JP2008542888A - 工業用機械の動作のための方法 - Google Patents

工業用機械の動作のための方法 Download PDF

Info

Publication number
JP2008542888A
JP2008542888A JP2008513907A JP2008513907A JP2008542888A JP 2008542888 A JP2008542888 A JP 2008542888A JP 2008513907 A JP2008513907 A JP 2008513907A JP 2008513907 A JP2008513907 A JP 2008513907A JP 2008542888 A JP2008542888 A JP 2008542888A
Authority
JP
Japan
Prior art keywords
data
simulation
machining
machine
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008513907A
Other languages
English (en)
Inventor
コッホ、ダフィット
クライトラー、フォルカー
ムッチェラー、ヴォルフガング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2008542888A publication Critical patent/JP2008542888A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • General Factory Administration (AREA)
  • Manipulator (AREA)

Abstract

本発明は、工業用機械(54)が例えば工作機械、生産機械または自動操作機械である工業用機械(54)の動作のための方法に関する。工業用機械(54)の動作の少なくとも一部がシミュレーションモデル(50)によりシミュレーションされ、シミュレーション結果および工業用機械(54)の動作からの実際のデータが記憶される。シミュレーションが工業用機械(54)自体において行なわれ、少なくとも部分的にシミュレーションモデルのパラメータ化が、シミュレーションモデルのパラメータ化のための装置(50)により実行可能であり、工業用機械(54)とシミュレーションモデルのパラメータ化のための装置(50)との間においてインターネットおよび/またはイントラネット接続(52)によるデータ技術的接続が構成可能である。更に、シミュレーションが外部のシミュレーション装置(50)において実行され、外部のシミュレーション装置(50)が、インターネットおよび/またはイントラネット接続(52)により、工業用機械(54)にデータ技術的に接続されている。

