JP2000348848A - Low-temperature plasma generator - Google Patents

Low-temperature plasma generator

Info

Publication number
JP2000348848A
JP2000348848A JP11156584A JP15658499A JP2000348848A JP 2000348848 A JP2000348848 A JP 2000348848A JP 11156584 A JP11156584 A JP 11156584A JP 15658499 A JP15658499 A JP 15658499A JP 2000348848 A JP2000348848 A JP 2000348848A
Authority
JP
Japan
Prior art keywords
discharge
medium
space
temperature plasma
plasma generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11156584A
Other languages
Japanese (ja)
Inventor
Shinnosuke Nomura
信之助 野村
Tadayoshi Satake
忠義 佐竹
Yosuke Nomura
洋介 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOMURA DENSHI KOGYO KK
Original Assignee
NOMURA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOMURA DENSHI KOGYO KK filed Critical NOMURA DENSHI KOGYO KK
Priority to JP11156584A priority Critical patent/JP2000348848A/en
Priority to KR1019990038260A priority patent/KR100355814B1/en
Publication of JP2000348848A publication Critical patent/JP2000348848A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2431Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes using cylindrical electrodes, e.g. rotary drums
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/005Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by heating using irradiation or electric treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/015Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/22Ionisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-yield device capable of preventing generation of nitrogen oxides due to secondary discharge action and temperature rise due to heat generation in the lower stream side end of a discharge part in a silent discharged low-temperature plasma generator and of generating an ozone and a hydroxyl group. SOLUTION: This low-temperature plasma generator is constituted therein an outer side discharge part 4 and an inner side discharge part 7 are protected with predetermined spaces by placing an outer side space 8 and an inner side space 9 and both ends of a glass protective tube 1 are sealed by sealing bodies 10a and 10b, the outer side discharge part 4 has an outer side electrode 2 disposed on the outer periphery of a dielectric 3 and the inner side discharge part 7 has an inner side electrode 6 disposed in a dielectric 5 concentrically inserted into the glass protective tube 1. An introducing path 11 is disposed inside the sealing body 10a and is communicated with the outer side space 8 through an introducing chamber 13. The inner side space 9 is communicated with an evacuation path 12 through an evacuation chamber 14. Inside the other sealing body 10b, the outer side space 8 is communicated with the inner side space 9 through a communication camber 15. The outer side electrode 2 is provided with a plurality of small holes.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、オゾンを殺菌、
あるいは除菌や脱臭、食料品の鮮度保持などに利用する
ため無声放電により発生させる低温プラズマ発生装置に
関する。
TECHNICAL FIELD The present invention relates to a method for sterilizing ozone,
Alternatively, the present invention relates to a low-temperature plasma generator that is generated by silent discharge to be used for sterilization, deodorization, and maintaining freshness of food products.

【0002】[0002]

【従来の技術】オゾンを発生させる方式として空気中の
酸素に紫外線を照射する紫外線方式、無声放電による放
電方式、水を電解する電解方式などがあるが、特に放電
方式のものはオゾンを工業的に大量に発生させるのに適
したものとして多く利用されている。放電方式による低
温プラズマ発生装置、即ちオゾン発生装置にもいくつか
のタイプがあり、無声放電式、沿面放電式、コロナ放電
式のもの等が知られている。
2. Description of the Related Art As a system for generating ozone, there are an ultraviolet system for irradiating ultraviolet rays to oxygen in the air, a discharge system using silent discharge, and an electrolysis system for electrolyzing water. It is often used as a material that is suitable for generating large quantities in the world. There are several types of low-temperature plasma generators based on the discharge method, that is, ozone generators, and a silent discharge type, a creeping discharge type, a corona discharge type and the like are known.

【0003】無声放電式の原理的な構造は、一対の電極
の一方又は両方をガラス又はセラミックス等の誘電体で
被覆して対向配置し、両電極間の1〜2mmの隙間に空
気又は酸素などの媒質を流通させ、両電極間に50Hz
〜2kHz程度の周波数の高電圧を印加して酸度O2
分解しオゾンO3 を発生させるようになっている。この
ような無声放電式のオゾン発生装置の一例としてステン
レスパイプの電極を内外2重に同心状に設けた同軸方式
のものが一般的に使用されている。
[0003] The principle structure of the silent discharge type is that one or both of a pair of electrodes are covered with a dielectric such as glass or ceramics, and are opposed to each other. And a medium of 50 Hz between both electrodes.
A high voltage having a frequency of about 2 kHz is applied to decompose the acidity O 2 to generate ozone O 3 . As an example of such a silent discharge type ozone generator, a coaxial type in which stainless steel pipe electrodes are provided concentrically double inside and outside is generally used.

【0004】この同軸方式の装置は、外側電極の内側と
内側電極の外側をそれぞれガラスなどの誘電体で囲み、
外側と内側の誘電体の間に所定の空間を設けて両端を封
止体で封止し、両端の封止体に設けた導通孔の一方から
他方へ上記空間を通って空気又は酸素などの媒質を流通
させ、両電極に印加した10〜20kVの高電圧による
放電作用でオゾンO3 などの媒体を発生させるようにな
っている。
In this coaxial type device, the inside of the outer electrode and the outside of the inner electrode are each surrounded by a dielectric such as glass.
A predetermined space is provided between the outer and inner dielectrics, both ends are sealed with a sealing body, and air or oxygen passes through the space from one side to the other of the conduction holes provided in the sealing bodies at both ends. The medium is circulated, and a medium such as ozone O 3 is generated by a discharge action by a high voltage of 10 to 20 kV applied to both electrodes.

【0005】一般的に広く用いられている無声放電式の
オゾン発生装置の他の一例として接触型のものがある。
この接触型のものは、ガラス誘電体の外周にステンレス
パイプを密着、挿置してこれを接地電極とし、内側電極
はモリブデン、チタン等を含む金属線をコイル状の細線
としてその弾性をもってガラス誘電体の内周に密着挿置
して成る。両電極間には比較的低い5〜8kVの電圧を
印加して効率よくオゾンを生成する。ステンレスパイプ
の外周には冷却フィンが付帯して設けられ、水冷式で冷
却するものもある。構造が簡単でコストも安いため最も
利用度の多いオゾン発生装置の1つである。
[0005] Another example of a silent discharge type ozone generator generally widely used is a contact type ozone generator.
In this contact type, a stainless steel pipe is closely attached to the outer periphery of a glass dielectric, inserted and used as a ground electrode, and the inner electrode is a coil-shaped thin metal wire containing molybdenum, titanium, etc. It is composed of a body closely attached to the inside of the body. A relatively low voltage of 5 to 8 kV is applied between both electrodes to efficiently generate ozone. Cooling fins are attached to the outer periphery of the stainless steel pipe, and some of them are cooled by water cooling. It is one of the most frequently used ozone generators because of its simple structure and low cost.

