JP4232381B2 - Continuous energization heating sterilization method of high viscosity fluid food material - Google Patents

Continuous energization heating sterilization method of high viscosity fluid food material Download PDF

Info

Publication number
JP4232381B2
JP4232381B2 JP2002125630A JP2002125630A JP4232381B2 JP 4232381 B2 JP4232381 B2 JP 4232381B2 JP 2002125630 A JP2002125630 A JP 2002125630A JP 2002125630 A JP2002125630 A JP 2002125630A JP 4232381 B2 JP4232381 B2 JP 4232381B2
Authority
JP
Japan
Prior art keywords
food material
pressure
fluid food
heating
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002125630A
Other languages
Japanese (ja)
Other versions
JP2003310224A (en
Inventor
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2002125630A priority Critical patent/JP4232381B2/en
Publication of JP2003310224A publication Critical patent/JP2003310224A/en
Application granted granted Critical
Publication of JP4232381B2 publication Critical patent/JP4232381B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明が属する技術分野】
この発明は管路(パイプ)内において連続的に流動移送可能な程度の流動性を有しかつ粘度の高い高粘度流動性食品材料、例えば山芋のすり身(とろろ)、あるいは“めかぶ”などについて、殺菌や調理などのために、管路内を連続的に流動移送させながら加熱して殺菌する方法に関するものであり、特にジュール加熱(通電加熱)により連続加熱殺菌する方法に関するものである。
【0002】
【従来の技術】
流動性を有する食品材料を管路内で連続的に流動移送させながら連続的に加熱する方法によれば、バッチ方式で一定量ごとに加熱する方法と比較して生産性を向上させることができ、また管路内で連続的に加熱された食品材料をそのまま下流側の各工程(例えば冷却工程や充填・包装工程等)で連続的に処理することが可能となる。
【0003】
ところで最近では、食品材料に直接通電して、食品材料の有する電気抵抗により発熱させる通電加熱方式(ジュール加熱方式)を利用し、殺菌のために食品材料を通電加熱する方法、装置が実用化されており、流動性を有する食品材料を管路内において連続的に流動移送させながら加熱する場合についても、通電加熱方式を適用する装置が既に特公平5−33024号等において提案されている。
【0004】
前記提案の連続通電加熱装置は、管路の長さ方向(流動性食品材料の流れる方向)に間隔を置いた2以上の部分に、管路の内周面に沿う環状の電極を設けておき、管路の上流側の電極と下流側の電極との間で流動性食品材料中に電流を流し(通電し)、流動性食品材料を加熱するように構成されたものであり、その連続通電加熱装置の本体部分(通電加熱装置本体2)の一例を図2に略解的に示す。
【0005】
図2において、流動性食品材料が流動移送される管路1に、その上流側(図2の下側)から下流側(図2の上側)に向う方向に所定間隔を置いて環状(短円筒状)をなすチタン等の導電材料からなる複数の環状電極3A,3B,3C,3Dが配設されており、各電極3A,3B,3C,3Dの間の管路は、絶縁材料からなる中空管体5によって形成されており、また環状電極3Aよりも上流側(図2の下側)の管路および環状電極3Dの下流側(図2の上側)の管路もそれぞれ絶縁材料からなる円筒状の中空管体5によって形成されている。なお絶縁材料からなる中空管体5は、一般に樹脂によって形成されるのが通常である。
【0006】
さらに上記の通電加熱装置本体2を組込んだ流動性食品材料加熱装置の全体構成の例を図3に示す。
【0007】
図3において、液体状食品材料あるいは固体−液体混合食品材料などの流動性食品材料は、予め供給側容器11に収容されている。この供給側容器11の下端には供給開閉弁13が設けられており、さらにこの供給開閉弁13の下端からは管路1が延長されている。管路1における供給開閉弁13近くの位置には、流動性食品材料を管路1内において流動輸送させるための流動性食品材料供給手段として、ポンプ17が設けられている。管路1におけるポンプ17よりも下流側には、上方へ垂直に立ち上がる管路垂直立上がり部分1Aが存在し、この管路垂直立上がり部分1Aには、前述の通電加熱装置本体2が形成されている。さらに管路1における垂直立上がり部分1Aの上端は水平方向へ折曲げられて伸長され、その下流側に相当する部分には、加熱後の流動性食品材料を冷却するための冷却装置21が配設され、さらにその冷却装置21の下流側には排出側容器23が設けられている。
【0008】
以上のような通電加熱装置において、供給開閉弁13を開いてポンプ17を作動させれば、供給側容器11から流動性食品材料が管路1内を図3の左方から右方へ向けて流動移送される。そして流動性食品材料は、管路1の垂直立上がり部分1Aにおいて通電加熱装置本体2を通過し、その間に、上下の環状電極3A,3B,3C,3Dの相互間に電圧を加えることにより、流動性食品材料に電流が流れ、食品材料の有する電気抵抗によって発熱し、いわゆる通電加熱により温度上昇し、殺菌のための加熱処理がなされ、さらに冷却装置21を通過することにより冷却されながら、排出側容器23に至る。
【0009】
【発明が解決しようとする課題】
前記提案のような連続通電加熱装置を用いて、種々の流動性食品材料を加熱する実験を行なったところ、各種の流動性食品材料のうちでも特に山芋のすり身(とろろ)や“めかぶ”の場合には次のような問題が発生した。
【0010】
すなわち、摺り下ろした山芋を、殺菌のために前記提案の装置で70℃程度まで通電加熱した場合、管路中で温度上昇に伴なって山芋すり身中から多数の気泡が発生し、そのため電極表面でスパークが発生したり、加熱温度に大きなムラが生じて温度制御が困難となったりする現象が生じることが判明した。
