JP2008533430A - Accumulator integrated with heat exchanger header - Google Patents

Accumulator integrated with heat exchanger header Download PDF

Info

Publication number
JP2008533430A
JP2008533430A JP2008501868A JP2008501868A JP2008533430A JP 2008533430 A JP2008533430 A JP 2008533430A JP 2008501868 A JP2008501868 A JP 2008501868A JP 2008501868 A JP2008501868 A JP 2008501868A JP 2008533430 A JP2008533430 A JP 2008533430A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
accumulator
phase refrigerant
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008501868A
Other languages
Japanese (ja)
Inventor
ハフ,ハンズ‐ジョアキム
シーネル,トビアス
チェン,ユー
ヴェルマ,パーメッシュ
Original Assignee
キャリア・コマーシャル・リフリージレーション・インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キャリア・コマーシャル・リフリージレーション・インコーポレーテッド filed Critical キャリア・コマーシャル・リフリージレーション・インコーポレーテッド
Publication of JP2008533430A publication Critical patent/JP2008533430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/18Optimization, e.g. high integration of refrigeration components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel

Abstract

冷却システムは、システム動作の少なくとも第1のモードにおいて、流路に沿って冷媒を導く圧縮機と、第1のモードにおける前記圧縮機の下流側の流路に沿った第1の熱交換器と、第1のモードにおける前記圧縮機の上流側の流路に沿った第2の熱交換器と、第1のモードにおける第1の熱交換器の下流側で、かつ第2の熱交換器の上流側の流路にある膨張装置と、を備え、第2の熱交換器は、液相および気相の冷媒を捕集する一体型ヘッダ・アキュムレータを含む。The cooling system includes: a compressor that guides refrigerant along a flow path in at least a first mode of system operation; and a first heat exchanger along a flow path downstream of the compressor in a first mode. A second heat exchanger along a flow path upstream of the compressor in the first mode, a second heat exchanger downstream of the first heat exchanger in the first mode, and a second heat exchanger The second heat exchanger includes an integrated header accumulator that collects liquid and gas phase refrigerants.

Description

本出願は、2005年3月18日に出願された米国仮出願番号第60/663,911号の利益を主張する。さらに、本発明と同時係属出願である代理人番号05‐258‐WO、タイトル「HIGH SIDE PRESSURE REGULATION FOR TRANSCRITICAL VAPOR COMPRESSION SYSTEM」は本願と同日に出願され、前述の米国仮出願番号第60/663,911号は、従来技術および冷却システムを開示している。前記出願の開示内容は詳細に説明された参照によって本明細書に組み込まれる。   This application claims the benefit of US Provisional Application No. 60 / 663,911, filed Mar. 18, 2005. Further, an agent number 05-258-WO, which is a co-pending application with the present invention, and the title “HIGH SIDE PRESSURE REGULATION FOR TRANSCRITICAL VAPOR COMPRESSION SYSTEM” were filed on the same day as the present application, and the above-mentioned US Provisional Application No. 60/663 No. 911 discloses prior art and cooling systems. The disclosure of said application is hereby incorporated by reference in detail.

多くの冷却の用途では、スペースが制限される。冷却システムの用途に必要とされるスペースを縮小させること、すなわち、全体サイズの縮小させること、または、例えば熱交換範囲の増大などの他の目的に利用可能なスペースを利用することにより、システムのデザイン全般を改善することができる。従って、構成要素を一体的なデザインとすることにより、システムのコストが削減されるとともに、システムの性能が向上する。   In many cooling applications, space is limited. By reducing the space required for the cooling system application, i.e. reducing the overall size, or by utilizing space available for other purposes, e.g. increasing the heat exchange range The overall design can be improved. Therefore, by making the components into an integral design, the cost of the system is reduced and the performance of the system is improved.

