JP6833197B2 - Joule heating device and Joule heating method - Google Patents

Joule heating device and Joule heating method Download PDF

Info

Publication number
JP6833197B2
JP6833197B2 JP2016202392A JP2016202392A JP6833197B2 JP 6833197 B2 JP6833197 B2 JP 6833197B2 JP 2016202392 A JP2016202392 A JP 2016202392A JP 2016202392 A JP2016202392 A JP 2016202392A JP 6833197 B2 JP6833197 B2 JP 6833197B2
Authority
JP
Japan
Prior art keywords
flow path
electrode
food material
outer electrode
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016202392A
Other languages
Japanese (ja)
Other versions
JP2018063896A (en
Inventor
星野 弘
弘 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Engineering Co Ltd
Original Assignee
Frontier Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Engineering Co Ltd filed Critical Frontier Engineering Co Ltd
Priority to JP2016202392A priority Critical patent/JP6833197B2/en
Publication of JP2018063896A publication Critical patent/JP2018063896A/en
Application granted granted Critical
Publication of JP6833197B2 publication Critical patent/JP6833197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

本発明は、加熱すると糊化する食品材料を搬送しながら通電加熱するためのジュール加熱技術に関する。 The present invention relates to a Joule heating technique for energizing and heating while transporting a food material that gelatinizes when heated.

パイプ内の流路に流動性の食品材料を搬送しながら食品材料に通電してジュール熱により食品材料を調理加熱したり、殺菌加熱したりするために、特許文献1に記載される連続通電加熱装置、および特許文献2に記載されるジュール加熱装置が開発されている。食品材料の連続通電加熱装置には、リング電極型、内外電極型および平板型がある。特許文献1には、リング電極型と内外電極型の連続通電加熱装置が記載されており、特許文献2には、リング電極型のジュール加熱装置が記載されている。さらに、特許文献3には、平板型の交流高電界殺菌装置が記載されている。 Continuous energization heating described in Patent Document 1 for energizing the food material while transporting the fluid food material to the flow path in the pipe to cook and heat the food material by Joule heat or to sterilize and heat the food material. An apparatus and a Joule heating apparatus described in Patent Document 2 have been developed. The continuous energization heating device for food materials includes a ring electrode type, an inner / outer electrode type, and a flat plate type. Patent Document 1 describes a ring electrode type and an inner / outer electrode type continuous energizing heating device, and Patent Document 2 describes a ring electrode type Joule heating device. Further, Patent Document 3 describes a flat plate type AC high electric field sterilizer.

リング電極型は、複数の環状電極と絶縁材料からなる複数の円筒スペーサとにより形成される加熱パイプを有し、食品材料を加熱パイプ内の食品流路に流しながら、軸方向に隣り合う環状電極の間で軸方向に電流を流してジュール熱により食品材料を通電加熱する。リング電極型においては、樹脂製の円筒スペーサは食品流路を形成している。内外電極型は円筒形状の外側電極と、外側電極の内部に外側電極と同軸に配置される棒状の内側電極とにより形成される加熱パイプを有し、外側電極と内側電極との間に形成される管状の食品流路に食品材料を流しながら、外側電極と内側電極との間で径方向つまり横方向に電流を流してジュール熱により食品材料を通電加熱する。また、平板型は樹脂製の板状スペーサの両面に電極板を配置し、両方の電極板と板状スペーサとにより形成される食品流路に食品材料を流しながら、対向する電極の間で電流を流して食品材料を通電加熱する。この平板型においても、樹脂製の板状スペーサは食品流路を形成している。 The ring electrode type has a heating pipe formed by a plurality of annular electrodes and a plurality of cylindrical spacers made of an insulating material, and the annular electrodes adjacent to each other in the axial direction while flowing the food material through the food flow path in the heating pipe. A current is passed in the axial direction between the two, and the food material is energized and heated by Joule heat. In the ring electrode type, the resin cylindrical spacer forms a food flow path. The inner / outer electrode type has a heating pipe formed by a cylindrical outer electrode and a rod-shaped inner electrode arranged coaxially with the outer electrode inside the outer electrode, and is formed between the outer electrode and the inner electrode. While flowing the food material through the tubular food flow path, an electric current is passed between the outer electrode and the inner electrode in the radial direction, that is, the lateral direction, and the food material is energized and heated by Joule heat. Further, in the flat plate type, electrode plates are arranged on both sides of a resin plate-shaped spacer, and while the food material is passed through the food flow path formed by both electrode plates and the plate-shaped spacer, an electric current is applied between the opposing electrodes. The food material is energized and heated. Even in this flat plate type, the resin plate-shaped spacer forms a food flow path.

このように食品流路に食品材料を流しながら、ジュール熱により食品材料を加熱する装置は、温水や蒸気により間接的に食品材料を加熱する場合に比して、食品材料を食品流路内に流しながら、短時間で効率的に食品材料を加熱することができるという利点がある。 A device that heats the food material by Joule heat while flowing the food material through the food flow path in this way brings the food material into the food flow path as compared with the case where the food material is indirectly heated by hot water or steam. There is an advantage that the food material can be efficiently heated in a short time while flowing.

特開2001−169734号公報Japanese Unexamined Patent Publication No. 2001-169734 特開2015−156349号公報Japanese Unexamined Patent Publication No. 2015-156349 特開2009−5583号公報JP-A-2009-5583

食品のうち、例えば、カスタードクリームは、卵、砂糖および牛乳等を混ぜ合わせた食品材料を加熱することにより製造される。また、フラワーペーストは小麦粉、ココアおよび卵や油脂を混ぜ合わせた食品材料を加熱することにより製造される。このような食品は、調理温度まで加熱することにより量産される。調理温度にまで加熱された後の食品材料を、殺菌温度まで加熱する場合には、食品材料は調理温度よりも高い温度にまで加熱される。 Among foods, for example, custard cream is produced by heating a food material in which eggs, sugar, milk and the like are mixed. Flower paste is also produced by heating a food material that is a mixture of flour, cocoa and eggs and fats and oils. Such foods are mass-produced by heating to cooking temperature. When the food material after being heated to the cooking temperature is heated to the sterilization temperature, the food material is heated to a temperature higher than the cooking temperature.

カスタードクリームやフラワーペーストは、澱粉が含まれているので、60℃〜100℃程度の調理温度まで加熱すると、澱粉が糊化することになる。糊化する温度は、食品材料に含まれる澱粉の含有量等により相違する。糊化すると粘度が糊化前よりも高くなる。 Since custard cream and flower paste contain starch, the starch will gelatinize when heated to a cooking temperature of about 60 ° C. to 100 ° C. The gelatinization temperature differs depending on the content of starch contained in the food material and the like. When gelatinized, the viscosity becomes higher than before gelatinization.

このため、カスタードクリーム等のように澱粉を多く含み、加熱すると糊化して粘度が高くなる食品材料を、リング型電極の加熱パイプを使用して通電加熱すると、加熱パイプの内周面の管壁付近は中心付近に比べて食品材料が管壁との摩擦抵抗の影響を受けて流速が遅くなる。そのため、管壁付近の食品材料の加熱時間は、中心付近に比べて長くなり、管壁付近の食品材料は高い温度になる。その結果、管壁付近の食品材料が先に糊化して、中抜け現象が起こる。中抜け現象が起こると、管壁付近の食品材料は押し出されなくなり管壁に付着して焦げが発生し、最終的には加熱パイプ内でスパークが起こる。リング型は熱伝導率が低い樹脂製の円筒スペーサが食品流路を構成しており、円筒スペーサを冷却することはできない。 For this reason, when a food material containing a large amount of starch, such as custard cream, which gelatinizes and becomes highly viscous when heated, is energized and heated using a heating pipe of a ring-shaped electrode, the tube wall on the inner peripheral surface of the heating pipe is heated. In the vicinity, the flow velocity of the food material is slower than in the vicinity of the center due to the influence of frictional resistance with the pipe wall. Therefore, the heating time of the food material near the tube wall is longer than that near the center, and the temperature of the food material near the tube wall becomes high. As a result, the food material near the tube wall is gelatinized first, and a hollow phenomenon occurs. When the hollow phenomenon occurs, the food material near the pipe wall is not extruded and adheres to the pipe wall to cause charring, and finally sparks occur in the heating pipe. In the ring type, a resin cylindrical spacer having a low thermal conductivity constitutes a food flow path, and the cylindrical spacer cannot be cooled.

