JP2008544564A - 半導体デバイスおよびその製造方法 - Google Patents

半導体デバイスおよびその製造方法 Download PDF

Info

Publication number
JP2008544564A
JP2008544564A JP2008519030A JP2008519030A JP2008544564A JP 2008544564 A JP2008544564 A JP 2008544564A JP 2008519030 A JP2008519030 A JP 2008519030A JP 2008519030 A JP2008519030 A JP 2008519030A JP 2008544564 A JP2008544564 A JP 2008544564A
Authority
JP
Japan
Prior art keywords
region
semiconductor body
semiconductor device
transistor
conductive region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008519030A
Other languages
English (en)
Inventor
デー ファン ノールト ウィボ
ソンスキー ヤン
ミュニエ−バイラール フィリップ
ヘイツェン エルウィン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NXP BV
Original Assignee
NXP BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NXP BV filed Critical NXP BV
Publication of JP2008544564A publication Critical patent/JP2008544564A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/737Hetero-junction transistors
    • H01L29/7371Vertical transistors
    • H01L29/7378Vertical transistors comprising lattice mismatched active layers, e.g. SiGe strained layer transistors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1087Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41708Emitter or collector electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/74Making of localized buried regions, e.g. buried collector layers, internal connections substrate contacts
    • H01L21/743Making of internal connections, substrate contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76229Concurrent filling of a plurality of trenches having a different trench shape or dimension, e.g. rectangular and V-shaped trenches, wide and narrow trenches, shallow and deep trenches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8248Combination of bipolar and field-effect technology
    • H01L21/8249Bipolar and MOS technology
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本発明は、シリコンからなる基板(11)および半導体本体(12)を有し、この半導体本体(12)は、トランジスタ(T)を有する能動領域(A)および該能動領域(A)を囲む受動領域(P)を具え、前記半導体本体(12)の表面から埋め込まれた金属材料からなる第1導電領域(2)に接続している金属材料からなる第2導電領域(1)が設けられ、これによって、前記第2導電領域(1)が、前記半導体本体(12)の表面で電気的に接続可能とされる半導体デバイス(10)に関するものである。本発明によれば、前記第2導電領域(1)は、前記半導体本体(12)の能動領域(A)の場所で作られる。このような方法で、非常に低い埋込抵抗は、前記周囲のシリコンとは完全に異なる結晶特性を有する金属材料を用いて、前記半導体本体(12)の能動領域(A)の中で局所的に生成されることができる。これは、本発明に従う方法を用いることによって可能となる。そのような埋込低抵抗は、バイポーラトランジスタおよびMOSトランジスタの双方にとって多くの利点を提案する。