【0006】上記一般的な無声放電式のオゾン発生装置
の他に、特殊な例として特開平8−185955号公報
により開示されたものが知られている。この公報による
オゾン発生装置は、棒状導電体を筒状のセラミックス誘
電体内に挿入し、両端を封止体で一体に接合、封止した
複数の電極をセラミックス誘電体間を線接触の状態で接
合して成り、この装置を空気中又は水中に置いて誘電体
同士の間に生じる放電によりオゾンを生成するというも
のである。
In addition to the general silent discharge type ozone generator described above, a special example disclosed in Japanese Patent Application Laid-Open No. 8-185555 is known. In the ozone generator according to this publication, a rod-shaped conductor is inserted into a cylindrical ceramic dielectric, both ends are integrally joined by a sealing body, and a plurality of sealed electrodes are joined between the ceramic dielectrics in a line contact state. The device is placed in the air or water, and ozone is generated by a discharge generated between the dielectrics.

【0007】[0007]

【発明が解決しようとする課題】ところで、上述した一
般的な同軸方式のオゾン発生装置には、次のような種々
の問題がある。高電圧を印加して空気又は酸素などの媒
質を分解して発生するO原子量は電流に比例し、従って
3 の発生量も一般に電流に比例する。媒質は装置の長
手方向の上流側から下流側へと流通されるため、放電部
の下流側端寄りでは上流側よりO3 の滞留時間が長くな
りO3 濃度が高くなるが、O3 濃度が高くなるとO3
対する電子衝突によるO3 の分解も大きくなり、O3
増加が起こらなくなる。即ち放電平衡の状態となり、放
電部の下流側端寄りでは誘電体の発熱が顕著で温度が上
昇する。
By the way, the above-mentioned general coaxial ozone generator has the following various problems. The amount of O atoms generated by applying a high voltage to decompose a medium such as air or oxygen is proportional to the current, and thus the amount of O 3 generated is generally proportional to the current. Because medium is circulated to the downstream side from the longitudinal upstream side of the apparatus, but O 3 concentration increases the residence time of the O 3 from the upstream side in the downstream end side of the discharge portion is increased, O 3 concentration It becomes higher when the decomposition of O 3 by the electron collision against O 3 also increases, increasing the O 3 will not occur. That is, a state of discharge equilibrium is reached, and near the downstream end of the discharge part, the heat generation of the dielectric material is remarkable and the temperature rises.

【0008】このため、一般に放電部の外周には冷却フ
ィンを設け強制冷却するか水による冷却の必要がある。
又、水分を多く含む高湿度の空気を媒質として用いる
と、放電部が自ら生じるOHラジカルがオゾンを分解し
て収率を低下させ、同時に空気に含まれている窒素によ
る窒素酸化物から硝酸を生成して電極を劣化させる原因
となり、これをできるだけ軽減するため供給される空気
は送風側にシリカゲルを挿置し、ヒータ等により乾燥空
気として送るようにしている。このため、コストがかか
る。又、多く使用されている接触型のオゾン発生装置で
も上記各種問題は同様であり、さらに電極を掃除した
り、直ぐに交換することができるよう構造上も配慮され
ており、頻繁に保守点検しなければならない。
For this reason, generally, it is necessary to provide cooling fins on the outer periphery of the discharge portion to perform forced cooling or cooling with water.
In addition, when high humidity air containing a large amount of water is used as a medium, the OH radicals generated by the discharge unit themselves decompose ozone to lower the yield, and at the same time, convert nitric acid from nitrogen oxides due to nitrogen contained in the air. The generated air causes deterioration of the electrodes, and in order to reduce the generated air as much as possible, the air to be supplied is inserted with silica gel on the blowing side and is sent as dry air by a heater or the like. For this reason, costs are incurred. In addition, the above-mentioned problems are similar in the contact-type ozone generator which is widely used, and the structure is also considered so that the electrode can be cleaned or replaced immediately, so that frequent maintenance and inspection are required. Must.

【0009】さらに、外側電極の内側に挿置される誘電
体ガラスとの間は、製造時の寸法公差が大きく、ゆるい
嵌合状態となるため、両者の間に極くわずかな隙間が生
じ、この隙間に2次放電が生起される。このため、小量
であるがオゾンを生成し、長期間使用すると配線や電子
機器等を腐蝕させることとなる。又、配線ボックスには
特に腐蝕が多い。
Furthermore, since the dimensional tolerance at the time of manufacture is large and the gap between the dielectric glass and the dielectric glass inserted inside the outer electrode is loose, a very small gap is generated between the two. A secondary discharge is generated in this gap. For this reason, a small amount of ozone is generated, and if used for a long period of time, it will corrode wiring and electronic equipment. Also, the wiring box is particularly corroded.

【0010】上記種々の問題は、前述した特許公報の特
殊な装置に対しても殆どそのまま当てはまり、この特許
公報の装置ではオゾン等の生成収率が向上するというに
過ぎず、その他の種々の問題を根本的に解決したもので
はない。
[0010] The above-mentioned various problems apply almost directly to the special apparatus of the above-mentioned patent publication, and the apparatus of this patent publication merely improves the production yield of ozone and the like. Is not a fundamental solution.

【0011】この発明は、上述した従来のオゾン発生装
置の種々の問題に留意して、2次放電作用によるオゾン
生成を外部に放出することなく高収率でオゾンの発生を
可能とする低温プラズマ発生装置を提供することを課題
とする。
The present invention is directed to a low-temperature plasma capable of generating ozone at a high yield without releasing ozone generated by a secondary discharge to the outside, taking into account the various problems of the conventional ozone generator described above. It is an object to provide a generator.

【0012】この発明は、上記第1の課題と共に放電部
の下流側端での発熱による温度上昇を抑制し、きわめて
シンプルな構成で、経済的なコストで製作し得る低温プ
ラズマ発生装置を得ることを第2の課題とする。
An object of the present invention is to provide a low-temperature plasma generator which can be manufactured at an economical cost with an extremely simple structure, while suppressing the temperature rise due to heat generation at the downstream end of the discharge part together with the first problem. As a second problem.

【0013】[0013]

【課題を解決するための手段】この発明は、上記課題を
解決する手段として、筒状の保護部材の内側にそれぞれ
半径方向に所定の空間を置いて外側放電部と内側放電部
を同心状に設けて両端を封止体で封止し、外側放電部は
筒状の外側電極を筒状の誘電体の外側に挿置し、内側放
電部は筒状の誘電体の内側に筒状の内側電極を挿置して
それぞれ形成し、一方の封止体に設けた導入路を各空間
に連通させて空気又は酸素のような媒質を導入し、両電
極間の放電作用で媒質から生じた媒体を各空間に流通し
て他方の封止体に設けた排出路から排出するように構成
して成る低温プラズマ発生装置としたのである。
According to the present invention, as a means for solving the above-mentioned problems, an outer discharge portion and an inner discharge portion are concentrically provided with a predetermined space in the radial direction inside a cylindrical protective member. The outer discharge portion is provided with a cylindrical outer electrode inserted outside the cylindrical dielectric, and the inner discharge portion is provided inside the cylindrical dielectric material. A medium such as air or oxygen is introduced by connecting the introduction path provided in one of the sealing bodies to each space to introduce a medium such as air or oxygen, and a medium generated from the medium by a discharge action between both electrodes. Is passed through each space to be discharged from a discharge path provided in the other sealing body.