Description

本発明は、工業用機械の動作のための方法に関する。工業用機械は、例えば加工機械、生産機械または自動操作機械である。加工機械は、例えば工作機械と理解される。工作機械は、例えば旋削工程、フライス削り工程の実施に用いられ、あるいは研削工程の実施にも用いられる。生産機械とは、例えばプラスチック注型機械、自動包装機械がそうであり、あるいは印刷機械もそうである。そのほかに、例えば商品運搬のためのクレーンとして設けられている巻上装置も生産機械であると理解することができる。自動操作機械の典型的な例がロボットである。
この種の工業用機械の動作はシミュレーションが可能である。工業用機械が工作物の加工のための加工機械に関する場合には、工作物のデザイン時に技術的および幾何学的パラメータのほかに品質的パラメータも定められる。品質的パラメータの検出およびそれの維持の証明が製作中または製作後に実施される。この監視の範囲および時点は、例えば技術的または経済的な必要条件に基づいて設定することができる。しかしながら、一般に、工作物の追加加工または総合損失のような結果として生じるコストを回避することができるように、目標量に対する実際量の偏差を早期に確認することが有利である。技術的、幾何学的または品質的なパラメータの監視のために、一般に品質保証プロセスが作動させられる。このプロセスは、例えば工作物の定義、構成および製作をともなう。例えば、何が規定されたか、どのパラメータ(技術的、幾何学的、…)が工作物の品質に対して関連性があるか、どのようなやり方でこれらのパラメータの監視および記録をするかという仕様が作成される。監視されなければならないパラメータが多ければ多いほど、それだけ多く費用が必要である。
上述のパラメータの維持の保証のために、一般に生産プロセス中または生産プロセス後に定められた時点で測定が行なわれる。この種の測定には、例えば表面の良さまたは幾何学的寸法の許容値も該当するする。したがって、しばしば、後置のプロセスステップにおいて、特にこのために使用される機械において、相応に高い費用にて品質保証が行なわれる。通常の方法では、工作物製作のプロセスデータが取得され、工作物の品質が測定によって検証される。他の同じ部材(工作物)の加工中に、その際に測定されたプロセスデータを連続的に良好部材のデータと比較することができる。それゆえ早期に目標量からの偏差を確認することができる。しかしながら、この方法は回りくどくて非常に時間がかかる。
工業用機械の動作は、特に、数値制御工作機械における工作物の加工にも関係する。この場合に、コンピュータ数値制御加工機械(CNCマシン)も、数値制御加工機械であると理解され、しかも加工機械は工作機械であり得る。それゆえ、工作物を加工するための方法は、CNC制御加工機械、特にフライス盤による3次元加工についてのシミュレーション方法およびこのために必要な記述データセットも含む。
特にCNC制御加工機械のような数値制御加工機械においては、工作物がプログラマーによって直接的にコード化されるか、または工作物がCADシステムによりモデル化されて、それから等価なCNC部分プログラムに変換されるかのいずれかである。CNC部分プログラムもしくはCADモデルは、加工機械のための理想化された加工指令である。CNCプログラムはCNC制御装置に取り込まれ、加工機械がCNCプログラムに応じて制御される。そのようにして製作された工作物が理想的な工作物の所望の製作公差範囲内にあるならば、この方法において問題は発生しない。これに対して、製作された工作物が要求どおりでない場合には、どのような変更に基づいて規則に適った工作物が製作可能であるかという問題が生じる。
誤りを修正するために、確かに、徐々に加工機械の個々の加工指令および/または個々の動作パラメータを変更し、新たな工作物を製作し、この新たに製作された工作物を検査するとよいが、しかしこの方法は非常に面倒であり、その上にコスト的、物質的、時間的に不利である。このことが当てはまるのは、特に、所望の工作物からの実際に製作された工作物の偏差の原因をどこで探すべきかがしばしば既知でないためでもある。
特に複雑な部材の製作時に、特に、例えば航空機製作または発電所用タービン製作において発生するような大きな切削除去体積を有する部材において、種々の工具による多数のプロセスステップが必要である。部材(部材は工作物である。)の製作のための個々の部分プロセスについてCADモデルが存在しないために、今日では部分プロセスの品質が直接に測定できない。全体プロセスの結果が測定機械または製作機械において測定されるだけである。これは、既に最初のプロセスステップにおいて発生している誤りも、部材全体の完成後に、例えばタービン翼の完成後にやっと発見されることを意味する。この方法は、例えば次の問題をもたらし得る。
a)部材/工作物は、製作開始直後に既に認識されなかった回復不能の損傷が一部に生じているにもかかわらず、常に完成するまで製作される。それによって貴重な加工時間が失われる。
b)従来の通常の測定機械での部材測定は高コストである。なぜならば、一方では測定機械が大きな部材のために高価であり、他方では部分的に非常に大きい工作物の測定機械への固定に非常に費用がかかるからである。
c)生産中における誤りが、しばしば部材製作後に数週がたってやっと認識される。それは、この時間がたってから、場合によっては全体の部材シリーズが誤製作されたという結果をともなって認識される。
d)従来から知られたやり方で認識される誤りが1つの部分プロセスに帰属することは、非常に稀なケースであるので、誤り修正がまたしても非常に費用がかかる。なぜならば、全ての部分プロセスが調べられなければならないからである。
本発明の課題は、従来技術よりも遥かに迅速な、簡単なおよび/または低コストのやり方で特に段階的に行なわれる工作物の加工における誤りを認識することを可能にすることにある。これは、特に、例えば1のような僅かなロットサイズの場合に有利である。
この課題は、請求項1による特徴事項を有する方法によって解決される。従属請求項2乃至13は更なる本発明の方法を構成する。請求項14は本発明による方法を実施するためのシステムに関する。
工業用機械の動作のための本発明による方法においては、工業用機械の動作の少なくとも一部がシミュレーションモデルによりシミュレーションされ、シミュレーション結果および工業用機械の動作からの実際のデータが記憶される。工業用機械は、例えば工作機械、生産機械または自動操作機械である。この方法によれば、加工機械の加工品質の監視の際に、加工中に測定されたプロセス量が、シミュレーションモデルから算定されたプロセス量と比較可能である。方法を実施するためのシステムは、例えばコンピュータを有する。コンピュータは、加工機械の制御および/または調節装置に、インターネットもしくはイントラネットの利用によるデータ技術的な接続を介して、情報交換目的のために接続されている。シミュレーション装置であるコンピュータには、工業用機械のためのシミュレーションモデルが存在する。この種のモデルは、特に工業用機械の部分構成要素のための種々のモデルを有する。工業用機械の部分構成要素のためのモデルには、例えば制御もしくは調節シミュレーション、運動学シミュレーション、加工ステップ(これは、例えば部分プログラムに該当する。)のシミュレーションなどが該当する。
一実施形態においては、シミュレーションのためのコンピュータは、実際に記録されたプロセスデータとシミュレーションモデルから算定されたプロセスデータとの比較のために、実際の工作機械に対する接続を有する。比較は加工と同時に、または後の時点で行なわれ、かつコンピュータおよび/または制御もしくは調節装置において行なわれる。比較が工作機械において行なわれる場合には、シミュレーション結果がコンピュータからの工作機械の制御もしくは調節装置に伝送される。比較がコンピュータにおいて行なわれ、この比較が特に製作の後に続けて行なわれる場合には、プロセス情報が工作機械からコンピュータへ伝送される。シミュレーション結果の算定は、特に制御情報の使用のもとで、すなわち制御のためのモデルの使用のもとで、コンピュータ上で行なわれる。制御シミュレーションの構成は、インターネットもしくはイントラネットを介するデータ転送の使用のもとで工作機械への接続を介して行なわれることが好ましい。シミュレーションの構成のために制御装置の機械データが使用される。実行されるデータ比較は、例えば工具の位置または向き、軸位置、回転数または比較によって発生する力に関する測定値とシミュレーション値とに基づく。
