JP2008307050A - Soil for growing plant and method for growing plant - Google Patents

Soil for growing plant and method for growing plant Download PDF

Info

Publication number
JP2008307050A
JP2008307050A JP2008129053A JP2008129053A JP2008307050A JP 2008307050 A JP2008307050 A JP 2008307050A JP 2008129053 A JP2008129053 A JP 2008129053A JP 2008129053 A JP2008129053 A JP 2008129053A JP 2008307050 A JP2008307050 A JP 2008307050A
Authority
JP
Japan
Prior art keywords
soil
plant
water
tile
crushing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008129053A
Other languages
Japanese (ja)
Inventor
Takashi Arai
貴史 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokuyo Co Ltd
Original Assignee
Kokuyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokuyo Co Ltd filed Critical Kokuyo Co Ltd
Priority to JP2008129053A priority Critical patent/JP2008307050A/en
Publication of JP2008307050A publication Critical patent/JP2008307050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide soil for growing plants having excellent resistance to tread pressure in order to grow plants and having adequate water permeability in order to grow plants and further having high effective water content-retaining amount and fertilizer-retaining amount and to provide a method for growing plants by using the soil. <P>SOLUTION: The soil for growing plants is composed of a crushed material of a tile having 0.05-10 mm average particle diameter. The crushed material of the tile is preferably a porous material having a 0.1-20 μm pore diameter. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、瓦破砕材からなる植物育成用土壌を用いた植物育成方法に関する。より詳しくは、本発明は、瓦破砕材からなる植物育成用土壌であって、踏圧による土壌構造の変化が少なく、植物育成に適当な透水性、保水性及び保肥性を有する植物育成用土壌及びそれを用いた植物育成方法に関する。   The present invention relates to a plant growing method using plant growing soil made of roof tile crushing material. More specifically, the present invention is a soil for plant growth made of roof tile crushing material, which has little change in soil structure due to treading pressure, and has water permeability, water retention and fertilizer retention suitable for plant growth. And a plant growing method using the same.

公園、遊歩道、運動場、競馬場、スポーツグラウンド等の緑化のために、芝等の植物が用いられる。しかし、これらの植物を植え込んだ土壌には、過多な踏圧がかかることがしばしば認められる。   Plants such as turf are used for greening parks, promenades, playgrounds, racetracks, and sports grounds. However, it is often recognized that excessive tread pressure is applied to the soil in which these plants are planted.

この過多な踏圧により土壌粒子が移動し土壌粒子間の間隙がつぶれ、その結果生じる土壌の圧密、間隙率の低下、透水性低下等の土壌構造の変化により、芝等の植物の生育に悪影響をもたらす。   This excessive treading pressure causes the soil particles to move and the gaps between the soil particles to collapse, resulting in changes in soil structure such as soil compaction, porosity loss, and water permeability, which adversely affect the growth of plants such as turf. Bring.

そこで、様々な方法を用い、植物の根部分に酸素を供給するエアレーションという作業が行われている。エアレーションには、例えば中空の刃を利用して、土中から土を取り除くコアリング、中まで詰まった刃や金属のスパイクを使って、地面に穴をあけるスパイキング、芝生の面を垂直に切り込んで、芝生を細かな茎に分断するバーチカルカット等の方法がある。   Therefore, an operation called aeration for supplying oxygen to the root portion of a plant is performed using various methods. For aeration, for example, using a hollow blade, coring to remove the soil from the soil, using a blade or metal spike that is clogged to the inside, spiking to make a hole in the ground, cutting the grass surface vertically There is a method such as vertical cut that divides the lawn into fine stems.

しかし、エアレーションは芝に対して大きな損傷を与えるため、芝が痛みやすい時期や芝の切傷から病原菌の侵入しやすい時期は避けた方がよく、また、広範囲の芝のエアレーションを行っていては、経済的にも不都合である。   However, since aeration damages the turf, it is better to avoid the period when the turf is susceptible to pain and the period when the pathogen is likely to invade due to cuts on the turf. It is economically inconvenient.

そこで、土壌粒子間の間隙がつぶれないように、土壌に固結防止剤等を混ぜる方法が採用されている。例えば、ゴムチップに土壌団粒化剤をコーティングした土壌混入材を作成し、土壌と混入攪拌し、土壌透水性改良と固結防止を行う方法が提案されている(特許文献1参照)。   Therefore, a method of mixing an anti-caking agent or the like with the soil is employed so that the gaps between the soil particles are not crushed. For example, a method has been proposed in which a soil-mixed material in which a rubber chip is coated with a soil aggregating agent is prepared, mixed with and mixed with the soil, and soil permeability is improved and caking is prevented (see Patent Document 1).