【0011】
このような現象について本発明者等が調査、研究を重ねたところ、次のような事実が判明した。すなわち山芋のすり身は、粘度が極めて高く、しかも通常は大気中で摺り下ろすところから、山芋すり身の内部には多量の空気が包含もしくは吸着されている。そしてこのように粘度が極めて高くかつ多量の空気を吸着もしくは包含している山芋すり身を加熱すれば、温度上昇に伴なって微小な気泡が多数発生し、またその気泡は高粘度の液体中で直ちには浮上しないため、微小な多数の気泡が集合して大きな気泡に成長してしまう。そして気泡は電気的には絶縁体であるため、電極表面に大きな気泡が付着すればスパークが発生し、また電極間に存在する大きな気泡によって電極間の電気抵抗が大きく変化し、これによって大きな加熱温度ムラが生じてしまい、適切な温度制御が困難となってしまうことが判明した。
【0012】
この発明は以上の事情を背景としてなされたもので、山芋のすり身やそのほか粘度が高くかつ加熱により気泡を発生しやすい流動性食品材料を通電加熱により殺菌する場合でも、スパークが発生したり加熱温度ムラが生じたりすることを最小限に抑えることができる通電加熱殺菌方法を提供することを目的とするものである。
【0013】
【課題を解決するための手段】
前述のような課題を解決するため、この発明の通電加熱殺菌方法では、基本的には、管路内で通電加熱される際の流動性食品材料を大気圧より高い圧力に加圧し、これによって気泡の発生、成長を抑えることとした。
【0014】
すなわち、請求項1の発明の流動性食品材料の連続通電加熱殺菌方法は、管路の長さ方向に間隔を置いて複数の電極を設けておき、高粘度流動性食品材料を、管路の長さ方向に連続的に流動移送させつつ、前記複数の電極間に電圧を加えて、管路内の流動性食品材料に対して管路の長さ方向に通電し、通電加熱により流動性食品材料を連続的に加熱殺菌するようにした高粘度流動性食品材料の連続通電加熱殺菌方法において管路内を加圧して流動性食品材料を大気圧よりも高い圧力の状態として通電加熱を行ない、流動性食品材料中における気泡の発生および成長を抑制しつつ、その流動性食品材料の常圧での沸騰温度より低い温度まで加熱することを特徴とするものである。
【0015】
また請求項2の発明の流動性食品材料の連続通電加熱殺菌方法は、請求項1に記載の高粘度流動性食品材料の連続通電加熱殺菌方法において、管路内を大気圧よりも2kg/cm以上高い圧力に加圧して通電加熱することを特徴とするものである。
【0016】
さらに請求項3の発明の流動性食品材料の連続通電加熱殺菌方法は、高粘度流動性食品材料を移送させるべき管路の長さ方向に間隔を置いて複数の電極を設けておき、かつそれらの電極よりも上流側に高粘度流動性食品材料を管路内に送り込む供給手段を設け、さらに前記電極よりも下流側に圧力検出手段を配置するとともに、その圧力検出手段よりもさらに下流側に背圧制御手段を設けておき、前記供給手段によって管路内において高粘度流動性食品材料を連続的に供給しながら前記複数の電極間で流動性食品材料に通電して流動性食品材料を通電加熱するとともに、前記圧力検出手段によって検出した圧力値に基いてその圧力が大気圧よりも高くなるように前記背圧制御手段を制御し、これにより流動性食品材料中における気泡の発生および成長を抑制しつつ、その流動性食品材料の常圧での沸騰温度より低い温度まで加熱して、連続的に殺菌することを特徴とするものである。
【0017】
【発明の実施の形態】
図1に、この発明の連続通電加熱殺菌方法を実施している状況の一例を示す。
【0018】
図1において、例えば山芋のすり身からなる流動性食品材料は、予め供給側容器11に収容されている。この供給側容器11の下端には供給開閉弁13が設けられており、さらにこの供給開閉弁13の下端からは管路1が延長されている。管路1における供給開閉弁13近くの位置には、流動性食品材料を管路1内において連続的に流動移送させるための流動性食品材料供給手段として、ポンプ17が設けられている。管路1におけるポンプ17よりも下流側には、上方へ垂直に立ち上がる管路垂直立上がり部分1Aが存在し、この管路垂直立上がり部分1Aには、通電加熱装置本体2が形成されている。
【0019】
さらに管路1における垂直立上がり部分1Aの上端は水平方向へ折曲げられて伸長され、その下流側、すなわち通電加熱装置本体2の下流側に相当する部分には、加熱後の流動性食品材料を冷却するための冷却装置21が配設され、さらにその冷却装置21の下流側には圧力調整弁25が設けられ、その圧力調整弁25の下流側に排出側容器23が設けられている。また管路1における前記通電加熱装置本体2の下流側の出口付近には、その通電加熱装置本体2によって加熱された流動性食品材料の温度(加熱温度)を検出するための温度検出手段27が設けられている。また前記圧力調整弁25の上流側(入口側)には、管路内の流動性食品材料の圧力を検出するための圧力検出手段29が設けられている。
【0020】
なお通電加熱装置本体2の具体的構成は、例えば図2に示すような構成とすれば良いが、図2に示されるような構成に限定されるものではなく、要は管路の長さ方向に間隔を置いて複数の電極を設けて、その電極間で管路内の流動性食品材料を管路の長さ方向に沿って通電するものであれば良い。そしてこの通電加熱装置本体2の各電極間に通電するための電源装置31は前記温度検出手段27による検出温度に応じて電圧または/および電流が制御されるようになっている。一方前記圧力調整弁25は、前述の圧力調整手段29による検出圧力に応じて制御されるようになっている。
【0021】
以上のような連続通電加熱装置において、供給開閉弁13を開いてポンプ17を作動させれば、供給側容器11から山芋のすり身などの流動性食品材料が管路1内を図1の左方から右方へ向けて流動移送される。そして流動性食品材料は、管路1の垂直立上がり部分1Aにおいて通電加熱装置本体2を通過し、その間に、上下の環状電極3A,3B,3C,3Dの相互間(図2参照)に電圧を加えることにより、流動性食品材料に電流が流れ、食品材料の有する電気抵抗によって発熱し、いわゆる通電加熱により温度上昇し、殺菌のための加熱処理がなされ、さらに冷却装置21を通過することにより冷却され、圧力調整弁を経て排出側容器23に至る。
【0022】
ここで、通電加熱装置本体2における電極間の電圧または/および電流は、温度検出手段27による温度検出値に基いて、流動性食品材料の加熱到達温度が流動性食品材料の大気圧下での沸騰温度よりも低い温度となるように制御する。例えば山芋のすり身の場合、通常は70℃程度以下、“めかぶ”の場合通常は90℃程度以下まで加熱する。
【0023】