特許文献2に記載されるジュール加熱装置においては、加熱パイプの内部に撹拌軸を設け、撹拌軸に設けられた撹拌羽根により食品材料を撹拌する。撹拌羽根により加熱パイプの管壁面は掻き取られるため食品材料は管壁付近で停留することなく加熱される。しかし、撹拌羽根や撹拌軸付近は、食品材料の高粘度化に伴って撹拌羽根や撹拌軸と供回りして流速が遅くなるため、撹拌羽根や撹拌軸に食品材料が付着して焦げが発生する。 In the Joule heating device described in Patent Document 2, a stirring shaft is provided inside the heating pipe, and the food material is stirred by the stirring blades provided on the stirring shaft. Since the pipe wall surface of the heating pipe is scraped off by the stirring blade, the food material is heated without stopping near the pipe wall surface. However, in the vicinity of the stirring blade and the stirring shaft, the flow velocity slows down along with the stirring blade and the stirring shaft as the viscosity of the food material increases, so that the food material adheres to the stirring blade and the stirring shaft and charring occurs. To do.

平板型は、食品流路の幅が狭く低粘度の液状食品を乱流になるように供給するため、加熱すると粘度が高くなる食品材料の加熱には適用できない。しかも、樹脂製の板状スペーサを冷却構造として食品材料を冷却することはできない。 Since the flat plate type supplies a liquid food having a narrow food flow path and a low viscosity in a turbulent flow, it cannot be applied to heating a food material whose viscosity increases when heated. Moreover, the food material cannot be cooled by using a resin plate-shaped spacer as a cooling structure.

一方、円筒形状の外側電極と棒状の内側電極とを備えた内外電極型のジュール加熱装置においては、内側電極と外側電極との間に径方向、つまり食品材料が流れる方向を横切る方向に電流が流される。棒状の内側電極の外周面は、内側電極が外側電極の内部に配置されるので、円筒形状の外側電極の内周面よりも食品材料が接触する接触面積は小さくなる。このため、内側電極付近の電流密度が外側電極付近に比べ高くなる。また、内側電極と外側電極とに接触する食品材料の流速は、摩擦抵抗により遅くなる。その結果、内側付近の食品材料は、外側電極付近の食品材料に比べて、電流密度と流速の影響により焦げやスパークが発生する。 On the other hand, in the inner / outer electrode type Joule heating device provided with the cylindrical outer electrode and the rod-shaped inner electrode, a current flows between the inner electrode and the outer electrode in the radial direction, that is, in the direction across the direction in which the food material flows. Be swept away. Since the inner electrode is arranged inside the outer electrode on the outer peripheral surface of the rod-shaped inner electrode, the contact area with which the food material comes into contact is smaller than the inner peripheral surface of the cylindrical outer electrode. Therefore, the current density near the inner electrode is higher than that near the outer electrode. Further, the flow velocity of the food material in contact with the inner electrode and the outer electrode becomes slow due to frictional resistance. As a result, the food material near the inner side is burnt or sparked due to the influence of the current density and the flow velocity as compared with the food material near the outer electrode.

上述のように、加熱パイプに食品材料の焦げやスパークが発生したのでは、糊化する食品材料を安定的に加熱することができず、効率的に食品材料を調理加熱したり、殺菌加熱したりすることはできない。 As described above, if the food material is burnt or sparked on the heating pipe, the gelatinized food material cannot be heated stably, and the food material is efficiently cooked and heated or sterilized and heated. You can't do it.

本発明の目的は、加熱すると糊化する食品材料を安定的かつ効率的に加熱することにある。 An object of the present invention is to stably and efficiently heat a food material that gelatinizes when heated.

本発明のジュール加熱装置は、加熱すると糊化する食品材料を食品流路内に搬送させながら通電するジュール加熱装置であって、円筒形状の外側電極と、前記外側電極の内部に配置され、前記外側電極に径方向に対向する通電部を有し、前記外側電極との間で食品材料が流れる食品流路を形成する棒状の内側電極と、前記外側電極と前記内側電極に電力を供給し、前記食品流路を流れる食品材料に流れ方向を横切る方向に通電する通電ユニットと、前記内側電極に形成された内側冷却流路に冷却液を供給する配管と、前記通電部の端部に設けられ、前記外側電極の端面に向かうに従って前記通電部と前記外側電極との間の距離が長くなるテーパ部と、を有し、前記内側電極の付近の食品材料を糊化温度よりも低い温度に冷却しながら食品材料を加熱する。 Joule heating apparatus of the present invention, the food material to be gelatinized when heated to a Joule heating apparatus for energizing while transporting the food passage, and the outer electrode of cylindrical shape, arranged inside the outer electrode, wherein A rod-shaped inner electrode that has an energizing portion that faces the outer electrode in the radial direction and forms a food flow path through which the food material flows between the outer electrode, and power is supplied to the outer electrode and the inner electrode. An energizing unit that energizes the food material flowing through the food flow path in a direction that crosses the flow direction, a pipe that supplies a cooling liquid to the inner cooling flow path formed on the inner electrode, and an end portion of the energizing portion are provided. The food material in the vicinity of the inner electrode is cooled to a temperature lower than the gelatinization temperature, which has a tapered portion in which the distance between the energized portion and the outer electrode becomes longer toward the end face of the outer electrode. While heating the food material.

本発明のジュール加熱方法は、円筒形状の外側電極と、前記外側電極に径方向に対向する通電部を有し前記外側電極の内部に配置される棒状の内側電極との間で形成される食品流路に、加熱すると糊化する食品材料を搬送させながら通電するジュール加熱方法であって、前記外側電極と前記内側電極に電力を供給して前記食品流路を流れる食品材料に流れ方向を横切る方向に通電し、前記内側電極に形成された内側冷却流路に冷却液を供給し、前記外側電極に形成された外側冷却流路に冷却液を供給し、前記内側電極の付近の食品材料および前記外側電極の付近の食品材料を糊化温度よりも低い温度に加熱し、前記食品流路の中央付近の食品材料を糊化温度に加熱し、前記通電部の端部は、前記外側電極の端面に向かうに従って前記通電部と前記外側電極との間の距離が長くなるテーパ部を有し、前記外側電極の端面エッジと前記内側電極との間を流れる電流密度を他の部分よりも低下させる。 The Joule heating method of the present invention is a food formed between a cylindrical outer electrode and a rod-shaped inner electrode having a current-carrying portion that faces the outer electrode in the radial direction and arranged inside the outer electrode. A Joule heating method in which a food material that gelatinizes when heated is conveyed to the flow path and energized, and power is supplied to the outer electrode and the inner electrode to cross the flow direction to the food material flowing through the food flow path. When energized in the direction, the cooling liquid is supplied to the inner cooling flow path formed in the inner electrode, the cooling liquid is supplied to the outer cooling flow path formed in the outer electrode, and the food material in the vicinity of the inner electrode and The food material near the outer electrode is heated to a temperature lower than the gelatinization temperature, the food material near the center of the food flow path is heated to the gelatinization temperature, and the end portion of the energizing portion is the outer electrode. It has a tapered portion in which the distance between the energized portion and the outer electrode becomes longer toward the end face, and the current density flowing between the end face edge of the outer electrode and the inner electrode is lower than that of other portions. ..

