invention. 本発明者が先に提案した交流高電界殺菌装置の縦断正面図である。It is a vertical front view of the alternating current high electric field sterilizer which the inventor proposed previously. 図6のVII−VII線の位置においてスペーサを示す右側面図である。It is a right view which shows a spacer in the position of the VII-VII line of FIG.

符号の説明Explanation of symbols

11A 電極板
11B 電極板
13 スペーサ板
15 長孔
15A テーパー面
15B テーパー面
17 流路
19A 流入口
19B 流出口
29A 凹面
29B 凹面
31A Oリング
31B Oリング
51 熱拡散用シート
53 フィン部材(抜熱手段)
63A、63B 電極板温度検出手段としての温度センサ
65 食品材料出口温度検出手段としての温度センサ
75 液体冷却媒体通路
11A electrode plate 11B electrode plate 13 spacer plate 15 long hole 15A taper surface 15B taper surface 17 flow channel 19A inflow port 19B outflow port 29A concave surface 29B concave surface 31A O-ring 31B O-ring 51 heat diffusion sheet 53 fin member (heat extraction means)
63A, 63B Temperature sensor as electrode plate temperature detection means 65 Temperature sensor as food material outlet temperature detection means 75 Liquid cooling medium passage

Claims (8)

平行一対の電極板間に、その電極板の板面と平行な方向に流動性食品材料を流す流路を区画形成しておき、流路内において前記一対の電極板間に交流高電圧を印加して、流路内の流動性食品材料を殺菌するようにした交流高電界殺菌装置において、
前記一対の電極板に、その電極板の流路側の面に接して流れる流動性食品材料から熱を奪うための抜熱手段を設けたことを特徴とする、交流高電界殺菌装置。
A flow path for flowing a fluid food material is defined between a pair of parallel electrode plates in a direction parallel to the plate surface of the electrode plate, and an alternating high voltage is applied between the pair of electrode plates in the flow path. Then, in the alternating current high electric field sterilizer that sterilizes the fluid food material in the flow path,
An alternating current high electric field sterilization apparatus, wherein the pair of electrode plates is provided with heat removal means for removing heat from the fluid food material flowing in contact with the flow path side surface of the electrode plates.
請求項1に記載の交流高電界殺菌装置において、
前記抜熱手段として、前記一対の電極板における流路に対し反対側の面に、その面から突出する良熱伝導性材料からなるフィン部材が設けられていることを特徴とする、交流高電界殺菌装置。
In the AC high electric field sterilizer according to claim 1,
An AC high electric field characterized in that, as the heat removal means, a fin member made of a highly heat-conductive material protruding from the surface of the pair of electrode plates opposite to the flow path is provided. Sterilizer.
請求項2に記載の交流高電界殺菌装置において、
さらに前記フィン部材に対して冷風を吹き付けるための送風手段を有していることを特徴とする、交流高電界殺菌装置。
In the AC high electric field sterilizer according to claim 2,
The AC high electric field sterilizer further includes a blowing means for blowing cold air to the fin member.
請求項3に記載の交流高電界殺菌装置において、
さらに、前記各電極板の温度を検出するための電極板温度検出手段と、流路の出口において流動性食品材料の温度を検出するための食品材料出口温度検出手段とを備え、かつ前記送風手段には、電極板温度検出手段と食品材料出口温度検出手段の検出温度に応じて送風を制御する制御手段が設けられていることを特徴とする、交流高電界殺菌装置。
In the AC high electric field sterilizer according to claim 3,
Furthermore, it comprises an electrode plate temperature detecting means for detecting the temperature of each electrode plate, and a food material outlet temperature detecting means for detecting the temperature of the flowable food material at the outlet of the flow path, and the blowing means The AC high electric field sterilizer is characterized in that is provided with a control means for controlling the blowing according to the detected temperatures of the electrode plate temperature detecting means and the food material outlet temperature detecting means.
請求項1に記載の交流高電界殺菌装置において、
前記各電極板に冷却媒体通路が設けられており、その冷却媒体通路に液体冷媒を流すことにより電極板の流路側の面に接して流れる流動性食品材料から抜熱するように構成したことを特徴とする、交流高電界殺菌装置。
In the AC high electric field sterilizer according to claim 1,
Each of the electrode plates is provided with a cooling medium passage, and by flowing a liquid refrigerant through the cooling medium passage, heat is removed from the fluid food material flowing in contact with the flow path side surface of the electrode plate. An AC high electric field sterilizer characterized by the above.
請求項1〜請求項5のいずれかの請求項に記載の交流高電界殺菌装置において、
前記平行一対の電極板間に、電気絶縁性材料からなるスペーサ板が挟まれており、そのスペーサ板には、一方の板面から他方の板面まで貫通しかつ板面に沿った方向に伸びる流路区画形成用の長孔が形成され、かつ前記一対の電極板のうちの一方の電極板には、スペーサ板の長孔の一方の端部に対応する位置に流入口が開口形成され、また他方の電極板には、スペーサ板の長孔の他方側の端部に対応する位置に流出口が形成されて、前記流入口からスペーサ板の長孔を経て流出口に至る流路が区画形成されていることを特徴とする、交流高電界殺菌装置。
In the alternating current high electric field sterilizer according to any one of claims 1 to 5,
