JPH03172161A - Continuous heater for food material having fluidity - Google Patents
Continuous heater for food material having fluidityInfo
- Publication number
- JPH03172161A JPH03172161A JP1311540A JP31154089A JPH03172161A JP H03172161 A JPH03172161 A JP H03172161A JP 1311540 A JP1311540 A JP 1311540A JP 31154089 A JP31154089 A JP 31154089A JP H03172161 A JPH03172161 A JP H03172161A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- food material
- electrode
- insulating
- electrode body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 83
- 235000013305 food Nutrition 0.000 title claims abstract description 82
- 125000006850 spacer group Chemical group 0.000 claims abstract description 23
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 15
- 238000010438 heat treatment Methods 0.000 claims description 60
- 239000012530 fluid Substances 0.000 claims description 13
- 230000002093 peripheral effect Effects 0.000 abstract description 7
- 238000000034 method Methods 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 239000002826 coolant Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 230000001954 sterilising effect Effects 0.000 description 5
- 238000004659 sterilization and disinfection Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 239000012777 electrically insulating material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000004809 Teflon Substances 0.000 description 2
- 229920006362 Teflon® Polymers 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010411 cooking Methods 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 235000021056 liquid food Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
Landscapes
- Dairy Products (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- General Preparation And Processing Of Foods (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、パイプ内で搬送可能な程度の流動性を有す
る食品材料、例えば液体食品材料や固一液混合食品材料
、あるいはゲル状食品材料などについて、調理等の処理
や殺菌等のために、パイプ内で搬送させつつ連続加熱す
る装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to food materials that have enough fluidity to be conveyed in pipes, such as liquid food materials, solid-liquid mixed food materials, or gel food materials. , relates to a device that continuously heats while being transported in a pipe for processing such as cooking or sterilization.
従来の技術
流動性を有する食品材料を調理等の処理や殺菌等のため
に加熱する方法の一つとしては、その流動性食品材料に
ポンプ等により圧力を加えてパイプ内を搬送させつつ、
そのパイプ内で連続加熱する方法がある。このようにパ
イプ内を搬送させっつ連続加熱する方法では、パイプ内
で加熱された食品材料をそのまま連続的に容器に充填す
ることができるため、加熱から充填までの作業を完全連
続化することができる。Conventional Technology One method of heating fluid food materials for processing such as cooking or sterilization is to apply pressure to the fluid food materials using a pump or the like and transport them through a pipe.
There is a method of continuously heating the pipe. In this method of continuous heating while conveying the food material inside the pipe, the food material heated inside the pipe can be continuously filled into the container as it is, making the process from heating to filling completely continuous. Can be done.
従来、このようにバイブ内を搬送される食品材料を加熱
するための具体的方法としては、パイプの外側を温水や
蒸気、電熱等により加熱する方法が適用されているが、
これらの方法では処理や殺菌に要する時間が長く、処理
能率が低くならざるを得ないとともに、エネルギー効率
も低いという問題がある。Conventionally, as a specific method for heating the food material conveyed inside the vibrator, a method has been applied in which the outside of the pipe is heated using hot water, steam, electric heat, etc.
These methods have problems in that they require a long time for treatment and sterilization, resulting in low treatment efficiency and low energy efficiency.
一方最近では、食品材料に直接通電して、食品材料の有
する電気抵抗により発熱させる所謂ジュール加熱を適用
する方法が適用されるようになっている。このようなジ
ュール加熱によれば、食品材料を直接通電加熱するため
、エネルギー効率が高く、処理能率も高い利点がある。On the other hand, recently, a method of applying so-called Joule heating, in which electricity is directly applied to food materials and heat is generated due to the electrical resistance of the food materials, has been used. According to such Joule heating, the food material is directly heated by electricity, so it has the advantage of high energy efficiency and high processing efficiency.
従来、ジュール加熱を流動性食品材料の連続加熱に適用
した例としては、米国定期刊行物rFOOD ENGI
NEERING,IslIuxry 1988j p
9 9 〜p 1 0 1に示されている加熱システム
がある。この加熱システムでは、流動性を有する食品材
料が搬送される管路内の横断面中央位置に電極を配置し
、かつその電極は内部を中空として空冷する構成として
いる。Conventionally, an example of applying Joule heating to continuous heating of fluid food materials is published in the American periodical rFOOD ENGI.
NEERING, IslIuxry 1988j p
99 to p101. In this heating system, an electrode is disposed at the center of the cross section of a conduit through which fluid food materials are conveyed, and the electrode has a hollow interior and is air-cooled.
発明が解決しようとする課題
前述の米国刊行物に記載されているジュール加熱による
流動性食品材料加熱システムでは、食品材料が搬送され
る管路の横断面中央位置に電極が配置されているため、
食品材料の流れが電極によって妨げられて食品材料を圧
送するためのポンプに余計な負荷を与えてしまう問題が
あるほか、固液混合食品材料の場合、電極部分で固形物
が詰ってしまったり破壊されたりする問題がある。そし
て電極間で食品材料中の固形物が詰って滞留した場合、
固形物が過加熱されて液体成分の加熱状況との間で大き
な差が生じてしまう問題もある。Problems to be Solved by the Invention In the fluid food material heating system using Joule heating described in the above-mentioned US publication, the electrode is placed at the center of the cross section of the conduit through which the food material is conveyed.
In addition to the problem of the flow of food materials being obstructed by the electrodes and putting an unnecessary load on the pump that pumps the food materials, in the case of solid-liquid mixed food materials, the electrodes may become clogged with solids or destroyed. There are some problems that may occur. If solid matter in food materials gets stuck between the electrodes,
There is also the problem that the solid material is overheated and a large difference occurs between the heating conditions of the liquid component and the solid material.