Description

本発明は、シリコンからなる基板と半導体本体とを備える半導体デバイスであって、前記半導体本体は、トランジスタをもつ能動領域と、この能動領域を囲む受動領域とを具え、前記半導体本体に、前記半導体本体の表面から埋め込まれた金属材料からなる第1導電領域に接続される金属材料からなる、埋め込まれた第2導電領域を設けた半導体デバイスに関する。ここで用いられる金属材料という用語は、銅、アルミニウム、タングステン、チタン、窒化チタンのような金属、合金、または化合物などの金属の抵抗率と同等の抵抗率を有する材料を意味するものと理解される。本発明は、そのようなデバイスの製造方法にも関する。
そのようなデバイスおよびその製造方法は、特許文献1から知られている。この特許文献1は、MOSトランジスタを備える半導体デバイスを開示し、このMOSトランジスタはメモリの一部を形成し、前記半導体本体の能動領域中に形成される。前記能動領域は、前記半導体本体中に形成される空洞の形で受動領域によって囲まれ、これら空洞は電気絶縁材料で充填される。この電気絶縁材料内に、金属材料からなる導電領域が埋設され、この導電領域は、基準電圧に接続され、メモリICの少なくとも1つの隣接する素子に接続される。前記導電領域は、絶縁物で覆われる溝の底部中にSiGe領域を形成し、そして、このSiGe領域をさらなる絶縁物で埋設することにより作り出される。前記SiGe領域まで陥没溝が形成された後、前記SiGeはエッチングによって除去され、この後、このように形成された前記空洞は金属材料で充填される。
米国特許第2005/0023617号公報
前記知られているトランジスタの欠点は、MOSトランジスタの場合、このトランジスタが、そのクロストークの間で多くの不利な現象を呈すということである。
本発明の目的は、したがって、前述の問題を呈さず、かつ、前記クロストークの現象が生じないかまたは少なくともより小さい程度であるトランジスタを有する半導体デバイスを提供することである。
その目的を達成するために、前記冒頭部で言及された種類の半導体デバイスは、前記第2導電領域が、前記半導体本体の能動領域の場所で作られることを特徴とする。本発明は、まず第1に、MOSトランジスタのチャネル領域の下方に高導電領域を埋設することによって、隣接するトランジスタ間のクロストークに対する前記デバイスの減少した感度の間で、多くの特性に関して顕著な改善が得られるという認識に基づいている。さらにまた、前記第2導電領域の下方に配置される前記半導体本体の部分からの電荷担体の注入は回避され、その結果として、前記デバイスは高温で向上した挙動を呈し、かつ、前記デバイスは放射に対する感度が低いものとなる。それに加えて、本発明は、そのような金属の第2導電領域が、前記半導体本体の能動領域内に形成されることができると同時に、前記トランジスタに対する前記不利な結果を回避することができるという認識に基づいている。SiGe領域を、形成されるべき前記第2導電領域の場所で形成することによって、この領域は選択エッチングによって除去されることができ、適切に選択されたゲルマニウム含有量を与え、その後、前記領域は金属材料で充填される。前記SiGe領域の厚さおよびゲルマニウム含有量の適切な選択は、前記シリコン半導体本体の単結晶部分が、エピタキシャル法によって前記領域の上方に、前記トランジスタ特性への負の影響を有するかもしれない欠陥を呈する前記トランジスタが形成される領域なしに形成されるということを達成する。この状況は、前記トランジスタの形成後、前記SiGe領域が除去され、その後、金属導電材料によって代替され、同時に、そしてこれは必須の態様であるが、前記金属導電域が単結晶でないか、または、シリコンと比較して異なる結晶構造および/または完全に異なる格子定数をとにかく有することができる場合に維持される。
一方で、選択されるべき前記ゲルマニウム含有量は、シリコンに対して十分に選択的であるエッチング液の利用可能性に依存する。このように、十分に大きな選択性を示すすべての(HNO:HO:HFまたは過酸化水素HF混合物のような)ウェットエッチング液および(例えば酸素およびフッ素含有ガスによるプラズマなどの)ドライエッチング液は、約30原子%のゲルマニウム含有量で用いることができる。一方、前記SiGe領域の前記ゲルマニウム含有量と前記厚さとの積は、規定値未満の状態でなければならない。なぜならば、その他の転位は、シリコン領域がエピタキシャル法によって前記SiGe領域上に形成される場合に、シリコンの格子定数とは異なる格子定数を有するような領域中に生じた張力に起因するためである。これら転位は、形成される前記シリコン領域の質に不の影響を有する。約30原子%のゲルマニウム含有量とともに、前記SiGe領域の厚さは約20nm以下でなければならない。より低いゲルマニウム含有量で用いることもできる選択的なエッチング液が利用可能である場合、前記SiGe領域の厚さは比例的に大きくなければならない。
好ましい実施形態において、前記第2導電領域および前記第1導電領域は、前記トランジスタの接続コンダクタを形成する材料と同じ材料で充填される。この利点は、前記第2導電領域および前記第1導電領域が、前記デバイスの製造の遅い段階で形成されることができるということである。そのような遅い段階で、その段階で存在する絶縁層は、前金属誘電体と呼ばれ、前記埋込み溝および前記埋込領域の空洞が何ら問題なく形成されることができるように、前記デバイスに十分な強さと凝集力とを与える。前記トランジスタの接続コンダクタは、その場合、前記埋込領域および前記埋込み溝の充填と同時に形成される。