A spacer plate made of an electrically insulating material is sandwiched between the pair of parallel electrode plates. The spacer plate penetrates from one plate surface to the other plate surface and extends in a direction along the plate surface. A long hole for forming a flow channel section is formed, and one of the pair of electrode plates has an inlet formed at a position corresponding to one end of the long hole of the spacer plate, The other electrode plate has an outlet formed at a position corresponding to the other end of the long hole of the spacer plate, and a flow path extending from the inlet to the outlet through the long hole of the spacer plate is defined. An alternating current high electric field sterilizer characterized by being formed.
請求項1〜請求項5のいずれかの請求項に記載の交流高電界殺菌装置において、
平行一対の電極板の間に電気絶縁性材料からなるスペーサ板が挟まれており、そのスペーサ板には、その一方の板面から他方の板面まで貫通しかつ板面に沿った方向に伸びる流路区画用の長孔が形成されており、前記一対の電極板のうちの一方の電極板には、スペーサ板の長孔の一方側の端部に対応する位置に流入口が開口形成され、他方の電極板には、スペーサ板の長孔の他方側の端部に対応する位置に流出口が開口形成されて、前記流入口からスペーサ板の長孔を経て流出口に至る流路が区画形成され、さらにスペーサ板の長孔の周縁部分とそれに対応する前記各電極板との間には、それぞれ弾性絶縁材料からなるOリングが介挿され、両電極板間を締め付けることによって前記Oリングにより前記流路が外部に対してシールされた構成とされており、前記流入口から流路内に殺菌対象となる液体食品材料を連続的に導入し、かつ前記流出口から連続的に流路内の液体食品材料を排出するとともに、前記一対の電極板間に交流高電圧を印加して、流路内の液体食品材料を殺菌するように構成されており、さらに前記スペーサ板の両板面における長孔の周縁部分に、それぞれ長孔の周方向に沿って連続する凹溝を形成するとともに、その凹溝に対応する電極板の表面は平坦面としておき、前記凹溝にOリングの横断面の少なくとも一部を嵌入させて、スペーサ板と電極板との間をOリングによりシールするようにしたことを特徴とする、交流高電界殺菌装置。
In the alternating current high electric field sterilizer according to any one of claims 1 to 5,
A spacer plate made of an electrically insulating material is sandwiched between a pair of parallel electrode plates, and the spacer plate has a flow path extending from one plate surface to the other plate surface in a direction along the plate surface. A partitioning long hole is formed, and one of the pair of electrode plates has an inflow opening formed at a position corresponding to one end of the long hole of the spacer plate. In the electrode plate, an outlet is formed at a position corresponding to the other end of the long hole of the spacer plate, and a flow path from the inlet to the outlet through the long hole of the spacer plate is defined. Further, an O-ring made of an elastic insulating material is inserted between the peripheral portion of the long hole of the spacer plate and each of the corresponding electrode plates, and the O-ring is tightened between the two electrode plates. Configuration in which the flow path is sealed to the outside The liquid food material to be sterilized is continuously introduced into the flow path from the inlet, and the liquid food material in the flow path is continuously discharged from the outlet, and the pair of electrodes It is configured to sterilize the liquid food material in the flow path by applying an alternating high voltage between the plates, and further to the peripheral portions of the long holes on both plate surfaces of the spacer plate, respectively, in the circumferential direction of the long holes And a surface of the electrode plate corresponding to the groove is a flat surface, and at least a part of the cross-section of the O-ring is fitted into the groove to form the spacer plate and the electrode. An AC high electric field sterilizer characterized by sealing between the plates with an O-ring.
請求項7に記載の交流高電界殺菌装置において、
前記スペーサ板における長孔の長さ方向両端部の内面がテーパー面とされ、電極板の流入口および流出口が、それぞれ流路側において前記テーパー面に対向するように構成したことを特徴とする、交流高電界殺菌装置。
In the AC high electric field sterilizer according to claim 7,
The inner surface of both ends in the length direction of the long hole in the spacer plate is a tapered surface, and the inflow port and the outflow port of the electrode plate are respectively configured to face the tapered surface on the flow path side, AC high electric field sterilizer.
JP2007167226A 2007-06-26 2007-06-26 AC high electric field sterilizer for fluid food materials Active JP4842890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007167226A JP4842890B2 (en) 2007-06-26 2007-06-26 AC high electric field sterilizer for fluid food materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007167226A JP4842890B2 (en) 2007-06-26 2007-06-26 AC high electric field sterilizer for fluid food materials

Publications (2)

Publication Number Publication Date
JP2009005583A true JP2009005583A (en) 2009-01-15
JP4842890B2 JP4842890B2 (en) 2011-12-21

Family

ID=40321346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007167226A Active JP4842890B2 (en) 2007-06-26 2007-06-26 AC high electric field sterilizer for fluid food materials

Country Status (1)