しかし、土壌に土壌混入材を一度混入してしまうと、土壌中から土壌混入材を取り除き、土壌を他の用途のために再利用することは極めて困難となる問題が生じる。
特開2001−131548号公報
However, once the soil-contaminated material is mixed into the soil, it becomes extremely difficult to remove the soil-contaminated material from the soil and reuse the soil for other purposes.
JP 2001-131548 A

本発明の目的は、植物育成のために優れた耐踏圧性を有し、かつ、植物育成のために適度な透水性を有し、更に、高い有効水分保持量及び肥料保持量を有する植物育成用土壌、及びこれを用いた植物育成方法を提供することにある。   The object of the present invention is to grow plants that have excellent resistance to treading for plant growth, have appropriate water permeability for plant growth, and have a high effective water retention amount and fertilizer retention amount An object of the present invention is to provide soil for use and a plant growing method using the soil.

本発明は、前記目的を達成するために、平均粒径が0.05〜10mmである瓦破砕材からなる植物育成用土壌を提供する。   In order to achieve the above object, the present invention provides a soil for plant cultivation made of a tile crushing material having an average particle diameter of 0.05 to 10 mm.

本発明に用いる瓦破砕材は、孔隙径が0.1〜20μmである多孔質であることが好ましい。   The tile crushing material used in the present invention is preferably porous with a pore diameter of 0.1 to 20 μm.

また、本発明に用いる瓦破砕材は、空隙率が50〜65%であることが好ましい。   Moreover, it is preferable that the porosity crushing material used for this invention is 50 to 65% of porosity.

更に、本発明に係る植物育成用土壌は、有効水分保持量が50〜300L/mであり、かつ透水係数が0.0001〜1cm/秒であることが好ましい。 Furthermore, the plant-growing soil according to the present invention preferably has an effective water retention amount of 50 to 300 L / m 3 and a water permeability of 0.0001 to 1 cm / second.

ここで有効水分保持量とは、土壌から重力によって水分が排出された後に、該土壌に残存している水分のうち、植物の根が吸収可能な水分量をいう。また、透水係数とは、土壌中の水の流れやすさの指標である。   Here, the effective water retention amount refers to the amount of water that can be absorbed by plant roots of the water remaining in the soil after the moisture is discharged from the soil by gravity. The hydraulic conductivity is an index of the ease of water flow in the soil.

本発明に係る植物育成用土壌の用途としては特に限定されないが、その優れた耐踏圧性から、耐踏圧性を必要とする用途に好適な耐踏圧用土壌として使用することができる。   Although it does not specifically limit as a use of the soil for plant cultivation which concerns on this invention, It can use as soil for pressure resistance suitable for the use which requires pressure resistance from the outstanding pressure resistance.

これら本発明に係る土壌を用いる植物育成方法もまた、本発明の1つである。   These plant growing methods using the soil according to the present invention are also one aspect of the present invention.

本発明の植物育成用土壌は、優れた耐踏圧性を有し、かつ、植物育成のために適度な透水性を有し、更に、高い有効水分保持量及び肥料保持量を有する。本発明の特定の透水係数及び有効水分保持量を有する植物育成用土壌は、植物育成促進効果に優れ、公園、遊歩道、運動場、競馬場、スポーツグラウンド等の過多な踏圧が加えられる場所の植物育成用土壌として有用である。本発明の植物育成用土壌は、他の土壌成分を加えることなく使用することができ、かつ、土壌構造の変化が少ないため、植物育成に繰り返し使用することができる。   The soil for plant cultivation of the present invention has excellent tread pressure resistance, moderate water permeability for plant growth, and further has a high effective water retention amount and fertilizer retention amount. The soil for plant growth having a specific hydraulic conductivity and effective water retention amount of the present invention is excellent in plant growth promotion effect, and plant growth in places where excessive treading pressure is applied such as parks, promenades, playgrounds, racetracks, sports grounds, etc. Useful as soil for use. The soil for plant growth of the present invention can be used without adding other soil components, and can be repeatedly used for plant growth because there is little change in soil structure.

本発明に用いる瓦破砕材は、空隙を多数保有する多孔性の破砕材であり、孔隙径は約0.1〜20μmであることが好ましい。   The tile crushing material used in the present invention is a porous crushing material having many voids, and the pore diameter is preferably about 0.1 to 20 μm.

瓦破砕材に使用する瓦は、粘土を原料として焼成してなる粘土瓦である。更に、使用する瓦は、再利用の観点から廃瓦を用いることが好ましいが、廃瓦に限定されない。また、粘土を原料として焼成してなるものであれば、瓦の形状に成形されているものに限定されず、素焼きレンガ、陶器等であってもよい。   The tile used for the tile crushing material is a clay tile formed by firing clay as a raw material. Furthermore, the tile used is preferably a waste tile from the viewpoint of reuse, but is not limited to a waste tile. Moreover, as long as it is baked using clay as a raw material, it is not limited to the one formed in the shape of a tile, and may be an unglazed brick, earthenware or the like.