結局、方法は次のように構成可能である。すなわち、シミュレーションが工業用機械において実行され、少なくとも部分的にシミュレーションモデルのパラメータ化が、シミュレーションモデルのパラメータ化のための装置により実行可能であり、工業用機械とシミュレーションモデルのパラメータ化のための装置との間において、インターネットおよび/またはイントラネット接続によるデータ技術的接続が構成可能である。
方法の他の構成では、シミュレーションが外部のシミュレーション装置において実行可能であり、外部のシミュレーション装置が、インターネットおよび/またはイントラネット接続により、工業用機械にデータ技術的に接続可能もしくは接続されている。
従来において使用された品質保証のために方法では、生産製品の製作プロセス値が製品部材の値と比較された。製品部材は、設定にしたがって正しく製作されかつ誤差を持たない部材である。この比較方法は、既に製品部材が存在していることが前提である。本発明による方法によれば、最初の製品部材の発生を既に監視することができる。これは、特に、これまでこの種の品質保証が可能でなかったロットサイズ1において重要である。本発明によるシミュレーションの実行は、製作の前段階において、直接に品質保証に役立つ高い精度を有する目標データを発生させることを可能にし、これは生産に並行して行なわれる。
インターネットもしくはイントラネットのようなネットワークを介する工業用機械と外部コンピュータとのデータ技術的な接続は、結果を直接に品質保証のための作業準備から製作に投入し、作業準備における特にトレースのような製作データを生産ドキュメンテーションのために利用することを可能にする。
本発明によるシステムもしくはこの本発明による方法の実施は、加工プロセスの連続的に保証されたかつ記録可能な監視を、規定された品質保証管理プロセスにしたがって実施することも可能にする。更に、本発明から、例えば工作物製作者が品質監視を、例えば外部の装置によって実施させる可能性がもたらされる。この外部の装置は、例えばインターネットへのデータ接続を持ったサーバを有する。サーバはシミュレーションの実施および/または少なくともシミュレーション結果の伝送のために設けられている。
他の有利な方法は数値制御加工機械における工作物の加工に関し、これにおいては工作物の加工のために2つ以上の加工ステップが必要のゆえに設けられている。数値制御加工機械の制御および/または調節のために加工データセットが用意されている。加工データセットは、数値制御加工機械の制御および/または調節装置において、数値制御加工機械の制御および/または調節装置の動作のためのプログラムと協力して動作可能である。加工データセットは、例えば少なくとも1つの部分プログラムである。加工機械は、特に工作機械であってよく、あるいは生産機械もしくは自動操作機械であってもよい。工作機械は、例えば次の加工のために設けられている。すなわち、穴あけ、フライス切削、研削、旋削などである。加工機械は、例えばNC制御装置またはCNC制御装置のような制御および/または調節装置を有し、この種の制御装置は加工機械に組み込まれているか、または加工機械に機能的に付設されている。制御および/または調節装置の動作のためにオペレーティングシステムが必要であり、このオペレーティングシステムはNC核(NCK)とも呼ばれる。このNC核はランタイムソフトウェアである。本発明による方法によれば、シミュレーションデータが発生させられる。これらのシミュレーションデータは、加工データセットから、制御および/または調節装置の動作のためのプログラム(NCK)との協力でシミュレーションステップにおいて発生させられる。シミュレーションは1つまたは多数のステップにおいて行なわれ得る。シミュレーションデータは、特にNCKによる部分プログラムの処理によって生じるデータである。これらのシミュレーションデータの算定のために、制御および/または調節装置において実際のNC核が使用されてもよいし、あるいはシミュレーションされたNC核が使用されてもよい。シミュレーションされたNC核は仮想NC核VNCKとも呼ばれ、これは、例えば加工機械の制御および/または調節装置のために設けられていないコンピュータ上で作動する。このコンピュータは、例えばインターネットおよび/またはイントラネットを介して加工機械にデータ技術的に接続されている。更に発展させられた実施形態においては、VNCKが制御および/または調節装置に組み込まれている。更に、本発明による方法によれば、シミュレーションデータ発生後に、シミュレーションデータが材料削り取りシミュレーションに引き渡され、シミュレーションデータからシミュレーションされた材料削り取りデータが発生させられる。シミュレーションされた材料削り取りデータからは、工作物の元のジオメトリデータおよびまさしくこの材料削り取りデータからの計算により、定められた加工ステップおよび/または任意の加工ステップの後における工作物のジオメトリデータが算定される。x番目の加工ステップ後におけるジオメトリデータがx番目の加工ステップ後における実際に測定されたジオメトリデータと比較されることが好ましい。測定されたジオメトリデータが、算定された(シミュレーションされた)ジオメトリデータと一致する場合には、次の加工ステップが実行される。測定されたジオメトリデータが、算定された(シミュレーションされた)ジオメトリデータと一致しない場合には、ジオメトリデータの偏差が算定されるとよい。偏差に基づいて、加工すべき工作物が追加加工により更に使用可能であるかどうか、あるいは加工すべき工作物が更なる加工を中止しなければならないかどうかを、自動的に確定することができる。偏差のあるジオメトリデータの助けにより自動的に後続の加工ステップのための加工データセットの変更が行なわれることが有利であり、あるいは新たに挿入すべき加工ステップのための加工セットの再計算が行なわれることも有利である。
本発明による方法では、工作物の加工のシミュレーションが使用される。この場合に、加工機械における加工を記述するデータセット(すなわち、加工データセット)が使用される。したがって、目標加工を、加工機械のための理想化された加工指令によって、記述出力データセットに基づいて決定することができる。この場合に出力データセットは加工データセットである。
本発明による方法により、数値制御される加工機械での多数の加工ステップにおける工作物の加工のための従来知られていた方法の主たる欠点を克服することができる。
従来は、シミュレーションのために、加工機械の動作のためのプログラムが不十分にしかシミュレーションされなかったNC検証ソフトウェアが使用された。シミュレーションデータ発生のために今や本発明によればNC核のソフトウェア自体が使用される。この場合に、もちろん、仮想NC核VNCK、つまり加工機械自体において作動するわけではないNC核も使用することができる。VNCKは制御特性を正確に再現することから、例えばコンプレッサ、面取りまたは工具変更のような制御関数によって発生させられる小さなジオメトリ偏差もシミュレーションにおいて認識することができる。NC核内に存在するこの種の制御関数がシミュレーションデータ発生時に一緒に考慮されることによって、シミュレーションデータの精度が著しく高まる。これらのデータにより、そして後続の材料削り取りシミュレーションの助けにより、工作物の加工における中間ステップのジオメトリデータを非常に正確に算定することができる。それゆえ、常に、加工進行の正確性の詳細な管理が保証されている。なぜならば測定データをシミュレーションデータと比較することができるからである。
したがって、材料削り取りシミュレーションにおいて、加工データセットから、および/または制御および/または調節装置の動作のためのプログラムからのデータがNC核に引き継がれるのが有利である。その他の点でも、材料削り取りシミュレーションの使用は、NC核(NCK)もしくはVNCKがそれの出力データにおいて、例えば工具ジオメトリを既に一緒に考慮したために有意義である。同じ工作物を製作するために、1つだけの加工データセット、したがって、例えば1つだけの部分プログラムを使用しながら異なる工具ジオメトリを有する種々の工具を使用することできることから、NCKもしくはVNCKは既知の工具ジオメトリに依存して出力データを算定する。これらの変化可能性は材料削り取りシミュレーションによって再び修正可能である。それゆえ、材料削り取りデータから、工作物のシミュレーションされたジオメトリデータが発生可能である。シミュレーションされたジオメトリデータは、進行する工作物加工の検証のための中間測定のために援用可能である。例えばフライス工具の半径のような工具特有のデータはNCKもしくはVNCKから材料削り取りシミュレーションに自動的に伝達されることが好ましい。