なお流動性食品材料を大気圧よりも高い圧力に加圧すれば、その沸騰温度も高くなって、大気圧下での沸騰温度よりも高い温度まで加熱することが可能となるが、この発明の方法における加圧は、沸騰温度を高くして大気圧下での沸騰温度よりも高い温度まで加熱することを目的としたものではなく、飽くまで気泡の発生、成長を抑えるためのものである。そして、大気圧での沸騰温度よりも高い温度まで加熱するための加圧と明確に区別するため、この発明では沸騰温度より低い温度までの加熱に限定した。なお一般に殺菌を目的とする加熱は、大気圧下での沸騰温度よりも低い温度までの加熱で充分である。
【0024】
一方、前記圧力調整弁25においては、圧力検出手段29による検出圧力値に応じて、管路内の流動性食品材料の圧力が、大気圧よりも高い圧力、望ましくは大気圧より2kg/cm以上高くなるようにその弁の開度を調整する。具体的な圧力値は、対象となる流動性食品材料の種類等によっても異なるが、山芋のすり身等の場合、通常は大気圧よりも3〜5kg/cm程度高い圧力となるように調整することが望ましい。なお管路内の流動性食品材料に加える圧力の上限は特に規定しないが、通常は大気圧より10kg/cm高い圧力以下とすることが好ましい。
【0025】
なおまた、圧力調整弁25によって管路内の流動性食品材料の圧力を大気圧より高い圧力に調整することは、ポンプ17により圧送されて通電加熱装置本体2において通電加熱される流動性食品材料に対して背圧を加えることを意味する。したがって圧力調整弁25は、管路内で通電加熱される流動性食品材料に対し背圧を加えかつその背圧を制御するための背圧制御手段を構成していることになる。
【0026】
上述のように通電加熱される際の管路内の流動性食品材料に背圧を加えて、大気圧よりも高い圧力とすることにより、流動性食品材料が、高粘度でかつ多量の空気を吸着もしくは包含しているもの、例えば山芋のすり身(とろろ)や“めかぶ”等の場合でも、通電加熱によってその流動性食品材料が温度上昇する際に気泡が多量に発生したりまたその気泡が集合して大きく成長したりすることを抑制することができる。すなわち、流動性食品材料に加えられている圧力によって、気泡の発生、成長が抑え込まれることになる。その結果、気泡の多量発生や気泡の成長によって、電極表面でスパークが発生したり、加熱温度ムラが生じたりすることを有効に防止できる。
【0027】
なお前述の実施例では背圧制御手段として圧力調整弁25を用いているが、背圧制御手段の具体的構成としては圧力調整弁に限定されるものではなく、例えばポンプを用いても良い。このように背圧制御手段としてポンプを用いる場合には、圧力検出手段29の検出圧力値に基いて、供給側のポンプ17と背圧制御手段としてのポンプの吐出圧力の差を調整するようにすれば良い。
【0028】
【実施例】
図1に示される装置を用いて山芋のすり身を通電加熱するにあたり、山芋のすり身の流量を500kg/hrとし、平均70℃まで加熱する実験を行なった。ここで、管路内の山芋すり身の圧力が、大気圧よりも3.5kg/cm高くなるように背圧制御手段としての圧力調整弁25を調整した。その結果、特にスパークが発生したり、温度ムラが生じたりすることなく、平均70℃まで均一に安定して加熱することができた。
【0029】
【発明の効果】
前述の説明で明らかなように、この発明の連続通電加熱殺菌方法によれば、山芋のすり身や“めかぶ”の如く、粘度が高くかつ多量の空気を吸着もしくは包含している流動性食品材料を連続的に通電加熱して殺菌するにあたり、通電加熱による温度上昇に伴なって多量の気泡が発生したり、気泡が大きく成長したりすることを抑制することができ、そのため通電加熱中の気泡の発生、成長によって、通電加熱時に電極表面でスパークが発生したり、加熱ムラが生じて目標とする温度に安定して加熱することが困難となったりすることを有効に防止できる。
【図面の簡単な説明】
【図1】 この発明の連続通電加熱殺菌方法を実施している状況の一例を示す略解図である。
【図2】本発明者等が先に提案した流動性食品材料の連続通電加熱装置における通電加熱装置本体の一例を示す略解図である。
【図3】図2に示される通電加熱装置本体を使用した連続通電加熱装置の全体構成を示す略解的な縦断面図である。
【符号の説明】
2 通電加熱装置本体
3A〜3D 環状電極
25 背圧制御手段としての圧力調整弁
29 圧力検出手段
[0001]
[Technical field to which the invention belongs]
The present invention relates to a high-viscosity fluid food material having high fluidity and fluidity that can be continuously flow-transferred in a pipe (pipe), for example, yam surimi or "mekabu" for such sterilization and cooking, relates how to sterilization by heating pressurized while continuously flowing transport the pipe line, it relates to how to continuously pressurized heat sterilized by especially Joule heating (electrical heating) .
[0002]
[Prior art]
According to the method of continuously heating the food material having fluidity while being fluidly transferred in the pipeline, the productivity can be improved as compared with the method of heating every certain amount in a batch method. In addition, the food material continuously heated in the pipeline can be continuously processed as it is in each downstream process (for example, cooling process, filling / packaging process, etc.).
[0003]
Recently Incidentally, by energizing directly to the food material, a method of using the electrical heating system for heating by electrical resistance (Joule heating method), to electrically heating a food material for killing bacteria with the food material, apparatus commercialized In the case of heating a food material having fluidity while being continuously fluidly transferred in a pipe, an apparatus that applies an electric heating method has already been proposed in Japanese Patent Publication No. 5-33024.