前記材料で形成されている瓦は、植物への水分補給、地下水の涵養、自然の水循環、及び植生・地中生態の改善等という効果の期待される植物育成用土壌に適している。また、産業廃棄物として大量に廃棄される廃瓦の再生利用を可能とするため、環境保全という観点からも有意義である。更に、他の土壌成分を加えることなく使用することができ、かつ、土壌構造の変化が少ないため、植物育成に繰り返し使用することができる。   The roof tiles made of the above materials are suitable for plant growing soils that are expected to have effects such as hydration of plants, recharge of groundwater, natural water circulation, and improvement of vegetation and underground ecology. In addition, since it enables the recycling of waste tiles that are discarded in large quantities as industrial waste, it is also meaningful from the viewpoint of environmental conservation. Furthermore, since it can be used without adding other soil components and the change in soil structure is small, it can be used repeatedly for plant growth.

また、下記表1に示すように、前記瓦破砕材を土壌に加工するに際しては熱処理が不要であるので、COの排出量が少なくてすみ、本発明者の概算によれば、本発明に係る土壌を1m生産する際に排出されるCOは1.49kg/mである。これに対して、本発明者の概算によれば、赤玉土等では352.3kg/mものCOが排出されることが判明した。これは本発明に係る土壌生産時のおよそ240倍ものCO排出量である。従って、本発明に係る土壌は地球温暖化抑制の観点からも優れている。 In addition, as shown in Table 1 below, since heat treatment is not required when processing the tile crushing material into soil, the amount of CO 2 emission can be reduced. CO 2 emitted when producing 1 m 3 of such soil is 1.49 kg / m 3 . On the other hand, according to the estimation of the present inventor, it was found that as much as 22.3 kg / m 3 of CO 2 is discharged in red crust. This is approximately 240 times as much CO 2 emission as during soil production according to the present invention. Therefore, the soil according to the present invention is excellent from the viewpoint of suppressing global warming.

本発明に用いる瓦破砕材は、所望の透水係数及び有効水分保持量に応じて微粒子化されていればよいが、瓦破砕材の平均粒径は0.05〜10mmが好ましく、瓦破砕材の平均粒径が0.05mm未満では、瓦破砕材粒子の孔隙が減少し、有効水分保持量が減少する傾向があり、10mmを超えると透水係数が高くなりすぎ、植物の育成用土壌として好ましくない。更に、当該平均粒径の範囲を、0.1mm、0.5mm、1mm、2mm、5mmで区切り、育成する植物ごとに適した粒径の瓦破砕材を適宜配合して用いてもよい。なお、本発明者が調べたところ、粒径が小さい方が保水性に優れ、粒径が大きい方が透水性に優れ、粒径の幅が狭い方が耐踏圧性に優れている、という傾向が見出された。   The tile crushing material used in the present invention may be finely divided according to a desired water permeability coefficient and effective water retention amount, but the average particle size of the tile crushing material is preferably 0.05 to 10 mm. When the average particle size is less than 0.05 mm, the pores of the tile crushing material particles tend to decrease and the effective water retention amount tends to decrease. When the average particle size exceeds 10 mm, the water permeability becomes too high, which is not preferable as soil for plant growth. . Furthermore, the range of the average particle diameter may be divided by 0.1 mm, 0.5 mm, 1 mm, 2 mm, and 5 mm, and a tile crushing material having a particle diameter suitable for each plant to be grown may be appropriately blended and used. In addition, when the inventor investigated, the smaller the particle size, the better the water retention, the larger the particle size, the better the water permeability, and the narrower the particle size, the better the tread resistance. Was found.

本発明の植物育成用土壌の有効水分保持量は、50〜300L/mであることが好ましく、60〜300L/mがより好ましく、80〜300L/mが更に好ましく、100〜300L/mが特に好ましい。更に有効水分保持量は、200〜300L/mであることが最も好ましい。有効水分保持量が50L/m未満では植物に必要な水分が不足する。有効水分保持量が200L/m以上であれば、水やりの手間が少なくなり、労力を軽減することができる。 Available water holding amount of soil for plant cultivation of the present invention is preferably 50~300L / m 3, more preferably 60~300L / m 3, more preferably 80~300L / m 3, 100~300L / m 3 is particularly preferred. Further, the effective water retention amount is most preferably 200 to 300 L / m 3 . When the effective moisture retention is less than 50 L / m 3 , the moisture necessary for the plant is insufficient. If the effective water retention amount is 200 L / m 3 or more, the labor of watering is reduced and the labor can be reduced.

本発明の植物育成用土壌の透水係数は、0.0001〜1cm/秒であることが好ましく、0.001〜1cm/秒がより好ましく、0.01〜1cm/秒が特に好ましい。透水係数が0.0001cm/秒未満では透水性が低すぎ、水が下部に浸透しにくくなるため、また、透水係数が1cm/秒を超えると透水性が高くなりすぎ、土壌から速やかに水分が失われるため、いずれも植物の育成にとって悪環境となる傾向にある。   The hydraulic conductivity of the plant growing soil of the present invention is preferably 0.0001 to 1 cm / second, more preferably 0.001 to 1 cm / second, and particularly preferably 0.01 to 1 cm / second. If the water permeability is less than 0.0001 cm / second, the water permeability is too low and water hardly penetrates into the lower part. If the water permeability exceeds 1 cm / second, the water permeability becomes too high, and moisture is quickly removed from the soil. Since they are lost, both tend to be a bad environment for plant growth.