削り取りシミュレーションは、有利な実施形態では、各部分ステップごとにプログラムを発生するために使用される。従来は、測定のための基準としてCADモデルしか使用できなかった。すなわち、常に、完全に加工された部材しか正しく測定することができなかった。下位に置かれたVNCKを有するNC検証ソフトウェアは、今や加工ステップごとに材料削り取りを正確に表示することができる。それゆえに、このNC検証ソフトウェアは、各ステップ後に各プロセスステップのためのCADモデルに相当する目標ジオメトリを発生することができる。それにともない各部分ステップの結果にジオメトリモデルを参照させ、各ステップ後に検査測定のための目標値設定を発生することができる。これらの目標値設定は、例えば、機械制御装置に取り込まれる測定プログラムの形で存在する。各加工プログラムまたはプログラム部分には、対応する測定プログラムが存在する。
本発明による方法によれば、例えば測定スイッチを工具の代わりに切り替えて測定プログラムを実行させることによって、個々の加工ステップのそれぞれの結果を直接的に加工機械において検査することができる。いずれも記録可能な目標値と実際値との比較によって、機械操作者は直接的に、加工結果が許容誤差範囲内にあるかどうかを認識することができる。誤りの場合にプロセスが即座に中断され、誤り分析が開始可能である。
この方法は従来の方法に比べて明らかに簡単である。なぜならば、誤りを唯一の加工ステップに帰属させることができるからである。更に、既に利用不能な状態になっている部材による貴重な加工時間を浪費することが回避される。どの部分ステップの結果も肯定的である場合には、測定プロトコルによって、全体プロセスが成功しかつ発生させられた部材が仕様に一致したことの証明がもたらされる。それにより、測定機械における分離した測定をなくすことができる。
シミュレーションおよび測定スイッチによる加工機械における測定の品質を検査しようとする場合には、付加的に測定機械を使用するとよい。
シミュレーションデータによる加工ステップの検査プロセスの安定性を改善するために、加工機械が周期的に較正される。これは、例えば規則的な時間間隔で加工機械の状態を監視しかつそれにともなうジオメトリの良さも監視する方法によって保証される。これは、「工作機械および生産機械のための電子指紋」なるキャッチフレーズのもとでも知られている。
他の有利な構成においては、NC核が材料削り取りシミュレーションの中に組み込まれている。これは、例えば、既にプログラミング端末においてNCプログラムの著しい改善をもたらす。この組込みは、加工機械における部分結果の自動測定を可能にする基準ジオメトリが各部分プロセスで発生させられるという利点ももたらす。
本発明による方法によって、工作物の加工時における問題をできるだけ早期の時点で認識することができる。誤った削り取りが行なわれた際に、製作プロセスが続行させられ、それにより高価な加工時間が浪費されることが回避可能である。この方法は大幅に誤り分析を簡単化する。なぜならば、誤りを接的に部分プロセスに帰属させ得るからである。誤り原因を速やかに認識し、それにより速やかに取り除くことができる。従来技術に基づいて必要であった完成部材の特別な測定のための高価な構造基盤が、本発明による方法によって、品質損失が生じることなしに省略可能である。
本発明による方法では、工作物が第1の加工ステップにおいて第1の加工データセットにしたがって加工されて工作物のジオメトリデータが測定され、その後で工作物の測定されたジオメトリデータがシミュレーションされたジオメトリデータと比較されることが可能である。ジオメトリデータが一致しない場合、もしくは予め与えられた公差を超過した場合には、早期に新たな加工データセットが発生させられ、それにより引き続く加工ステップにおいて工作物が修正された形でさらに加工される。
ジオメトリデータの比較は、例えば次のように行なわれる。工作物が第1の加工ステップにおいて第1の加工データセットにしたがって加工され、その後で工作物のジオメトリデータが測定される。その後で工作物の測定されたジオメトリデータから材料削り取りデータが算定され、その後で算定された材料削り取りデータがシミュレーションされた材料削り取りデータと比較される。他の有利な構成では、シミュレーションがリアルタイムで工作物の実際の加工と並行して、または工作物の加工後に加工ステップ内において行なわれる。なぜならば、実際のNC核のデータを仮想NC核のためにも使用することができるからである。この種のデータの例が、特に、室温、誤り通報などの変動量である。
有利な実施形態においては、既述のように、測定されたジオメトリデータとシミュレーションされたジオメトリデータとの間の差、もしくは測定された材料削り取りデータとシミュレーションされた材料削り取りデータとの間の差が算定され、その後で差閾の超過に依存して、次の加工ステップのために用意された加工データセットが変更される。
本発明において行なわれるNC核のシミュレーションは、例えば制御および/または調節装置において、および/またはシミュレーションコンピュータにおいて実行されるとよい。
本発明は、方法のほかに方法を実施するための相応のシステムにも関する。このシステムは次のように構成されている。すなわち、システムが、制御および/または調節装置の動作のためのプログラムのシミュレーションをするための手段のほかに、材料削り取りのシミュレーションをするための手段も有する。更に、システムが、加工すべき工作物を測定するための手段も有することが好ましい。
以下の実施例の説明から他の利点および詳細の例を明らかにする。原理図にて、図1は工作物の加工のためのこれまで公知の従来技術に基づく方法を示し、図2は本発明による方法を示し、図3は加工機械を概略的に示し、図4はシミュレーション結果の改善のためのイントラネットおよび/またはインターネットの利用を示す。
従来技術によれば、図1に示された複雑な部材の製作のためのプロセス配列1が知られている。複雑な部材、すなわち多数のステップ11,12,13での加工を必要とする部材/工作物がCAD(コンピュータ支援設計)システム3においてモデル化される。CADシステム3の代替または補足として、例えばCAM(コンピュータ支援製造)システムも使用できるであろう。CADシステム3は、ポストプロセッサと協力して、工作物の加工に必要な部分プログラム5を発生する。部分プログラム5はNCプログラムである。例えば工作物の加工の全体プロセスのために、唯一および/または多数の工具交換をともなう多数のNCプログラム5が発生可能である。もちろん、各工具について専用のNCプログラムを発生させることもできる。工具による加工は部分プロセスに相当する。それからNCプログラム5は検証システム7により試験される。検証システム7は、例えばNC検証ソフトウェアを有する。「VericutR」は、この種の検証ソフトウェアの例である。検証時に、特に、例えば工作機械における工作物の固定と工作物との対立がチェックされる。同時に削り取りシミュレーションに基づいてNCプログラムが所望の工作物ジオメトリをもたらすかどうかチェックされる。すなわち、削り取りシミュレーションの結果が本来のCADモデルと比較される。定められた誤差許容範囲内で一致する場合に、製作プログラムが釈放されて、機械、特に加工機械9の機械制御部に伝送される。工作物がNCプログラム5により製作され、これは、特に、例えば95%の機械切削率を有する部材(工作物)の場合には、多くの時間数ないし日数がかかり得る。高い機械切削率は、特に80%を超える材料削り取りを有する。加工機械9によって、工作物の加工の種々のステップ11,12および13が実行される。図1による表示では3つの加工ステップ11,12および13のみが模範的に示されているが、しかしながらステップ12において他のステップが示唆されている。完成された工作物が、ひき続いて測定機械上で測定ステップ15にて測定され、認証35がなされ、あるいは選別17がなされる。この工程は、再び多数の日数ないし週数続く。工作物が選別17をなされた場合に、追加加工のための装置において追加加工19がなされるか(削り取られた材料が少なすぎた場合)、または最終的にスクラップ21にされ、しかし追加加工19も生産が停止され、骨の折れる手作業にて誤り発生源が突きとめられなければならない。誤り発生源の発見は選別率の低減に役立つ。