図1は、従来の蒸気圧縮システムを示しており、該システムは、圧縮機1、ガス冷却器2、膨張装置3および蒸発器4を備え。蒸発器4において、冷媒は、所望のように冷却される空気と熱交換関係にある一連の熱交換器チューブ5を通流する。通常、冷媒は、ヘッダ6からチューブ5に流入し、チューブ5からヘッダ7へと流出する。ヘッダ7に捕集された冷媒は、次いで、アキュムレータ8に流入し、ここで液相冷媒と油とが蒸気相冷媒から分離され、蒸気は圧縮機1へと戻る。   FIG. 1 shows a conventional vapor compression system comprising a compressor 1, a gas cooler 2, an expansion device 3 and an evaporator 4. In the evaporator 4, the refrigerant flows through a series of heat exchanger tubes 5 that are in heat exchange relationship with the air to be cooled as desired. Usually, the refrigerant flows into the tube 5 from the header 6 and flows out from the tube 5 to the header 7. The refrigerant collected in the header 7 then flows into the accumulator 8 where the liquid phase refrigerant and oil are separated from the vapor phase refrigerant, and the vapor returns to the compressor 1.

図1に示すシステムは上述のように機能的ではあるが、より場所を取らずに機能するシステムが望まれている。   Although the system shown in FIG. 1 is functional as described above, a system that functions without taking up more space is desired.

従って、本発明の主な目的はそのようなシステムを提供することである。   Accordingly, the main object of the present invention is to provide such a system.

他の目的および利点は以下に記載する。   Other objects and advantages are described below.

冷媒システムは、システム動作の少なくとも第1のモードにおいて、流路に沿って冷媒を導く圧縮機と、前記第1のモードにおける前記圧縮機の下流側の流路に沿った第1の熱交換器と、前記第1のモードにおける前記圧縮機の上流側の流路に沿った第2の熱交換器と、前記第1のモードにおける前記第1の熱交換器の下流側で、かつ前記第2の熱交換器の上流側の流路にある膨張装置と、を備える。前記第2の熱交換器は、液相および気相の冷媒を捕集する一体型のヘッダ・アキュムレータを備える。一体型ヘッダ・アキュムレータは、例えば、遷移臨界蒸気圧縮システムにおけるスペースの節約に特に有効である。   The refrigerant system includes a compressor that guides the refrigerant along a flow path in at least a first mode of system operation, and a first heat exchanger along a flow path downstream of the compressor in the first mode. A second heat exchanger along a flow path upstream of the compressor in the first mode, a second heat exchanger downstream of the first heat exchanger in the first mode, and the second An expansion device in a flow path upstream of the heat exchanger. The second heat exchanger includes an integrated header accumulator that collects liquid-phase and gas-phase refrigerants. The integrated header accumulator is particularly effective in saving space in, for example, a transition critical vapor compression system.

また、本発明による冷却システムの作動方法は、流路に沿って冷媒を、第1の熱交換器、膨張装置、第2の熱交換器および一体型ヘッダ・アキュムレータを通流させて、圧縮機へと戻すように、前記圧縮機を作動させるステップを含む。流れは、前記第2の熱交換器から前記一体型ヘッダ・アキュムレータへと直接的であり、前記一体型ヘッダ・アキュムレータから前記圧縮機へと流れは直接的である。   Also, the cooling system operating method according to the present invention allows the refrigerant to flow along the flow path through the first heat exchanger, the expansion device, the second heat exchanger, and the integrated header accumulator, and the compressor. Operating the compressor to return to The flow is direct from the second heat exchanger to the integrated header accumulator, and the flow is direct from the integrated header accumulator to the compressor.

本発明は蒸気圧縮システムの熱交換器の構成に関し、さらに詳しくは、遷移臨界蒸気圧縮サイクルにおける、省スペースをもたらす一体型の冷媒アキュムレータおよび熱交換器ヘッダに関する。遷移臨界蒸気圧縮システムでは、熱遮断は、冷媒の臨界圧よりも高い圧力で行われる。熱遮断の間、冷媒は凝結しない。遷移臨界システムの供給管理は、出口ヘッダに続いて、蒸発器の出口にアキュムレータを追加することによって行われる(図1参照)。   The present invention relates to the configuration of a heat exchanger of a vapor compression system, and more particularly to an integrated refrigerant accumulator and heat exchanger header that provide space savings in a transition critical vapor compression cycle. In a transition critical vapor compression system, the thermal shut-off occurs at a pressure that is higher than the critical pressure of the refrigerant. The refrigerant does not condense during the heat shut-off. Supply management of the transition critical system is performed by adding an accumulator at the outlet of the evaporator following the outlet header (see FIG. 1).