瓦破砕材を含有する本発明の植物育成用土壌は、公園、遊歩道、運動場、競馬場、スポーツグラウンド、多目的広場等の植物育成用土壌として、更に、一般家屋及び公共建築物等の屋上緑化土壌として使用することができる。特に、そこで育成される植物に踏圧が掛かる環境において本発明に係る土壌が好適に用いられる。   The soil for plant cultivation of the present invention containing a tile crushing material is used as a plant cultivation soil for parks, promenades, playgrounds, racetracks, sports grounds, multipurpose open spaces, etc. Can be used as In particular, the soil according to the present invention is suitably used in an environment where a treading pressure is applied to a plant grown there.

本発明の植物育成用土壌は、原地盤上に4〜70cmの厚さで敷きこみ、該土壌で植物を育成することが好ましい。該土壌の厚さが4cm未満では、十分に水分を保持することができない。該土壌の厚さが70cmを超えると、敷きこむために必要な土壌量が過度に多くなり、経済的見地から好ましくない。   The soil for plant growth of the present invention is preferably laid on the raw ground with a thickness of 4 to 70 cm, and plants are grown on the soil. If the thickness of the soil is less than 4 cm, water cannot be sufficiently retained. When the thickness of the soil exceeds 70 cm, the amount of soil necessary for laying is excessively increased, which is not preferable from an economic viewpoint.

本発明の植物育成用土壌は、潅水された水や雨水が、植物の根腐れを生じさせないように透水し、また該土壌の更に下部に水が存在し、かつ該土壌中の水分が少ない場合には、該下部から吸水することができる。   The soil for plant growth of the present invention is such that irrigated water and rainwater are permeated so as not to cause root rot of the plant, and there is water in the lower part of the soil, and the water in the soil is low Can absorb water from the lower part.

従来、公園、遊歩道、運動場、競馬場、スポーツグラウンド等の植物土壌として使用されている山砂は、透水性に優れているが有効水分保持量が低く、保水性を高めるために保水剤等の添加を行っている。これに対し、本発明の植物育成用土壌は高い有効水分保持量及び適度な透水性を有している。このため、過剰な水分による植物の根腐れを防ぐと同時に、該土壌下の水を吸い上げることにより、植物の育成に適した水環境を長期間にわたって持続することができる。   Conventionally, mountain sand used as plant soil for parks, promenades, playgrounds, racetracks, sports grounds, etc. is excellent in water permeability but has a low effective water retention amount. Addition is performed. On the other hand, the soil for plant cultivation of the present invention has a high effective water retention amount and appropriate water permeability. For this reason, the water environment suitable for plant cultivation can be maintained over a long period of time by sucking up the water under the soil while simultaneously preventing root rot of the plant due to excessive moisture.

本発明の植物育成用土壌に見られる良好な有効水分保持量及び透水性は、該土壌に使用される瓦が50〜65%という高い空隙率を有することによって達成される。ここで空隙率とは、本発明に用いる瓦破砕材の粒子において、瓦成分で充填されている固相の体積及び瓦成分で充填されていない内部空隙(気相及び液相)の体積の和(全体を100%)に対する内部空隙の占める割合である。瓦破砕材以外の多孔質材として、軽石、炭、赤玉土等が挙げられるが、いずれも吸水性は高いが有効水分保持量が少なく、根腐れやカビの発生や、含水状態にあると強度が低下し、構造に破壊が生じるため、植物育成土壌としては適さない。   The good effective water retention and water permeability seen in the plant growing soil of the present invention are achieved by the roof tile used in the soil having a high porosity of 50 to 65%. Here, the porosity is the sum of the volume of the solid phase filled with the roof tile component and the volume of the internal voids (gas phase and liquid phase) not filled with the roof tile component in the particles of the roof tile breaking material used in the present invention. It is the ratio of the internal voids to (100% of the whole). Examples of porous materials other than tile crushing materials include pumice, charcoal, and reddish clay, all of which have high water absorption but low effective moisture retention, and are strong when root rot, mold is generated, and when water is contained. Decreases and the structure is destroyed, so it is not suitable as a plant growing soil.

本発明の植物育成用土壌には瓦破砕材以外の成分を加える必要はないが、肥料保持能を高めるために、他の土壌を混合してもよい。この場合、他の土壌の混合割合は、30重量%以下が好ましい(全体を100重量%)。   Although it is not necessary to add components other than the tile crushing material to the plant growing soil of the present invention, other soils may be mixed in order to enhance the fertilizer retention ability. In this case, the mixing ratio of other soils is preferably 30% by weight or less (100% by weight as a whole).

本発明の植物育成用土壌に使用される瓦破砕材は、植物の根の根毛(直径は数μm〜十数μm)が進入することのできる空隙径、有効水分保持性及び有効肥料保持性を有する。このため、根毛は瓦破砕材の内部空隙に入りこみ、植物自体の水分及び肥料の吸収力を上昇させることができる。   The tile crushing material used in the soil for plant cultivation of the present invention has a pore diameter, effective water retention property and effective fertilizer retention property that allow root hairs (diameters of several μm to several tens of μm) of plant roots to enter. Have. For this reason, root hairs can enter the internal space of the roof tile crushing material and increase the water and fertilizer absorption of the plant itself.