有利な変形例において、前記第2導電領域は、前記半導体領域の表面から前記受動領域の厚さよりも小さい距離だけ間隔を置いて配置される。前記第2導電領域の効果は、その場合には最適である。好ましくは、前記半導体本体の前記第1導電領域が形成される部分は、その場合には前記受動領域と前記能動領域との間に配置される。
別の変形例において、前記第2導電領域は、前記半導体本体の前記受動領域の外側に配置される部分の中に形成される。その場合、前記SiGe領域は、前記受動領域の下に、前記半導体本体の前述した部分へ広がらなければならない。その場合に、前記第2導電領域から前記半導体本体の表面までの距離を減少させるために、別のSiGe領域が設けられることができ、この領域は、前述したSiGe領域の上方に形成され、シリコン領域によってそこから分離される。前記シリコン領域(の一部)の除去後、前記半導体本体の上側シリコン部分は、選択エッチングによって除去されることができ、前記表面から前記受動領域の厚さよりも小さい距離だけ間隔を置いて配置される前記別のSiGe領域は、前記受動領域自体のようなエッチング停止部として機能する。この変形例の別の利点は、前記第2導電領域が、前記SiGe領域の厚さよりも大きい厚さを有することができるということである。さらにまた、前記第2導電領域は、前記利用可能な空洞が大きくなるため、形成し易くなるであろう。
好ましくは、前記受動領域は、トレンチ・アイソレーション領域と呼ばれる領域を具える。前で既に留意されたように、前記トランジスタがMOSトランジスタである場合、前記第2導電領域はトランジスタのチャネル領域中に配置されるであろう。
さらにまた、本発明に従うデバイスは、バイポーラトランジスタを有利に具えることができる。前記第2導電領域は、その場合、その前記コレクタの一部を有利に形成するであろう。その結果として、前記トランジスタは非常に低いコレクタ直列抵抗を有し、前記トランジスタの寸法は、いかなる困難性もなく強く減少させられることができ、同時に、それにもかかわらず、優れた高周波数挙動が得られる。結局、前記コレクタ層の寸法を100nm未満の厚さへ減少させることは、結果としてベースコレクタ静電容量を増加させることになるであろう。金属領域の前記非常に低い直列抵抗のために、そのようなデバイスにおける抵抗と静電容量との積は、十分に小さい状態にあり、そのため、非常に高い動作周波数を得ることができるであろう。
シリコンからなる基板と半導体本体をもつ半導体デバイスの製造方法であって、前記半導体本体が、トランジスタをもつ能動領域と、この能動領域を囲む受動領域を具える半導体デバイスの製造方法であって、金属材料からなる第2導電領域が形成され、この第2導電領域は、前記半導体本体の表面から埋め込まれた金属材料からなる第1導電領域に接続され、前記第2導電領域は第1SiGe領域によって形成される半導体デバイスの製造方法は、
前記半導体本体を、その第1シリコン部分上であって、前記能動領域内に単結晶からなる第1SiGe領域を設けることによって形成する工程と、
前記半導体本体上にエピタキシャル法によって前記半導体本体の第2シリコン部分を形成する工程と、
前記表面から前記第1SiGe領域まで埋込み開口領域を形成する工程と、
前記第1SiGe領域の選択エッチングによって前記第1SiGe領域の場所に空洞を形成する工程と、
前記空洞を前記金属材料で充填し、それによってその場所に前記第2導電領域を形成する工程と
によって特徴付けられる本発明に従う。
そのような方法を用いて、本発明に従うデバイスは、いかなる困難性もなく得ることができる。
好ましい実施形態において、前記埋込み開口領域は金属材料で充填され、このように、前記第1導電領域を形成する。好ましくは、前記第2導電領域を形成する材料と同じ金属材料を用いる。また、前記受動領域は、トレンチ・アイソレーション領域を形成することによって形成されるのが好ましい。1つの変形例において、前記第1導電領域は、前記受動領域の外側に形成される。
有利な実施形態において、前記埋込み開口領域は、前記トランジスタが形成された後で、かつ前記半導体本体上に絶縁層が堆積された後に形成される。前記絶縁層には、前記トランジスタのためのコンタクト開口部、およびこれらコンタクト開口部がマスクで覆われた後に形成されるべき前記埋込み開口領域の場所で別の開口部が設けられる。
別の変形例において、第2SiGe領域は前記半導体本体の第2シリコン部分上に形成され、この第2SiGe領域上に、前記半導体本体の第3シリコン部分が形成され、前記第1SiGe領域および前記第2SiGe領域は、前記半導体本体の表面から前記受動領域の厚さよりも大きい距離および小さい距離だけそれぞれ間隔を置いて配置される。この変形例において、前記空洞は、隣接するシリコンをエッチングにより除去することにより前記空洞を形成した後、前記第2SiGe領域まで広がるのが好ましい。
本発明は、次に、実施形態および図面を参照してより詳細に説明されるであろう。