[0004]
In the proposed continuous energization heating apparatus, an annular electrode along the inner peripheral surface of the pipe is provided in two or more portions spaced in the length direction of the pipe (the flow direction of the flowable food material). The flowable food material is configured to flow current through the flowable food material between the upstream electrode and the downstream electrode of the conduit (energization) and to heat the flowable food material. An example of the main body portion of the heating device (electric heating device main body 2) is schematically shown in FIG.
[0005]
In FIG. 2, a pipe 1 through which fluid food material is fluidly transferred is annular (short cylinder) with a predetermined interval in a direction from the upstream side (lower side in FIG. 2) to the downstream side (upper side in FIG. 2). A plurality of annular electrodes 3A, 3B, 3C, 3D made of a conductive material such as titanium, and the pipes between the electrodes 3A, 3B, 3C, 3D are made of an insulating material. The hollow pipe 5 is formed, and the pipe on the upstream side (lower side in FIG. 2) of the annular electrode 3A and the pipe on the downstream side (upper side in FIG. 2) of the annular electrode 3D are also made of an insulating material. It is formed by a cylindrical hollow tube 5. In general, the hollow tube body 5 made of an insulating material is generally formed of a resin.
[0006]
Furthermore, the example of the whole structure of the fluid food material heating apparatus incorporating said electric current heating apparatus main body 2 is shown in FIG.
[0007]
In FIG. 3, a fluid food material such as a liquid food material or a solid-liquid mixed food material is stored in the supply-side container 11 in advance. A supply opening / closing valve 13 is provided at the lower end of the supply side container 11, and the pipe line 1 is extended from the lower end of the supply opening / closing valve 13. A pump 17 is provided at a position near the supply opening / closing valve 13 in the pipeline 1 as fluid food material supply means for fluidly transporting the fluid food material in the pipeline 1. On the downstream side of the pump 17 in the pipe line 1, there is a pipe vertical rising part 1 </ b> A that rises vertically upward, and the above-mentioned current heating device main body 2 is formed in this pipe vertical rising part 1 </ b> A. . Further, the upper end of the vertical rising portion 1A in the pipe line 1 is bent and elongated in the horizontal direction, and a cooling device 21 for cooling the fluid food material after heating is disposed in the portion corresponding to the downstream side. Further, a discharge side container 23 is provided on the downstream side of the cooling device 21.