図2は、本発明による蒸気圧縮システム10を示し、該システム10は、圧縮機12と、第1の熱交換器つまりガス冷却器14と、膨張装置16と、第2の熱交換器つまり蒸発器18と、を備える。図1と図2とを比較、参照すると、蒸発器18は、従来の装置と同様に入口ヘッダ20を含むとともに、図1のそれぞれ独立した出口ヘッダ7およびアキュムレータ8の機能を合わせ持つ一体型のヘッダ・アキュムレータ22をさらに含む。有利なことに、上記の構成では、スペースを維持しながら、ヘッダおよびアキュムレータの機能をもたらすことができる。   FIG. 2 shows a vapor compression system 10 according to the present invention, which includes a compressor 12, a first heat exchanger or gas cooler 14, an expansion device 16, and a second heat exchanger or evaporation. And a container 18. Comparing and referring to FIG. 1 and FIG. 2, the evaporator 18 includes an inlet header 20 as in the conventional apparatus, and is an integrated type that combines the functions of the independent outlet header 7 and accumulator 8 of FIG. 1. A header accumulator 22 is further included. Advantageously, the above arrangement can provide header and accumulator functions while maintaining space.

図2に示すように、本発明による一体型ヘッダ・アキュムレータ22は、下部液相冷媒ゾーン24と、上部気相冷媒ゾーン26と、を画定する単一のチャンバである。流れは、第2の熱交換器18のチューブ28から一体型ヘッダ・アキュムレータ22に直接流入する。ここで、図2では、下部液相冷媒ゾーン24が、最下方のチューブ30の入口よりも低い位置に画定されていることに留意されたい。このような構成により、最下方のチューブ30に対して、液相冷媒の遮蔽および/または逆流が防止されため、有利である。図2に示すように、チャンバは、熱交換器チューブの端部において側壁、前壁、後壁、上壁および底壁によって画定される。   As shown in FIG. 2, the integrated header accumulator 22 according to the present invention is a single chamber that defines a lower liquid phase refrigerant zone 24 and an upper gas phase refrigerant zone 26. The flow flows directly from the tube 28 of the second heat exchanger 18 into the integrated header accumulator 22. Here, it should be noted that in FIG. 2, the lower liquid phase refrigerant zone 24 is defined at a position lower than the inlet of the lowermost tube 30. Such a configuration is advantageous because the liquid-phase refrigerant is prevented from being shielded and / or backflowed with respect to the lowermost tube 30. As shown in FIG. 2, the chamber is defined by side walls, front walls, rear walls, top walls, and bottom walls at the ends of the heat exchanger tubes.

さらに、図2に示すように、一体型ヘッダ・アキュムレータ22は、一体型ヘッダ・アキュムレータ22の底面から、下部液相冷媒ゾーン24内の予測される液面の上部へと上方に向かって延びる内部導管32を備える。圧縮機12により、気相冷媒は気相冷媒ゾーン26から導管32を通って圧縮機の吸込管に引き込まれる。   Further, as shown in FIG. 2, the integrated header accumulator 22 has an internal portion extending upward from the bottom surface of the integrated header accumulator 22 to the upper portion of the predicted liquid level in the lower liquid refrigerant zone 24. A conduit 32 is provided. The compressor 12 draws gas-phase refrigerant from the gas-phase refrigerant zone 26 through the conduit 32 and into the compressor suction pipe.

導管32の下方部分34には、ピンホール36が設けられることが好ましく、これにより、所望のように下部液相冷媒ゾーン24内の油が圧縮機12に引き戻されるため有利である。   The lower portion 34 of the conduit 32 is preferably provided with a pinhole 36, which is advantageous because the oil in the lower liquid phase refrigerant zone 24 is drawn back to the compressor 12 as desired.