図面は、縮尺通りに描かれたものではなく、いくつかの寸法は、明確さのために拡大されている。同じ領域または部分は、できる限り同じ参照符号によって示されている。
図1〜7は、本発明に従うデバイスの第1実施例の厚さ方向の概略的断面図であり、本発明に従う方法を用いる製造の連続した段階を示す。この実施例において、実質的に完成したデバイス10は、シリコンからなる半導体本体12を具え、この半導体本体12は、p型シリコン基板11およびバイポーラトランジスタTを具え、このp型シリコン基板11上には半導体層構造が設けられる(図7を参照)。前記トランジスタT、この実施例において離散トランジスタであるトランジスタTは、微分(differential)型またはエピタキシャル型トランジスタであり、すなわち、ベース領域31は、前記半導体本体上に成長させられる積層領域を具え、このベース領域31は、受動領域Pの上方では多結晶であり、前記トランジスタのコレクタ領域33を具える能動領域A内では単結晶である。上で示した前記積層領域は、エミッタ領域32であり、この実施例においてはT型である。電気絶縁層13内に配置される接続コンダクタ7,8は、前記エミッタ領域32および前記ベース領域31の電気接続を提供する。前記ベース領域31は、この実施例のトランジスタの高周波数特質を考慮して20原子%のゲルマニウム含有量を有するシリコンおよびゲルマニウムの混晶を含む。さらなる電気絶縁層14は、前記トランジスタ上で、かつ前記絶縁層13の下方に存在する。
第2導電領域1は、前記能動領域Aの中に配置され、この第2導電領域1は、金属導電体を具え、この実施例において前記トランジスタTのコレクタ領域33の一部を形成する。前記第2導電領域1は、前記コレクタ領域33のための接続コンダクタ9に、前記表面から埋め込まれた第1導電領域2を介して前記表面で接続され、金属導電材料で充填される。この実施例において、前記領域1,2および前記接続コンダクタ7,8,9はすべて同じ材料で形成され、この材料は、この実施例においてタングステンを具える。図7が示すように、前記デバイス10は前記第2導電領域1の形成において用いられたSiGe領域1Aの一部を未だ具える。前記第1導電領域2は、前記受動領域Pの外側に配置され、さらなる受動領域P1に順に隣接する前記半導体本体12のD部分中に形成されている。
前記デバイス10の寸法、その部分を形成する前記(半導体)領域のドーピング濃度および寸法のために従来の値が選択される。この実施形態の前記デバイス10は、例えば、以下に示す本発明に従う方法を用いて製造される。
開始点はp型シリコン基板11であり、このp型シリコン基板11は半導体本体12の一部を形成し、このp型シリコン基板11の上に、例えば厚さが20nm、かつ、ゲルマニウム含有量が30原子%のSiGe層1Aがエピタキシャル法によって堆積される(図1を参照)。前記第1SiGe層1A上に、前記半導体本体12の第2シリコン部分12Aが同じようにエピタキシャル法によって堆積される。前記シリコン部分12Aはn伝導型からなり、少なくとも前記能動領域A内に、前記トランジスタTのコレクタ領域33の低ドープ部分を形成する。受動領域P、P1は、トレンチ・アイソレーション領域と呼ばれるような形で、前記半導体本体12の表面に形成される。前記半導体本体12の能動領域Aに、または、前記能動領域A内に、バイポーラトランジスタTは形成され、この場合、前記トランジスタは、微分(differential)型またはエピタキシャル型と呼ばれるトランジスタである。このために用いられる接触工程は従来の工程であり、ここでは別個に説明されないであろう。
その後、電気絶縁層13、14は、上述したような前記構造体上に形成される(図2を参照)。前記電気絶縁層13、14の中に、コンタクト開口部Cおよび別の開口部V、そして、この場合前記トランジスタTのコンタクト開口部も同様に、フォトリソグラフィおよびエッチングを用いて形成される(図3を参照)。
その後、前記コンタクト開口部Cは、フォトレジストマスクMで覆われる(図4を参照)。前記別の開口部Vはアクセス可能なように残り、そして、前記別の開口部Vを介して、埋込み開口領域2Aは、前記受動領域Pとさらなる受動領域P1との間の前記半導体本体12の中に、この場合ドライエッチングプロセスを用いるエッチングによって、前記SiGe層1Aまで形成される(図5を参照)。
その後、空洞1Bは、原子フッ素による選択ドライエッチング工程を用いるエッチングによって前記SiGe層1Aの中に形成され、この空洞1Bは、前記半導体本体12の能動領域Aまで延在する(図6を参照)。
この後、前記マスクMは除去され、前記埋込み開口領域2Aと同様に、前記コンタクト開口部C、前記別の開口部V、および前記空洞1Bは、この実施例においてタングステンを具え、CVD(化学気相成長)技術を用いて適用される金属材料で充填される(図7を参照)。同時に、前記接続コンダクタ7、8、9および前記第2導電領域1および前記第1導電領域2が形成される。前記第1導電領域2は、完全に充填されることができるか、または、図面に示されるように、未だ空洞を具えることができる。唯一必須の点はもちろん、前記第1導電領域2が、この実施例において前記バイポーラ(この実施例において)npnトランジスタTのコレクタ領域33の一部を形成する前記第2導電領域1と当該接続コンダクタ9との間に完璧な導電接続を形成することである。