次に、可能性のある誤りの型をリストアップする。これらの誤りの型は、有利なやり方で同定しなければならないか、もしくは同定することができる。
a)誤りのある部分ジオメトリ
b)機械の誤り
c)工程前の素材の間違った寸法
d)加工時の動力学的な問題(例えば、行過ぎ誤り)
e)部材/工作物の誤った固定
f)工具問題
g)加工時に温度影響
h)加工プロセス中の部材/工作物の変形(歪み、膨らみ)
多数のステップにおける工作物の加工のためのこれまでに知られた方法は、次に挙げる欠点の少なくとも1つを含んでいる。
a)誤りが完全加工後にやっと確認される。最初の部分ステップにおいて既に問題が発生していても、誤りが認識されるまで加工が続行される。この場合には加工時間が損失となる。
b)誤りが認識されるまで生産が続行される。これは、多くの他の誤りのある部材が生産され、このことは時間および材料に相当の損失を必然的にともなう。
c)測定機械15における部材の測定は贅沢な高コストの構造基盤を必要とする。
d)問題を部分プロセスまたは特有の誤り発生源に帰属させることは非常に困難である。
e)従来技術に基づくNC検証システム7は、制御特性が模倣されるという欠点を持つ。これは必然的に次のことにつながる。すなわち、削り取りシミュレーションが近似的にしか現実に対応せず、したがって幾何学的誤りが部分プログラムにおいて常に認識可能であるとはかぎらないことである。
図2による表示は、加工機械における工作物の加工のための本発明による方法を模範的に示す。加工機械は、例えばフライス盤として構成されていてよいし、あるいは、例えばボール盤または旋盤の如き他の工作機械として構成することもできる。加工機械は、工業用ロボットまたは専用工作機械として構成することもできる。
図1と違って、図2においては、仮想NC核VNCKを含むNC検証ソフトウェアが示されている。これからVNCKだけ拡張された検証システム8がもたらされる。この場合にCNCシステムのためのエミュレーションソフトウェアがVNCKによって置き換えられている。これは、図1に比べて改善されたプロセス配列2を可能にする。VNCKは制御特性を正確に再現するので、コンプレッサ、面取り加工または工具変更のような制御関数によって発生させられる小さなジオメトリ偏差も既にシミュレーションにおいて認識することができる。更に、拡張された検証プログラム8は材料削り取りシミュレーションを有する。材料削り取りシミュレーションは、加工の各部分ステップ11,12または13のために測定プログラムを発生するために使用される。これまでは、測定のための基準としてCADモデルが意のままになるだけであった。すなわち、常に完全に加工された部材しか正しく測定できなかった。下位に置かれたVNCKを有する拡張されたNC検証ソフトウェアは、各加工ステップ11,12および13について、材料削り取りを正確に表示することができる。それにより各ステップ後に目標ジオメトリを発生させることができ、目標ジオメトリは各プロセスステップのためのCADモデルに相当する。それゆえ、各部分ステップの結果に対してジオメトリモデルを参照し、制御測定のための目標値設定を各ステップ後に発生させることができる。この目標値設定は測定プログラム45の形で存在し、測定プログラム45は機械制御部に取り込むことができる。各加工プログラムまたはプログラム部分に対して今や対応する測定プログラム45が存在する。それによって、例えば測定スイッチが切り替えられて測定プログラム45が実行されることによって、個々の加工ステップ11,12および13のそれぞれの結果を直接に機械9において検査することができる。いずれも記録される目標値および実際値の比較によって、機械操作者は、加工の結果が許容誤差範囲内にあるかどうかを直接的に認識することができる。誤りがある場合にはプロセスが即座に中断され、選別17が行なわれる。選別17は誤りの重大さに依存してスクラップ化21または追加加工19が続く。有利なやり方でここでも加工機械9において行われる追加加工19のために、例えばCAD/CAMシステムを介して、追加加工のための少なくとも1つのNCプログラムが発生させられる。選別17が必要な場合には、誤り分析が開始される。この誤り分析は、1つ以上のNCプログラム5が変更されることをもたらし得る。この方法は従来の方法に比べて明らかに簡単である。なぜならば、誤りを唯一の加工ステップに帰属させることができるからである。更に、貴重な加工時間が、既に利用不能な状態になっている部材により浪費されることが回避される。各部分ステップが肯定的である場合には、測定プロトコルによって全体プロセスが成功し、生産された部材が仕様に対応しているという証明がもたらされる。加工プロセスの安定性を改善するためには、加工機械を周期的に較正するとよい。これは、規則的な時間間隔にて機械の状態が監視されかつそれにともなって機械のジオメトリの良さが監視される方法によって保証される(工作機械および生産機械のための電子指紋)。
したがって、図2によるプロセス配列2は、VNCKだけ拡張された検証システム8と同様に測定ステップ41,42および43のための付加的な測定プログラム45も示す。これらの付加的な測定ステップ41,42および43は、各加工ステップ11,12および13の検査を可能にする。もちろん、各加工ステップに測定ステップも続かなければならないことは強制的ではない。好ましいことに測定ステップ41,42および43の個数は自由に選択可能である。
図3による表示は加工機械9を示す。加工機械9は制御および/または調節装置26を有する。制御および/または調節装置26は、加工データセット28の処理のために設けられている。処理のためにプログラム30が設けられている。このプログラムは、制御および/または調節装置26のオペレーティングシステムとして役立つNC核である。加工データセット28は工具22による工作物20の加工の記述のために設けられている。更に、図3による表示はシミュレーションコンピュータ32を示し、このシミュレーションコンピュータ32は、例えばNC核のシミュレーションのために考慮される。これは仮想NC核(VNCK)に相当する。
図4による表示は、作業準備の実施のためのコンピュータ50を示す。作業準備は、例えば制御シミュレーション、工業用機械の少なくとも1つの部材のシミュレーションのためのシミュレーションシステムならびに目標値と実際値との比較の実現性に関係する。シミュレーションシステムは、ソフトウェアおよび/またはハードウェアにより実現可能である少なくとも1つのシミュレーションモデルを有する。インターネットおよび/またはイントラネット接続52により、例えば工作物の目標ジオメトリに該当する、例えばシミュレーション結果のようなデータが工業用機械54に伝送される。この工業用機械には、特に工業用機械54の動作中に取得されて記憶される実際値のような機械データが存在する。インターネットおよび/またはイントラネット52を介するデータ技術的接続は、作業準備もしくは外部のシミュレーション実施のための機械データもしくは工業用機械54から得られた実際値を伝送するために使用される。この場合に、工業用機械54における工程のシミュレーションのためには、例えば前もって工業用機械54の動作時において得られたデータのような実際の機械データを使用することが好ましい。この種のデータは、例えばゲインおよび/または積分時間のような調節器パラメータデータに該当する。
工作物加工のための従来技術による方法の原理図 工作物加工のための本発明による方法の原理図 加工機械の概略図 シミュレーション結果の改善のためのイントラネットおよび/またはインターネットの利用を示す概略図
符号の説明
1 プロセス配列
2 プロセス配列
3 CADシステム
5 部分プログラム(NCプログラム)
7 NC検証システム
8 検証システム
9 加工機械
11 加工ステップ
12 加工ステップ
13 加工ステップ
15 測定機械
17 選別
19 追加加工
20 工作物
21 スクラップ化
22 工具
26 制御および/または調節装置
28 加工データセット
30 プログラム
32 シミュレーションコンピュータ
35 認証
41 測定ステップ
42 測定ステップ
43 測定ステップ
45 測定プログラム
50 コンピュータ
52 インターネットおよび/またはイントラネット
54 工業用機械