本発明の熱交換器14,18は、公知のあらゆる型式の熱交換器として配設してもよいが、冷媒−空気熱交換器として設けることが好ましい。適切な熱交換器の具体例として、ワイヤ・オン・チューブ式(wire on tube)熱交換器やフィン式熱交換器などが挙げられるが、これらに限定されない。   The heat exchangers 14 and 18 of the present invention may be arranged as any known type of heat exchanger, but are preferably provided as a refrigerant-air heat exchanger. Specific examples of suitable heat exchangers include, but are not limited to, wire on tube heat exchangers, finned heat exchangers, and the like.

本発明のシステムは、例えば、CO2を作動流体として用いるシステムなど、遷移臨界蒸気圧縮システムに特に適している。当然のことながら、他の冷媒、特に、予測される作動条件下で、CO2と同様の特性を有する冷媒を用いてもよく、そのような冷媒も本発明の広範な範囲に包含される。 The system of the present invention is particularly suitable for transition critical vapor compression systems, such as, for example, systems that use CO 2 as the working fluid. Of course, other refrigerants may be used, particularly those having properties similar to CO 2 under the expected operating conditions, and such refrigerants are also encompassed within the broad scope of the present invention.

膨張装置16は、当業者に周知の適切な膨張装置とすることができる。圧力調整器(例えば、本件と共有されかつ同時にPCT出願された、代理人番号05‐258‐WO、タイトル“HIGH SIDE PRESSURE REGULATION FOR TRANSCRITICAL VAPOR COMPRESSION SYSTEM”に開示された圧力調整器など)は、本発明の範囲に十分包含されるものであり、膨張装置として本件に用いてもよい。   The inflator 16 can be any suitable inflator known to those skilled in the art. The pressure regulator (for example, the pressure regulator disclosed in the agent number 05-258-WO, the title “HIGH SIDE PRESSURE REGULATION FOR TRANSCRITICAL VAPOR COMPRESSION SYSTEM”, which was shared with the case and filed with PCT at the same time) It is well within the scope of the invention and may be used in the present case as an expansion device.

図2に示すように、ヘッダ・アキュムレータ22を熱交換器18に有利に組み込むことができる。別の実施例として、ヘッダ・アキュムレータ22を、チャンバを画定する別々の構造体とし、熱交換器18と連通させてもよく、これは、熱交換器のチューブから該チャンバへの直接的な流れを通じて連通することが好ましい。   As shown in FIG. 2, the header accumulator 22 can be advantageously incorporated into the heat exchanger 18. As another example, the header accumulator 22 may be a separate structure that defines a chamber and communicates with the heat exchanger 18, which is a direct flow from the heat exchanger tube to the chamber. It is preferable to communicate through.

図3は、本発明の他の実施例を示しており、図3のシステムは、図2の実施例と同じ基本的な構成要素を備える。図3の実施例において、蒸発器18は、2つの構成要素38,40に分割されており、構成要素38,40の各々は、短い流管42を介して一体型ヘッダ・アキュムレータ22に連結されている。本実施例においては、最下方のチューブ30を第2の熱交換器18の十分に高い位置に配置することにより、一体型ヘッダ・アキュムレータ22の底面44が第2の熱交換器18の底面46を実質的に越えないように、下部液相冷媒ゾーン24が一体型ヘッダ・アキュムレータ22内に画定され得ることに留意されたい。流管42は、非常に短いことが好ましく、最適には約5インチ(約127mm)未満の長さを有することが好ましい。   FIG. 3 shows another embodiment of the present invention, and the system of FIG. 3 comprises the same basic components as the embodiment of FIG. In the embodiment of FIG. 3, the evaporator 18 is divided into two components 38, 40, each of which is connected to the integrated header accumulator 22 via a short flow tube 42. ing. In this embodiment, the bottom surface 44 of the integrated header accumulator 22 is made to be the bottom surface 46 of the second heat exchanger 18 by arranging the lowermost tube 30 at a sufficiently high position of the second heat exchanger 18. It should be noted that the lower liquid phase refrigerant zone 24 may be defined within the integrated header accumulator 22 so as not to substantially exceed. The flow tube 42 is preferably very short, and optimally has a length of less than about 5 inches (about 127 mm).