最終組み立て状態にある個々のデバイス10は、その後、1以上の金属化層(相互接続)の形成後、不活性化後に切断プロセスのような別個のプロセスが続くことにより得られる。
図8および図9は、第1実施例のデバイス10の2つの変形例の厚さ方向の概略的断面図である。
第1変形例において、前記第2導電領域1は、埋込高ドープ半導体領域15内に配置される(図8を参照)。この場合nシリコンからなるそのような領域15はそれ自体知られ、普通バイポーラトランジスタの中で用いられ、そしてこの場合も、前記SiGe層1Aおよび前記半導体本体12の上側部分12Aを形成するエピタキシャルプロセスの前であるか否かにかかわらず、例えば、局所的な埋め込み法などによって、通常の方法で形成される。
第2変形例において、さらなる受動領域P3は、前記受動領域Pの下に存在し、その結果、深いトレンチ・アイソレーションと呼ばれるものが形成される(図9を参照)。前記第2変形例は、その他は前記第1変形例と同一である。
図10および図11は、本発明に従うデバイスの第2実施例の厚さ方向の概略的断面図を示し、本発明に従う方法を用いる製造の連続した段階を示す。前記デバイス10およびその製造は、第1実施例のそれらと大部分が同じであり、したがって、差異のみがここで説明されるであろう。
第1の差異は、前記受動領域P、P1の形成前の、前記半導体本体12の第2シリコン部分12Aの上の第2SiGe領域1Cおよび前記半導体本体12の前記第2SiGe領域1C上の第3シリコン領域12Bの形成に関する(図10を参照)。これは、前記1Aおよび12Aの形成直後に、同じエピタキシャルプロセスにおいてのみ行われることができる。前記第2SiGe領域1Cは、ここで、前記半導体本体12の表面から、前記受動領域Pの厚さよりも小さい距離だけ間隔を置いて配置されるが、同時に、前記SiGe領域/層1Aは、前記第1実施例のように、前記受動領域Pの下にあり続ける。
第2の差異は、前記SiGe層1Aの一部の場所の前記埋込み開口領域2Aおよび前記空洞1Bの形成上で区別されることができる(図11を参照)。前記埋込み開口領域2Aが形成される場合、その場所に存在する前記別のSiGe領域の一部は除去され、これは選択エッチングプロセス/エッチング液を用いて行われてもよいし、これらを用いて行われなくてもよい。前記第2導電領域1の場所の前記空洞1Bは、2つの工程で形成される。第1工程において、前記SiGe領域1A(の一部)は、選択エッチングプロセスを用いて除去される。第2工程において、前記半導体本体12のシリコンの選択エッチングが行われる。その結果として、前記第2SiGe領域1Cは、前記半導体本体12の能動領域Aの中のエッチング停止層として機能するとともに、前記空洞1Bが全ての方向に広がる。必要に応じて、前記第2SiGe領域1Cは、その後、選択エッチング工程を用いてその後除去されることができる。この実施例の重要な利点は、前記第2導電領域(および前記第1導電領域)の寸法が比較的大きいということであり、これは前記空洞の形成を容易にし、減少した抵抗に導く。それに加えて、前記受動領域P内の前記第2導電領域1が前記半導体本体12の表面から非常に小さい距離に位置付けられることができるということも、利点である。バイポーラトランジスタTの場合、前記コレクタ領域33の寸法の非常に精力的な小型化が、この方法で可能であることからも、これは高動作周波数に著しく関与する。
図12は、前記第2実施例に従うデバイスの変形例の厚さ方向の概略的断面図を示す。この実施例では、前記半導体本体12のD部分は、前記能動領域Aと前記受動領域Pとの間に配置される。前記第1導電領域は、このように、前記受動領域Pによって境界が定められる前記半導体本体12の一部内に形成され、その結果、形成された前記第2導電領域1と前記半導体本体12の表面との間の空間は、この変形例においても、前記受動領域Pの厚さよりも(極めて)小さくすることができる。この変形例は、さらにまた、前記第1導電領域2を囲む、任意の陥没した高ドープ半導体領域16を具える。
図13〜図15は、本発明に従うデバイスの第3実施例の厚さ方向の概略的断面図であり、本発明に従う方法を用いる製造の連続した段階を示す。前の実施例との第1の重要な差異は、前記トランジスタTが、ここで前記p型基板11の中のn井戸20の中に形成されたMOSトランジスタを具えるということである(図15を参照)。上述した第2実施例に対する変形例のように、前記第2導電領域1が、ここで短い距離で前記表面から間隔を置いて配置され、前記第1導電領域2が、前記能動領域Aと前記受動領域Pとの間の半導体本体12のD部分内に位置付けられる。前記第1導電領域2、および、このように前記第2導電領域1が、前記トランジスタTのドレイン領域41に接続される高ドープ半導体領域21を介して前記基板11に導電接触している。前記接続コンダクタ19は、次に、前記MOST(この場合NMOST)のチャネル領域42に延在するコンダクタの接続を形成する。前記接続コンダクタ17、18は、前記NMOSTのソース領域43およびドレイン領域41の電気接続を形成する。前記MOSトランジスタのゲート電極44の電気伝導は、図15の断面図には示されない。この実施例の前記デバイスの製造は、前述の実施例に従うデバイスの製造と本質的に異なるものではない。