【0014】上記のように構成した低温プラズマ発生装
置では、オゾンを高収率で発生する。外部から導入路を
経て空気又は酸素等の媒質が送り込まれると外側、内側
の各空間を通り流れるが、このとき外側、内側の両電極
間に高電圧を印加すると外側電極と誘電体の間のわずか
な空間に2次放電作用でオゾンが生じる。このようにし
て生成したオゾンは外側電極の両端から流出し、外側の
空間を流通する空気又は酸素に合流して下流側へ運ばれ
る。
In the low-temperature plasma generator configured as described above, ozone is generated with a high yield. When a medium such as air or oxygen is sent from the outside via the introduction path, the air flows through the outer and inner spaces, but at this time, when a high voltage is applied between the outer and inner electrodes, the outer electrode and the dielectric are interposed. Ozone is generated in a small space by the secondary discharge action. The ozone generated in this way flows out from both ends of the outer electrode, is combined with air or oxygen flowing in the outer space, and is carried to the downstream side.

【0015】同時に内側の空間を流れる媒質に対し両電
極の1次放電作用により媒質を分解してオゾンの媒体が
生成され下流側へと運ばれ、排出路の手前で上記2次放
電作用により生成された媒体と合流して排出路から排出
される。この場合、外側電極と保護部材との間の空間に
も媒質が送られているから、この媒質により外側電極が
冷却される。従って、1次放電、2次放電の冷却を上記
外側空間の媒質によって行なうことにより特に1次放電
によるオゾンの飽和状態を遅らせる。このため生成され
る媒体は従来のオゾン発生装置に比して高い収率で得ら
れる。
At the same time, the medium flowing through the inner space is decomposed by the primary discharge action of the two electrodes to generate a medium of ozone, which is conveyed to the downstream side and generated by the secondary discharge action before the discharge path. And is discharged from the discharge path. In this case, since the medium is also sent to the space between the outer electrode and the protection member, the outer electrode is cooled by the medium. Accordingly, the cooling of the primary discharge and the secondary discharge is performed by the medium in the outer space, thereby delaying the saturation state of ozone due to the primary discharge. For this reason, the generated medium can be obtained in a higher yield than a conventional ozone generator.

【0016】第2の発明の低温プラズマ発生装置は、第
1の発明の装置を前提とし、その一部を次のように構成
する。即ち、前記一方の封止体に設けた導入路を前記空
間のうち外側の空間に連通させて空気又は酸素のような
媒質を導入し、他方の封止体内で流れを反転させて内側
の空間に連通させ、両電極の放電作用で媒質から生じた
媒体を内側の空間に流通するよう一方の封止体に設けた
排出路から排出するように構成した低温プラズマ発生装
置とすることができる。
A low-temperature plasma generating apparatus according to a second aspect of the present invention is based on the apparatus according to the first aspect of the present invention, and a part thereof is configured as follows. That is, the introduction path provided in the one sealing body is communicated with the outer space of the space to introduce a medium such as air or oxygen, and the flow is reversed in the other sealing body to form the inner space. And a low-temperature plasma generator configured to discharge the medium generated from the medium by the discharge action of the two electrodes through an exhaust path provided in one of the sealing bodies so as to flow through the inner space.

【0017】この第2の発明では、一方の封止体に導入
路と排出路が設けられ、他方の封止体内で流れが反転し
て外側の空間を流れている媒質が内側の空間へと流れ
る。内側の空間をオゾンを含む媒質が流れる間にも両電
極間の無声放電による1次放電作用によりオゾンを含む
空気又は酸素を分解してオゾン等の媒体を生成し、この
ため内側の空間を下流側へと流れるに従ってオゾンの濃
度が増大する。この場合の1次放電のオゾン等の媒体の
温度上昇による飽和も外側空間の媒質による冷却によっ
て遅らせることとなるのは第1の発明と同様である。但
し、放電部による温度上昇は、封止体へ外部から空気又
は酸素等を送り込む流入側の封止体寄りで生じ、この流
入側では外部から送り込まれる空気又は酸素等による冷
却作用がより大きく、このため温度上昇がより効果的に
抑えられる。
In the second aspect of the present invention, the introduction path and the discharge path are provided in one of the sealed bodies, and the medium flowing in the outside space due to the reversal of the flow in the other sealed body is transferred to the inside space. Flows. While the medium containing ozone flows through the inner space, the air or oxygen containing ozone is decomposed by the primary discharge action of the silent discharge between the two electrodes to generate a medium such as ozone. As it flows to the side, the concentration of ozone increases. In this case, the saturation of the primary discharge due to the temperature rise of the medium such as ozone is also delayed by the cooling of the medium in the outer space as in the first invention. However, the temperature rise due to the discharge portion occurs near the sealing body on the inflow side that sends air or oxygen from the outside to the sealing body, and the cooling action by the air or oxygen sent from the outside is greater on this inflow side, For this reason, the temperature rise can be suppressed more effectively.

【0018】以上のように、オゾンの生成は2次放電作
用によるものが1次放電作用によるものに加算して生成
されるためオゾンの発生収率は従来の1パス方式のもの
に比して大きく増大する。又、2次放電作用によって生
成されるオゾンが外側電極と誘電体との間のわずかな隙
間に長期間残存すると電極に対し腐蝕作用などを及ぼす
が、この発明では外側電極の両端からオゾンが流出して
残存することがないため、従来の腐蝕作用は軽減され
る。
As described above, ozone is generated by adding secondary ozone generation to primary discharge ozone, so that the ozone generation yield is higher than that of the conventional one-pass type. Greatly increase. If ozone generated by the secondary discharge action remains in a small gap between the outer electrode and the dielectric for a long period of time, the electrode exerts a corrosive action. In this invention, ozone flows out from both ends of the outer electrode. Therefore, the conventional corrosive action is reduced.

【0019】上記第1及び第2の発明の外側放電部の外
側電極は、筒状として筒状の誘電体の外側に挿置されて
いるが、この外側電極に多数の小孔を設けることができ
る。上述したように、外側電極と誘電体との間にはわず
かな隙間が存在するが、外側電極に多数の小孔を設ける
と小孔のエッジ部を介して2次放電作用がさらに増大す
る。そして、2次放電で生じたオゾン等の媒体は小孔か
ら外側電極の半径方向の外方へ流出することができるた
め、わずかな隙間と小孔によって生じる媒体が第1、第
2の発明よりさらに増大する。この媒体は外側電極の外
側を流通する媒質と共に下流へと流送されるため、封止
体に設けた排出路からより多くの媒体が流出し、媒体の
発生収率が向上する。
The outer electrode of the outer discharge portion according to the first and second aspects of the present invention has a cylindrical shape and is inserted outside the cylindrical dielectric. However, the outer electrode may be provided with a number of small holes. it can. As described above, there is a small gap between the outer electrode and the dielectric. However, when a large number of small holes are provided in the outer electrode, the secondary discharge action is further increased through the edges of the small holes. Since the medium such as ozone generated by the secondary discharge can flow out of the small hole to the outside in the radial direction of the outer electrode, the medium generated by the small gap and the small hole is smaller than that of the first and second inventions. Further increase. Since this medium is sent downstream together with the medium flowing outside the outer electrode, more medium flows out from the discharge path provided in the sealing body, and the yield of medium generation is improved.