図4は、本発明のさらに別の実施例を示しており、システム10は、図2および図3の実施例と同じ基本的な構成要素を備える。図4の実施例においては、膨張装置16から蒸発器18に送られる冷媒は、単一の導管48を通って、本発明の一体型ヘッダ・アキュムレータ22へと流れる。ここから、気相冷媒は、所望のように、圧縮機12に引き戻される。   FIG. 4 illustrates yet another embodiment of the present invention, where the system 10 comprises the same basic components as the embodiment of FIGS. In the embodiment of FIG. 4, refrigerant sent from the expansion device 16 to the evaporator 18 flows through a single conduit 48 to the integrated header accumulator 22 of the present invention. From here, the gas phase refrigerant is drawn back to the compressor 12 as desired.

本発明の図2〜図4に示された本発明の実施例では、アキュムレータおよび蒸発器出口ヘッダが、単一のチャンバとして統合されている。この単一のチャンバは、図1に示す従来のヘッダおよびアキュムレータの双方の機能を果たす。これまで、通常、別々のヘッダおよびアキュムレータによってなされていた機能が、同一のスペースで行われるため有利である。このような設計により、アキュムレータに必要なスペース、全体的なチューブの長さ、およびチューブの接続数が減少する。   In the embodiment of the present invention shown in FIGS. 2-4 of the present invention, the accumulator and evaporator outlet header are integrated as a single chamber. This single chamber serves as both the conventional header and accumulator shown in FIG. So far, the functions normally performed by separate headers and accumulators are advantageously performed in the same space. Such a design reduces the space required for the accumulator, the overall tube length, and the number of tube connections.

蒸発器からの二相流はヘッダ内で分離される。液相冷媒は、重力によりヘッダ・アキュムレータの底部に捕集される。蒸気は、ヘッダ・アキュムレータに挿入されたチューブを通ってヘッダ・アキュムレータから流出する。このチューブは、油を圧縮機に戻すピンホールをヘッダのアキュムレータ部分に備える。   The two-phase flow from the evaporator is separated in the header. The liquid phase refrigerant is collected at the bottom of the header accumulator by gravity. Steam exits the header accumulator through a tube inserted into the header accumulator. This tube includes a pinhole in the accumulator portion of the header that returns oil to the compressor.

以上、本発明のいくつかの実施例について説明した。しかし、本発明の精神と範囲を逸脱することなく、様々な改良がなされることが理解されるであろう。例えば、既存システムの再製造や既存システムのリエンジニアリングとして実施する場合、既存の構造の詳細が実施の詳細に影響を与える場合がある。従って、他の実施例も本願の特許請求の範囲に包含される。   In the foregoing, several embodiments of the present invention have been described. However, it will be understood that various modifications can be made without departing from the spirit and scope of the invention. For example, when implemented as remanufacturing an existing system or re-engineering an existing system, details of the existing structure may affect implementation details. Accordingly, other embodiments are within the scope of the claims.

従来技術の蒸気圧縮システムを示す図。The figure which shows the vapor compression system of a prior art. 本発明による一体型ヘッダ・アキュムレータを有するシステムの概略図。1 is a schematic diagram of a system having an integrated header accumulator according to the present invention. 本発明による一体型ヘッダ・アキュムレータの別の実施例を示す概略図。FIG. 4 is a schematic diagram illustrating another embodiment of an integrated header accumulator according to the present invention. 本発明による一体型ヘッダ・アキュムレータのさらに別の実施例を示す概略図。FIG. 6 is a schematic diagram illustrating yet another embodiment of an integrated header accumulator according to the present invention.