Claims (14)

  1. 工業用機械(54)が特に工作機械、生産機械または自動操作機械なる機械型式の1つである工業用機械(54)の動作のための方法において、
    工業用機械(54)の動作の少なくとも一部がシミュレーションモデル(50)によりシミュレーションされ、シミュレーション結果および工業用機械(54)の動作からの実際のデータが記憶および/または比較されることを特徴とする方法。
  2. シミュレーションが工業用機械(54)において実行され、少なくとも部分的にシミュレーションモデルのパラメータ化が、シミュレーションモデルのパラメータ化のための装置(50)により実行可能であり、工業用機械(54)とシミュレーションモデルのパラメータ化のための装置(50)との間においてインターネットおよび/またはイントラネット接続(52)によるデータ技術的接続が構成可能であることを特徴とする請求項1記載の方法。
  3. シミュレーションが外部のシミュレーション装置(50)において実行され、外部のシミュレーション装置(50)が、インターネットおよび/またはイントラネット接続(52)により、工業用機械(54)にデータ技術的に接続可能であることを特徴とする請求項1又は2記載の方法。
  4. 工業用機械(54)の動作が工作物(20)の加工に該当し、工業用機械(54)が数値制御加工機械(9)であり、数値制御加工機械(9)の制御および/または調節のために加工データセット(28)が用意されていて、加工データセット(28)が、数値制御加工機械(9)の制御および/または調節装置(26)において、制御および/または調節装置(26)の動作のためのプログラム(30)との共同にて作動可能であり、加工データセット(28)により、制御および/または調節装置(26)の動作のためのプログラム(30)との共同にて、シミュレーションステップにおいてシミュレーションデータ(47)が発生させられ、シミュレーションのために、特に制御および/または調節装置(26)の動作のためのプログラム(30)がシミュレーションされるか、または自身が作動することを特徴とする請求項1乃至3の1つに記載の方法。
  5. 工作物(20)の加工のために2つ以上の加工ステップ(11,12,13)が設けられていて、材料削り取りシミュレーションによりシミュレーションデータ(47)から、シミュレーションされた材料削り取りデータ(49)が発生させられることを特徴とする請求項1乃至4の1つに記載の方法。
  6. 材料削り取りシミュレーションにおいて、加工データセット(28)から、および/または制御および/または調節装置(26)の動作のためのプログラム(30)から、データが受け取られることを特徴とする請求項5記載の方法。
  7. 材料削り取りデータ(49)から、工作物(20)のシミュレーションされたジオメトリデータが発生させられることを特徴とする請求項5又は6記載の方法。
  8. 工作物(20)が第1の加工ステップ(11)において第1の加工データセット(28)にしたがって加工され、工作物(20)のジオメトリデータが測定され、その後で工作物(20)の測定されたジオメトリデータがシミュレーションされたジオメトリデータと比較されることを特徴とする請求項7記載の方法。
  9. 工作物(20)が第1の加工ステップ(11)において第1の加工データセット(28)にしたがって加工され、工作物(20)のジオメトリデータが測定され、その後で工作物(20)の測定されたジオメトリデータから材料削り取りデータが算定され、その後で、算定された材料削り取りデータがシミュレーションされた材料削り取りデータ(49)と比較されることを特徴とする請求項5乃至8の1つに記載の方法。
  10. 測定されたジオメトリデータとシミュレーションされたジオメトリデータとの間の差、もしくは測定された材料削り取りデータとシミュレーションされた材料削り取りデータ(49)との間の差が計算され、その後で差閾の超過に依存して、次の加工ステップのために用意された加工データセット(28)が変更されることを特徴とする請求項8又は9記載の方法。
  11. 加工データセット(28)がCAD/CAMシステムの使用のもとで作成されることを特徴とする請求項5乃至10の1つに記載の方法。
  12. CAD/CAMシステムに、シミュレーションされたデータおよび/または測定されたデータおよび/または算定されたデータが与えられることを特徴とする請求項5乃至11の1つに記載の方法。
  13. シミュレーションが制御および/または調節装置(26)および/またはシミュレーションコンピュータ(32)において実行されることを特徴とする請求項5乃至12の1つに記載の方法。
  14. 請求項1乃至5の1つに記載の方法を実施するためのシステムにおいて、システムが、
    a)制御および/または調節装置の動作のためのプログラム(30)のシミュレーションをするための手段を有し、
    b)材料削り取りのシミュレーションをするための手段を有し、かつ
    c)加工すべき工作物を測定するための手段を有することを特徴とするシステム。
JP2008513907A 2005-05-31 2005-09-21 工業用機械の動作のための方法 Pending JP2008542888A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005025338.5A DE102005025338B4 (de) 2005-05-31 2005-05-31 08.Verfahren zur Bearbeitung eines Werkstückes
PCT/DE2005/001662 WO2006128401A1 (de) 2005-05-31 2005-09-21 Verfahren zum betrieb einer industriellen maschine