ジュール加熱装置は、円筒形状の外側電極と外側電極の内部に配置される内側電極とを備え、外側電極と内側電極との間に食品流路が形成される内外電極型である。外側電極の内周面と内側電極の外周面とが対向しており、内側電極の通電面積は外側電極の通電面積よりも小さく、食品材料のうち内側電極側の領域は、外側電極側の領域よりも電流密度が高くなる。電流密度が高いと、食品材料が加熱される温度は電流密度が低い領域よりも高くなるが、内側電極に内側冷却流路を形成し、その中に冷却液を供給することにより、内側電極の付近を流れる食品材料を食品流路の中央付近の食品材料よりも低い温度に冷却する。つまり、食品流路を流れる食品材料に通電して食品材料を加熱するとともに、内側電極の付近の食品材料を冷却する。これにより、食品流路の横断面における中央付近の食品材料が先に糊化を完了する温度なり、内側電極は糊化しない食品材料により覆われる。糊化されない食品材料は内側電極との摩擦抵抗が小さくなり、中央部で糊化した食品材料を所定の速度で搬送することができ、食品材料を安定して効率的に加熱することができる。 The Joule heating device is an inner / outer electrode type that includes a cylindrical outer electrode and an inner electrode arranged inside the outer electrode, and a food flow path is formed between the outer electrode and the inner electrode. The inner peripheral surface of the outer electrode and the outer peripheral surface of the inner electrode face each other, the current-carrying area of the inner electrode is smaller than the current-carrying area of the outer electrode, and the area of the food material on the inner electrode side is the area on the outer electrode side. The current density is higher than that. When the current density is high, the temperature at which the food material is heated is higher than in the region where the current density is low, but by forming an inner cooling flow path in the inner electrode and supplying a coolant into the inner cooling flow path, the inner electrode The food material flowing in the vicinity is cooled to a temperature lower than that of the food material near the center of the food flow path. That is, the food material flowing through the food flow path is energized to heat the food material, and the food material near the inner electrode is cooled. As a result, the temperature at which the food material near the center in the cross section of the food flow path completes gelatinization first is reached, and the inner electrode is covered with the non-gelatinized food material. The non-gelatinized food material has a small frictional resistance with the inner electrode, the food material gelatinized in the central portion can be transported at a predetermined speed, and the food material can be heated stably and efficiently.

ジュール加熱装置を示す縦断面図である。It is a vertical sectional view which shows the Joule heating apparatus. 図1におけるA−A線拡大断面図である。FIG. 1 is an enlarged cross-sectional view taken along the line AA in FIG. 図1に示された外側電極の拡大断面図である。It is an enlarged sectional view of the outer electrode shown in FIG. 図1に示された内側電極の一部省略拡大断面図である。It is the partially omitted enlarged sectional view of the inner electrode shown in FIG. 図1におけるB部の拡大断面図であり、冷却液と食品材料が示されている。FIG. 1 is an enlarged cross-sectional view of part B in FIG. 1, showing a coolant and a food material. 図5の横断面図である。It is a cross-sectional view of FIG. 内側電極と外側電極との間の食品材料における電流密度を概念的に示し、図6と同様の部分を示す横断面図である。It is a cross-sectional view which conceptually shows the current density in the food material between the inner electrode and the outer electrode, and shows the same part as FIG. 内側電極と外側電極のうち、食品流路の入口部を示す拡大断面図である。It is an enlarged sectional view which shows the entrance part of the food flow path among the inner electrode and the outer electrode. ジュール加熱装置の制御回路を示すブロック図である。It is a block diagram which shows the control circuit of the Joule heating apparatus. 変形例であるジュール加熱装置を示す縦断面図である。It is a vertical cross-sectional view which shows the Joule heating apparatus which is a modification.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1に示されるジュール加熱装置10は、フラワーペースト等のように澱粉を含み、加熱すると糊化する食品材料を常温から調理温度に通電して加熱するために使用することができる。このジュール加熱装置10は、円筒形状の外側電極11を有しており、外側電極11はチタン等の導電性材料により形成されている。この外側電極11の両端面にはシールパッキン12を介して樹脂等の絶縁材料からなるスペーサ13a,13bが突き当てられている。スペーサ13aには絶縁材料からなる入口側の蓋部材14aがシールパッキン15aを介して突き当てられており、スペーサ13bには絶縁材料からなる出口側の蓋部材14bがシールパッキン15bを介して突き当てられている。円筒形状の外側電極11の両端側に配置されるスペーサ13a,13bと蓋部材14a,14bとにより、食品材料を案内する加熱パイプ16が組み立てられ、加熱パイプ16の両端部は蓋部材14a,14bにより閉塞される。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The Joule heating device 10 shown in FIG. 1 can be used to energize a food material containing starch such as flower paste and gelatinized when heated from room temperature to a cooking temperature to heat it. The Joule heating device 10 has a cylindrical outer electrode 11, and the outer electrode 11 is made of a conductive material such as titanium. Spacers 13a and 13b made of an insulating material such as resin are abutted on both end surfaces of the outer electrode 11 via a seal packing 12. An inlet side lid member 14a made of an insulating material is abutted against the spacer 13a via a seal packing 15a, and an outlet side lid member 14b made of an insulating material is abutted against the spacer 13b via the seal packing 15b. Has been done. The heating pipes 16 that guide the food material are assembled by the spacers 13a and 13b and the lid members 14a and 14b arranged on both ends of the cylindrical outer electrode 11, and both ends of the heating pipe 16 are the lid members 14a and 14b. Is blocked by.

入口側の蓋部材14aは締結ブラケット17aに固定され、出口側の蓋部材14bは締結ブラケット17bに固定されており、両方の締結ブラケット17a,17bは同様の形状である。両方の締結ブラケット17a、17bは、4本の締結ロッド18により締結される。図2に示されるように、締結ロッド18の下端部は締結ブラケット17aの四隅を貫通しており、締結ロッド18は締結ブラケット17bを貫通している。それぞれの締結ロッド18の図1における下端部にはナット19aがねじ結合され、上端部にはナット19bがねじ結合される。締結ロッド18の上端部にはナット19bが突き当てられる締結板21が配置され、締結板21と締結ブラケット17bの間には、ばね部材22が装着されている。ナット19bの締結量を調整することにより、ばね部材22による加熱パイプ16の締結力が調整される。 The lid member 14a on the inlet side is fixed to the fastening bracket 17a, the lid member 14b on the outlet side is fixed to the fastening bracket 17b, and both fastening brackets 17a and 17b have the same shape. Both fastening brackets 17a and 17b are fastened by four fastening rods 18. As shown in FIG. 2, the lower end portion of the fastening rod 18 penetrates the four corners of the fastening bracket 17a, and the fastening rod 18 penetrates the fastening bracket 17b. A nut 19a is screwed to the lower end of each fastening rod 18 in FIG. 1, and a nut 19b is screwed to the upper end. A fastening plate 21 to which the nut 19b is abutted is arranged at the upper end of the fastening rod 18, and a spring member 22 is mounted between the fastening plate 21 and the fastening bracket 17b. By adjusting the fastening amount of the nut 19b, the fastening force of the heating pipe 16 by the spring member 22 is adjusted.

外側電極11の内部には、棒状の内側電極23が外側電極11と同軸となって配置されており、内側電極23はチタン等の導電性材料により形成されている。内側電極23は加熱パイプ16よりも長く、内側電極23の両端部は蓋部材14a,14bを貫通し、締結ブラケット17a,17bよりも軸方向外方に突出している。蓋部材14a,14bには内側電極23と蓋部材14a,14bとの間をシールする図示しないシール部材が装着されている。内側電極23の突出部には、内側電極23を締結ブラケット17a,17bを固定するためのナット24a,24bがねじ結合される。 Inside the outer electrode 11, a rod-shaped inner electrode 23 is arranged coaxially with the outer electrode 11, and the inner electrode 23 is formed of a conductive material such as titanium. The inner electrode 23 is longer than the heating pipe 16, and both ends of the inner electrode 23 penetrate the lid members 14a and 14b and project axially outward from the fastening brackets 17a and 17b. The lid members 14a and 14b are equipped with a sealing member (not shown) that seals between the inner electrode 23 and the lid members 14a and 14b. Nuts 24a and 24b for fixing the fastening brackets 17a and 17b to the inner electrode 23 are screwed to the protruding portion of the inner electrode 23.