ここで、植物の根毛が瓦破砕材の内部空隙に入りこむ状態を、図1及び2を用いて説明する。図1は650倍に拡大した電子顕微鏡写真を示す。符号1は瓦破砕材の表面を、符号2は根毛を示す。図1より、根毛2が瓦破砕材の表面1にある空隙に入りこんでいることが認められる。図2は1600倍に拡大した電子顕微鏡写真であり、瓦破砕材の表面3に根毛4が入りこむ状態を、明瞭に観察することができる。   Here, the state in which the root hair of a plant enters the internal space of the tile crushing material will be described with reference to FIGS. FIG. 1 shows an electron micrograph magnified 650 times. Reference numeral 1 denotes the surface of the roof tile breaking material, and reference numeral 2 denotes root hairs. It can be seen from FIG. 1 that the root hairs 2 have entered the voids on the surface 1 of the tile crushing material. FIG. 2 is an electron micrograph magnified 1600 times, and it is possible to clearly observe the state in which the root hairs 4 enter the surface 3 of the roof tile breaking material.

本発明の植物育成用土壌は、種々の植物の育成に制限なく使用することができる。適したものとしては、芝、コケ、竜のひげ、セダム、松、菊、ナス、ブドウ、サツキ、ケヤキ、桜、バラ、ヒャクヤク等が挙げられる。特に、踏圧が掛かる環境下で植物が育成される場合に本発明に係る土壌が好適に用いられる。   The soil for plant growth of the present invention can be used without limitation for the growth of various plants. Suitable examples include turf, moss, dragon beard, sedum, pine, chrysanthemum, eggplant, grape, satsuki, zelkova, cherry blossom, rose, and hyacinth. In particular, the soil according to the present invention is suitably used when a plant is grown under an environment where a tread pressure is applied.

以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited only to this Example.

実施例1及び2、比較例1(耐踏圧性の測定)
試料として、粘土瓦破砕材(平均粒径0.05〜2mm)(実施例1)、粘土瓦破砕材(平均粒径1〜2mm)(実施例2)及びまさ土(比較例1)を筒状のカラム(断面積17.68cm)にそれぞれ充填し、80kgの人が前記カラムの上面を覆うように立てた柱に乗って踏圧した。1、5、10及び50回の踏圧を加え、カラム内の試料長を測定した。その結果を表2に示す。
Examples 1 and 2 and Comparative Example 1 (Measurement of tread resistance)
As samples, clay tile crushed material (average particle size 0.05 to 2 mm) (Example 1), clay tile crushed material (average particle size 1 to 2 mm) (Example 2) and masa soil (Comparative Example 1) Each column was packed in a column (with a cross-sectional area of 17.68 cm 2 ), and an 80 kg person stepped on a column that stood to cover the top surface of the column. 1, 5, 10, and 50 step pressures were applied, and the sample length in the column was measured. The results are shown in Table 2.

また、各回の踏圧前後のカラム内の試料長の変化率を、下記式により算出した。その結果を表3に示す。
変化率(%)=(1−踏圧後のカラム内の試料長(cm)/踏圧前のカラム内の試料長(cm))×100
Moreover, the change rate of the sample length in the column before and after each stepping pressure was calculated by the following formula. The results are shown in Table 3.
Rate of change (%) = (1−sample length in the column after stepping pressure (cm) / sample length in the column before stepping pressure (cm)) × 100

表2は、各回の踏圧前後における前記カラム内の試料長を示す。表2によると、比較例1に比べ、粘土瓦破砕材を用いた実施例1及び2は、踏圧回数が増えた場合であっても、踏圧による変化長が短く、耐踏圧性を有することがわかる。表3は、各回の踏圧前後のカラム内の試料長の変化率を示す。表3によると、実施例1及び2は比較例1に比べ、試料長の変化率が小さいことがわかる。従って、本発明に係る植物育成用土壌は、土壌の固結対策として有用である。   Table 2 shows the sample length in the column before and after each stepping pressure. According to Table 2, in comparison with Comparative Example 1, Examples 1 and 2 using the clay tile crushing material have a short change length due to the stepping pressure even when the number of the stepping pressures is increased, and have a resistance to the stepping pressure. Recognize. Table 3 shows the change rate of the sample length in the column before and after each stepping pressure. According to Table 3, it can be seen that Examples 1 and 2 have a smaller change rate of the sample length than Comparative Example 1. Therefore, the plant growing soil according to the present invention is useful as a countermeasure against soil consolidation.