Claims (16)

冷却システムであって、
システム動作の少なくとも第1のモードにおいて、冷媒を流路に沿って導く圧縮機と、
前記第1のモードにおける前記圧縮機の下流側の流路に沿った第1の熱交換器と、
前記第1のモードにおける前記圧縮機の上流側の流路に沿った第2の熱交換器と、
前記第1のモードにおける前記第1の熱交換器の下流側で、かつ前記第2の熱交換器の上流側の流路にある膨張装置と、
を備え、
前記第2の熱交換器が、液相および気相の冷媒を捕集する一体型のヘッダ・アキュムレータを備えることを特徴とする冷却システム。
A cooling system,
A compressor that directs refrigerant along the flow path in at least a first mode of system operation;
A first heat exchanger along a flow path downstream of the compressor in the first mode;
A second heat exchanger along a flow path upstream of the compressor in the first mode;
An expansion device in the flow path downstream of the first heat exchanger in the first mode and upstream of the second heat exchanger;
With
The cooling system, wherein the second heat exchanger includes an integrated header accumulator that collects liquid-phase and gas-phase refrigerants.
前記一体型ヘッダ・アキュムレータは、二相の冷媒流を受けるように前記第2の熱交換器の冷媒流路と連通するチャンバからなり、該チャンバは、内部に、下部液相冷媒ゾーンと、上部気相冷媒ゾーンと、を画定することを特徴とする請求項1に記載の冷却システム。   The integrated header accumulator includes a chamber communicating with the refrigerant flow path of the second heat exchanger so as to receive a two-phase refrigerant flow, and the chamber includes a lower liquid phase refrigerant zone and an upper part. The cooling system of claim 1, wherein the cooling system defines a gas phase refrigerant zone. 前記下部液相冷媒ゾーンが、前記第2の熱交換器と前記一体型ヘッダ・アキュムレータとの間における最下方の流れポートよりも下方に画定されることを特徴とする請求項2に記載の冷却システム。   The cooling of claim 2, wherein the lower liquid refrigerant zone is defined below a lowest flow port between the second heat exchanger and the integrated header accumulator. system. 前記下部液相冷媒ゾーンが蒸発器を越えないように、前記最下方の流れポートが前記下部液相冷媒ゾーンの十分上方に位置することを特徴とする請求項3に記載の冷却システム。   The cooling system according to claim 3, wherein the lowermost flow port is located sufficiently above the lower liquid phase refrigerant zone so that the lower liquid phase refrigerant zone does not cross the evaporator. 前記第2の熱交換器のチューブが、前記一体型ヘッダ・アキュムレータに直接連結されることを特徴とする請求項1に記載の冷却システム。   The cooling system according to claim 1, wherein the tube of the second heat exchanger is directly connected to the integrated header accumulator. 蒸気流管路が、前記一体型ヘッダ・アキュムレータから前記圧縮機に直接連結されていることを特徴とする請求項5に記載の冷却システム。   6. A cooling system according to claim 5, wherein a steam flow line is directly connected to the compressor from the integrated header accumulator. 気相冷媒を前記圧縮機に導くように、前記上部気相冷媒ゾーンに連通する導管をさらに備えることを特徴とする請求項2に記載の冷却システム。   The cooling system according to claim 2, further comprising a conduit communicating with the upper gas-phase refrigerant zone so as to guide the gas-phase refrigerant to the compressor. 前記導管は、前記液相冷媒ゾーンを通って前記気相冷媒ゾーンへと上方に延びるとともに、前記液相冷媒ゾーンと連通することを特徴とする請求項7に記載の冷却システム。   The cooling system according to claim 7, wherein the conduit extends upward through the liquid-phase refrigerant zone to the gas-phase refrigerant zone and communicates with the liquid-phase refrigerant zone. 前記導管が、油を圧縮機に戻すようにピンホールを介して前記液相冷媒ゾーンと連通することを特徴とする請求項8に記載の冷却システム。   9. The cooling system of claim 8, wherein the conduit communicates with the liquid phase refrigerant zone through a pinhole to return oil to the compressor. 前記冷媒が、遷移臨界蒸気システム用の冷媒を含み、