重要な差異はもちろん、前記トランジスタTがここでMOSトランジスタを具えるという事実であり、このMOSトランジスタは、通常の構造を有し、通常の方法で製造されるが、実際のところ、前記MOSトランジスタの製造は、前記第1実施例のバイポーラトランジスタの製造とは(詳細は別にして、)異なるものではない(図13を参照)。この実施例のデバイス10の製造の第1工程における重要な差異は、特にCMOSプロセスにおいて通常であるように、前記p型基板11中のn井戸20と呼ばれるもの形成である。前記トランジスタの形成後、絶縁層13は再び設けられ、その中に開口部C、Vが形成される。
前記陥没開口領域2Aおよび前記空洞1Bの形成は、前記第1実施形態と同様の方法で行われ、この差異は、既に前に留意されたが、これら領域の形成が、前記能動領域Aと前記受動領域Pとの間の半導体本体12のD部分内で起こるということである(図14を参照)。
前記接続コンダクタ17、18、19と同様に、前記第2導電領域1および前記第1導電領域2の形成後、最終組み立ての状態にある個々のデバイス10は、1以上の金属化層(相互接続)の形成後、不活性化後に切断プロセスのような別個のプロセスが続くことにより、再び得ることができる(図15を参照)。
図16は、前記第3実施例に従うデバイスの変形例の厚さ方向の概略的断面図を示す。主な差異は、前記第1導電領域2が、受動領域Pを貫通し、前記受動領域Pの下方に形成されるということである。
この利点は、これが横方向寸法を減少させることを可能にするということである。
本発明は、ここで説明されたような実施形態に限定されるものではなく、本発明の範囲内で、多くの変形および修正が当業者にとって可能である。このように、別々の半導体デバイスにおいて用いられるのに適していることに加えて、本発明は、(BI)CMOS((Bipolar) Complementary Metal Oxide Semiconductor:(バイポーラ)相補型金属酸化膜半導体) IC(Integrated Circuit:集積回路)のような集積半導体デバイスにおいて用いられるのにも非常に適している。BICMOS ICの場合、前記MOSトランジスタおよび前記バイポーラトランジスタの双方は、有利に本発明に従うトランジスタとなることができる。さらにまた、トレンチ・アイソレーション領域を用いる代わりに、LOCOS(Local Oxidation Of Silicone:シリコンの局部的酸化)技術を用いて得られた分離領域を用いることもまた可能であるということに留意すべきである。
別の修正は、前記第2導電領域と前記半導体本体の上側部分との間のコンタクトの性質に関する。後者の部分のドーピングおよび前記金属材料の選択に応じて、前記コンタクトは、オーミックコンタクト、MIS(金属絶縁半導体)、またはショットキーコンタクトとすることができる。その接続において、前記接続コンダクタが、必ずしも、前記第1導電領域と同じ材料からなる必要はないということは明らかである。
本発明に従う方法に関して、多くの変形および修正も可能である。このように、前記第2導電領域は、前記実施例において均一SiGeエピタキシャル層の一部をエッチングにより除去することによって形成されることができる。別の可能性は、実際に局所化され、画定されたSiGe領域の使用である。前記領域は、形成されたSiGe層の一部を除去することによって形成され、その後、前記半導体本体のシリコン部分は残りの部分上に形成されることができる。さらにまた、有利な使用は、そのようなSiGe領域を形成するのための選択エピタキシャル堆積プロセスからなることができる。
本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 本発明に従うデバイスの第1実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の連続した段階を示す。 前記第1実施例に従う前記デバイスの2つの変型例の厚さ方向の断面図を概略的に示す。 前記第1実施例に従う前記デバイスの2つの変型例の厚さ方向の断面図を概略的に示す。 本発明に従うデバイスの第2実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の関連する段階を示す。 本発明に従うデバイスの第2実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の関連する段階を示す。 前記第2実施例に従う前記デバイスの1つの変型例の厚さ方向の断面図を概略的に示す。 本発明に従うデバイスの第3実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の関連する段階を示す。 本発明に従うデバイスの第3実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の関連する段階を示す。 本発明に従うデバイスの第3実施例の厚さ方向の断面図を概略的に示し、本発明に従う方法を用いる製造の関連する段階を示す。 本発明に従うデバイスの厚さ方向の断面図を概略的に示す。