[0008]
In the energization heating apparatus as described above, when the supply on-off valve 13 is opened and the pump 17 is operated, the flowable food material from the supply side container 11 is directed from the left to the right in FIG. Fluidly transferred. The fluid food material passes through the energization heating device main body 2 in the vertical rising portion 1A of the pipe 1 and flows between them by applying a voltage between the upper and lower annular electrodes 3A, 3B, 3C, 3D. current flows sexual food material, and heating by electric resistance possessed by the food material, the temperature rises by a so-called ohmic heating, heat treatment for killing bacteria have been made, while being cooled by further passing through the cooling device 21, the discharge It reaches the side container 23.
[0009]
[Problems to be solved by the invention]
Experiments were conducted to heat various fluid food materials using the continuous energization heating device as described above. Among the various fluid food materials, especially in the case of garlic surimi and "mekabu" The following problems occurred.
[0010]
That is, when the downed yam is energized and heated to about 70 ° C. with the proposed apparatus for sterilization, a large number of bubbles are generated from the yam surimi as the temperature rises in the pipe, and thus the surface of the electrode Thus, it has been found that a phenomenon occurs in which sparks are generated or the temperature is difficult to control due to large unevenness in the heating temperature.
[0011]
When the present inventors investigated and studied such a phenomenon, the following facts were found. That is, the surimi of yam has a very high viscosity, and since it usually slides down in the atmosphere, a large amount of air is contained or adsorbed inside the surimi of yam. And if the yam surimi, which has a very high viscosity and adsorbs or contains a large amount of air, is heated, many fine bubbles are generated as the temperature rises. Since it does not rise immediately, a large number of minute bubbles gather and grow into large bubbles. And since the bubbles are electrically insulating, sparks are generated if large bubbles adhere to the electrode surface, and the electrical resistance between the electrodes changes greatly due to the large bubbles existing between the electrodes, which causes a large heating. It has been found that temperature unevenness occurs and appropriate temperature control becomes difficult.
[0012]
The present invention has been made in view of the background art described above, even when the prone flowable food material bubbles by high and heating surimi and other viscosity yam you sterilized by current pressure heat or sparking it is an object to provide current pressure heat sterilization how that can minimize the heating temperature unevenness or cause.
[0013]
[Means for Solving the Problems]
To solve the problems as described above, the current pressure heat sterilization how of the present invention, basically, pressurizes the fluid food materials when they are heated by conduction in duct to a pressure higher than atmospheric pressure, This allows the bubbles occur, it was decided to reduce the growth.
[0014]
Namely, the continuous current pressure heat sterilization how the fluid food materials of the invention of claim 1, may be provided a plurality of electrodes at intervals in the longitudinal direction of the conduit, the high viscosity fluid food material, pipe While continuously flowing and transferring in the length direction of the path, a voltage is applied between the plurality of electrodes to energize the flowable food material in the path in the length direction of the pipe and flow by energization heating. sex food material conduit pressurized in a continuous current pressure heat sterilization how high viscosity fluid food material so as to continuously heat sterilization energized flowable food material as the state of higher than atmospheric pressure performs heating, while suppressing bubble generation and growth of the fluid food material, and is characterized in that the heating to a temperature below the boiling temperature at atmospheric pressure of the flowable food material it.
[0015]
The continuous current pressure heat sterilization how the fluid food materials of the invention of claim 2 is the continuous current pressure heat sterilization how high viscosity fluid food material of claim 1, from atmospheric pressure conduit Also, it is characterized by pressurizing to a pressure higher than 2 kg / cm 2 and conducting heating.
[0016]
Further continuous current pressure heat sterilization how the fluid food materials of the invention of claim 3, may be provided a plurality of electrodes at intervals in the longitudinal direction of the pipe to be transferred to high-viscosity flowable foodstuff, In addition, a supply means for feeding the high-viscosity fluid food material into the pipe line is provided upstream of the electrodes, and a pressure detection means is disposed downstream of the electrodes, and further downstream of the pressure detection means. Back pressure control means is provided on the side, and the flowable food material is energized between the plurality of electrodes while continuously supplying the high-viscosity flowable food material in the pipeline by the supply means. while electrically heating the said its pressure based on the pressure value detected by the pressure detecting means Gyoshi control the back pressure control means to be higher than the atmospheric pressure, thereby generating the bubble in the liquid food material Oh While suppressing fine growth, and heated to a temperature below the boiling temperature at atmospheric pressure of the fluid food materials and is characterized that you sterilized continuously.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Figure 1 shows an example of a situation to have performed continuous current pressure heat sterilization how the present invention.