加熱パイプ16と内側電極23との間には、食品材料が流れる食品流路25が形成され、食品流路25は管形状となっている。このように、加熱パイプ16は内側電極23との間で形成される管形状の食品流路25を有しており、内側電極23と外側電極11との間も食品流路25を形成している。蓋部材14aには、流入側のジョイント26が設けられており、ジョイント26の内部流路は食品流路25に連通している。蓋部材14bには、流出側のジョイント27が設けられており、ジョイント27の内部流路は食品流路25に連通している。流入側と流出側のジョイント26,27の内径は、食品流路25よりも小径となっており、蓋部材14a,14bの食品材料が流れる部分の横断面積は食品流路25の横断面積よりも小さくなっている。したがって、流入側のジョイント26から蓋部材14aを介して食品流路25に流入した食品材料の流速は遅くなり、蓋部材14bを介して流出側のジョイント27に流出する食品材料の流速は高くなる。 A food flow path 25 through which the food material flows is formed between the heating pipe 16 and the inner electrode 23, and the food flow path 25 has a tubular shape. As described above, the heating pipe 16 has a tube-shaped food flow path 25 formed between the inner electrode 23 and the inner electrode 23, and the food flow path 25 is also formed between the inner electrode 23 and the outer electrode 11. There is. The lid member 14a is provided with a joint 26 on the inflow side, and the internal flow path of the joint 26 communicates with the food flow path 25. The lid member 14b is provided with a joint 27 on the outflow side, and the internal flow path of the joint 27 communicates with the food flow path 25. The inner diameters of the joints 26 and 27 on the inflow side and the outflow side are smaller than those of the food flow path 25, and the cross-sectional area of the portion of the lid members 14a and 14b through which the food material flows is larger than the cross-sectional area of the food flow path 25. It's getting smaller. Therefore, the flow velocity of the food material flowing from the joint 26 on the inflow side to the food flow path 25 via the lid member 14a becomes slow, and the flow velocity of the food material flowing out to the joint 27 on the outflow side through the lid member 14b becomes high. ..

ジュール加熱装置10の外部には、食品材料を収容する容器28が配置され、容器28は供給配管29によりジョイント26に接続される。供給配管29には、ポンプ31が設けられ、ポンプ31により容器28内の食品材料は、ジョイント26を介して食品流路25に連続的に搬送供給される。ジョイント27には吐出配管32が接続されており、食品流路25を通過した食品材料は、吐出配管32によりジュール加熱装置10の外部に吐出される。食品材料の食品流路25における流れは、図1において矢印で示されている。 A container 28 for accommodating food materials is arranged outside the Joule heating device 10, and the container 28 is connected to the joint 26 by a supply pipe 29. A pump 31 is provided in the supply pipe 29, and the food material in the container 28 is continuously conveyed and supplied to the food flow path 25 via the joint 26 by the pump 31. A discharge pipe 32 is connected to the joint 27, and the food material that has passed through the food flow path 25 is discharged to the outside of the Joule heating device 10 by the discharge pipe 32. The flow of the food material in the food flow path 25 is indicated by an arrow in FIG.

外側電極11の流入側端部と流出側端部には給電プラグ33a,33bが取り付けられる。一方、内側電極23の流入側の突出端部と流出側の突出端部には、給電プラグ34a,34bが取り付けられる。外側電極11の給電プラグ33a,33bには給電ケーブル35aが接続され、内側電極23の給電プラグ34a,34bには給電ケーブル35bが接続され、それぞれの給電ケーブル35a,35bは通電ユニット36に接続される。通電ユニット36からそれぞれの給電プラグは、例えば20kHの高周波電流が給電される。外側電極11にはそれぞれ2つの給電プラグ33a,33bが取り付けられているが、いずれか一方のみでも良い。同様に、内側電極23についても、2つの給電プラグ34a,34bが設けられているが、いずれか一方でも良い。 Feeding plugs 33a and 33b are attached to the inflow side end portion and the outflow side end portion of the outer electrode 11. On the other hand, power feeding plugs 34a and 34b are attached to the protruding ends on the inflow side and the protruding ends on the outflow side of the inner electrode 23. A power supply cable 35a is connected to the power supply plugs 33a and 33b of the outer electrode 11, a power supply cable 35b is connected to the power supply plugs 34a and 34b of the inner electrode 23, and the respective power supply cables 35a and 35b are connected to the power supply unit 36. To. A high frequency current of, for example, 20 kH is supplied from the energizing unit 36 to each power supply plug. Two feeding plugs 33a and 33b are attached to the outer electrodes 11, respectively, but only one of them may be used. Similarly, the inner electrode 23 is also provided with two feeding plugs 34a and 34b, but either one may be used.

食品流路25に食品材料を供給した状態のもとで、外側電極11と内側電極23とに通電ユニット36から電力を供給すると、食品流路25を流れる食品材料には、流れる方向を横切る方向に電流が流れる。これにより、食品材料は外側電極11と内側電極23との間を流れるときに通電加熱される。 When power is supplied from the energizing unit 36 to the outer electrode 11 and the inner electrode 23 while the food material is supplied to the food flow path 25, the food material flowing through the food flow path 25 is crossed in the flow direction. Current flows through. As a result, the food material is energized and heated as it flows between the outer electrode 11 and the inner electrode 23.

外側電極11は、図3に示されるように、外側チューブ37とこれよりも小径の内側チューブ38を有し、それぞれの両端部には連結リング39a、39bが設けられており、外側電極11の内部には軸方向に外側冷却流路41が形成されている。外側電極11の図3における下端部には、流入側の冷却液継手42aが設けられ、冷却液継手42aの内部流路は外側冷却流路41に連通している。外側電極11の図3における上端部には、流出側の冷却液継手42bが設けられ、冷却液継手42bの内部流路は外側冷却流路41に連通している。したがって、冷却液継手42aから冷却液継手42aに向けて外側冷却流路41を軸方向に流れる冷却液により外側電極11は冷却される。 As shown in FIG. 3, the outer electrode 11 has an outer tube 37 and an inner tube 38 having a smaller diameter than the outer tube 37, and connecting rings 39a and 39b are provided at both ends of the outer tube 37. An outer cooling flow path 41 is formed inside in the axial direction. A coolant joint 42a on the inflow side is provided at the lower end of the outer electrode 11 in FIG. 3, and the internal flow path of the coolant joint 42a communicates with the outer cooling flow path 41. A coolant joint 42b on the outflow side is provided at the upper end of the outer electrode 11 in FIG. 3, and the internal flow path of the coolant joint 42b communicates with the outer cooling flow path 41. Therefore, the outer electrode 11 is cooled by the coolant flowing axially in the outer cooling flow path 41 from the coolant joint 42a toward the coolant joint 42a.

内側電極23は、図4に示されるように、中空の段付きの棒材により形成されており、内部には内側冷却流路43が形成されている。内側電極23の図4における下端部は冷却液流入部44aとなっており、上端部は冷却液流出部44bとなっている。したがって、冷却液流入部44aから冷却液流出部44bに向けて流れる冷却液により内側電極23は冷却される。 As shown in FIG. 4, the inner electrode 23 is formed of a hollow stepped bar, and an inner cooling flow path 43 is formed inside. The lower end of the inner electrode 23 in FIG. 4 is a coolant inflow portion 44a, and the upper end is a coolant outflow portion 44b. Therefore, the inner electrode 23 is cooled by the coolant flowing from the coolant inflow portion 44a toward the coolant outflow portion 44b.