Publications (1)

Publication Number Publication Date
JP2008542888A true JP2008542888A (ja) 2008-11-27

Family

ID=35759123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513907A Pending JP2008542888A (ja) 2005-05-31 2005-09-21 工業用機械の動作のための方法

Country Status (6)

Country Link
US (2) US8090557B2 (ja)
EP (1) EP1894068B1 (ja)
JP (1) JP2008542888A (ja)
AT (1) ATE463773T1 (ja)
DE (2) DE102005025338B4 (ja)
WO (2) WO2006128401A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519801A (ja) * 2008-05-08 2011-07-14 カスケード コーポレイション 積荷取扱クランプの制御システム
JP2015109081A (ja) * 2013-12-04 2015-06-11 ザ・ボーイング・カンパニーTheBoeing Company 機械を動作させるとともに品質保証を行うためのシステム及び方法
JP2016517116A (ja) * 2013-04-25 2016-06-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 部分プログラムの変更が可能な数値制御装置
DE102019002623A1 (de) 2018-04-16 2019-10-17 Fanuc Corporation Controller und Steuersystem
JP2019530082A (ja) * 2016-09-12 2019-10-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 誤差伝搬を推定するための方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005047543A1 (de) * 2005-09-30 2007-04-05 Siemens Ag Verfahren zur Simulation eines Steuerungs- und/oder Maschinenverhaltens einer Werkzeugmaschine oder einer Produktionsmaschine
DE102006022831A1 (de) * 2006-05-16 2007-11-22 Siemens Ag Verfahren zum Steuern einer Schleifmaschine und numerisch gesteuerte Schleifmaschine
DE102006025165A1 (de) * 2006-05-30 2007-10-18 Siemens Ag Einrichtung zur Bewegungsführung eines Maschinenelementes einer Maschine
DE102007014985A1 (de) * 2007-03-28 2008-10-02 Aepsilon Rechteverwaltungs Gmbh Verfahren zum Herstellen von Zahnersatzteilen, Verfahren zum Erstellen eines Datensatzes und computerlesbares Medium
EP2058717B1 (de) * 2007-11-12 2011-07-20 Siemens Aktiengesellschaft Verfahren und Einrichtung zum Betrieb einer Werkzeugmaschine
DE102009004285A1 (de) * 2008-06-27 2009-12-31 Robert Bosch Gmbh Verfahren und Vorrichtung zur Optimierung, Überwachung oder Analyse eines Prozesses
US8688258B2 (en) * 2008-09-11 2014-04-01 Rockwell Automation Technologies, Inc. Method of controlling a machine tool
CN102375901A (zh) * 2010-08-20 2012-03-14 深圳富泰宏精密工业有限公司 模具设计工序云处理系统
HUP1100243A2 (en) * 2011-05-09 2012-11-28 Pecsi Tudomanyegyetem Method for optimizing cutting forces in a milling process and computer controlled milling machine using the same method
EP2862030B1 (en) * 2012-06-19 2022-04-27 Hexagon Technology Center GmbH Computer aided manufacturing (cam) integrated computer numerically controlled (cnc) control of machines
US8720526B1 (en) 2012-11-13 2014-05-13 Siemens Energy, Inc. Process for forming a long gas turbine engine blade having a main wall with a thin portion near a tip
DE102013008245A1 (de) 2013-05-15 2014-11-20 Arburg Gmbh + Co. Kg Verfahren zum Betreiben einer Maschine zur Verarbeitung von Kunststoffen
US9329591B2 (en) * 2013-05-28 2016-05-03 Siemens Product Lifecycle Management Software Inc. Feature geometry aspect recognition and machining
DE102013216136B3 (de) * 2013-08-14 2015-03-19 Artis Gmbh Verfahren und Vorrichtung zur automatisierten Konfiguration einer Überwachungsfunktion eines Industrieroboters
DE102013015234A1 (de) 2013-09-13 2015-03-19 Liebherr-Verzahntechnik Gmbh Verfahren zur Steuerung einer Verzahnmaschine sowie Verzahnmaschine
EP2902930A3 (en) 2014-02-04 2015-11-11 Ingersoll-Rand Company System and method for modeling, simulation, optimization, and/or quote creation
WO2016004972A1 (de) * 2014-07-07 2016-01-14 Siemens Aktiengesellschaft Verfahren und vorrichtung zur ermittlung einer optimalen fertigungsalternative zur fertigung eines produkts
CN105700478A (zh) * 2014-11-26 2016-06-22 沈阳机床(集团)设计研究院有限公司上海分公司 生成数控机床加工控制数据的系统及方法
JP2016207672A (ja) * 2015-04-15 2016-12-08 パナソニックIpマネジメント株式会社 管理装置および実装基板製造システムならびに実装基板製造方法
US20170038760A1 (en) * 2015-08-08 2017-02-09 General Electric Company Machine toolpath compensation using vibration sensing
DE112016005697T5 (de) * 2016-01-15 2018-09-06 Mitsubishi Electric Corporation Vorrichtung, Verfahren und Programm zur Planerzeugung
US10401823B2 (en) * 2016-02-04 2019-09-03 Makino Inc. Real time machining process monitoring utilizing preprocess simulation
EP3242179A1 (de) * 2016-05-02 2017-11-08 Siemens Aktiengesellschaft Verfahren zur bearbeitung eines werkstücks
JP2018092248A (ja) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 圧縮エア流量の算出方法、その装置、及びプログラム
AT16425U1 (de) * 2017-12-14 2019-08-15 Wittmann Kunststoffgeraete Verfahren zur Validierung von programmierten Ablaufsequenzen oder
DE102018125256B4 (de) * 2018-10-12 2020-10-15 Single Holding GmbH Diagnoseverfahren für Temperiervorrichtungen
JP7171407B2 (ja) * 2018-12-12 2022-11-15 株式会社日立製作所 情報処理装置、生産指示支援方法
CN109839879B (zh) * 2019-03-07 2023-09-08 西南交通大学 数据模拟装置及其模拟方法、上位机-lkj装置、lkj模拟系统
SE1900215A1 (en) * 2019-12-20 2021-03-30 Sandvik Machining Solutions Ab Method and system for optimizing a manufacturing process
DE102020216272A1 (de) * 2020-01-23 2021-07-29 Zf Friedrichshafen Ag Verfahren und System zur automatisierten Charakterisierung eines Werkstücks während eines Bearbeitungsvorgangs durch eine Werkzeugmaschine
DE102020121648B4 (de) 2020-08-18 2022-10-27 ModuleWorks GmbH Verfahren und Vorrichtung zur Nachbearbeitung von spanend oder additiv gefertigten Bauteilen
FR3128391B1 (fr) * 2021-10-21 2023-10-20 Renault Procédé de contrôle de l’usinage de pièces
IT202100027821A1 (it) * 2021-10-29 2023-04-29 Milano Politecnico Metodo per valutare la qualità di pezzi realizzati con una macchina a controllo numerico
EP4231106A1 (de) * 2022-02-21 2023-08-23 pro-micron GmbH Verfahren zum überwachen von spanenden bearbeitungsprozessen in der werkstückbearbeitung
WO2024037769A1 (en) 2022-08-18 2024-02-22 Carl Zeiss Ag Method and manufacturing installation for producing a plurality of workpieces