[0018]
In FIG. 1, for example, a flowable food material made from surimi of yam is stored in a supply-side container 11 in advance. A supply opening / closing valve 13 is provided at the lower end of the supply side container 11, and the pipe line 1 is extended from the lower end of the supply opening / closing valve 13. A pump 17 is provided at a position near the supply opening / closing valve 13 in the pipeline 1 as a fluid food material supply means for continuously fluidly transferring the fluid food material in the pipeline 1. On the downstream side of the pump 17 in the pipe line 1, there is a pipe vertical rising part 1 </ b> A that rises vertically upward, and the energization heating device main body 2 is formed in the pipe vertical rising part 1 </ b> A.
[0019]
Further, the upper end of the vertical rising portion 1A in the pipe line 1 is bent and elongated in the horizontal direction, and the heated fluid food material is applied to the downstream side thereof, that is, the downstream side of the energizing heating device body 2. A cooling device 21 for cooling is disposed, a pressure regulating valve 25 is provided on the downstream side of the cooling device 21, and a discharge side container 23 is provided on the downstream side of the pressure regulating valve 25. A temperature detection means 27 for detecting the temperature (heating temperature) of the fluid food material heated by the current heating device body 2 is provided near the outlet on the downstream side of the current heating device body 2 in the pipe 1. Is provided. Further, on the upstream side (inlet side) of the pressure regulating valve 25, pressure detecting means 29 for detecting the pressure of the fluid food material in the pipe line is provided.
[0020]
The specific configuration of the current heating device body 2 may be, for example, a configuration as shown in FIG. 2, but is not limited to the configuration as shown in FIG. A plurality of electrodes may be provided at intervals, and the fluid food material in the pipe may be energized between the electrodes along the length of the pipe. The voltage or / and current of the power supply 31 for energizing between the electrodes of the energization heating device main body 2 is controlled according to the temperature detected by the temperature detecting means 27. On the other hand, the pressure adjusting valve 25 is controlled according to the pressure detected by the pressure adjusting means 29 described above.
[0021]
In the continuous energization heating apparatus as described above, when the supply on-off valve 13 is opened and the pump 17 is operated, fluid food materials such as surimi of yam from the supply side container 11 pass through the pipe 1 to the left in FIG. From the right to the right. The fluid food material passes through the energization heating device main body 2 at the vertical rising portion 1A of the pipe line 1 and in the meantime, a voltage is applied between the upper and lower annular electrodes 3A, 3B, 3C, 3D (see FIG. 2). by applying a current flows through the fluid food material, and heating by electric resistance possessed by the food material, the temperature rises by a so-called ohmic heating, heat treatment for killing bacteria is made by further passing through the cooling device 21 It is cooled and reaches the discharge side container 23 through the pressure regulating valve.
[0022]
Here, the voltage or / and the current between the electrodes in the energization heating device main body 2 is based on the temperature detection value by the temperature detection means 27, and the heating reached temperature of the fluid food material is under the atmospheric pressure of the fluid food material. The temperature is controlled to be lower than the boiling temperature. For example, in the case of surimi of yam, it is usually heated to about 70 ° C. or lower, and in the case of “Mekabu”, it is heated to about 90 ° C. or lower.
[0023]
If the fluid food material is pressurized to a pressure higher than the atmospheric pressure, the boiling temperature increases, and it becomes possible to heat to a temperature higher than the boiling temperature under the atmospheric pressure. The pressurization in the method is not intended to raise the boiling temperature to a temperature higher than the boiling temperature under atmospheric pressure, but to suppress the generation and growth of bubbles until it gets tired. And in order to distinguish clearly from the pressurization for heating to the temperature higher than the boiling temperature in atmospheric pressure, in this invention, it limited to the heating to the temperature lower than a boiling temperature. In general, heating for sterilization is sufficient to a temperature lower than the boiling temperature under atmospheric pressure.
[0024]
On the other hand, in the pressure regulating valve 25, the pressure of the fluid food material in the pipe line is higher than atmospheric pressure, preferably 2 kg / cm 2 from atmospheric pressure, according to the detected pressure value by the pressure detecting means 29. The opening of the valve is adjusted so as to be higher. The specific pressure value varies depending on the type of fluid food material to be processed, but in the case of surimi of yam, etc., it is usually adjusted so that the pressure is about 3 to 5 kg / cm 2 higher than atmospheric pressure. It is desirable. In addition, although the upper limit of the pressure added to the fluid food material in the pipe line is not particularly defined, it is usually preferable to set the pressure to 10 kg / cm 2 higher than the atmospheric pressure.
[0025]
In addition, adjusting the pressure of the fluid food material in the pipe line to a pressure higher than the atmospheric pressure by the pressure regulating valve 25 means that the fluid food that is pumped by the pump 17 and is energized and heated in the energization heating apparatus body 2 . This means applying back pressure to the material. Therefore, the pressure regulating valve 25 constitutes a back pressure control means for applying a back pressure to the fluid food material that is energized and heated in the pipe and controlling the back pressure.