外側冷却流路41と内側冷却流路43には、図1に示される冷却液タンク45からの冷却液が循環供給される。冷却液タンク45は配管46により内側電極23の冷却液流入部44aに接続され、内側冷却流路43には食品材料の流入側から冷却液が供給される。冷却液流出部44bは循環配管47により外側電極11の冷却液継手42aに接続され、内側冷却流路43を通過した冷却液が食品材料の流入側から外側冷却流路41に供給される。外側冷却流路41を通過した冷却液は、配管48により冷却液タンク45に戻される。このように、冷却液タンク45内の冷却液は、連続して形成された内側冷却流路43と外側冷却流路41とを循環する。冷却液タンク45には、図示しない熱交換器が組み込まれており、冷却液タンク45内の冷却液は所定の温度に保持され、配管46に設けられたポンプ49によりジュール加熱装置10に供給される。ただし、上述のように、冷却液タンク45内の冷却液を循環させることなく、所定の温度に保持された冷却液を内側冷却流路43と外側冷却流路41に供給し、外側冷却流路41から排出された冷却液を外部に廃棄するようにしても良い。 The cooling liquid from the coolant tank 45 shown in FIG. 1 is circulated and supplied to the outer cooling flow path 41 and the inner cooling flow path 43. The coolant tank 45 is connected to the coolant inflow portion 44a of the inner electrode 23 by a pipe 46, and the coolant is supplied to the inner cooling flow path 43 from the inflow side of the food material. The coolant outflow portion 44b is connected to the coolant joint 42a of the outer electrode 11 by the circulation pipe 47, and the coolant that has passed through the inner cooling flow path 43 is supplied to the outer cooling flow path 41 from the inflow side of the food material. The coolant that has passed through the outer cooling flow path 41 is returned to the coolant tank 45 by the pipe 48. In this way, the cooling liquid in the cooling liquid tank 45 circulates in the continuously formed inner cooling flow path 43 and the outer cooling flow path 41. A heat exchanger (not shown) is incorporated in the coolant tank 45, and the coolant in the coolant tank 45 is held at a predetermined temperature and supplied to the Joule heating device 10 by a pump 49 provided in the pipe 46. To. However, as described above, the cooling liquid held at a predetermined temperature is supplied to the inner cooling flow path 43 and the outer cooling flow path 41 without circulating the cooling liquid in the coolant tank 45, and the outer cooling flow path is supplied. The coolant discharged from 41 may be discarded to the outside.

図1においては、食品流路25には食品材料が供給されておらず、冷却液も供給されていない状態を示す。図5は、図1におけるB部の拡大断面図であり、図6は図5の横断面図である。図5および図6においては、冷却液Lと食品材料Wが示されている。 FIG. 1 shows a state in which no food material is supplied to the food flow path 25 and no coolant is supplied. 5 is an enlarged cross-sectional view of part B in FIG. 1, and FIG. 6 is a cross-sectional view of FIG. 5. In FIGS. 5 and 6, the coolant L and the food material W are shown.

外側電極11と内側電極23との間の食品流路25には、容器28内に収容された食品材料Wが搬送される。一方、内側電極23の内部に形成された内側冷却流路43と、外側電極11の内部に形成された外側冷却流路41には、冷却液Lが流れる。 The food material W contained in the container 28 is conveyed to the food flow path 25 between the outer electrode 11 and the inner electrode 23. On the other hand, the coolant L flows through the inner cooling flow path 43 formed inside the inner electrode 23 and the outer cooling flow path 41 formed inside the outer electrode 11.

図7は内側電極23と外側電極11との間の食品材料Wにおける電流密度を概念的に示す断面図であり、図6と同様の部分を示す。 FIG. 7 is a cross-sectional view conceptually showing the current density in the food material W between the inner electrode 23 and the outer electrode 11, and shows the same portion as in FIG.

図1に示されるように、ジュール加熱装置10は、円筒形状の外側電極11と、この内部に配置される棒状の内側電極23とを有しており、内外電極型である。このタイプのジュール加熱装置10においては、内側電極23の外周面の通電面積は、外側電極11の内周面の通電面積に比較して小さい。このため、食品流路25内を流れる食品材料Wに、その流れ方向を横切る方向に電流が流れると、内側電極23に近い領域の食品材料Wの部分の電流密度は、外側電極11に近い外側領域の食品材料Wの部分よりも高くなる。このように電流密度が高い領域の部分は、低い領域の部分よりも食品材料Wの加熱温度が高くなる。 As shown in FIG. 1, the Joule heating device 10 has a cylindrical outer electrode 11 and a rod-shaped inner electrode 23 arranged inside the cylindrical outer electrode 11, and is an inner / outer electrode type. In this type of Joule heating device 10, the energizing area of the outer peripheral surface of the inner electrode 23 is smaller than the energizing area of the inner peripheral surface of the outer electrode 11. Therefore, when a current flows through the food material W flowing in the food flow path 25 in a direction crossing the flow direction, the current density of the portion of the food material W in the region close to the inner electrode 23 becomes the outer side close to the outer electrode 11. It will be higher than the portion of the food material W in the region. The heating temperature of the food material W is higher in the region where the current density is high than in the region where the current density is low.

したがって、カスタードクリーム等のように澱粉を多く含み、加熱すると糊化して粘度が高くなる食品材料を、内外電極型のジュール加熱装置10を用いて、内側電極23を冷却することなく、通電加熱すると、食品材料と内側電極23との摩擦抵抗により内側電極23の付近、つまり内周面側の部分の流速は、それよりも径方向外側の部分、つまり中央付近の食品材料よりも遅くなる。このため、内側電極23付近の食品材料は、電流密度と流速の影響により焦げやスパークが発生する。 Therefore, when a food material containing a large amount of starch, such as custard cream, which is gelatinized and has a high viscosity when heated, is energized and heated by using an inner / outer electrode type Joule heating device 10 without cooling the inner electrode 23. Due to the frictional resistance between the food material and the inner electrode 23, the flow velocity in the vicinity of the inner electrode 23, that is, the portion on the inner peripheral surface side is slower than that in the radially outer portion, that is, the food material near the center. Therefore, the food material near the inner electrode 23 is charred or sparked due to the influence of the current density and the flow velocity.

これに対し、上述のように、内側電極23の内部の内側冷却流路43に冷却液を流して、内側電極の付近の食品材料を冷却すると、その食品材料を食品流路25の中央付近の食品材料よりも低い温度に冷却することができ、中央付近の食品材料を糊化させることができる。 On the other hand, as described above, when the cooling liquid is passed through the inner cooling flow path 43 inside the inner electrode 23 to cool the food material near the inner electrode, the food material is brought into the vicinity of the center of the food flow path 25. It can be cooled to a temperature lower than that of the food material, and the food material near the center can be gelatinized.

内側電極23は、図4に示されるように、外側電極11に径方向に対向する通電部51と、外側電極11の両端面よりも軸方向外方に突出する突出部52a、52bとを有している。突出部52a,52bは、通電部51よりも小径となっており、非通電部となっている。通電部51の両端部には、突出部52a,52bに向けて漸次小径となったテーパ部53a,53bが設けられている。それぞれのテーパ部53a,53bの最小径の部分54a,54bは、外側電極11の端面の内方に近付けられている。このように、外側電極11の端面に、最小径の部分54a,54bを位置させると、外側電極11と内側電極23の通電部51との間の径方向の距離が他の部分よりも長くなる。これにより、最小径の部分54a,54bと外側電極11の端面エッジ55a,55bとの間の距離は、他の部分よりも最も長くなり、端面エッジ55a,55bと内側電極23との間を流れる電流値は他の部分よりも小さくなる。 As shown in FIG. 4, the inner electrode 23 has an energizing portion 51 that faces the outer electrode 11 in the radial direction, and projecting portions 52a and 52b that project outward in the axial direction from both end faces of the outer electrode 11. doing. The protruding portions 52a and 52b have a smaller diameter than the energized portion 51 and are non-energized portions. Tapered portions 53a and 53b whose diameters gradually decrease toward the protruding portions 52a and 52b are provided at both ends of the energizing portion 51. The minimum diameter portions 54a and 54b of the tapered portions 53a and 53b are brought close to the inside of the end face of the outer electrode 11. When the minimum diameter portions 54a and 54b are positioned on the end faces of the outer electrode 11 in this way, the radial distance between the outer electrode 11 and the energized portion 51 of the inner electrode 23 becomes longer than the other portions. .. As a result, the distance between the minimum diameter portions 54a and 54b and the end face edges 55a and 55b of the outer electrode 11 is the longest than the other portions, and flows between the end face edges 55a and 55b and the inner electrode 23. The current value is smaller than the other parts.