【0020】[0020]

【実施の形態】以下、この発明の実施の形態について図
面を参照して説明する。図1は実施形態の低温プラズマ
発生装置の主要断面図である。1はガラス保護管であ
り、その内部に外側放電部4と、内側放電部7が同心円
状に設けられている。なお、図示の例では円形断面のも
のを示しているが、矩形状など他の形状の断面としても
よい。外側放電部4は、円筒状の外側電極2の内側に円
筒状の誘電体3を挿置したものから成る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a main cross-sectional view of the low-temperature plasma generator of the embodiment. Reference numeral 1 denotes a glass protective tube, in which an outer discharge portion 4 and an inner discharge portion 7 are provided concentrically. Although a circular cross section is shown in the illustrated example, a cross section of another shape such as a rectangular shape may be used. The outer discharge section 4 is formed by inserting a cylindrical dielectric 3 inside a cylindrical outer electrode 2.

【0021】内側放電部7は円筒状の内側電極6の外側
に円筒状の誘電体5を挿置したものから成る。ガラス
(石英ガラス)保護管1と外側放電部4との間、及び外
側放電部4と内側放電部7との間にはそれぞれ所定寸法
の外側の空間8、内側の空間9が形成され、空気又は酸
素のような媒質、発生した媒体が流通できるようになっ
ている。
The inner discharge portion 7 is formed by inserting a cylindrical dielectric 5 outside a cylindrical inner electrode 6. An outer space 8 and an inner space 9 having predetermined dimensions are formed between the glass (quartz glass) protective tube 1 and the outer discharge portion 4 and between the outer discharge portion 4 and the inner discharge portion 7, respectively. Alternatively, a medium such as oxygen or a generated medium can be circulated.

【0022】上記保護管1、外側放電部4、内側放電部
7の両端は封止体10a、10bにより封止され、一方
の封止体10a内には空気又は酸素などの媒質を導入す
る導入路11と発生した媒体を排出する排出路12とが
設けられている。導入路11は導入室13を介して外側
の空間8に連通し、排出路12は排出室14を介して内
側の空間9に連通している。又、反対側の封止体10b
内では接続空間15を介して外側の空間8を内側の空間
9に接続している。
Both ends of the protective tube 1, the outer discharge part 4 and the inner discharge part 7 are sealed by sealing members 10a and 10b, and a medium such as air or oxygen is introduced into one of the sealing members 10a. A path 11 and a discharge path 12 for discharging the generated medium are provided. The introduction path 11 communicates with the outer space 8 via the introduction chamber 13, and the discharge path 12 communicates with the inner space 9 via the discharge chamber 14. Also, the sealing body 10b on the opposite side
Inside, the outer space 8 is connected to the inner space 9 via a connection space 15.

【0023】内側放電部7の内側電極6と外側放電部4
の外側電極2には電源Pから高周波の高電圧が印加さ
れ、両電極2〜6間で誘電体3、5を介して放電が行な
われる。導入路11へはエアーポンプF又は酸素ボンベ
(図示省略)から空気又は酸素が送られ、これら媒質が
外側の空間8、内側の空間9を流通する間に放電作用に
より分解されてオゾンなどの媒体を発生させ、排出路1
2から排出される。
The inner electrode 6 of the inner discharge part 7 and the outer discharge part 4
A high-frequency high voltage is applied to the outer electrode 2 from the power source P, and discharge is performed between the electrodes 2 to 6 via the dielectrics 3 and 5. Air or oxygen is sent to the introduction path 11 from an air pump F or an oxygen cylinder (not shown), and these mediums are decomposed by a discharge action while flowing through the outer space 8 and the inner space 9 to form a medium such as ozone. And discharge path 1
Exhausted from 2.

【0024】上記外側放電部4の外側電極2は誘電体3
の外側に嵌合挿置されるが、その際誘電体3の表面に密
着させるため外側電極2には、この例では導電性を有す
る金属材としてステンレスパイプを使用し、図2の断面
に示すように、その周上の1箇所で長手方向に沿った切
断線で切断した一部切欠き円形断面のものを誘電体3の
外側に被せるようにして内向きに収縮しようとする弾性
で密着するように装着する。反対に、内側放電部の内側
電極6も同様に、ステンレスパイプを使用し、その周上
の1箇所を長手方向に沿った切断線で切断した一部切欠
き円形断面のものを誘電体5の内側に装着し、パイプの
外向きに拡がろうとする弾性により誘電体5に密着、挿
置する。
The outer electrode 2 of the outer discharge section 4 is made of a dielectric 3
In this case, a stainless steel pipe is used for the outer electrode 2 as a conductive metal material in order to make the outer electrode 2 adhere to the surface of the dielectric 3, and is shown in the cross section of FIG. As described above, a partly cut circular cross section cut at one location on the circumference by a cutting line along the longitudinal direction is put on the outside of the dielectric 3 and elastically closes inward so as to contract inward. Attach as follows. Conversely, the inner electrode 6 of the inner discharge portion is also made of a stainless steel pipe, and a partly cut circular cross-section obtained by cutting one location on the circumference along a cutting line along the longitudinal direction is used as the dielectric material 5. It is mounted inside and is closely attached to and inserted into the dielectric 5 due to the elasticity of the pipe that tends to spread outward.

【0025】なお、誘電体3、5はいずれもガラス誘電
体又はセラミックス誘電体等でできている。又封止体1
0a、10bは無機系又は有機系の接着剤を固形化した
ものから成る。又、図3、図4に示すように、外側電極
2には多数の小孔2aがランダムに配設されている。2
次放電による生成媒体を外側の空間8へ放出するためで
ある。多数の小孔2aは外側電極2から穿設される小孔
の全面積を差引いた面積が内側電極6の外周面積又はそ
れ以上となるように加工される。
Each of the dielectrics 3 and 5 is made of a glass dielectric or a ceramic dielectric. Sealing body 1
Reference numerals 0a and 10b are formed by solidifying an inorganic or organic adhesive. Further, as shown in FIGS. 3 and 4, a large number of small holes 2a are randomly arranged in the outer electrode 2. 2
This is because the medium generated by the next discharge is released to the outer space 8. The large number of small holes 2a are processed so that the area obtained by subtracting the total area of the small holes formed from the outer electrode 2 becomes the outer peripheral area of the inner electrode 6 or more.

【0026】このような外側電極2は、図4に示すよう
に、ステンレス薄板に予め多数の小孔2aの総面積が上
述した割合の面積となるように小孔の大きさ、数、配置
を決めてエッチング処理により穿設し、その薄板をロー
ルにより曲げ加工して一部切欠き円形断面のパイプとし
て形成する。こうして形成された外側電極2は、上記の
ように誘電体3の外周に密着、挿置されるから両者の間
には隙間は原則的には殆ど生じない。
As shown in FIG. 4, the size, number and arrangement of the outer electrodes 2 are set such that the total area of a large number of small holes 2a in the stainless steel plate is the above-mentioned ratio. Then, the thin plate is bent by a roll and formed into a pipe with a partially cut circular cross section. The outer electrode 2 thus formed is closely attached to and inserted into the outer periphery of the dielectric 3 as described above, so that there is almost no gap between them.