実施例3及び4(踏圧後の透水係数の測定)
透水係数の測定は、定水頭法に基づいて行った。前記実施例1及び2において、1、5、10及び50回の踏圧を加えられたカラムの下の容器に給水し、湛水面を作製した。カラム上端から一定流量で給水し、湛水深が平衡に達した時の流量Q(cm/秒)と湛水深h(cm)を測定した。実施例1におけるカラムを用いた場合が実施例3、及び実施例2におけるカラムを用いた場合が実施例4である。踏圧回数と飽和透水係数の関係を表4に示す。なお、飽和透水係数は下記式により求めた。下記式中、lはカラムにおける試料長(cm)、Aは試料断面積(cm)を示す。
飽和透水係数(cm/秒)=Q×l/A×h
Examples 3 and 4 (Measurement of hydraulic conductivity after treading)
The permeability coefficient was measured based on the constant water head method. In Examples 1 and 2, water was supplied to the container under the column to which the stepping pressure was applied 1, 5, 10 and 50 times to prepare a flooded surface. Water was supplied at a constant flow rate from the upper end of the column, and the flow rate Q (cm 3 / sec) and the flooding depth h (cm) when the flooding depth reached equilibrium were measured. The case where the column in Example 1 is used is Example 3, and the case where the column in Example 2 is used is Example 4. Table 4 shows the relationship between the tread pressure frequency and the saturated hydraulic conductivity. The saturated hydraulic conductivity was obtained from the following formula. In the following formula, l represents the sample length (cm) in the column, and A represents the sample cross-sectional area (cm 2 ).
Saturated hydraulic conductivity (cm / sec) = Q × 1 / A × h

表4によると、踏圧回数を10回から50回へ増やしても、透水係数の低下は認められず、土壌の透水係数で不良な値とされる0.0001cm/秒未満にはならない。これは、粘土瓦破砕材が耐踏圧性を有することにより、一定の踏圧が加えられた後であっても土壌構造が変化しにくく、空隙が減少しにくいことによるものと考えられる。   According to Table 4, even if the treading pressure is increased from 10 times to 50 times, a decrease in the hydraulic conductivity is not recognized, and it does not become less than 0.0001 cm / second, which is a poor value of the soil hydraulic conductivity. This is considered to be due to the fact that the soil tile structure is less likely to change and the voids are less likely to decrease even after a certain stepping pressure is applied, because the clay tile crushing material has a stepping pressure resistance.

実施例5及び6、比較例2〜4(有効水分保持量の測定)
pF1.8〜pF3.0における水分保持量を、遠心法に基づいて測定した(土壌物理性測定法、土壌物理性測定法委員会編、養賢堂、1972)。試料として、粘土瓦破砕材(平均粒径0.05〜2mm)(実施例5)、粘土瓦破砕材(平均粒径1〜2mm)(実施例6)、まさ土(比較例2)、軽石(比較例3)及び活性炭(比較例4)を用いた。軽石や活性炭は、屋上緑化として芝生を植える際に人工軽量土壌として使用される。これら試料を、電気乾燥炉を用いて105℃、24時間乾燥した。乾燥した試料を濾過筒の中に充填し、乾燥重量を測定した。この後、試料の入った濾過筒を水で飽和させ、飽和湿潤重量を測定した。つぎに、pF1.8及びpF3.0の条件下の遠心脱水を行い、各試料の湿潤重量を求めた。これから、下記式に基づき有効水分保持量を算出した。
有効水分保持量=(pF1.8における湿潤重量)−(pF3.0における湿潤重量)
この結果を表5に示す。
Examples 5 and 6, Comparative Examples 2 to 4 (Measurement of effective water retention)
The water retention amount in pF1.8-pF3.0 was measured based on the centrifugal method (Soil physical measurement method, edited by Soil Physical Measurement Method Committee, Yokendo, 1972). As samples, clay tile crushed material (average particle size 0.05-2 mm) (Example 5), clay tile crushed material (average particle size 1-2 mm) (Example 6), masa soil (Comparative Example 2), pumice stone (Comparative Example 3) and activated carbon (Comparative Example 4) were used. Pumice and activated carbon are used as artificial lightweight soil when planting lawns as rooftop greening. These samples were dried at 105 ° C. for 24 hours using an electric drying furnace. The dried sample was filled in a filter cylinder, and the dry weight was measured. Thereafter, the filter cylinder containing the sample was saturated with water, and the saturated wet weight was measured. Next, centrifugal dehydration was performed under conditions of pF1.8 and pF3.0, and the wet weight of each sample was determined. From this, the effective water retention amount was calculated based on the following formula.
Effective moisture retention = (wet weight at pF1.8) − (wet weight at pF3.0)
The results are shown in Table 5.

なお、pFとは、土壌粒子と水との吸着の強さの単位であり、cm単位の圧力値の対数で表示される。土壌に水が飽和した状態のpFは0であり、土壌から24時間重力排水した状態のpFが1.8であり、一般的な植物の根が、土壌粒子から水分を吸収できる限界のpFが3.0であり、更に、土壌を100℃で乾燥させた状態のpFが7.0である。植物の根が吸収可能な水分量は、pF1.8からpF3.0までの水分量であるため、この水分量が有効水分保持量となる。   Note that pF is a unit of the strength of adsorption between soil particles and water, and is expressed as a logarithm of a pressure value in cm. The pF in a state where water is saturated in the soil is 0, the pF in a state where gravity is drained from the soil for 24 hours is 1.8, and the pF of the limit that a general plant root can absorb moisture from the soil particles is 3.0, and pF in a state where the soil is dried at 100 ° C. is 7.0. The amount of water that can be absorbed by the roots of the plant is the amount of water from pF1.8 to pF3.0, so this amount of water becomes the effective water retention amount.