さらに前述の加熱システムでは、電流が管路内の中央部
分(軸線位置付近)を流れるため、放熱の大きい管路内
壁近傍での加熱が充分に行なわれず、菅路内中央部分と
内壁近傍とで温度差が生じやすく、均一な加熱が行なえ
ないおそれがあるという問題もある。またこれに関連し
、電極対を複数に分けて設け、弱電流で加熱温度の微調
整を行なおうとしても、弱電流では管路内中央部分にし
か電流が流れないため、均一な温度微調整が困難となる
問題がある。特に実用機では処理量を大きくするため管
路内径を大きくする必要があるが、その場合には管路内
中央部分に流れる電流と管路内壁付近に流れる電流との
差が一層著しくなって、加熱ムラが大きくなり易い。Furthermore, in the heating system described above, since the current flows through the central part of the pipe (near the axis position), sufficient heating is not performed near the inner wall of the pipe, where heat radiation is large, and the central part of the pipe and the vicinity of the inner wall are There is also the problem that temperature differences tend to occur and uniform heating may not be possible. Also, in connection with this, even if you try to fine-tune the heating temperature by dividing the electrode pairs into multiple parts and using a weak current, the current will only flow in the center of the pipe, so the temperature will be fine and uniform. There is a problem that makes adjustment difficult. In particular, in practical equipment, it is necessary to increase the inner diameter of the pipe in order to increase the throughput, but in this case, the difference between the current flowing in the center of the pipe and the current flowing near the inner wall of the pipe becomes even more significant. Heating tends to become uneven.
このほか、前述の加熱システムでは、管路内の中央部分
に電極を配しているという構造上、電極面積を大きくす
ることができず、そのため通電ムラが生じやすいととも
に、電極の単位面積当りの電流量が大きくなるため電極
のいたみが早いという問題がある。そしてまた、電極面
積が小さいため電極が過加熱しやすい反面、電極は管路
内の中央部分に位置するため放熱が困難であり、そのた
め前述のシステムでは電極を中空にして内部から空冷す
るようにしているが、このような構成では構遺が著しく
複雑となるざるを得ないばかりでなく、電極部分の洗浄
を充分に行ない得ないため微生物による汚染が生じやす
く、そのため殺菌のための加熱装置としては好ましくな
いと言える。In addition, in the heating system described above, the electrode area cannot be increased due to the structure in which the electrode is placed in the center of the conduit, which tends to cause uneven energization and the electrode area per unit area. There is a problem that the electrodes are damaged quickly because the amount of current is large. Furthermore, since the electrode area is small, it is easy for the electrode to overheat, but since the electrode is located in the center of the pipe, it is difficult to dissipate heat. Therefore, in the above-mentioned system, the electrode is made hollow and air-cooled from inside. However, such a configuration not only makes the structure extremely complicated, but also makes it difficult to clean the electrodes sufficiently, making them susceptible to microbial contamination. can be said to be undesirable.
この発明は以上の事情を背景としてなされたもので、流
動性を有する食品材料について管路内を搬送させつつそ
の管路内でジュール加熱により連続加熱する装置におい
て、管路内で電極が食品材料の流れの抵抗となって圧送
用ポンプの負荷が増大したり、管路内での詰まりゃ食品
材料中の固形物の破壊を生じたりすることがな<、シか
も均一に食品材料を連続加熱することができるとともに
加熱温度の微調整も容易であり、さらには構造も簡単で
かつ電極の耐久性も高い連続加熱装置を提供することを
目的とするものである。The present invention has been made against the background of the above circumstances, and includes an apparatus that continuously heats a fluid food material by Joule heating in the pipe while transporting the food material in the pipe. Food materials can be heated continuously and evenly without creating flow resistance and increasing the load on the pressure pump, or clogging the pipes and destroying the solids in the food materials. It is an object of the present invention to provide a continuous heating device that can easily finely adjust the heating temperature, has a simple structure, and has high electrode durability.
課題を解決するための手段
この発明は、基本的には、流動性を有する食品材料につ
いて、管路内を連続的に搬送させつつ、その管路内でジ
ュール加熱により連続加熱する装置において、前記管路
の少なくとも一部が、それぞれ少なくとも内面を電気絶
縁性とした上流側絶縁管体と下流側絶縁管体とによって
形成され、かつ前記上流側絶縁管体と下流側絶縁管体と
の間に、中空円筒状をなす第lの電極体と、中空円筒状
をなしかつ少なくとも内面を電気絶縁性としたスペーサ
管体と、中空円筒状をなす第2の電極体とが直列状に配
設され、しかも隣り合う前記各管体と前記各電極体とは
、管体の内周面と電極体の内周面との間で実質的に段差
がない状態で接していることを特徴とするものである。Means for Solving the Problems This invention basically provides an apparatus for continuously heating a fluid food material by Joule heating in the pipe while continuously transporting the food material in the pipe. At least a part of the conduit is formed by an upstream insulating tube body and a downstream insulating tube body, each of which has at least an electrically insulating inner surface, and between the upstream insulating tube body and the downstream insulating tube body. , a first electrode body having a hollow cylindrical shape, a spacer tube having a hollow cylindrical shape and having at least an electrically insulating inner surface, and a second electrode body having a hollow cylindrical shape are arranged in series. , and each of the adjacent tube bodies and each of the electrode bodies are in contact with each other with substantially no step between the inner circumferential surface of the tube body and the inner circumferential surface of the electrode body. It is.