[0026]
By applying a back pressure to the fluid food material in the pipeline when energized and heated as described above, the fluid food material has a high viscosity and a large amount of air. Even in the case of adsorbed or contained things such as yam surimi or “mekabu”, a large amount of bubbles are generated or the bubbles gather when the temperature of the fluid food material rises due to electric heating. Thus, it is possible to suppress the large growth. That is, the generation and growth of bubbles are suppressed by the pressure applied to the fluid food material. As a result, it is possible to effectively prevent the occurrence of sparks on the electrode surface and the occurrence of uneven heating temperature due to the generation of a large amount of bubbles and the growth of bubbles.
[0027]
In the above-described embodiment, the pressure adjustment valve 25 is used as the back pressure control means. However, the specific configuration of the back pressure control means is not limited to the pressure adjustment valve, and for example, a pump may be used. In this way, when a pump is used as the back pressure control means, the difference in discharge pressure between the supply side pump 17 and the pump as the back pressure control means is adjusted based on the detected pressure value of the pressure detection means 29. Just do it.
[0028]
【Example】
In conducting the heating of the salmon surimi using the apparatus shown in FIG. 1, an experiment was conducted in which the flow rate of surimi of the yam was set to 500 kg / hr and heated to an average of 70 ° C. Here, the pressure regulating valve 25 as the back pressure control means was adjusted so that the pressure of the surimi Yamabe in the pipe line was 3.5 kg / cm 2 higher than the atmospheric pressure. As a result, it was possible to heat uniformly and stably up to an average of 70 ° C. without causing any sparks or causing temperature unevenness.
[0029]
【The invention's effect】
As apparent from the foregoing description, according to the continuous current pressure heat sterilization how of the present invention, as surimi or "turnips" yam, flowable foods viscosity are adsorbed or encompass high and large amounts of air Upon you sterilize the material by heating continuously current pressure, or generated a large amount of bubbles is accompanied to the temperature rise due to ohmic heating, it is possible to prevent the air bubbles or significant growth, therefore during conduction heating Due to the generation and growth of bubbles, it is possible to effectively prevent the occurrence of sparks on the electrode surface during energization heating and the occurrence of heating unevenness that makes it difficult to stably heat to the target temperature.
[Brief description of the drawings]
1 is a Ryakkai diagram showing an example of a situation to have performed continuous current pressure heat sterilization how the present invention.
FIG. 2 is a schematic view showing an example of a main body of an electric heating apparatus in a continuous electric heating apparatus for fluid food materials previously proposed by the present inventors.
3 is a schematic longitudinal sectional view showing an overall configuration of a continuous energization heating apparatus using the energization heating apparatus main body shown in FIG. 2;
[Explanation of symbols]
2 Energizing heating device main bodies 3A to 3D Annular electrode 25 Pressure regulating valve 29 as back pressure control means Pressure detecting means

Claims (3)

管路の長さ方向に間隔を置いて複数の電極を設けておき、高粘度流動性食品材料を、管路の長さ方向に連続的に流動移送させつつ、前記複数の電極間に電圧を加えて、管路内の流動性食品材料に対して管路の長さ方向に通電し、通電加熱により流動性食品材料を連続的に加熱殺菌するようにした高粘度流動性食品材料の連続通電加熱殺菌方法において、
管路内を加圧して流動性食品材料を大気圧よりも高い圧力の状態として通電加熱を行ない、流動性食品材料中における気泡の発生および成長を抑制しつつ、その流動性食品材料の常圧での沸騰温度より低い温度まで加熱することを特徴とする、高粘度流動性食品材料の連続通電加熱殺菌方法。
A plurality of electrodes are provided at intervals in the length direction of the pipeline, and a high-viscosity fluid food material is continuously flow-transferred in the length direction of the pipeline while a voltage is applied between the plurality of electrodes. In addition, continuous energization of high-viscosity flowable food materials, in which the flowable food material in the pipeline is energized in the length direction of the pipeline and the fluid food material is continuously heated and sterilized by energization heating. in addition heat sterilization how,
The conduit pressurizes subjected to electrically heated fluid food material in a state of higher than atmospheric pressure, while suppressing the occurrence and growth of bubbles in the fluid food material, normally of the flowable food material of their characterized by heating to a temperature below the boiling temperature at the pressure, continuous current pressure heat sterilization how high viscosity flowable foodstuff.
請求項1に記載の高粘度流動性食品材料の連続通電加熱殺菌方法において、
管路内を大気圧よりも2kg/cm以上高い圧力に加圧して通電加熱することを特徴とする、高粘度流動性食品材料の連続通電加熱殺菌方法。
In a continuous current pressure heat sterilization how high viscosity flowable food material according to claim 1,
Characterized in that the duct is pressurized to 2 kg / cm 2 or more above atmospheric pressure to electrical heating, continuous current pressure heat sterilization how high viscosity flowable foodstuff.