図8は、外側電極11の食品流入側の端部を示す拡大断面図である。なお、図8においては、外側冷却流路41と内側冷却流路43は図示省略されている。 FIG. 8 is an enlarged cross-sectional view showing an end portion of the outer electrode 11 on the food inflow side. In FIG. 8, the outer cooling flow path 41 and the inner cooling flow path 43 are not shown.

内側電極23と外側電極11との間を流れる電流は、外側電極11の端面エッジ55aの部分から多く流れるので、端面エッジ55aの近傍と内側電極23との間の電流密度は他の部分よりも高くなることが考えられる。これに対し、内側電極23のテーパ部53aを端面エッジ55aに径方向に対向させると、端面エッジ55aと内側電極23との間を流れる電流密度を他の部分よりも低下させることができる。これにより、内側電極23と外側電極11の軸方向における電流密度分布を、全体的により均一に近付けることができる。このことは、外側電極11の食品流出側の端部についても同様である。ただし、内側電極23の外径を全体的に同一としても良い。 Since a large amount of current flows between the inner electrode 23 and the outer electrode 11 from the end face edge 55a of the outer electrode 11, the current density between the vicinity of the end face edge 55a and the inner electrode 23 is higher than that of the other parts. It is possible that it will be higher. On the other hand, when the tapered portion 53a of the inner electrode 23 is made to face the end face edge 55a in the radial direction, the current density flowing between the end face edge 55a and the inner electrode 23 can be made lower than other portions. As a result, the current density distributions of the inner electrode 23 and the outer electrode 11 in the axial direction can be made closer to each other more uniformly as a whole. This also applies to the end of the outer electrode 11 on the food outflow side. However, the outer diameter of the inner electrode 23 may be the same as a whole.

上述したジュール加熱装置10による食品材料のジュール加熱方法は以下のように実行される。カスタードクリーム等のように澱粉を多く含み、調理温度まで加熱すると、澱粉が糊化して粘度が糊化前よりも高くなる食品材料が容器28内に収容されている。食品材料は、ポンプ31により加熱パイプ16内の食品流路25に供給され、通電ユニット36から内側電極23と外側電極11に供給される電力が食品材料を径方向に流れる。食品材料は、食品流路25の流入口から流出口に向かう間に、内側電極23と外側電極11との間において通電加熱される。 The Joule heating method for food materials by the Joule heating device 10 described above is executed as follows. A food material containing a large amount of starch, such as custard cream, which is heated to a cooking temperature and whose viscosity is higher than that before gelatinization, is contained in the container 28. The food material is supplied to the food flow path 25 in the heating pipe 16 by the pump 31, and the electric power supplied from the energizing unit 36 to the inner electrode 23 and the outer electrode 11 flows in the food material in the radial direction. The food material is energized and heated between the inner electrode 23 and the outer electrode 11 while going from the inlet to the outlet of the food flow path 25.

電極に電力が供給されると、図7に示されるように、食品材料のうち内側電極23の付近の内側領域、つまり食品流路25の内周面側の食品材料Wの電流密度は、外側電極11に近い外側領域、つまり食品流路25の外周面側の食品材料Wの電流密度よりも高くなる。しかし、内側電極23と外側電極11は冷却液Lにより冷却されるので、図5および図6に示されるように、内周面側の食品材料Wiと外周面側の食品材料Woは、これらの間の中央付近つまり中央領域の食品材料Wa〜Wcよりも低い温度に保持される。中央付近の食品材料は、径方向内側の部分が最も高くなり、径方向外側に向けて漸次低くなる。図5および図6に示されるように、中央付近の領域をWa〜Wcとして便宜的に3つの領域に分けて示すと、これらの領域においては、径方向内側の部分Waから径方向外側の部分Wcに向けて加熱温度は低くなる。 When power is supplied to the electrodes, as shown in FIG. 7, the current density of the food material W on the inner peripheral region side of the food flow path 25, that is, the inner region of the food material near the inner electrode 23, becomes the outer side. It is higher than the current density of the food material W on the outer region near the electrode 11, that is, on the outer peripheral surface side of the food flow path 25. However, since the inner electrode 23 and the outer electrode 11 are cooled by the coolant L, as shown in FIGS. 5 and 6, the food material Wi on the inner peripheral surface side and the food material Wo on the outer peripheral surface side are these. It is maintained at a temperature lower than that of the food materials Wa to Wc near the center of the space, that is, in the central region. In the food material near the center, the inner part in the radial direction is the highest, and the food material is gradually lowered toward the outer side in the radial direction. As shown in FIGS. 5 and 6, when the region near the center is divided into three regions for convenience as Wa to Wc, in these regions, the portion Wa in the radial direction to the portion outside in the radial direction. The heating temperature decreases toward Wc.

したがって、食品流路25を流れる食品材料は、食品材料Wiと食品材料Woが糊化されない状態のもとで、中央付近の食品材料Wa〜Wcが先に糊化される。これにより、内側電極23の外周面と外側電極11の内周面は、糊化されない食品材料Wi,Woにより覆われた状態となって食品流路25を流れる。これにより、食品材料Wは電極に付着することがなく、焦げやスパークを発生させることなく、安定的に食品材料を加熱することができる。 Therefore, in the food material flowing through the food flow path 25, the food materials Wa to Wc near the center are gelatinized first in a state where the food material Wi and the food material W are not gelatinized. As a result, the outer peripheral surface of the inner electrode 23 and the inner peripheral surface of the outer electrode 11 are covered with the non-gelatinized food materials Wi and Wo and flow through the food flow path 25. As a result, the food material W does not adhere to the electrodes, and the food material can be heated stably without causing charring or sparks.

糊化された食品材料は、流出側のジョイント27から外部に排出される。図1に示されるように、ジョイント27の流出端には、螺旋形状に折り曲げられた撹拌羽根が組み込まれた撹拌部61が設けられており、ジョイント27から流出した食品材料は撹拌されて、吐出配管32によりホールド部(温度保持部)62に案内され、ホールド部62おいて所定時間、調理後の温度に保持される。ホールド部62において所定時間保持された食品材料は、冷却部63において冷却されて、図示しない回収容器に供給される。 The gelatinized food material is discharged to the outside from the joint 27 on the outflow side. As shown in FIG. 1, at the outflow end of the joint 27, a stirring portion 61 incorporating a stirring blade bent in a spiral shape is provided, and the food material flowing out from the joint 27 is stirred and discharged. It is guided to the hold portion (temperature holding portion) 62 by the pipe 32, and is held at the holding portion 62 for a predetermined time at the temperature after cooking. The food material held in the hold unit 62 for a predetermined time is cooled in the cooling unit 63 and supplied to a collection container (not shown).

なお、食品材料Wの加熱形態としては、上述のように、食品材料を糊化させる調理温度まで加熱する形態と、調理温度まで加熱した後にさらにこれよりも高い殺菌温度まで加熱する形態とがある。殺菌温度まで加熱する場合には、吐出配管32に殺菌加熱装置が接続され、殺菌加熱された食品材料は保持温度に所定時間保持された後に冷却部において冷却される。殺菌加熱装置としても、図1に示されるジュール加熱装置10を使用しても良い。 As described above, the heating form of the food material W includes a form of heating to a cooking temperature at which the food material is gelatinized and a form of heating to a sterilization temperature higher than this after heating to the cooking temperature. .. When heating to the sterilization temperature, a sterilization heating device is connected to the discharge pipe 32, and the sterilized and heated food material is held at the holding temperature for a predetermined time and then cooled in the cooling unit. As the sterilization heating device, the Joule heating device 10 shown in FIG. 1 may be used.