ここで、管路の長さ方向(食品材料が搬送される方向)
への各電極体の幅は、管路内径の 1/4〜2倍の範囲
内とすることが適当である。またスペーサ管体は、屈曲
した形状とすることができる。Here, the length direction of the pipe (the direction in which food materials are conveyed)
It is appropriate that the width of each electrode body is within the range of 1/4 to 2 times the inner diameter of the pipe. Further, the spacer tube can have a bent shape.
作 用
この発明の連続加熱装置においては、流動性を有する食
品材料が管路内を連続的に搬送される。Function: In the continuous heating device of the present invention, fluid food material is continuously conveyed through the pipe.
流動性を有する食品材料は一般に導電性を有するから、
管路の中途に配設されている第1の電極体と第2の電極
体との間に交流電圧を印加すれば、第1の電極体と第2
の電極体との間で食品材料に交流電流が流れ、食品材料
の有する電気抵抗によって発熱し、所定温度に加熱され
る。Fluid food materials generally have conductivity, so
If an AC voltage is applied between the first electrode body and the second electrode body disposed in the middle of the conduit, the first electrode body and the second electrode body
An alternating current flows through the food material between the food material and the electrode body, and the food material generates heat due to its electrical resistance and is heated to a predetermined temperature.
ここで、各電極体は中空円筒状に作られており、その電
極体および電極体の間のスペーサ管体は、管路の一部を
形成している上流側絶縁管体と下流側絶縁管体との間に
直列状に配設されている。したがって各電極体およびス
ペーサ管体もそれぞれ管路の一部を構成していることに
なる。しかも各管体(上流側絶縁管体、下流側絶縁管体
およびスペーサ管体)と各電極体とは、管体の内周面と
電帰の内周面との間で実質的に段差が生じないように接
している。そのため管路内を搬送される食品材料の流動
が電極体によって妨げられることがないから、食品材料
を搬送させるための圧送用ポンプに余分な負荷が加わる
ことはなく、また食品材料、特に固一液混合食品材料中
の固形物が電極体付近で詰ったり破壊されたりすること
がない。また電極体は搬送される食品材料の全体を取囲
んでいるため、電流が全体的に流れ、食品材料を均一に
加熱することができる。また弱電流でも均一に通電でき
るため、加熱温度の微調整にも適している。Here, each electrode body is made into a hollow cylindrical shape, and the electrode body and the spacer tube between the electrode bodies are connected to the upstream insulating tube and the downstream insulating tube that form part of the conduit. They are arranged in series with the body. Therefore, each electrode body and spacer tube also constitute a part of the conduit. Moreover, each tube (upstream insulating tube, downstream insulating tube, and spacer tube) and each electrode body have substantially no level difference between the inner circumferential surface of the tube and the inner circumferential surface of the electrode. We are taking care to ensure that this does not occur. Therefore, the flow of the food material being conveyed in the pipe is not obstructed by the electrode body, so no extra load is applied to the pressure pump for conveying the food material. Solid matter in the liquid mixed food material will not clog or break near the electrode body. In addition, since the electrode body surrounds the entire food material being transported, current flows throughout the food material and the food material can be heated uniformly. In addition, since even a weak current can be applied uniformly, it is suitable for finely adjusting the heating temperature.
さらに、電極体の内周面面積を大きくしても食品材料の
流れを妨げることがないため、任意に電極体の内周面面
積を大きくすることができ、そのため安定した電流で通
電することができる。またこのように電極体の面積を大
きくして単位電極面積当りの電流量を小さくすることが
でき、しかも電極体自体の放熱が容易であるため電極体
自体の過熱を防止することができるから、電極の傷みを
最小限に抑えることができるとともに、電極体金属の食
品材料中への溶出も最小限に抑えることができる。Furthermore, since increasing the inner peripheral surface area of the electrode body does not impede the flow of food materials, the inner peripheral surface area of the electrode body can be increased arbitrarily, which makes it possible to conduct electricity with a stable current. can. In addition, by increasing the area of the electrode body in this way, the amount of current per unit electrode area can be reduced, and because the heat dissipation of the electrode body itself is easy, overheating of the electrode body itself can be prevented. Damage to the electrode can be minimized, and elution of electrode body metal into food materials can also be minimized.
そしてまた、各電極体やスペーサ管体は、管路中途に直
列に配設すれば良いだけであるから、電極体やスペーサ
管体の取付けが容易であるとともにその構造も単純であ
り、またそのため電極体の洗浄も容易で、微生物の繁殖
を招くことがなく、したがって殺菌のための加熱にも最
適である。Furthermore, since each electrode body and spacer tube body only need to be arranged in series in the middle of the conduit, installation of the electrode body and spacer tube body is easy and the structure is simple. The electrode body is easy to clean and does not breed microorganisms, making it ideal for heating for sterilization.
なお電極体の幅を特に管路の内径の 1/4〜2倍どす
れば、食品材料に一層安定した電流を流すことができる
とともに、温度ムラの発生もより一層確実に防止するこ
とができる。ここで、電極体の幅が管路の内径の1/4
未満では、電極体と食品材料との接触面積が少ないため
、安定した電流を流すことが困難となるおそれがある。If the width of the electrode body is set to 1/4 to 2 times the inner diameter of the conduit, a more stable current can be passed through the food material, and temperature unevenness can be more reliably prevented. . Here, the width of the electrode body is 1/4 of the inner diameter of the conduit.
If it is less than that, the contact area between the electrode body and the food material is small, so it may be difficult to flow a stable current.