【0027】しかし、実際には製作上の寸法公差が両者
にあるため図3の断面に示すように、極くわずかな公差
隙間が存在する。このような公差隙間と小孔の断面より
後述するように2次放電作用によりオゾンのような媒体
が生成され、これらの媒体は多数の小孔2aから外側の
空間8へ放出される。
However, since there is actually a dimensional tolerance in the production, there is a very small tolerance gap as shown in the cross section of FIG. As will be described later, a medium such as ozone is generated by the secondary discharge action from the cross section of the tolerance gap and the small holes, and these mediums are discharged from the large number of small holes 2a to the outer space 8.

【0028】以上のように構成した実施形態の低温プラ
ズマ発生装置は次のように作用する。低温プラズマ発生
装置は、両電極間に高電圧を印加すると誘電体により放
電が抑制されて電子温度は超高温に達するが、分子の温
度はほぼ常温に保たれる(低温プラズマ)ためこのよう
に呼ばれるが、一般にはオゾン発生装置又はオゾナイザ
ーと称される。以下ではオゾン発生装置として説明す
る。
The low-temperature plasma generator of the embodiment configured as described above operates as follows. In a low-temperature plasma generator, when a high voltage is applied between both electrodes, the discharge is suppressed by the dielectric and the electron temperature reaches an extremely high temperature, but the temperature of the molecules is kept at almost normal temperature (low-temperature plasma). It is generally called an ozone generator or ozonizer. Hereinafter, an ozone generator will be described.

【0029】エアーポンプF等から送り込まれる空気又
は酸素等の媒質は外側空間8を通り接続空間15で送り
方向が反転されて内側空間9内に送り込まれ、排出室1
4を経て排出路12から排出される。上記媒質が流通す
る間に外側放電部4と内側放電部7に印加されている高
電圧により外側電極2と誘電体3との間の極くわずかな
公差隙間と小孔の断面より2次放電作用が発生する。
The medium such as air or oxygen fed from the air pump F or the like passes through the outer space 8, is reversed in the feed direction in the connection space 15, is sent into the inner space 9, and is discharged into the discharge chamber 1.
4 and is discharged from the discharge path 12. Due to the high voltage applied to the outer discharge part 4 and the inner discharge part 7 during the passage of the medium, the secondary discharge is caused by a very small tolerance gap between the outer electrode 2 and the dielectric 3 and the cross section of the small hole. Action occurs.

【0030】この2次放電作用は、電極2に設けられた
多数の小孔2aのエッジ部と誘電体3との間に生成され
るコロナ放電作用によるものであり、この2次放電作用
によりわずかな隙間と小孔断面より空気中の酸素を分解
してオゾンを発生し、発生したオゾンは多数の小孔2a
から外側の空間8へと流出する。外側の空間8へ流出し
たオゾンは外側の空間8を流通する空気又は酸素と一緒
になって内側の空間9へと流れる。
This secondary discharge action is due to the corona discharge action generated between the edges of the many small holes 2a provided in the electrode 2 and the dielectric 3, and the secondary discharge action causes a slight discharge. Ozone is generated by decomposing oxygen in the air from the narrow gap and the cross section of the small holes, and the generated ozone is generated by the large number of small holes 2a.
Out into the outer space 8. The ozone flowing into the outer space 8 flows to the inner space 9 together with the air or oxygen flowing through the outer space 8.

【0031】内側の空間9の長手方向に沿って移動する
間に両電極2、6の無声放電作用により分解されてオゾ
ンが生成され、生成されたオゾンはオゾン濃度が増大し
ながら流入側の封止体10aの方へ流れる。この媒体が
内側の空間9の封止体10a側の端まで進むとその間に
放電作用で増大したオゾン濃度は放電平衡状態に達して
オゾン濃度が一定以上に増加しない状態となる。
While moving along the longitudinal direction of the inner space 9, the two electrodes 2 and 6 are decomposed by the silent discharge action to generate ozone, and the generated ozone is sealed on the inflow side while the ozone concentration increases. It flows toward the stop 10a. When this medium advances to the end of the inner space 9 on the side of the sealing body 10a, the ozone concentration increased by the discharge during that time reaches a discharge equilibrium state, and the ozone concentration does not increase beyond a certain level.

【0032】このような状態では、従来のオゾン発生装
置の場合、放電平衡状態となる下流側端付近が特に大き
く発熱し温度上昇するが、この実施形態では封止部10
aの内部に外側の空間8に連通する導入室13が設けら
れているため、外部から導入される空気又は酸素等の媒
質によって放電部が全体的に冷却される。従って、下流
側端付近での温度上昇も大きく抑制される。例えば図示
の装置で20℃の室温で連続3時間通電しても外部のガ
ラス保護管1の温度は、送風量5l/minの条件で5
5℃に温度上昇するに過ぎない。このため、短時間での
運転では冷却の必要はない。1次放電による温度上昇
は、内、外電極共ガラス誘電体を経た放電であるため非
常にゆるやかであり、温度上昇に影響を与えないと考え
られる。
In such a state, in the case of the conventional ozone generator, the vicinity of the downstream end at which the discharge is equilibrated is particularly heated and the temperature rises.
Since the introduction chamber 13 communicating with the outer space 8 is provided inside a, the discharge portion is entirely cooled by a medium such as air or oxygen introduced from the outside. Therefore, the temperature rise near the downstream end is also greatly suppressed. For example, even if electricity is continuously supplied for 3 hours at a room temperature of 20 ° C. by using the illustrated apparatus, the temperature of the external glass protection tube 1 is 5 ° C. under the condition of a blowing rate of 5 l / min.
It only raises the temperature to 5 ° C. For this reason, there is no need for cooling in a short operation. It is considered that the temperature rise due to the primary discharge is very slow since it is a discharge through the inner and outer electrode co-glass dielectrics, and does not affect the temperature rise.

【0033】又、外側電極2と誘電体3との間の2次放
電によるオゾン生成量は空気又は酸素の送風量に比して
少なく、又小孔断面が送風の抵抗となって冷却が促進さ
れるので窒素酸化物は測定されない。従って窒素酸化物
により電極2や配線等に錆を発生しなくなり、電極等の
長期使用による劣化が生じなくなる。
Further, the amount of ozone generated by the secondary discharge between the outer electrode 2 and the dielectric 3 is smaller than the amount of air or oxygen blown, and the cross section of the small holes becomes the resistance of the blow, thereby promoting cooling. NO oxides are measured. Therefore, rust is not generated on the electrode 2 or the wiring due to the nitrogen oxide, and deterioration due to long-term use of the electrode and the like does not occur.

【0034】上記の第1実施形態では導入路11と排出
路12とを一方の封止体10a内に設けたが、図5に示
す第2実施形態のように、他方の封止体10bに導入路
11を設け、一方の封止体10aに排出路12を設ける
ようにすることもできる。この例では導入路11から導
入された空気又は酸素などの媒質は連通室15を介して
外側と内側の空間8、9の両方へ流れ、封止体10aに
設けられたもう一方の連通室13’により合流して排出
路12から排出される。
In the above-described first embodiment, the introduction path 11 and the discharge path 12 are provided in one sealing body 10a. However, as in the second embodiment shown in FIG. The introduction path 11 may be provided, and the discharge path 12 may be provided in one of the sealing bodies 10a. In this example, a medium such as air or oxygen introduced from the introduction passage 11 flows to both the outer and inner spaces 8 and 9 through the communication chamber 15 and the other communication chamber 13 provided in the sealing body 10a. And are discharged from the discharge path 12.