表5によると、植物が水分吸収することのできる有効水分保持量は、一般的に保水性があるとされている軽石(比較例3)や活性炭(比較例4)に比較して、平均粒径0.05〜2mmの粘土瓦破砕材(実施例5)では1.7〜8.7倍である。平均粒径1〜2mmの粘土瓦破砕材(実施例6)においても、植物育成に必要な水分が供給され得る50L/m以上の有効水分保持量を有する。植物育成に対して適切な有効水分保持量は植物の種類によって異なるため、平均粒径の異なる瓦破砕材の配合割合を変えることにより、各植物に適切な有効水分保持量を有する植物育成用土壌を提供することができる。 According to Table 5, the effective amount of water that can be absorbed by the plant is the average grain compared to pumice (Comparative Example 3) and activated carbon (Comparative Example 4), which are generally considered to have water retention. In the clay tile crushing material (Example 5) having a diameter of 0.05 to 2 mm, it is 1.7 to 8.7 times. The clay tile crushing material (Example 6) having an average particle diameter of 1 to 2 mm also has an effective moisture retention amount of 50 L / m 3 or more at which moisture necessary for plant growth can be supplied. Since the effective water retention amount appropriate for plant growth varies depending on the type of plant, changing the mixing ratio of the tile crushing material with different average particle diameters, the soil for plant growth having an effective water retention amount appropriate for each plant Can be provided.

3相分布割合の測定
飽和体積含水率の値とpF1.8体積含水率から、下記式に基づき気相、液相及び固相の3相分布を求めた。
気相(%)=飽和体積含水率(%)−液相(%)
液相(%)=pF1.8体積含水率(%)
固相(%)=100(%)−飽和体積含水率(%)
この結果を表6に示す。飽和体積含水率とは、飽和したときの水の量を、その水を含む土壌の体積で割ったものである。pF1.8体積含水率とは、pF1.8のときの水の量を、その水を含む土壌の体積で割ったものである。
Measurement of three-phase distribution ratio The three-phase distribution of the gas phase, the liquid phase and the solid phase was determined from the saturated volume moisture content and the pF1.8 volume moisture content based on the following formula.
Gas phase (%) = saturated volumetric water content (%)-liquid phase (%)
Liquid phase (%) = pF1.8 Volume water content (%)
Solid phase (%) = 100 (%)-saturated volume water content (%)
The results are shown in Table 6. The saturated volumetric water content is obtained by dividing the amount of water when saturated by the volume of soil containing the water. The pF1.8 volume water content is obtained by dividing the amount of water at pF1.8 by the volume of the soil containing the water.

表6によると、平均粒径の異なる粘土瓦破砕材は3相分布が異なることがわかる(実施例5及び6)。従って、平均粒径の異なる瓦破砕材の配合割合を変えることにより、各植物に適切な3相分布を有する植物育成用土壌を提供することができる。   According to Table 6, it can be seen that clay tile crushed materials having different average particle sizes have different three-phase distributions (Examples 5 and 6). Therefore, the plant growing soil having a three-phase distribution suitable for each plant can be provided by changing the blending ratio of the tile crushing materials having different average particle diameters.

実施例7及び8、比較例5〜7(有効肥料保持量の測定)
試料として、粘土瓦破砕材(平均粒径0.05〜2mm)(実施例7)、粘土瓦破砕材(平均粒径1〜2mm)(実施例8)、まさ土(比較例5)、軽石(比較例6)及び活性炭(比較例7)を用いた。これらの試料を、電気乾燥炉を用いて105℃、24時間乾燥した。乾燥した試料を濾過筒の中に充填し、水で飽和させた。重力排水を行い、pF1.8の土壌とした。このpF1.8の土壌に、500倍に希釈した液肥(ハイフラワー 旭化学工業(株)製)を10mL入れ、重力排水を行い、排水を採取した。重力排水後、濾過筒中の試料をpF3.0の土壌とした。pF3.0の土壌とする際に生じた排水を採取し、この排水中の各成分(リン、硝酸態チッソ、アンモニア態チッソ、ホウ素、マグネシウム、マンガン、カリウム)濃度を測定した。リン、硝酸態窒素及びアンモニア態窒素の測定には、富栄養計(セントラル科学(株)製、HC−1000)を用いた。ホウ素、マグネシウム、マンガン及びカリウムの測定には、誘導プラズマ質量分析装置(ICP−MS、HEWRETT PACKARD社製、HP4500)を用いた。その結果を表7に示す。
Examples 7 and 8, Comparative Examples 5 to 7 (Measurement of effective fertilizer retention)
As samples, clay tile crushed material (average particle size 0.05 to 2 mm) (Example 7), clay tile crushed material (average particle size 1 to 2 mm) (Example 8), masa soil (Comparative Example 5), pumice stone (Comparative Example 6) and activated carbon (Comparative Example 7) were used. These samples were dried at 105 ° C. for 24 hours using an electric drying furnace. The dried sample was filled into a filter cylinder and saturated with water. Gravity drainage was performed to obtain a pF1.8 soil. 10 mL of liquid fertilizer (manufactured by Hiflower Asahi Chemical Industry Co., Ltd.) diluted 500 times was added to this pF1.8 soil, drained by gravity, and drained. After gravity drainage, the sample in the filter cylinder was used as pF3.0 soil. Drainage generated when pF3.0 was used as a soil was collected, and the concentration of each component (phosphorus, nitrate nitrogen, ammonia nitrogen, boron, magnesium, manganese, potassium) in the wastewater was measured. For the measurement of phosphorus, nitrate nitrogen and ammonia nitrogen, a eutrophic meter (manufactured by Central Science Co., Ltd., HC-1000) was used. For measurement of boron, magnesium, manganese and potassium, an induction plasma mass spectrometer (ICP-MS, manufactured by HEWRETT PACKARD, HP4500) was used. The results are shown in Table 7.