また一方、電極体と食品材料との接触界面が最も加熱さ
れやすいところから、電極体の幅が管路の内径の 2倍
を越えれば、電極体に接していた部分と接していなかっ
た部分とで温度差が生じやすくなる。したがって電極体
の幅は管路の内径の 174〜2倍の範囲内とすること
が好ましい。On the other hand, since the contact interface between the electrode body and the food material is most likely to be heated, if the width of the electrode body exceeds twice the inner diameter of the conduit, the part that was in contact with the electrode body and the part that was not in contact with it will be separated. Temperature differences tend to occur. Therefore, the width of the electrode body is preferably within a range of 174 to 2 times the inner diameter of the conduit.
さらに、電極間のスペーサ管体を屈而した形状とすれば
、食品材料の加熱ムラ、温度ムラの発生をより一層確実
に防止して、均一に加熱することが可能となる。すなわ
ち、管路内径が非常に大きくて管路内周部と管路中心部
で電流分布にムラを生じるような場合でも、電極体間の
スペーサ管体を屈[11+させておけば、電極体間で食
品材料も屈曲状に流れることになるから、食品材料が一
方の電極体の位置から他方の電極体の位置まで流れる間
には電流分布のムラの影響が小さくなり、加熱ムラ、温
度ムラが解消されることになる。またスペーサ管体を屈
曲させておくことによりその部分で食品材料を撹拌させ
る効果も得られ、これも加熱ムラ、温度ムラの解消に寄
与することになる。Furthermore, by forming the spacer tube between the electrodes into a bent shape, uneven heating and temperature unevenness of the food material can be more reliably prevented and uniform heating can be achieved. In other words, even if the inner diameter of the pipe is very large and causes uneven current distribution between the inner circumference and the center of the pipe, if the spacer pipe between the electrode bodies is bent [11+], the electrode body Since the food material also flows in a curved manner between the electrodes, the influence of uneven current distribution is reduced while the food material flows from the position of one electrode body to the position of the other electrode body, and heating unevenness and temperature unevenness are reduced. will be resolved. Furthermore, by bending the spacer tube, the food material can be stirred at that portion, which also contributes to eliminating uneven heating and temperature.
実 施 例
第1図にこの発明の連続加熱装置の一例の原理的な構成
を示す。Embodiment FIG. 1 shows the basic structure of an example of the continuous heating device of the present invention.
第1図において、流動性を有する食品材料、例えば固一
液混合食品材料1が搬送される管路2の一部を構成する
上流側絶縁管体3と下流側絶縁管体4はいずれも少なく
とも内周面が電気絶縁性の材料で作られていれば良いが
、一般的には全体を合成樹脂等の電気絶縁材料で構成す
れば良い。これらの上流側絶縁管体3と下流側絶縁管体
4とは所定間隔を置いて配設されており、これらの絶縁
管体3.4の間には、中空円筒状をなす第1の電極体5
と、同じく中空間状をなすスペーサ管体6と、同じく中
空円筒状をなす第2の電極体7とがその順に相互に接す
るように配設されている。第1の電極体5および第2の
電極体7は、良導電性の金屑で作られていれば良く、ア
ルミニウム、アルミニウム含金、チタンもしくはチタン
合金、白金、鉄等を用いることができるが、耐食性およ
び通電中の水素ガス発生による!電障害の防止の観点か
らはチタンもしくはチタン合金を用いることが望ましい
。一方スペーサ管体6は少なくとも内面が電気絶縁性の
材料で構成されていれば良いが、通常はテフロン(商品
名)で知られるフッソ樹脂の如く、摩擦抵抗が少なくし
かも高温で焼付きが生じにくい絶縁性樹脂で全体を構成
すれば良い。In FIG. 1, both an upstream insulating tube 3 and a downstream insulating tube 4, which constitute a part of a conduit 2 through which a fluid food material, for example, a solid-liquid mixed food material 1, is conveyed are at least It is sufficient if the inner peripheral surface is made of an electrically insulating material, but generally the whole may be made of an electrically insulating material such as synthetic resin. These upstream insulating tubes 3 and downstream insulating tubes 4 are arranged at a predetermined interval, and between these insulating tubes 3.4 is a hollow cylindrical first electrode. body 5
A spacer tube body 6, which also has a hollow space shape, and a second electrode body 7, which also has a hollow cylindrical shape, are arranged in this order so as to be in contact with each other. The first electrode body 5 and the second electrode body 7 may be made of gold scrap with good conductivity, and may be made of aluminum, aluminum containing metal, titanium or titanium alloy, platinum, iron, etc. , corrosion resistance and hydrogen gas generation during energization! From the viewpoint of preventing electrical damage, it is desirable to use titanium or a titanium alloy. On the other hand, the spacer tube 6 only needs to be made of an electrically insulating material at least on its inner surface, but it is usually made of fluorocarbon resin, known as Teflon (trade name), which has low frictional resistance and is less likely to seize at high temperatures. The entire structure may be made of insulating resin.
これらの上流側絶縁管体3、第1の電極5、スペーサ管
体6、第2の電極体7、下流側絶縁管体4は、いずれも
同じ内径を有するように作られ、かつ同一の軸線を中心
として直列状に配設されており、したがってそれぞれの
間は内周面部分に段差が生じない構成とされている。These upstream insulating tube body 3, first electrode 5, spacer tube body 6, second electrode body 7, and downstream insulating tube body 4 are all made to have the same inner diameter and the same axis line. They are arranged in series with the center at the center, so that there is no step between them on the inner circumferential surface.
ここで、各電極体5.7の幅Wは、既に述べたように管
路2の内径すなわち各管体3,4.6および電極体5.