Claims (15)

  1. シリコンからなる基板と半導体本体とを備える半導体デバイスであって、前記半導体本体は、トランジスタをもつ能動領域と、該能動領域を囲む受動領域とを具え、前記半導体本体に、前記半導体本体の表面から埋め込まれた金属材料からなる第1導電領域に接続される金属材料からなる、埋め込まれた第2導電領域を設けた半導体デバイスにおいて、
    前記第2導電領域が、前記半導体本体の前記能動領域の位置に少なくとも形成されることを特徴とする半導体デバイス。
  2. 前記第1導電領域および前記第2導電領域は、前記トランジスタの接続コンダクタを形成する材料と同じ材料で充填される請求項1に記載の半導体デバイス。
  3. 前記第2導電領域は、前記半導体本体の表面から、前記受動領域の厚さよりも小さい距離だけ間隔を置いて配置される請求項1または2に記載の半導体デバイス。
  4. 前記半導体本体の部分は、前記受動領域と前記能動領域との間に位置し、前記第1導電領域は前記半導体本体の前記部分内に形成される請求項1、2または3に記載の半導体デバイス。
  5. 前記第2導電領域は、前記半導体本体の、前記受動領域の外側に位置する部分内に形成される請求項1〜4のいずれか1項に記載の半導体デバイス。
  6. 前記受動領域は、いわゆる溝分離領域を具える請求項1〜5のいずれか1項に記載の半導体デバイス。
  7. 前記トランジスタは、バイポーラトランジスタを具え、かつ、前記トランジスタにコレクタ領域を設け、該コレクタ領域内に第2導電領域が位置する請求項1〜6のいずれか1項に記載の半導体デバイス。
  8. 前記トランジスタは、チャネル領域を設けたMOSトランジスタを具え、前記チャネル領域内に前記第2導電領域が位置する請求項1〜6のいずれか1項に記載の半導体デバイス。
  9. シリコンからなる基板と半導体本体をもつ半導体デバイスの製造方法であって、前記半導体本体が、トランジスタをもつ能動領域と、該能動領域を囲む受動領域を具える半導体デバイスの製造方法であって、金属材料からなる第2導電領域が形成され、該第2導電領域は、前記半導体本体の表面から埋め込まれた金属材料からなる第1導電領域に接続され、前記第2導電領域は第1SiGe領域によって形成される半導体デバイスの製造方法において、
    該方法は、
    前記半導体本体を、その第1シリコン部分上であって、前記能動領域内に単結晶からなる第1SiGe領域を設けることによって形成する工程と、
    前記半導体本体上にエピタキシャル法によって前記半導体本体の第2シリコン部分を形成する工程と、
    前記半導体本体の表面から前記第1SiGe領域まで埋込み開口領域を形成する工程と、
    前記第1SiGe領域の選択エッチングによって前記第1SiGe領域の場所に空洞を形成する工程と、
    前記空洞を前記金属材料で充填し、それによってその場所に前記第2導電領域を形成する工程と
    を具えることを特徴とする半導体デバイスの製造方法。
  10. 前記埋込み開口領域は金属材料で充填されて、前記第1導電領域を形成する請求項9に記載の半導体デバイスの製造方法。
  11. 前記受動領域は、複数の溝分離領域を設けることによって形成される請求項9または10に記載の半導体デバイスの製造方法。
  12. 前記第1導電領域は、前記受動領域の外側に形成される請求項11に記載の半導体デバイスの製造方法。
  13. 前記埋込み開口領域は、前記トランジスタが形成された後であって、かつ前記半導体本体上に絶縁層が堆積された後に形成され、該絶縁層に、前記トランジスタのためのコンタクト開口部と、前記コンタクト開口部がマスクで覆われた後に形成されるべき前記埋込み開口領域の場所の別の開口部が設けられる請求項9〜12のいずれか1項に記載の半導体デバイスの製造方法。
  14. 前記半導体本体の第2シリコン部分上に第2SiGe領域が形成され、該第2SiGe領域上に、前記半導体本体の第3シリコン部分からなる別の領域が形成され、前記第1SiGe領域および前記第2SiGe領域は、前記受動領域の厚さよりも、それぞれ大きい距離および小さい距離だけ、それぞれ前記半導体本体の表面から間隔を置いて配置される請求項9〜13のいずれか1項に記載の半導体デバイスの製造方法。
  15. 前記空洞は、隣接するシリコンをエッチングにより除去することによって形成した後、前記第2SiGe領域にまで拡張される請求項14に記載の半導体デバイスの製造方法。
JP2008519030A 2005-06-27 2006-06-22 半導体デバイスおよびその製造方法 Withdrawn JP2008544564A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05105719 2005-06-27
EP05106387 2005-07-13
PCT/IB2006/052027 WO2007000693A2 (en) 2005-06-27 2006-06-22 Semiconductor device and method of manufacturing such a device