高粘度流動性食品材料を移送させるべき管路の長さ方向に間隔を置いて複数の電極を設けておき、かつそれらの電極よりも上流側に高粘度流動性食品材料を管路内に送り込む供給手段を設け、さらに前記電極よりも下流側に圧力検出手段を配置するとともに、その圧力検出手段よりもさらに下流側に背圧制御手段を設けておき、前記供給手段によって管路内において高粘度流動性食品材料を連続的に供給しながら前記複数の電極間で流動性食品材料に通電して流動性食品材料を通電加熱するとともに、前記圧力検出手段によって検出した圧力値に基いてその圧力が大気圧よりも高くなるように前記背圧制御手段を制御し、これにより流動性食品材料中における気泡の発生および成長を抑制しつつ、その流動性食品材料の常圧での沸騰温度より低い温度まで加熱して、連続的に殺菌することを特徴とする、高粘度流動性食品材料の連続通電加熱殺菌方法。A plurality of electrodes are provided at intervals in the length direction of the pipeline to which the high-viscosity fluid food material is to be transferred, and the high-viscosity fluid food material is fed into the pipeline upstream of the electrodes. A supply means is provided, a pressure detection means is further arranged downstream of the electrode, and a back pressure control means is provided further downstream than the pressure detection means. While the fluid food material is continuously supplied, the fluid food material is energized and heated by energizing the fluid food material between the plurality of electrodes, and the pressure is determined based on the pressure value detected by the pressure detecting means. Gyoshi control the back pressure control means to be higher than the atmospheric pressure, thereby while suppressing the occurrence and growth of bubbles in the fluid food materials, the boiling temperature at atmospheric pressure of the flowable food material There is heated to a temperature, characterized that you sterilized continuously, continuous current pressure heat sterilization how high viscosity flowable foodstuff.
JP2002125630A 2002-04-26 2002-04-26 Continuous energization heating sterilization method of high viscosity fluid food material Expired - Lifetime JP4232381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002125630A JP4232381B2 (en) 2002-04-26 2002-04-26 Continuous energization heating sterilization method of high viscosity fluid food material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002125630A JP4232381B2 (en) 2002-04-26 2002-04-26 Continuous energization heating sterilization method of high viscosity fluid food material

Publications (2)

Publication Number Publication Date
JP2003310224A JP2003310224A (en) 2003-11-05
JP4232381B2 true JP4232381B2 (en) 2009-03-04

Family

ID=29540296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002125630A Expired - Lifetime JP4232381B2 (en) 2002-04-26 2002-04-26 Continuous energization heating sterilization method of high viscosity fluid food material

Country Status (1)

Country Link
JP (1) JP4232381B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4587760B2 (en) * 2004-09-29 2010-11-24 株式会社フロンティアエンジニアリング Seaweed treatment method
JP4516860B2 (en) * 2005-03-04 2010-08-04 株式会社ポッカコーポレーション Liquid food sterilization apparatus and sterilization method
JP4606961B2 (en) * 2005-07-27 2011-01-05 株式会社ポッカコーポレーション Coffee sterilization method
JP4606960B2 (en) * 2005-07-27 2011-01-05 株式会社ポッカコーポレーション Tea beverage sterilization method
JP5317344B2 (en) * 2009-05-22 2013-10-16 ポッカサッポロフード&ビバレッジ株式会社 Sterilization method to prevent precipitation of liquid food containing milk protein

Also Published As

Publication number Publication date
JP2003310224A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
US5771336A (en) Electrically stable methods and apparatus for continuously electroheating food
JP2008136486A (en) Continuous joule heating method and apparatus for food material
JP2008022852A (en) System for producing sterile food article sterilized by ohmic heating with post-addition of salt water
JP4232381B2 (en) Continuous energization heating sterilization method of high viscosity fluid food material
NZ556480A (en) OHMIC heating system with circulation by worm
KR20170050258A (en) A food sterilizing apparatus using non-thermal plasma generated by dielectric barrier dischage and sterilizing method using the same
US20100297313A1 (en) Method and device for sterilising a liquid
EP2829156A1 (en) Process for fast and homogeneously heating a liquid product and apparatus for such process
JP5912662B2 (en) Sterilization method of liquid food
JP2007229319A (en) Sterilizing device
JP4838364B2 (en) Steam plasma generator and sterilizer
JP4982248B2 (en) Food and beverage heating equipment
JP2008187933A (en) Method and apparatus for heat treating liquid egg
JP4143948B2 (en) Continuous heating equipment for fluid food materials
JP5494921B2 (en) Heating device
CN206238303U (en) A kind of pasteurization machine for ensureing food security
JP2006296368A (en) Continuous sterilization apparatus for liquid food material and continuous sterilization method
JPH03172161A (en) Continuous heater for food material having fluidity
JP3745866B2 (en) Food sterilizer
CN202890407U (en) Micro-wave sterilizing device
GB2301270A (en) Electroheating fluent foodstuff using current parallel to food flow
JP2006050941A (en) Method for continuously electrifying and heating fluid food material
JP4045971B2 (en) Shock wave sterilizer
JP2011087464A (en) Device and method for producing paste product
JP7201220B2 (en) Electric heating device for fluid food material and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4232381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131219

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term