前記第1および第2の熱交換器が、冷媒―空気熱交換器であることを特徴とする請求項1に記載の冷却システム。
The refrigerant comprises a refrigerant for a transition critical vapor system;
The cooling system according to claim 1, wherein the first and second heat exchangers are refrigerant-air heat exchangers.
請求項1に記載のシステムを備える飲料冷却装置。   A beverage cooling apparatus comprising the system according to claim 1. 冷媒システムの作動方法であって、
冷媒を、第1の熱交換器、膨張装置、第2の熱交換器および一体型ヘッダ・アキュムレータを通して流路に沿って通流させて、圧縮機へと戻すように、圧縮機を作動させるステップを含み、
前記第2の熱交換器から前記一体型ヘッダ・アキュムレータへと流れが直接的であり、かつ前記一体型ヘッダ・アキュムレータから前記圧縮機へと流れが直接的であることを特徴とする冷媒システムの作動方法。
A method for operating a refrigerant system, comprising:
Actuating the compressor to cause the refrigerant to flow along the flow path through the first heat exchanger, the expansion device, the second heat exchanger and the integrated header accumulator and back to the compressor; Including
A refrigerant system characterized in that the flow is direct from the second heat exchanger to the integral header accumulator and the flow is direct from the integral header accumulator to the compressor. Actuation method.
前記第2の熱交換器が、流管を備え、
前記圧縮機の作動により、前記流管内に二相冷媒が生じ、該二相冷媒が、前記一体型ヘッダ・アキュムレータへと直接的に流入することを特徴とする請求項12に記載の方法。
The second heat exchanger comprises a flow tube;
13. The method of claim 12, wherein operation of the compressor creates a two-phase refrigerant in the flow tube, and the two-phase refrigerant flows directly into the integrated header accumulator.
前記冷媒が遷移臨界蒸気システム用の冷媒であることを特徴とする請求項12に記載の方法。   The method of claim 12, wherein the refrigerant is a refrigerant for a transition critical vapor system. 前記冷媒がCO2であることを特徴とする請求項12に記載の方法。 The method of claim 12, wherein the refrigerant is CO 2. 前記一体型ヘッダ・アキュムレータが、下部液相冷媒ゾーンと、上部気相冷媒ゾーンと、を画定し、
前記一体型ヘッダ・アキュムレータに流入する冷媒の流れが、冷媒を、前記下部液相冷媒ゾーンにおける液相冷媒と、前記上部気相冷媒ゾーンにおける気相冷媒と、に分離させることを特徴とする請求項12に記載の方法。
The integrated header accumulator defines a lower liquid phase refrigerant zone and an upper gas phase refrigerant zone;
The refrigerant flow flowing into the integrated header accumulator separates the refrigerant into a liquid phase refrigerant in the lower liquid phase refrigerant zone and a gas phase refrigerant in the upper gas phase refrigerant zone. Item 13. The method according to Item 12.
JP2008501868A 2005-03-18 2005-12-30 Accumulator integrated with heat exchanger header Pending JP2008533430A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US66391105P 2005-03-18 2005-03-18
PCT/US2005/047574 WO2006101569A2 (en) 2005-03-18 2005-12-30 Accumulator integration with exchanger header