7の内径Rに対し、
R/4≦W≦ 2R
となるように設定することが望ましい。Here, as already mentioned, the width W of each electrode body 5.7 is the inner diameter of the conduit 2, that is, the width W of each tube body 3, 4.6 and the electrode body 5.7.
For the inner diameter R of No. 7, it is desirable to set it so that R/4≦W≦2R.
第2図、第3図にはそれぞれこの発明の連続加熱装置の
他の例の原理的な構成を示す。FIGS. 2 and 3 each show the basic structure of another example of the continuous heating device of the present invention.
第2図、第3図の例においては、いずれもスペーサ管体
6が屈曲した構成とされており、その他の点は第1図の
例と同じである。この場合には、第2図、第3図中に示
しているように、スペーサ管体6の管路中心線Qが、電
極体5の中心と電極体7の中心とを結ぶ軸線Pに対し相
対的に変位することになる。したがって既に述べたよう
に、仮に電流分布にムラが生じるような場合であっても
、スペーサ管体6内を搬送される食品材料は電流分布を
横切るように流れることになり、しかも流路の屈tu+
+gともなって撹拌も与えられ、その結果加熱ムラの発
生を最小限に抑えることが可能となる。In the examples shown in FIGS. 2 and 3, the spacer tube body 6 is bent, and other points are the same as the example shown in FIG. 1. In this case, as shown in FIGS. 2 and 3, the pipe center line Q of the spacer tube 6 is relative to the axis P connecting the center of the electrode body 5 and the center of the electrode body 7. There will be a relative displacement. Therefore, as already mentioned, even if the current distribution is uneven, the food material conveyed within the spacer tube 6 will flow across the current distribution, and the bending of the flow path will cause the food material to flow across the current distribution. tu+
+g also provides stirring, and as a result, it is possible to minimize the occurrence of uneven heating.
第4図には、この発明の加熱装置をより具体化した例の
全体構成を示し、第5図、第6図にはその一部の断面を
拡大して示す。FIG. 4 shows the overall configuration of a more specific example of the heating device of the present invention, and FIGS. 5 and 6 show an enlarged cross section of a part thereof.
第4図において、左端の符号10は固一液混合食品材料
などの食品材料を収容するとともに、その食品材料に圧
力を加えて搬送させるためのポンプ機能を有する加圧容
器であり、例えば図示しないプランジャにより機械的に
食品材料を加圧したり、あるいは空気や不活性ガスによ
り食品材料を加圧したりするように構成されている。In FIG. 4, the reference numeral 10 at the left end is a pressurized container that houses food materials such as solid-liquid mixed food materials and has a pump function for conveying the food materials by applying pressure. It is configured to mechanically pressurize the food material with a plunger, or to pressurize the food material with air or an inert gas.
前記加圧容器10の下端から延長された管路2には、圧
力計11、第1のアース電極装[12、加熱電極装置l
3、第2のアース電極装置14、冷却装置15がその順
に設けられており、管路2の先端は排出側容器16に連
結されている。The conduit 2 extending from the lower end of the pressurized container 10 includes a pressure gauge 11, a first earth electrode device [12], and a heating electrode device [12].
3. A second earth electrode device 14 and a cooling device 15 are provided in that order, and the tip of the pipe line 2 is connected to a discharge side container 16.
ここで、前記第1のアース電極装置12は、第5図に詳
細に示すように、管路2を構成する管体2A,2B間に
中空円筒状のアース電極体17を挟み、かつ一対のフラ
ンジ部材18.19および連結ボルト20によって固定
したものであり、またそのアース電極体17にはこれを
貫通して先端が内側の流路内に突出する温度センサ21
が設けられている。したがってこの第1のアース電極装
1112は、アース電極と温度センサを兼ねていること
になる。なお第5図における管体2Bは、第1図、第6
図に示す上流側絶縁管体3に相当する。Here, as shown in detail in FIG. 5, the first earth electrode device 12 includes a hollow cylindrical earth electrode body 17 sandwiched between tube bodies 2A and 2B constituting the conduit 2, and a pair of It is fixed by a flange member 18, 19 and a connecting bolt 20, and a temperature sensor 21 is attached to the ground electrode body 17, the tip of which extends into the inner flow path.
is provided. Therefore, this first ground electrode device 1112 serves as both a ground electrode and a temperature sensor. Note that the tubular body 2B in FIG. 5 is the same as that in FIGS.
This corresponds to the upstream insulating pipe body 3 shown in the figure.
一方第2のアース電極装1114も第1のアース電極装
ffil2と同様に構成されていれば良いが、前述の温
度センサ21は省略することができる。On the other hand, the second earth electrode assembly 1114 may also be configured in the same manner as the first earth electrode assembly ffil2, but the temperature sensor 21 described above can be omitted.