吐出配管32には、ジョイント27から吐出された食品材料の温度を検出するための温度センサ65が設けられており、温度センサ65の検出温度に応じて、通電ユニット36から出力される電圧が制御される。これにより、食品材料の調理温度つまり加熱温度が設定値に保持される。内側冷却流路43を通過した冷却液の温度を検出するための温度センサ66を循環配管47に設けると、冷却液の温度に応じて、ポンプ49からの冷却液の吐出流量を制御することができる。 The discharge pipe 32 is provided with a temperature sensor 65 for detecting the temperature of the food material discharged from the joint 27, and the voltage output from the energization unit 36 is controlled according to the detection temperature of the temperature sensor 65. Will be done. As a result, the cooking temperature, that is, the heating temperature of the food material is maintained at the set value. When a temperature sensor 66 for detecting the temperature of the coolant passing through the inner cooling flow path 43 is provided in the circulation pipe 47, the discharge flow rate of the coolant from the pump 49 can be controlled according to the temperature of the coolant. it can.

図9は、ジュール加熱装置10の制御回路を示すブロック図であり、制御部67には、食品材料の温度を検出するための温度センサ65と、冷却液の温度を検出するための温度センサ66の検出信号が送られる。温度センサ65の検出信号に基づいて、通電ユニット36の出力電圧が調整される。また、温度センサ66の検出信号に基づいて、ポンプ49の吐出量が調整される。 FIG. 9 is a block diagram showing a control circuit of the Joule heating device 10, and the control unit 67 includes a temperature sensor 65 for detecting the temperature of the food material and a temperature sensor 66 for detecting the temperature of the coolant. Detection signal is sent. The output voltage of the energizing unit 36 is adjusted based on the detection signal of the temperature sensor 65. Further, the discharge amount of the pump 49 is adjusted based on the detection signal of the temperature sensor 66.

図10は、変形例であるジュール加熱装置10を示す縦断面図であり、このジュール加熱装置10においては、外側冷却流路41に冷却液を供給する配管71と、内側冷却流路43に冷却液を供給する配管72とが別系統となっている。図10に示されるように、冷却液タンク45a内の冷却液は、配管71に設けられたポンプ49aより外側冷却流路41に供給される。一方、冷却液タンク45b内の冷却液は、配管72に設けられたポンプ49bより内側冷却流路43に供給される。このように、冷却液を供給する配管を別系統とすると、外側電極11と内側電極23の温度を別々に調整することができる。それぞれのポンプ49a,49bの吐出量は、冷却液の温度を温度センサ66a,66bにより検出された検出信号に基づいて制御部67により制御される。 FIG. 10 is a vertical cross-sectional view showing a Joule heating device 10 which is a modified example. In this Joule heating device 10, the piping 71 for supplying the cooling liquid to the outer cooling flow path 41 and the inner cooling flow path 43 are cooled. The piping 72 that supplies the liquid is a separate system. As shown in FIG. 10, the coolant in the coolant tank 45a is supplied to the cooling flow path 41 outside the pump 49a provided in the pipe 71. On the other hand, the coolant in the coolant tank 45b is supplied to the inner cooling flow path 43 from the pump 49b provided in the pipe 72. In this way, if the piping for supplying the cooling liquid is a separate system, the temperatures of the outer electrode 11 and the inner electrode 23 can be adjusted separately. The discharge amount of each of the pumps 49a and 49b is controlled by the control unit 67 based on the detection signal detected by the temperature sensors 66a and 66b for the temperature of the coolant.

上述したそれぞれのジュール加熱装置10は、外側電極11と内側電極23の両方に冷却流路を形成した形態であるが、食品材料の種類によっては、内側電極23のみに冷却流路を設け、外側電極11には冷却流路を設けないようにした形態とすることもできる。なお、図10においては、図1に示された容器28や通電ユニット36等は省略されている。 Each of the above-mentioned Joule heating devices 10 has a form in which cooling flow paths are formed in both the outer electrode 11 and the inner electrode 23, but depending on the type of food material, a cooling flow path is provided only in the inner electrode 23 and is provided on the outer side. The electrode 11 may be in a form in which a cooling flow path is not provided. In FIG. 10, the container 28, the energizing unit 36, and the like shown in FIG. 1 are omitted.

ジュール加熱装置10の冷却方式には、図10に示されるように、内側冷却流路43と外側冷却流路41とを別系統の配管により冷却液を供給する形態と、図1に示されるように、連続した1つの系統の配管により冷却液を供給する形態と、内側冷却流路43のみに冷却液を供給する形態とがある。食品材料の温度制御方式としては、上述のように、通電ユニット36の出力電圧を調整する形態と、冷却液の流速つまり流量を調整する形態と、両方を調整する形態とがある。それぞれの形態は、食品材料の種類により適宜選択することができる。 As shown in FIG. 10, the cooling method of the Joule heating device 10 includes a form in which the inner cooling flow path 43 and the outer cooling flow path 41 are supplied with a cooling liquid by piping of different systems, and as shown in FIG. In addition, there is a form in which the cooling liquid is supplied by one continuous system of piping, and a form in which the cooling liquid is supplied only to the inner cooling flow path 43. As described above, the temperature control method for the food material includes a form in which the output voltage of the energizing unit 36 is adjusted, a form in which the flow velocity of the coolant, that is, a flow rate is adjusted, and a form in which both are adjusted. Each form can be appropriately selected depending on the type of food material.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。このジュール加熱装置は、温度により粘度が変化しない食品にも適用することも可能であるが、加熱すると糊化する食品材料の通電加熱に好適である。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist thereof. This Joule heating device can be applied to foods whose viscosity does not change with temperature, but is suitable for energization heating of food materials that gelatinize when heated.

10 ジュール加熱装置
11 外側電極
14a,14b 蓋部材
16 加熱パイプ
18 締結ロッド
23 内側電極
25 食品流路
28 容器
29 供給配管
32 吐出配管
33a,33b 給電プラグ
34a,34b 給電プラグ
35a,35b 給電ケーブル
36 通電ユニット
41 外側冷却流路
43 内側冷却流路
45,45a,45b 冷却液タンク
46 配管
47 循環配管
48 配管
49,49a,49b ポンプ
51 通電部
52a,52b 突出部
53a,53b テーパ部
55a,55a 端面エッジ
10 Joule heating device 11 Outer electrodes 14a, 14b Lid member 16 Heating pipe 18 Fastening rod 23 Inner electrode 25 Food flow path 28 Container 29 Supply pipe 32 Discharge pipe 33a, 33b Power supply plug 34a, 34b Power supply plug 35a, 35b Power supply cable 36 Energization Unit 41 Outer cooling flow path 43 Inner cooling flow path 45, 45a, 45b Coolant tank 46 Piping 47 Circulation piping 48 Piping 49, 49a, 49b Pump 51 Energizing part 52a, 52b Protruding part 53a, 53b Tapered part 55a, 55a End face edge

Claims (6)