【0035】その他の構成については第1実施形態と基
本的に同じであり、同一の符号を付して説明は省略す
る。この例では導入路11が排出路12と反対側に設け
られているが、放電部に対し全体的に温度上昇を第1実
施形態のように導入路11からの空気又は酸素による媒
質の流入で冷却するから、2次放電によるオゾンなどの
媒体の生成は第1実施形態と同様に外側電極2と誘電体
3との間の公差隙間及び多数の小孔で行なわれるため、
高い収率で得られる点は第1実施形態と同様である。
The other configuration is basically the same as that of the first embodiment, and the same reference numerals are given and the description is omitted. In this example, the introduction path 11 is provided on the side opposite to the discharge path 12, but the temperature rise of the discharge section is entirely caused by the inflow of the medium by air or oxygen from the introduction path 11 as in the first embodiment. Since the medium is cooled, the generation of the medium such as ozone by the secondary discharge is performed in the tolerance gap between the outer electrode 2 and the dielectric 3 and a large number of small holes as in the first embodiment.
The point that a high yield is obtained is the same as in the first embodiment.

【0036】上記第1、第2の実施形態では、外側電極
2には多数の小孔を設けているが、これら小孔は省略す
ることができる。多数の小孔を設けないとすると、小孔
のエッジ部を介して2次放電によるオゾン等の媒体を発
生させることはできない。しかし、外側電極2と誘電体
3との間に交差隙間が実際には存在する点は同じであ
り、この交差隙間に含まれる空気又は酸素に2次放電作
用が及んでオゾン等の媒体が生じることは第1、第2実
施形態と同じである。
In the first and second embodiments, the outer electrode 2 is provided with a large number of small holes, but these small holes can be omitted. If a large number of small holes are not provided, it is impossible to generate a medium such as ozone by secondary discharge through the edge of the small holes. However, the point where the intersecting gap actually exists between the outer electrode 2 and the dielectric 3 is the same, and a secondary discharge action is exerted on the air or oxygen contained in the intersecting gap to generate a medium such as ozone. This is the same as in the first and second embodiments.

【0037】上記公差隙間に生じた媒体は、外側電極2
の両端から少しずつ外部へ漏れ出て外側電極2の外側を
流通する空気又は酸素などの媒質に含まれて下流へと流
送される。従って、多数の小孔がなくても若干ずつの媒
体は下流側へと送られる。さらに、上述したように外側
空間8を流れる媒質の冷却効果によって内側電極6内で
は1次放電による媒体の発生が多くなることは第1、第
2実施形態と同様である。このため、全体として媒体の
発生収率が従来例に比して向上することは明らかであろ
う。
The medium generated in the tolerance gap is the outer electrode 2
Are gradually leaked to the outside from both ends and are contained in a medium such as air or oxygen flowing outside the outer electrode 2 and are sent downstream. Therefore, even if there are not many small holes, a small amount of the medium is sent to the downstream side. Further, as described above, the generation of the medium due to the primary discharge in the inner electrode 6 increases due to the cooling effect of the medium flowing in the outer space 8 as in the first and second embodiments. Therefore, it is apparent that the generation yield of the medium as a whole is improved as compared with the conventional example.

【0038】[0038]

【発明の効果】以上詳細に説明したように、この発明の
低温プラズマ発生装置は保護部材内に所定の空間を置
き、外側放電部と内側放電部を同心状に設けて両端を封
止体で封止し、一方の封止体の導入路から媒質を導入し
て各空間を流通させ、両電極の放電作用で生じる媒体を
他方の封止体に設けた排出路から排出するようにしたか
ら、各空間を媒質が流通し両電極の放電作用で媒質を分
解してオゾンなどの媒体を生じる間に外側空間を通る媒
質により冷却され内側空間での1次放電による媒体発生
が媒体の飽和状態を遅らせることにより発生収率が向上
し、かつ外側放電部の外側の空間へは外側放電部の電極
と誘電体とのわずかな隙間に2次放電で生じる媒体が外
側電極の両端から流出して排出路へと排出され、このた
め1次放電による媒体の発生だけでなく2次放電により
生起される媒体も加えられることにより高収率でオゾン
などの媒体を発生させることができるという顕著な効果
が得られる。
As described above in detail, in the low-temperature plasma generator of the present invention, a predetermined space is provided in the protective member, the outer discharge portion and the inner discharge portion are provided concentrically, and both ends are sealed. Because the medium is introduced from the introduction path of one of the sealing bodies, the medium is introduced to flow through each space, and the medium generated by the discharge action of both electrodes is discharged from the discharge path provided in the other sealing body. While the medium flows through each space, the medium is decomposed by the discharge action of both electrodes to generate a medium such as ozone, the medium is cooled by the medium passing through the outer space, and the medium generated by the primary discharge in the inner space is saturated with the medium. The medium yielded by the secondary discharge flows out from both ends of the outer electrode into the space outside the outer discharge part through a slight gap between the electrode and the dielectric of the outer discharge part. Discharged to the discharge path, and Medium to be of the occurrence by just not secondary discharge occurs even remarkable effect that it is possible to generate a medium such as ozone in a high yield by being added is obtained.

【0039】又、上記発生装置において一方の封止体に
設けた導入路を外側の空間に連通させて導入される媒質
を他方の封止体内で流れを反転させて内側の空間に流通
させ、内側の空間に連通するよう一方の封止体に設けた
排出路から外側と内側の空間を媒質が流通する間に両電
極の放電作用で媒質を分解して生じた媒体を排出するよ
うにすると、上記発明と同様に1次放電及び2次放電に
より生じる媒体の排出でオゾンなどの媒体をさらに高収
率で発生させることができるという効果が得られる。従
って、従来放電部の外側に冷却フィンを設け、送風装置
により冷却するなどの手段が不要となり、極めてシンプ
ルで経済的コストで製作できるという利点が得られる。
In the above generator, the introduction path provided in one of the sealed bodies is communicated with the outer space, and the medium to be introduced is reversed in the other sealed body to flow through the inner space, When the medium is discharged from the discharge path provided in one of the sealing bodies so as to communicate with the inner space while the medium flows through the outer and inner spaces, the medium generated by decomposing the medium by the discharge action of both electrodes is discharged. In the same manner as in the above-described invention, an effect is obtained that a medium such as ozone can be generated at a higher yield by discharging the medium generated by the primary discharge and the secondary discharge. Therefore, there is no need to provide a cooling fin outside the conventional discharge unit and cool it with a blower, and the advantage is obtained that it can be manufactured extremely simply and economically.

【0040】さらに、上記いずれかの発生装置において
外側電極の筒状体に多数の小孔を設けた場合、多数の小
孔のエッジ部分でのコロナ放電による2次放電作用でオ
ゾンなどの媒体が生成され、小孔から外側空間へ媒体が
流出して内側空間での1次放電による媒体に合流し、こ
のためさらに媒体の発生収率が向上するという効果が得
られる。
Further, in any of the above-described generators, when a large number of small holes are provided in the cylindrical body of the outer electrode, a medium such as ozone is generated by a secondary discharge action by corona discharge at the edge portion of the large number of small holes. The medium is generated, flows out of the small holes into the outer space, and merges with the medium by the primary discharge in the inner space, so that the effect of further improving the generation yield of the medium is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態の低温プラズマ発生装置の主要縦断面
FIG. 1 is a main longitudinal sectional view of a low-temperature plasma generator of an embodiment.