さらに第4図中における加熱電極装置13は、この発明
の装置の要部をなすものであって、原理的には第1図に
示すような構成であれば良いが、その具体的構成を第6
図に示す。第6図において、中空短円筒状をなす電極体
5.7はそれぞれチタンによって作られており、これら
の電極体5.7間に挟まれるスペーサ管体6は、ベーク
ライト等の絶縁材料からなる両側のフランジ状部材22
.23とテフロン等の摩擦抵抗が低くかつ高温で焼付き
が生じにくい絶縁材料からなる中間の円筒体24とによ
って構威されている。そして7ランジ状部材22.23
はその間に円筒体24を挟んだ状態で外周側において連
結ボルト25によって連粘固定され、さらに一方のフラ
ンジ状部材22と上流側絶縁管体3との間、および他方
のフランジ状部材23と下流側絶縁管体4との間は、そ
れらの間に前記電罹体5もしくは7を挟んだ状態で、リ
ング片26.27および連結ボルト28により連結固定
されている。また各電極体5.7からは7ランジ状部材
22.23を貫通して端子棒29.30が引出され、こ
れら端子棒27.30に給電用リード線31.32が接
続されている。ここで、上流側絶縁管体3から下流側絶
縁管体4に至るまでの間の各部材は、その内周面に段差
が生じないように、同じ内径でかつ同一軸線を中心とし
て配列されている。Furthermore, the heating electrode device 13 in FIG. 4 constitutes a main part of the device of the present invention, and in principle it may have the configuration as shown in FIG. 6
As shown in the figure. In FIG. 6, the electrode bodies 5.7 each having a hollow short cylindrical shape are made of titanium, and the spacer tube body 6 sandwiched between these electrode bodies 5.7 has both sides made of an insulating material such as Bakelite. flange-like member 22 of
.. 23 and an intermediate cylindrical body 24 made of an insulating material such as Teflon, which has low frictional resistance and does not easily seize at high temperatures. and 7 langes 22.23
are connected and fixed by connecting bolts 25 on the outer circumferential side with the cylindrical body 24 sandwiched between them, and further between one flange-like member 22 and the upstream insulating tube 3, and between the other flange-like member 23 and the downstream It is connected and fixed to the side insulating tube body 4 by ring pieces 26, 27 and connecting bolts 28, with the electrolytic body 5 or 7 sandwiched between them. Further, terminal bars 29.30 are drawn out from each electrode body 5.7 through seven flange-like members 22.23, and power feeding lead wires 31.32 are connected to these terminal bars 27.30. Here, each member from the upstream insulating tube body 3 to the downstream insulating tube body 4 has the same inner diameter and is arranged around the same axis so that there are no steps on the inner peripheral surface. There is.
また第4図中における冷却装置15は、管路2の周囲を
空気もしくは水等の冷却媒体によって冷却するようにし
たものであって、冷却媒体人口33から冷却媒体を取入
れて管路2の周囲に流し、冷却媒体排出口34から冷却
媒体を排出する構或とされている。The cooling device 15 in FIG. 4 is designed to cool the area around the pipe line 2 with a cooling medium such as air or water, and is designed to cool the area around the pipe line 2 by taking in a cooling medium from a cooling medium population 33. The cooling medium is discharged from the cooling medium discharge port 34.
さらに第4図中における排出側容器16は、下端にバル
ブ35を介して食品材料排出口36を設けるとともに、
上部に圧力計37、安全弁38、ソレノイドバルプ39
を備えたものであって、圧力調整を行なうとともに、下
端の排出口36から加熱済みの食品材料を包装容器等に
注入させたり、あるいは他の工程へ向けて導出したりす
るようになっている。Furthermore, the discharge side container 16 in FIG. 4 is provided with a food material discharge port 36 through a valve 35 at the lower end, and
Pressure gauge 37, safety valve 38, solenoid valve 39 on top
It is equipped with a pressure control system, and is designed to adjust the pressure and to inject the heated food material into a packaging container or the like from the discharge port 36 at the lower end, or to lead it out to other processes. .
なお第4図において、加熱電極装置13と第2のアース
電極装11i14との間の管路の外周上には、仮想線で
示したように保温装140を設けておいても良い。In FIG. 4, a heat retaining device 140 may be provided on the outer periphery of the conduit between the heating electrode device 13 and the second earth electrode device 11i14, as shown by the imaginary line.
以上の第4図、第5図、第6図に示される連続加熱装置
の機能について次に説明する。The functions of the continuous heating device shown in FIGS. 4, 5, and 6 will be described next.
加圧容器10には、図示しないホッパーなどから流動性
食品材料、例えば固一液混合食品材料が注入される。そ
して図示しないブランジャ等により食品材料が加圧され
て、管路2内に連続的に押出される。食品材料は、管路
2においてその給送圧力が圧力計l1により監視されつ
つ、第lのアース電極装1112、加熱電極装1113
、第2のアース電極装置14、冷却装置15を経て排出
側容器16に送られる。この間において、加熱前の食品
材料の温度は第1のアース電極装置l2に設けられた温
度センサ21によって検出される。そして加熱電極装1
113においては、電極体4.5間の食品材料に対して
その電極体4.5から通電されて、ジュール発熱により
加熱される。また加熱電極装置13の外側の食品材料へ
流れる洩れ電流は、アース電極装置12.14によって
アースされ、感電による危険防止が図られる。加熱後の
食品材料は、必要に応じて保温装置40により所定時間
保温された後冷却装置15に至って、所定温度まで急速
冷却され、その後排出側容器16に至る。A fluid food material, such as a solid-liquid mixed food material, is poured into the pressurized container 10 from a hopper (not shown) or the like. Then, the food material is pressurized by a plunger or the like (not shown) and is continuously extruded into the pipe 2. The food material is fed through the pipe line 2, with its feeding pressure being monitored by the pressure gauge l1, and the first earth electrode assembly 1112 and the heating electrode assembly 1113.
, the second earth electrode device 14 , and the cooling device 15 before being sent to the discharge side container 16 . During this time, the temperature of the food material before heating is detected by the temperature sensor 21 provided in the first earth electrode device l2. And heating electrode device 1
At step 113, the food material between the electrode bodies 4.5 is energized from the electrode bodies 4.5 and heated by Joule heat generation. Further, leakage current flowing to the food material outside the heating electrode device 13 is grounded by the earth electrode device 12.14, thereby preventing danger from electric shock. The heated food material is kept warm for a predetermined period of time by a heat insulating device 40 as required, then reaches a cooling device 15 where it is rapidly cooled to a predetermined temperature, and then reaches a discharge side container 16.