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208763A (en) * 1990-09-14 1993-05-04 New York University Method and apparatus for determining position and orientation of mechanical objects
JPH07302108A (ja) * 1994-03-11 1995-11-14 Matsushita Electric Ind Co Ltd コンピュータシミュレーション付きnc制御微細加工方法とこの方法に用いる装置
WO1998019822A1 (fr) * 1996-11-07 1998-05-14 Okuma Corporation Procede et appareil de simulation d'usinage par commande numerique
DE10311027A1 (de) * 2003-03-13 2004-09-30 Siemens Ag Mess- und Simulationssystem für Werkzeug- oder Produktionsmaschinen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US626657A (en) * 1899-06-06 Hollow grate-bar
KR100201020B1 (ko) * 1994-03-11 1999-06-15 모리시타 요이찌 컴퓨터시뮬레이션부착 nc제어미세가공방법과 이 방법에 사용하는 장치
US5689332A (en) * 1996-09-13 1997-11-18 The University Of Chicago Automated real-time detection of defects during machining of ceramics
US5757496A (en) * 1997-03-07 1998-05-26 Mitutoyo Corporation Method of surface roughness measurement using a fiber-optic probe
US6471511B1 (en) * 1997-06-20 2002-10-29 Align Technology, Inc. Defining tooth-moving appliances computationally
US6606528B1 (en) * 2000-06-21 2003-08-12 The Boeing Company Method for creating computer-aided design (CAD) solid models from numerically controlled (NC) machine instructions
DE10114811A1 (de) 2001-03-26 2002-10-10 Volkswagen Ag System und Verfahren zur Erstellung von mehrachsigen Bearbeitungs-Vorgängen an Werkstücken
JP4439812B2 (ja) * 2001-03-26 2010-03-24 エルビー メディカル ゲーエムベーハー 材料切除または材料加工の方法およびデバイス・システム
US20020193972A1 (en) * 2001-06-14 2002-12-19 Ntn Corporation Workshop facility design and operation support system enabling verification of the entire workshop to be performed easily
US6975913B2 (en) * 2001-07-13 2005-12-13 Siemens Aktiengesellschaft Database system and method for industrial automation services
DE10152765B4 (de) 2001-07-13 2015-11-12 Siemens Aktiengesellschaft Verfahren zur elektronischen Bereitstellung von Diensten für Maschinen über eine Datenkommunikationsverbindung
US7024272B2 (en) * 2002-04-26 2006-04-04 Delphi Technologies, Inc. Virtual design, inspect and grind optimization process
DE10301643B4 (de) * 2003-01-17 2008-02-14 Ivoclar Vivadent Ag Verfahren zur Herstellung eines Dentalproduktes, insbesondere einer dentalen Restauration, Dentalrestaurationsvorrichtung und Verfahren zur maschinellen Bearbeitung
DE10346589A1 (de) 2003-10-07 2005-05-12 P&L Gmbh & Co Kg Verfahren zur automatischen Optimierung des Materialabtrags bei der spanenden Bearbeitung eines Werkstücks
US7536234B2 (en) * 2004-02-09 2009-05-19 Cadent Ltd. Method and system for manufacturing a dental prosthesis
US7333874B2 (en) * 2004-02-24 2008-02-19 Cadent Ltd. Method and system for designing and producing dental prostheses and appliances
US7987099B2 (en) * 2004-02-27 2011-07-26 Align Technology, Inc. Dental data mining
US7373284B2 (en) * 2004-05-11 2008-05-13 Kimberly-Clark Worldwide, Inc. Method of evaluating the performance of a product using a virtual environment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208763A (en) * 1990-09-14 1993-05-04 New York University Method and apparatus for determining position and orientation of mechanical objects
JPH07302108A (ja) * 1994-03-11 1995-11-14 Matsushita Electric Ind Co Ltd コンピュータシミュレーション付きnc制御微細加工方法とこの方法に用いる装置
WO1998019822A1 (fr) * 1996-11-07 1998-05-14 Okuma Corporation Procede et appareil de simulation d'usinage par commande numerique
DE10311027A1 (de) * 2003-03-13 2004-09-30 Siemens Ag Mess- und Simulationssystem für Werkzeug- oder Produktionsmaschinen

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519801A (ja) * 2008-05-08 2011-07-14 カスケード コーポレイション 積荷取扱クランプの制御システム
JP2016517116A (ja) * 2013-04-25 2016-06-09 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft 部分プログラムの変更が可能な数値制御装置
JP2015109081A (ja) * 2013-12-04 2015-06-11 ザ・ボーイング・カンパニーTheBoeing Company 機械を動作させるとともに品質保証を行うためのシステム及び方法
JP2019530082A (ja) * 2016-09-12 2019-10-17 サンドビック インテレクチュアル プロパティー アクティエボラーグ 誤差伝搬を推定するための方法
US11144040B2 (en) 2016-09-12 2021-10-12 Sandvik Intellectual Property Ab Method for estimating error propagation
JP7292202B2 (ja) 2016-09-12 2023-06-16 サンドビック インテレクチュアル プロパティー アクティエボラーグ 誤差伝搬を推定するための方法
DE102019002623A1 (de) 2018-04-16 2019-10-17 Fanuc Corporation Controller und Steuersystem
US11249458B2 (en) 2018-04-16 2022-02-15 Fanuc Corporation Controller and control system

Also Published As

Publication number Publication date
US20090204249A1 (en) 2009-08-13
DE102005025338B4 (de) 2019-03-14
EP1894068B1 (de) 2010-04-07
WO2006128832A1 (de) 2006-12-07
DE502005009388D1 (de) 2010-05-20
US8090557B2 (en) 2012-01-03
ATE463773T1 (de) 2010-04-15
WO2006128401A9 (de) 2008-01-10
WO2006128401A1 (de) 2006-12-07
DE102005025338A1 (de) 2006-12-07
EP1894068A1 (de) 2008-03-05
US20080306620A1 (en) 2008-12-11

Similar Documents

Publication Publication Date Title
JP2008542888A (ja) 工業用機械の動作のための方法
CN107111297B (zh) 用于由至少一台计算机数控机器加工的工件的部件分析的计算机实现方法
US8326448B2 (en) Method and device for operating a machine tool
EP0879674B1 (en) Generation of measurement program in nc machining and machining management based on the measurement program
CN101278243A (zh) 模拟机床或专用机床的控制特性和/或机器特性的方法
WO2018041476A1 (de) Verfahren und system zum rechnergestützten optimieren eines numerisch gesteuerten bearbeitungsprozesses eines werkstücks
JP2019188558A (ja) 工具選定装置及び機械学習装置
Martinova et al. Practical aspects of ensuring accuracy of machining on CNC machine tools within framework of “smart manufacturing”
EP4163740B1 (en) Digital twin
US10852709B2 (en) Machine tool certification for part specific working volume
Kowalski Method of automatic CAM programming using machining templates
US20210405611A1 (en) Virtual computerized numerical control machine system and method
Epureanu et al. Reconfigurable machine tool programming–a new approach
US20240053725A1 (en) Parameterization of a digital twin and/or an automation system
CN108027602B (zh) 模拟工业过程、设施或机器的真实控制器的模拟方法和执行该模拟方法的模拟系统
JP7328080B2 (ja) 産業用機械のプログラムシミュレーションシステム及び数値制御システム
KR102428312B1 (ko) 자동화프로그램을 이용한 cam자동화시스템
Waurzyniak Simulation Software Meets the Need for Speed
CN116627088A (zh) 用于监测工件加工过程的方法
Zalewski The concept of feedback between numerical controlled machine tool and the CAM program
KR20160075062A (ko) Cmm 측정기를 이용한 cnc 가공기 프리셋 시스템

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101013

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101020

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101112

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110517