【図2】図1の矢視II−IIから見た断面図FIG. 2 is a sectional view taken along the line II-II in FIG.

【図3】外側放電部の部分拡大断面図FIG. 3 is a partially enlarged sectional view of an outer discharge portion.

【図4】外側電極2の展開平面図FIG. 4 is a developed plan view of the outer electrode 2.

【図5】第2実施形態の低温プラズマ発生装置の概略図FIG. 5 is a schematic diagram of a low-temperature plasma generator according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 ガラス保護管 2 外側電極 3、5 誘電体 4 外側放電部 6 内側電極 7 内側放電部 8 外側空間 9 内側空間 10a、10b 封止体 11 導入路 12 排出路 13 導入室 14 排出室 15 連通室 DESCRIPTION OF SYMBOLS 1 Glass protective tube 2 Outer electrode 3, 5 Dielectric 4 Outer discharge part 6 Inner electrode 7 Inner discharge part 8 Outer space 9 Inner space 10a, 10b Sealing body 11 Introducing path 12 Discharge path 13 Introducing chamber 14 Discharging chamber 15 Communication chamber

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 洋介 大東市氷野3丁目279番地の26 野村電子 工業株式会社内 Fターム(参考) 4B021 LT03 MC01 MK01 MK13 MP06 4C080 AA07 BB02 BB05 CC01 HH02 JJ01 KK02 LL01 MM08 QQ17 4G042 CA01 CC03 CC06 CC10 CC16 CC20  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Yosuke Nomura 3-279, Hino, Daito City Nomura Electronics Industry Co., Ltd. F-term (reference) 4B021 LT03 MC01 MK01 MK13 MP06 4C080 AA07 BB02 BB05 CC01 HH02 JJ01 KK02 LL01 MM08 QQ17 4G042 CA01 CC03 CC06 CC10 CC16 CC20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 筒状の保護部材の内側にそれぞれ半径方
向に所定の空間を置いて外側放電部と内側放電部を同心
状に設けて両端を封止体で封止し、外側放電部は筒状の
外側電極を筒状の誘電体の外側に挿置し、内側放電部は
筒状の誘電体の内側に筒状の内側電極を挿置してそれぞ
れ形成し、一方の封止体に設けた導入路を各空間に連通
させて空気又は酸素のような媒質を導入し、両電極間の
放電作用で媒質から生じた媒体を各空間に流通して他方
の封止体に設けた排出路から排出するように構成して成
る低温プラズマ発生装置。
1. An outer discharge portion and an inner discharge portion are provided concentrically with a predetermined space in the radial direction inside a cylindrical protection member, and both ends are sealed with a sealing body. The cylindrical outer electrode is inserted outside the cylindrical dielectric, and the inner discharge part is formed by inserting the cylindrical inner electrode inside the cylindrical dielectric, respectively. A medium such as air or oxygen is introduced by connecting the provided introduction path to each space, and a medium generated from the medium by the discharge action between the two electrodes flows through each space to discharge the other sealing body. A low-temperature plasma generator configured to be discharged from a road.
【請求項2】 前記一方の封止体に設けた導入路を前記
空間のうち外側の空間に連通させて空気又は酸素のよう
な媒質を導入し、他方の封止体内で流れを反転させて内
側の空間に流通し、両電極の放電作用で媒質から生じた
媒体を内側の空間に流通させ、一方の封止体に設けた排
出路から排出するように構成したことを特徴とする請求
項1に記載の低温プラズマ発生装置。
2. A medium such as air or oxygen is introduced by connecting an introduction path provided in the one sealing body to an outer space of the space, and a flow is reversed in the other sealing body. A medium flowing through the inner space, a medium generated from the medium by the discharge action of the two electrodes is passed through the inner space, and is discharged from a discharge path provided in one of the sealing bodies. 2. The low-temperature plasma generator according to 1.
【請求項3】 前記外側電極に多数の小孔を設けたこと
を特徴とする請求項1又は2に記載の低温プラズマ発生
装置。
3. The low-temperature plasma generator according to claim 1, wherein a number of small holes are provided in the outer electrode.
【請求項4】 前記多数の小孔は、外側電極の外周面積
から穿設された小孔の全面積を差引いた面積が内側電極
の外周面積又はそれ以上となるようにその数及び各孔の
面積を設定したことを特徴とする請求項3に記載の低温
プラズマ発生装置。
4. The number of the plurality of small holes and the number of the small holes so that the area obtained by subtracting the entire area of the small holes from the outer peripheral area of the outer electrode is equal to or larger than the outer peripheral area of the inner electrode. The low-temperature plasma generator according to claim 3, wherein an area is set.
【請求項5】 前記外側放電部を円筒状とし、その外側
電極を弾性を有する導電性の金属板を用いて形成し、か
つ長手方向に切断線を入れた一部切欠き円形断面で誘電
体外周に収縮するように密着、挿置したことを特徴とす
る請求項1乃至4のいずれかに記載の低温プラズマ発生
装置。
5. The outer discharge portion is formed in a cylindrical shape, the outer electrode is formed using an elastic conductive metal plate, and has a partially cutout circular cross section cut in the longitudinal direction to form an outer electrode. The low-temperature plasma generator according to any one of claims 1 to 4, wherein the low-temperature plasma generator is closely attached and inserted so as to contract around the circumference.
JP11156584A 1999-06-03 1999-06-03 Low-temperature plasma generator Pending JP2000348848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP11156584A JP2000348848A (en) 1999-06-03 1999-06-03 Low-temperature plasma generator
KR1019990038260A KR100355814B1 (en) 1999-06-03 1999-09-09 Device for producing plasma at a low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11156584A JP2000348848A (en) 1999-06-03 1999-06-03 Low-temperature plasma generator

Publications (1)

Publication Number Publication Date
JP2000348848A true JP2000348848A (en) 2000-12-15

Family

ID=15630970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11156584A Pending JP2000348848A (en) 1999-06-03 1999-06-03 Low-temperature plasma generator

Country Status (2)