なお以上の実施例では、加熱電極装置を1個設けた場合
を示しているが、必要に応じて2個、3個連結して複数
個設ければ、食品材料の品温の微調整がより可能となり
、かつ加熱電極装置をl個だけ設けている場合と比較し
て電極体の損傷も少なくなる。この場合も各電極体間に
既に述べたようなスペーサ管体を設けることは勿論であ
り、かつそれらの間で内周面に段差が生じないようにす
ることも前記同様である。The above example shows the case where one heating electrode device is provided, but if necessary, if two or three devices are connected and multiple devices are provided, the temperature of the food material can be more finely adjusted. This is possible, and damage to the electrode body is also reduced compared to the case where only l heating electrode devices are provided. In this case as well, it goes without saying that the spacer tubes as described above are provided between the electrode bodies, and it is also necessary to prevent any step from occurring on the inner circumferential surface between them, as described above.
発明の効果
前述の説明で明らかなように、この発明の連続加熱装政
は、流動性を有する食品材料を、管路内を連続的に搬送
させつつその管路内でジュール加熱によって連続加熱す
る装置として、その食品材料の流れが電極体によって妨
げられることがないから、食品材料を圧送させるための
ポンプ等に余分な負荷を与えることがないとともに、食
品材料、特に固−液混合食品材料中の固形物が電極体付
近で詰ったり破壊したりすることがなく、また管路内を
流れる食品材料の外周側全体から通電するため、加熱ム
ラ、温度ムラが生じるおそれが少なく、かつ弱電流によ
り容易に温度微調整を行なうこともでき、さらには電極
体の面積(通電に使用される内周面面積)を任意に大き
くすることができるため、安定した通電が可能であり、
また電極体の傷みや電極体金属の食品材料中への溶出を
最小限に抑えることができ、さらには構造が簡単で取付
けも容易であり、そのため低コスト化が可能であるとと
もに、電極体等の洗浄も容易に行なうことができるから
、殺菌のための加熱の用途にも最適である。Effects of the Invention As is clear from the above description, the continuous heating system of the present invention continuously heats a fluid food material by Joule heating within the pipe while continuously transporting the food material within the pipe. As the device, the flow of the food material is not obstructed by the electrode body, so there is no extra load on the pump etc. for pumping the food material, and the food material, especially in the solid-liquid mixed food material, is not impeded. Solid matter will not clog or break near the electrode body, and since electricity is applied from the entire outer circumference of the food material flowing in the pipe, there is less risk of uneven heating or temperature, and the weak current It is possible to easily fine-tune the temperature, and furthermore, the area of the electrode body (inner peripheral surface area used for energization) can be arbitrarily increased, so stable energization is possible.
In addition, it is possible to minimize damage to the electrode body and the elution of electrode body metal into food materials, and the structure is simple and easy to install. Since it can be easily cleaned, it is also ideal for heating purposes for sterilization.
第1図はこの発明の連続加熱装置の一例を原理的に示す
縦断面図、第2図、第3図はそれぞれこの発明の連続加
熱装置の他の例を原理的に示す縦断面図、第4図はこの
発明の連続加熱装置の具体的な実施例の全体構成を示す
側面図、第5図は第4図の連続加熱装置に用いられる第
lおよび第2のアース電極装置を拡大して示す縦断面図
、第6図は第4図の連続加熱装置に用いられる加熱電極
装置を拡大して示す縦断面図である。
1・・・食品材料、 2・・・管路、 3・・・上流側
絶縁管体、 4・・・下流側絶縁管体、 5・・・第1
の電極体、6・・・スペーサ管体、 7・・・第2の電
極体。
第2図
第3図FIG. 1 is a longitudinal sectional view showing the principle of an example of the continuous heating device of the present invention, and FIGS. 2 and 3 are longitudinal sectional views showing the principle of another example of the continuous heating device of the invention, respectively. Fig. 4 is a side view showing the overall configuration of a specific embodiment of the continuous heating device of the present invention, and Fig. 5 is an enlarged view of the first and second earth electrode devices used in the continuous heating device of Fig. 4. FIG. 6 is an enlarged vertical cross-sectional view of the heating electrode device used in the continuous heating device of FIG. 4. DESCRIPTION OF SYMBOLS 1...Food material, 2...Pipe line, 3...Upstream side insulating pipe body, 4...Downstream side insulating pipe body, 5...First
6... Spacer tube body, 7... Second electrode body. Figure 2 Figure 3
Claims (3)
的に搬送させつつ、その管路内でジュール加熱により連
続加熱する装置において、 前記管路の少なくとも一部が、それぞれ少なくとも内面
を電気絶縁性とした上流側絶縁管体と下流側絶縁管体と
によって形成され、かつ前記上流側絶縁管体と下流側絶
縁管体との間に、中空円筒状をなす第1の電極体と、中
空円筒状をなしかつ少なくとも内面を電気絶縁性とした
スペーサ管体と、中空円筒状をなす第2の電極体とが直
列状に配設され、しかも隣り合う前記各管体と前記各電
極体とは、管体の内周面と電極体の内周面との間で実質
的に段差がない状態で接していることを特徴とする、流
動性を有する食品材料の連続加熱装置。(1) In an apparatus that continuously heats a food material having fluidity by Joule heating in the pipe while continuously conveying the same in the pipe, at least a part of the pipe has at least an inner surface electrically heated. a first electrode body formed of an insulating upstream insulating tube body and a downstream insulating tube body, and having a hollow cylindrical shape between the upstream insulating tube body and the downstream insulating tube body; A spacer tube having a hollow cylindrical shape and having at least an electrically insulating inner surface and a second electrode body having a hollow cylindrical shape are arranged in series, and each of the tubes and each of the electrode bodies are adjacent to each other. refers to a continuous heating device for food materials having fluidity, characterized in that the inner circumferential surface of the tubular body and the inner circumferential surface of the electrode body are in contact with each other with virtually no difference in level.