加熱すると糊化する食品材料を食品流路内に搬送させながら通電するジュール加熱装置であって、
円筒形状の外側電極と、
前記外側電極の内部に配置され、前記外側電極に径方向に対向する通電部を有し、前記外側電極との間で食品材料が流れる食品流路を形成する棒状の内側電極と、
前記外側電極と前記内側電極に電力を供給し、前記食品流路を流れる食品材料に流れ方向を横切る方向に通電する通電ユニットと、
前記内側電極に形成された内側冷却流路に冷却液を供給する配管と、
前記通電部の端部に設けられ、前記外側電極の端面に向かうに従って前記通電部と前記外側電極との間の距離が長くなるテーパ部と、
を有し、前記内側電極の付近の食品材料を糊化温度よりも低い温度に冷却しながら食品材料を加熱する、ジュール加熱装置。
A Joule heating device that energizes food materials that gelatinize when heated while transporting them into the food flow path.
Cylindrical outer electrode and
A rod-shaped inner electrode that is arranged inside the outer electrode, has an energizing portion that faces the outer electrode in the radial direction, and forms a food flow path through which the food material flows between the outer electrode and the outer electrode.
An energizing unit that supplies electric power to the outer electrode and the inner electrode and energizes the food material flowing through the food flow path in a direction crossing the flow direction.
A pipe that supplies the cooling liquid to the inner cooling flow path formed in the inner electrode, and
A tapered portion provided at the end of the energizing portion and in which the distance between the energizing portion and the outer electrode becomes longer toward the end surface of the outer electrode.
A Joule heating device that heats a food material while cooling the food material in the vicinity of the inner electrode to a temperature lower than the gelatinization temperature.
請求項1記載のジュール加熱装置において、前記外側電極に形成された外側冷却流路に冷却液を供給する配管を有し、前記外側電極の付近の食品材料を糊化温度よりも低い温度に冷却しながら食品材料を加熱する、ジュール加熱装置。 In Joule heating device according to claim 1, have a pipe for supplying cooling liquid to the outer cooling channel formed in the outer electrode, cool the food material in the vicinity of the outer electrode to a temperature below the gelatinization temperature A Joule heating device that heats food materials while heating. 請求項2記載のジュール加熱装置において、前記内側冷却流路から流出した冷却液を前記外側冷却流路に供給する循環配管を有し、前記内側冷却流路と前記外側冷却流路とを連続した流路とした、ジュール加熱装置。 The Joule heating device according to claim 2 has a circulation pipe for supplying the cooling liquid flowing out from the inner cooling flow path to the outer cooling flow path, and the inner cooling flow path and the outer cooling flow path are continuous. Joule heating device as a flow path. 請求項1〜3のいずれか1項に記載のジュール加熱装置において、前記内側電極は、前記外側電極の両端面よりも軸方向外方に突出し前記通電部よりも小径の突出部を有し、前記テーパ部は、前記突出部に向けて小径となっている、ジュール加熱装置。 In Joule heating apparatus according to claim 1, wherein the inner electrode, the front have a diameter of the protrusion than the conducting portion projecting axially outward of the end faces of the Kisotogawa electrode A Joule heating device in which the tapered portion has a smaller diameter toward the protruding portion. 請求項1〜4のいずれか1項に記載のジュール加熱装置において、前記テーパ部を前記通電部の両端部に設けた、ジュール加熱装置。 The Joule heating device according to any one of claims 1 to 4, wherein the tapered portions are provided at both ends of the current-carrying portion . 円筒形状の外側電極と、前記外側電極に径方向に対向する通電部を有し前記外側電極の内部に配置される棒状の内側電極との間で形成される食品流路に、加熱すると糊化する食品材料を搬送させながら通電するジュール加熱方法であって、
前記外側電極と前記内側電極に電力を供給して前記食品流路を流れる食品材料に流れ方向を横切る方向に通電し、
前記内側電極に形成された内側冷却流路に冷却液を供給し、
前記外側電極に形成された外側冷却流路に冷却液を供給し、
前記内側電極の付近の食品材料および前記外側電極の付近の食品材料を糊化温度よりも低い温度に加熱し、前記食品流路の中央付近の食品材料を糊化温度に加熱し、
前記通電部の端部は、前記外側電極の端面に向かうに従って前記通電部と前記外側電極との間の距離が長くなるテーパ部を有し、前記外側電極の端面エッジと前記内側電極との間を流れる電流密度を他の部分よりも低下させる、ジュール加熱方法。
When heated, the food flow path formed between the cylindrical outer electrode and the rod-shaped inner electrode having a current-carrying portion that faces the outer electrode in the radial direction and arranged inside the outer electrode is gelatinized. This is a Joule heating method that energizes the food material while transporting it.
Electric power is supplied to the outer electrode and the inner electrode to energize the food material flowing through the food flow path in a direction crossing the flow direction.
A cooling liquid is supplied to the inner cooling flow path formed in the inner electrode, and the cooling liquid is supplied.
A cooling liquid is supplied to the outer cooling flow path formed on the outer electrode, and the cooling liquid is supplied.
The food material near the inner electrode and the food material near the outer electrode are heated to a temperature lower than the gelatinization temperature, and the food material near the center of the food flow path is heated to the gelatinization temperature.
The end portion of the current-carrying portion has a tapered portion in which the distance between the current-carrying portion and the outer electrode becomes longer toward the end face of the outer electrode, and is between the end face edge of the outer electrode and the inner electrode. Joule heating method that lowers the current density flowing through the electrode than other parts.
JP2016202392A 2016-10-14 2016-10-14 Joule heating device and Joule heating method Active JP6833197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016202392A JP6833197B2 (en) 2016-10-14 2016-10-14 Joule heating device and Joule heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016202392A JP6833197B2 (en) 2016-10-14 2016-10-14 Joule heating device and Joule heating method

Publications (2)

Publication Number Publication Date
JP2018063896A JP2018063896A (en) 2018-04-19
JP6833197B2 true JP6833197B2 (en) 2021-02-24

Family

ID=61967896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016202392A Active JP6833197B2 (en) 2016-10-14 2016-10-14 Joule heating device and Joule heating method

Country Status (1)

Country Link
JP (1) JP6833197B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041050A (en) * 1996-07-26 1998-02-13 Kirin Brewery Co Ltd Heating bath for heating by current
JP2002262998A (en) * 2001-03-13 2002-09-17 Frontier Engineering:Kk Heating unit
JP6186302B2 (en) * 2013-04-22 2017-08-23 株式会社フロンティアエンジニアリング Joule heating device

Also Published As

Publication number Publication date
JP2018063896A (en) 2018-04-19

Similar Documents

Publication Publication Date Title
JP4842240B2 (en) Method for continuous joule heating of food materials
JP2008022850A (en) Ohmic heating system with circulation by worm
JP6833197B2 (en) Joule heating device and Joule heating method
JP4065768B2 (en) Food and beverage heating equipment
JP2011086443A (en) Energization heating device of migration body
EP0032841A1 (en) Apparatus for heating electrically conductive flowable media
CN104918525B (en) Fruit juice making machine device
JP4995164B2 (en) COOLABLE ELECTRODE BODY AND CONTINUOUS ELECTRIC HEATING DEVICE HAVING THE SAME
EP2308316B1 (en) An Ohmic Device for Heat-Treating Foods
EP2667731B1 (en) Continuous heat treatment method and heating device for an electrically conductive fluid
JP2793473B2 (en) Heating equipment
US10638545B2 (en) Continuous heat-treating apparatus for food material and energizing and heating method
KR20010014317A (en) Heat exchanger for cooking apparatus
JP2010238639A (en) Refrigerant tube, electrode body, and continuous energization heating device
JP4852013B2 (en) Joule heating method and apparatus
JP6046911B2 (en) Method and apparatus for heating fluid material to be heated
TW450791B (en) Heat-pasteurization apparatus for heating and pasteurizing a flowable foodstuff
JP7261465B2 (en) Electric heating device for food materials and heating method using the same
JP7312424B2 (en) Electric heating device and method for fluid food material
JP7427246B2 (en) Electrical heating device, method of heating food materials using the same, and control program for the electric heating device
Pain et al. Modeling basics as applied to ohmic heating of liquid and wall cooling
JP2019036457A (en) Continuous heating processing facility for food material
JP7201220B2 (en) Electric heating device for fluid food material and its control method
PT690660E (en) DEVICE AND PROCESS FOR HEATING A IONIC LIQUID ON FLOODING
Wang et al. Agitation of liquid eggs during ohmic heating pasteurization—Experimental and computer simulation study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210120

R150 Certificate of patent or registration of utility model

Ref document number: 6833197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250