Country Link
JP (1) JP2000348848A (en)
KR (1) KR100355814B1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044262A1 (en) * 2006-10-05 2008-04-17 Nissho Engineering Co., Ltd Faucet-directly-connectable self-power generating ozone water generator
JP2008137862A (en) * 2006-12-04 2008-06-19 Ugajin Denki Kk Ozonizer
JP2009005583A (en) * 2007-06-26 2009-01-15 Frontier Engineering Co Ltd Alternate-current high electric-field sterilization device for fluid food material
JP2009501580A (en) * 2005-07-20 2009-01-22 アルファテック インターナショナル リミテッド Air purifier / sterilizer
JP2011205298A (en) * 2010-03-25 2011-10-13 Audio Technica Corp Electroacoustic transducer and method of manufacturing the same
US20130306101A1 (en) * 2012-05-18 2013-11-21 Rave N.P., Inc. Contamination Removal Apparatus and Method
KR102063252B1 (en) * 2019-01-29 2020-01-07 (주)신영에어텍 Plasma generator using dielectric barrier discharge and air cleaning device comprising the same
CN111773427A (en) * 2020-07-10 2020-10-16 深圳先进技术研究院 Plasma air sterilizing and treating device
WO2021071594A3 (en) * 2019-08-21 2021-05-27 The Regents Of The University Of Michigan Compound annular non-thermal plasma reactor core
KR102294297B1 (en) * 2020-05-28 2021-08-26 한국생산기술연구원 Plasma discharge tube having electrode connecting body and method for manufacturing it
CN113980493A (en) * 2021-09-30 2022-01-28 重庆大学 High-flux hydroxylation method and device for inorganic filler based on low-temperature plasma
US20220194828A1 (en) * 2020-12-22 2022-06-23 Sun Hydraulics (China) Co., Ltd. Ozone generator
US11912570B2 (en) 2020-12-30 2024-02-27 Sun Hydraulics (China) Co., Ltd. Long-life discharge tube for ozone generator

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100499917B1 (en) * 2001-12-04 2005-07-25 이동훈 Plasma device using underwater discharge and underoil discharge
KR101946821B1 (en) * 2016-11-18 2019-02-12 농업회사법인 주식회사 부림아그로텍 Underwater plasma torch
KR102086356B1 (en) * 2018-05-02 2020-03-10 김유성 Discharge Type Ozone Sterilization System with High Efficiency
KR102513597B1 (en) * 2022-05-04 2023-03-23 (주)에이디테크 apparatus for removing odor using plasma

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101433955B1 (en) * 2005-07-20 2014-08-25 알파테크 인터내셔널 리미티드 Apparatus for air purification and disinfection
JP2009501580A (en) * 2005-07-20 2009-01-22 アルファテック インターナショナル リミテッド Air purifier / sterilizer
US8152142B2 (en) 2006-10-05 2012-04-10 Nissho Engineering Co., Ltd. Service water pipe faucet direct-connected ozone water producer with self-power generator
WO2008044262A1 (en) * 2006-10-05 2008-04-17 Nissho Engineering Co., Ltd Faucet-directly-connectable self-power generating ozone water generator
JP5420905B2 (en) * 2006-10-05 2014-02-19 株式会社日省エンジニアリング Self-powered ozone water generator directly connected to a water tap
JP2008137862A (en) * 2006-12-04 2008-06-19 Ugajin Denki Kk Ozonizer
JP2009005583A (en) * 2007-06-26 2009-01-15 Frontier Engineering Co Ltd Alternate-current high electric-field sterilization device for fluid food material
JP2011205298A (en) * 2010-03-25 2011-10-13 Audio Technica Corp Electroacoustic transducer and method of manufacturing the same
US20130306101A1 (en) * 2012-05-18 2013-11-21 Rave N.P., Inc. Contamination Removal Apparatus and Method
KR20150008914A (en) * 2012-05-18 2015-01-23 레이브 엔.피., 인크. Contamination removal apparatus and method
JP2015525464A (en) * 2012-05-18 2015-09-03 レイヴ エヌ.ピー. インコーポレイテッド Contaminant removal apparatus and method
US10245623B2 (en) * 2012-05-18 2019-04-02 Rave N.P., Inc. Contamination removal apparatus and method
US11135626B2 (en) 2012-05-18 2021-10-05 Bruker Nano, Inc. Contamination removal apparatus and method
KR102139391B1 (en) 2012-05-18 2020-07-30 레이브 엔.피., 인크. Contamination removal apparatus and method
WO2020158967A1 (en) * 2019-01-29 2020-08-06 (주)신영에어텍 Plasma generator using dielectric barrier discharge and air purification device comprising same
KR102063252B1 (en) * 2019-01-29 2020-01-07 (주)신영에어텍 Plasma generator using dielectric barrier discharge and air cleaning device comprising the same
WO2021071594A3 (en) * 2019-08-21 2021-05-27 The Regents Of The University Of Michigan Compound annular non-thermal plasma reactor core
KR102294297B1 (en) * 2020-05-28 2021-08-26 한국생산기술연구원 Plasma discharge tube having electrode connecting body and method for manufacturing it
KR102323402B1 (en) * 2020-05-28 2021-11-09 한국생산기술연구원 Plasma discharge tube having electrode connecting body and method for manufacturing it
CN111773427A (en) * 2020-07-10 2020-10-16 深圳先进技术研究院 Plasma air sterilizing and treating device
US20220194828A1 (en) * 2020-12-22 2022-06-23 Sun Hydraulics (China) Co., Ltd. Ozone generator
CN114655931A (en) * 2020-12-22 2022-06-24 升旭液压(中国)有限公司 Ozone generator
EP4021150A1 (en) * 2020-12-22 2022-06-29 Sun Hydraulics (China) Co., Ltd. Ozone generator
GB2602297A (en) * 2020-12-22 2022-06-29 Superior Wellness Ltd Ozone generator
GB2602297B (en) * 2020-12-22 2024-01-17 Superior Wellness Ltd Ozone generator
CN114655931B (en) * 2020-12-22 2024-07-26 升旭液压(中国)有限公司 Ozone generator
US11912570B2 (en) 2020-12-30 2024-02-27 Sun Hydraulics (China) Co., Ltd. Long-life discharge tube for ozone generator
CN113980493A (en) * 2021-09-30 2022-01-28 重庆大学 High-flux hydroxylation method and device for inorganic filler based on low-temperature plasma

Also Published As

Publication number Publication date
KR100355814B1 (en) 2002-10-19
KR20010005441A (en) 2001-01-15

Similar Documents

Publication Publication Date Title
JP2000348848A (en) Low-temperature plasma generator
EP1069071B1 (en) Ozone generating apparatus
CN1847736B (en) Discharge device and air conditioner having said device
KR100657476B1 (en) Surface discharge type air cleaning device
KR100624731B1 (en) Surface discharge type air cleaning device
WO1992014677A1 (en) Method and apparatus for producing ozone by corona discharge
JPS61275107A (en) Ozonator
US9593030B2 (en) Liquid treatment apparatus and liquid treatment method
CN215138471U (en) Discharge structure and sterilization device
US20070053806A1 (en) Ozone generator
JP3580294B2 (en) Creeping discharge electrode, gas processing apparatus and gas processing method using the same
KR100600756B1 (en) Surface discharge type air cleaning device
CN217357406U (en) Dielectric barrier discharge device and air purifier
KR100591343B1 (en) Sterilization module device
JP5180460B2 (en) Ozone generator
CN212013158U (en) Filament plate type electrode device, purification module and refrigerator
CN105344212A (en) Single-dielectric barrier low temperature plasma discharge module
JP2002255513A (en) Ozone generator
KR19980082091A (en) Multi discharge type high efficiency ozone generator.
KR100378703B1 (en) ozone supplier in the form of slient discharge using a quid state of electrode
JP2009102177A (en) Ozone generating electrode and ozone generating device
Duarte Characterization of a Novel Double Cooled Electrode DBD Reactor for Ozone Generation
CN217876343U (en) Plasma generating device and air purifier
JP2005247647A (en) Ozone generating apparatus suppressing decomposition of ozonized gas
JPH10338503A (en) Ozonizer