/4〜2倍の範囲内とされていることを特徴とする請求
項1に記載の流動性を有する食品材料の連続加熱装置。(2) The width of each electrode body in the pipe length direction is 1 of the pipe inner diameter.
2. The continuous heating device for food material having fluidity according to claim 1, wherein the heating temperature is within a range of /4 to 2 times.
する請求項1に記載の流動性を有する食品材料の連続加
熱装置。(3) The continuous heating device for fluid food material according to claim 1, wherein the spacer tube is bent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1311540A JPH03172161A (en) | 1989-11-30 | 1989-11-30 | Continuous heater for food material having fluidity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1311540A JPH03172161A (en) | 1989-11-30 | 1989-11-30 | Continuous heater for food material having fluidity |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03172161A true JPH03172161A (en) | 1991-07-25 |
JPH0533024B2 JPH0533024B2 (en) | 1993-05-18 |
Family
ID=18018466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1311540A Granted JPH03172161A (en) | 1989-11-30 | 1989-11-30 | Continuous heater for food material having fluidity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03172161A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0678692A (en) * | 1992-09-07 | 1994-03-22 | Frontier Eng:Kk | Joule-heating unit and heater using the same |
JPH0739320A (en) * | 1993-07-28 | 1995-02-10 | Frontier Eng:Kk | Heating method and heating apparatus |
JPH07250760A (en) * | 1994-03-16 | 1995-10-03 | Frontier Eng:Kk | Joule heating unit, and heating device using it |
US6130990A (en) * | 1998-08-25 | 2000-10-10 | Nestec S.A. | On-demand direct electrical resistance heating system and method thereof |
KR20010049740A (en) * | 1999-07-08 | 2001-06-15 | 무라카미슨스케 | Heat-sterilization apparatus for heating and sterilizing a flowable foodstuff |
-
1989
- 1989-11-30 JP JP1311540A patent/JPH03172161A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0678692A (en) * | 1992-09-07 | 1994-03-22 | Frontier Eng:Kk | Joule-heating unit and heater using the same |
JPH0739320A (en) * | 1993-07-28 | 1995-02-10 | Frontier Eng:Kk | Heating method and heating apparatus |
JPH07250760A (en) * | 1994-03-16 | 1995-10-03 | Frontier Eng:Kk | Joule heating unit, and heating device using it |
US6130990A (en) * | 1998-08-25 | 2000-10-10 | Nestec S.A. | On-demand direct electrical resistance heating system and method thereof |
US6522834B1 (en) | 1998-08-25 | 2003-02-18 | Nestec S.A. | On-demand direct electrical resistance heating system and method thereof for heating liquid |
KR20010049740A (en) * | 1999-07-08 | 2001-06-15 | 무라카미슨스케 | Heat-sterilization apparatus for heating and sterilizing a flowable foodstuff |
Also Published As
Publication number | Publication date |
---|---|
JPH0533024B2 (en) | 1993-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3695792B2 (en) | Electric heating device and electric heating method | |
JP4842240B2 (en) | Method for continuous joule heating of food materials | |
EP0032464A1 (en) | Apparatus for heating electrically conductive flowable media | |
EP0032840A1 (en) | Apparatus for heating electrically conductive flowable media | |
JP2011086443A (en) | Energization heating device of migration body | |
JPH03172161A (en) | Continuous heater for food material having fluidity | |
JP4310510B2 (en) | Continuous energization heating device for fluid food materials | |
JP4143948B2 (en) | Continuous heating equipment for fluid food materials | |
JP4195502B1 (en) | Fluid heating device | |
JPH0726949Y2 (en) | Continuous heating device for fluid food materials | |
JP2659313B2 (en) | Joule heating unit for food materials with fluidity | |
JP4232381B2 (en) | Continuous energization heating sterilization method of high viscosity fluid food material | |
JP4737847B2 (en) | Continuous energization heating device for fluid food materials | |
EP0690660B1 (en) | Method and apparatus for heating a flowing ionic fluid | |
JP3745866B2 (en) | Food sterilizer | |
JP4852013B2 (en) | Joule heating method and apparatus | |
JP7312424B2 (en) | Electric heating device and method for fluid food material | |
JP2006050941A (en) | Method for continuously electrifying and heating fluid food material | |
JP3965599B2 (en) | Continuous energization heating device for fluid food materials | |
TW450791B (en) | Heat-pasteurization apparatus for heating and pasteurizing a flowable foodstuff | |
JP3534661B2 (en) | Heating device | |
JP2006296368A (en) | Continuous sterilization apparatus for liquid food material and continuous sterilization method | |
JP2004063232A (en) | Apparatus for continuous energizing heating of fluid material | |
JP2003339537A (en) | Continuous electric heating device for fluid food material | |
JP7201220B2 (en) | Electric heating device for fluid food material and its control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 16 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090518 Year of fee payment: 16 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 17 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 17 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100518 Year of fee payment: 17 |