Country Link
JP (1) JP4842890B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087464A (en) * 2009-10-20 2011-05-06 Frontier Engineering Co Ltd Device and method for producing paste product
KR101255519B1 (en) * 2012-10-16 2013-04-17 제주대학교 산학협력단 Pasteurizing device
US10638545B2 (en) 2018-04-11 2020-04-28 Frontier Engineering Co. Ltd. Continuous heat-treating apparatus for food material and energizing and heating method
CN111248259A (en) * 2020-02-27 2020-06-09 西安交通大学 Fluid food sterilization device and method based on pulse electric field

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398565A (en) * 1989-09-11 1991-04-24 Kirin Brewery Co Ltd Sterilization of liquid food
JPH07135941A (en) * 1993-11-17 1995-05-30 Frontier Eng:Kk Apparatus for heating food ad drink having fluidity
JP2000348848A (en) * 1999-06-03 2000-12-15 Nomura Denshi Kogyo Kk Low-temperature plasma generator
JP2001169734A (en) * 1999-12-17 2001-06-26 Frontier Engineering:Kk Continuous electrically energizing heater for fluid food material
JP2002521185A (en) * 1998-07-24 2002-07-16 ザ・ギタマー・カンパニー Low frequency vibration device
JP2002313528A (en) * 2001-04-17 2002-10-25 Izumi Food Machinery Co Ltd Continuous current carrying heating device for fluid
JP2003000213A (en) * 2001-06-25 2003-01-07 Katsuhiro Ono Sterilization method for granular substance and granular substance sterilizer to be used for the method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0398565A (en) * 1989-09-11 1991-04-24 Kirin Brewery Co Ltd Sterilization of liquid food
JPH07135941A (en) * 1993-11-17 1995-05-30 Frontier Eng:Kk Apparatus for heating food ad drink having fluidity
JP2002521185A (en) * 1998-07-24 2002-07-16 ザ・ギタマー・カンパニー Low frequency vibration device
JP2000348848A (en) * 1999-06-03 2000-12-15 Nomura Denshi Kogyo Kk Low-temperature plasma generator
JP2001169734A (en) * 1999-12-17 2001-06-26 Frontier Engineering:Kk Continuous electrically energizing heater for fluid food material
JP2002313528A (en) * 2001-04-17 2002-10-25 Izumi Food Machinery Co Ltd Continuous current carrying heating device for fluid
JP2003000213A (en) * 2001-06-25 2003-01-07 Katsuhiro Ono Sterilization method for granular substance and granular substance sterilizer to be used for the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011087464A (en) * 2009-10-20 2011-05-06 Frontier Engineering Co Ltd Device and method for producing paste product
KR101255519B1 (en) * 2012-10-16 2013-04-17 제주대학교 산학협력단 Pasteurizing device
US10638545B2 (en) 2018-04-11 2020-04-28 Frontier Engineering Co. Ltd. Continuous heat-treating apparatus for food material and energizing and heating method
CN111248259A (en) * 2020-02-27 2020-06-09 西安交通大学 Fluid food sterilization device and method based on pulse electric field

Also Published As

Publication number Publication date
JP4842890B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP4842890B2 (en) AC high electric field sterilizer for fluid food materials
EP3070533B1 (en) Drying device and recording medium drying system
ES2328425T3 (en) TREATMENT CAMERAS THROUGH HIGH VOLTAGE PULSING ELECTRIC FIELD FOR THE CONSERVATION OF LIQUID FOOD PRODUCTS.
US10433572B2 (en) Process for fast and homogeneously heating a liquid product and apparatus for such process
JP2008136486A (en) Continuous joule heating method and apparatus for food material
JP4982248B2 (en) Food and beverage heating equipment
JP2015150561A (en) Operation method for irradiation device
KR960000089A (en) Food heating sterilization method and food heating sterilizer
JP2000107261A (en) Continuous sterilization device for liquid and continuous sterilization method for liquid
JP2008086259A (en) Alternate-current high electric-field sterilization device for liquid food material
JP2010068727A (en) Coolable electrode, and continuous electric-heating device having the same
JP2010057423A (en) Method for sterilizing liquid food product by shortwave electric field, and sterilization apparatus
JP2007294210A (en) Treatment gas discharging device and surface treatment device equipped with it
JP5494921B2 (en) Heating device
JP2013218983A (en) Heating device
US10638545B2 (en) Continuous heat-treating apparatus for food material and energizing and heating method
JP6918289B2 (en) Liquid food sterilizer and sterilization method
Piyasena et al. Continuous radio-frequency heating of a model viscous solution: Influence of active current, flow rate, and salt content on temperature rise
JP2015195772A (en) Sterilizing apparatus for food and drink
JPH03172161A (en) Continuous heater for food material having fluidity
JP7201220B2 (en) Electric heating device for fluid food material and its control method
JP6833197B2 (en) Joule heating device and Joule heating method
EP0690660A1 (en) Method and apparatus for heating a flowing ionic fluid
JP3534661B2 (en) Heating device
JP7312424B2 (en) Electric heating device and method for fluid food material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100430

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111006

R150 Certificate of patent or registration of utility model

Ref document number: 4842890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250