Publications (1)

Publication Number Publication Date
JP2008544564A true JP2008544564A (ja) 2008-12-04

Family

ID=37310413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008519030A Withdrawn JP2008544564A (ja) 2005-06-27 2006-06-22 半導体デバイスおよびその製造方法

Country Status (6)

Country Link
US (1) US7956399B2 (ja)
EP (1) EP1900035A2 (ja)
JP (1) JP2008544564A (ja)
CN (1) CN101208801B (ja)
TW (1) TW200705617A (ja)
WO (1) WO2007000693A2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041149B2 (en) 2008-08-19 2015-05-26 Nxp, B.V. Gringo heterojunction bipolar transistor with a metal extrinsic base region
US20120098142A1 (en) * 2010-10-26 2012-04-26 Stmicroelectronics S.R.L. Electrical contact for a deep buried layer in a semi-conductor device
KR20120064364A (ko) * 2010-12-09 2012-06-19 삼성전자주식회사 태양 전지의 제조 방법
CN108878520A (zh) * 2018-05-04 2018-11-23 上海集成电路研发中心有限公司 一种双极型晶体管结构及其制作方法
US11990536B2 (en) 2021-12-31 2024-05-21 Nxp B.V. Bipolar transistors with multilayer collectors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3376134B2 (ja) 1994-11-21 2003-02-10 三菱電機株式会社 半導体装置の製造方法
FR2845522A1 (fr) * 2002-10-03 2004-04-09 St Microelectronics Sa Circuit integre a couche enterree fortement conductrice
JP4477309B2 (ja) * 2003-05-09 2010-06-09 Necエレクトロニクス株式会社 高耐圧半導体装置及びその製造方法
EP1569273A3 (fr) * 2003-07-30 2005-09-14 St Microelectronics S.A. Lignes conductrices enterrées dans des zones d'isolement
JP2007501512A (ja) 2003-08-01 2007-01-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ バイポーラ・トランジスタを有する半導体装置の製造方法及びバイポーラ・トランジスタを有する装置

Also Published As

Publication number Publication date
WO2007000693A2 (en) 2007-01-04
US20100237434A1 (en) 2010-09-23
WO2007000693A3 (en) 2007-08-02
CN101208801B (zh) 2011-09-07
TW200705617A (en) 2007-02-01
US7956399B2 (en) 2011-06-07
CN101208801A (zh) 2008-06-25
EP1900035A2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
US5770875A (en) Large value capacitor for SOI
JP5255593B2 (ja) トレンチ絶縁部を有する半導体素子およびその製造方法
JPWO2006006438A1 (ja) 半導体装置及びその製造方法
WO2007144828A1 (en) Semiconductor device and method of manufacturing such a device
JP2001024200A (ja) 半導体装置及び半導体装置の製造方法
US7223640B2 (en) Semiconductor component and method of manufacture
JP2004274023A (ja) 強い導電埋込層を備えた集積回路
US8030202B1 (en) Temporary etchable liner for forming air gap
TWI690025B (zh) 絕緣體上半導體基底、其形成方法以及積體電路
US6642607B2 (en) Semiconductor device
JP2008544564A (ja) 半導体デバイスおよびその製造方法
JP2003303830A (ja) 半導体装置及びその製造方法
JP2008527734A (ja) バイポーラトランジスタおよびその製造方法
US20040094802A1 (en) Semiconductor device and method of forming the same
US10304839B2 (en) Metal strap for DRAM/FinFET combination
US7741702B2 (en) Semiconductor structure formed using a sacrificial structure
US5843828A (en) Method for fabricating a semiconductor device with bipolar transistor
KR102421864B1 (ko) 나노구조물을 갖는 반도체 디바이스 구조물 및 그 형성 방법
JPH09181083A (ja) 自己整列されたベース電極を有するバイポーラトランジスタおよびその製造方法
JP3794963B2 (ja) 半導体装置及びその製造方法
JP2826405B2 (ja) 半導体装置
KR20200113130A (ko) 반도체 소자
JPS60211958A (ja) 半導体装置
GB2338828A (en) Integrated circuit with multiple base width bipolar transistors
JPH06224310A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090901