Publications (1)

Publication Number Publication Date
JP2008533430A true JP2008533430A (en) 2008-08-21

Family

ID=37024268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008501868A Pending JP2008533430A (en) 2005-03-18 2005-12-30 Accumulator integrated with heat exchanger header

Country Status (5)

Country Link
US (1) US20080190122A1 (en)
EP (1) EP1864059A2 (en)
JP (1) JP2008533430A (en)
CN (1) CN101203720A (en)
WO (1) WO2006101569A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124049A (en) * 2017-01-31 2018-08-09 荏原冷熱システム株式会社 Absorption refrigerating machine
KR101902017B1 (en) * 2011-11-18 2018-09-27 엘지전자 주식회사 A heat exchanger and a manufacturing method the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100015374A (en) 2007-04-05 2010-02-12 존슨 컨트롤스 테크놀러지 컴퍼니 Heat exchanger
US9062900B2 (en) * 2010-11-08 2015-06-23 Honeywell International Inc. Integrated evaporator and accumulator for refrigerant systems
CN102679633A (en) * 2012-04-27 2012-09-19 镇江新梦溪能源科技有限公司 Grid evaporator
DE102012210180A1 (en) * 2012-06-18 2013-12-19 Denso Automotive Deutschland Gmbh Method for cooling coolant of refrigerant circuit of waste heat producing device by e.g. liquid refrigerant in hybrid car, involves transferring heat between coolants and refrigerant of circuits at or in accumulator of one of circuits
JP5772904B2 (en) * 2013-09-02 2015-09-02 ダイキン工業株式会社 Heat recovery type refrigeration system
US10323869B2 (en) * 2016-10-05 2019-06-18 Johnson Control Technology Company Combined suction header and accumulator unit
WO2019097614A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Outdoor unit of air conditioner
IT201900003427A1 (en) * 2019-03-08 2020-09-08 Lu Ve Spa INTAKE MANIFOLD WITH UPWARD OUTLET FOR EVAPORATORS OF REFRIGERATION SYSTEMS.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513350U (en) * 1978-07-14 1980-01-28

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367340A (en) * 1940-02-17 1945-01-16 Chill Quick Corp Cooling system
US4794765A (en) * 1987-03-27 1989-01-03 Carella Thomas J Integral evaporator and accumulator for air conditioning system
US5505060A (en) * 1994-09-23 1996-04-09 Kozinski; Richard C. Integral evaporator and suction accumulator for air conditioning system utilizing refrigerant recirculation
US6155075A (en) * 1999-03-18 2000-12-05 Lennox Manufacturing Inc. Evaporator with enhanced refrigerant distribution
JP3928471B2 (en) * 2002-04-26 2007-06-13 株式会社デンソー Air conditioner for vehicles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513350U (en) * 1978-07-14 1980-01-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101902017B1 (en) * 2011-11-18 2018-09-27 엘지전자 주식회사 A heat exchanger and a manufacturing method the same
JP2018124049A (en) * 2017-01-31 2018-08-09 荏原冷熱システム株式会社 Absorption refrigerating machine

Also Published As

Publication number Publication date
WO2006101569A2 (en) 2006-09-28
CN101203720A (en) 2008-06-18
EP1864059A2 (en) 2007-12-12
WO2006101569A3 (en) 2007-12-06
US20080190122A1 (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP2008533430A (en) Accumulator integrated with heat exchanger header
CN101443615B (en) Refrigerating system with economizing cycle
JP4897298B2 (en) Gas-liquid separator module
US8662148B2 (en) Heat exchanger
CN102788452B (en) Condenser for vehicle and the air conditioning system for vehicle
JPH09166363A (en) Freezing cycle apparatus
JP3617083B2 (en) Receiver integrated refrigerant condenser
US20080184713A1 (en) Heat Exchanger Arrangement
US20110061845A1 (en) Heat exchanger
JP2003279195A (en) Refrigerating cycle device, and condenser
KR101385194B1 (en) A Condenser
JP5372901B2 (en) Cooling system for data center
JP6670197B2 (en) Condenser for compression refrigerator
JP4842022B2 (en) Vapor compression refrigeration circuit and vehicle air conditioning system using the circuit
JP4897464B2 (en) Vapor compression refrigeration cycle
CN102269490B (en) Condensing unit desuperheater
JP3764904B2 (en) Refrigerating cycle and method for determining receiver volume of refrigeration cycle
US11867466B2 (en) Compact heat exchanger assembly for a refrigeration system
JP2007315639A (en) Evaporator and refrigerating cycle device using the same
JPH0953866A (en) Condenser
JP6776949B2 (en) Condenser
JP2019163893A (en) Heat exchanger and refrigeration cycle device
JPH10170188A (en) Heat exchanger
WO2006065186A1 (en) Improved air conditioning system
JP2004239479A (en) Radiator and vehicle mounted structure

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101109