*単位(mg/m * Unit (mg / m 3 )

表7によれば、粘土瓦破砕材(平均粒径0.05〜2mm)(実施例7)では、リン成分のみ軽石(比較例6)より低値であったが、他の成分はいずれも比較例5〜7より高値を示し、有効肥料成分の保持特性という点で、最も優れているといえる。また、粘土瓦破砕材(平均粒径1〜2mm)(実施例8)では、活性炭(比較例7)と比較すると、カリウム成分以外は高値を示し、優れた有効肥料保持量を有するといえる。   According to Table 7, in the clay tile crushed material (average particle size 0.05-2 mm) (Example 7), only the phosphorus component was lower than the pumice (Comparative Example 6), but all other components were It shows a higher value than Comparative Examples 5 to 7, and can be said to be the most excellent in terms of retention characteristics of effective fertilizer components. Moreover, it can be said that a clay tile crushing material (average particle diameter of 1 to 2 mm) (Example 8) shows a high value except for the potassium component and has an excellent effective fertilizer retention amount as compared with activated carbon (Comparative Example 7).

実施例9及び比較例8(植物育成促進効果)
透水係数0.0126cm/秒、粒径0.5〜2mm、空隙率57%及び有効水分保持量217L/m)である粘土瓦破砕材を用いた植物育成用土壌(実施例9)及び、まさ土(比較例8)を、大阪市内のゴルフ場の原地盤に、いずれも5cmの厚さで敷きこんだ。ここに高麗芝のソットを敷き詰め、約半年間育成した(2006年2月28日〜同年9月13日)。実施例9及び比較例8で、潅水、施肥等の条件は同一とした。なお、実施例9及び比較例8とも、前記育成期間中に通行した来場者は約12000人であった。育成期間終了後、直径200mmの高麗芝サンプルを採取し、クロロフィルa量(葉緑素:緑色の濃さの指標)、葉の密度、根の長さ、及び根の重量を測定した。この結果を表8に示す。
Example 9 and Comparative Example 8 (plant growth promoting effect)
Plant cultivation soil (Example 9) using a clay roof tile crusher having a water permeability coefficient of 0.0126 cm / sec, a particle size of 0.5 to 2 mm, a porosity of 57%, and an effective water retention amount of 217 L / m 3 ), Masa soil (Comparative Example 8) was laid on the ground of a golf course in Osaka City with a thickness of 5 cm. Koshiba soot was spread here and grown for about half a year (February 28, 2006 to September 13, 2006). In Example 9 and Comparative Example 8, conditions such as irrigation and fertilization were the same. In both Example 9 and Comparative Example 8, about 12,000 visitors attended during the training period. After completion of the growing period, a sample of 200 mm diameter Korean turf was collected, and the amount of chlorophyll a (chlorophyll: an index of green intensity), leaf density, root length, and root weight were measured. The results are shown in Table 8.

表8によれば、実施例9のクロロフィルa量は比較例8の2倍であり、実施例9では活発な光合成が行なわれていると考えられる。また、実施例9の根の長さは比較例8の約3倍であり、実施例9の根は土壌深部まで伸びやすく、雨の少ない夏場においても水分や養分を吸収しやすい状態にあったといえる。したがって、本発明の植物育成用土壌(実施例9)は、まさ土(比較例8)より高麗芝の育成促進効果が優れているといえる。   According to Table 8, the amount of chlorophyll a in Example 9 is twice that in Comparative Example 8, and it is considered that active photosynthesis is performed in Example 9. Moreover, the root length of Example 9 is about three times that of Comparative Example 8, and the root of Example 9 is easy to extend to the deep part of the soil, and it was in a state where it was easy to absorb moisture and nutrients even in summer when there was little rain. I can say that. Therefore, it can be said that the soil for plant cultivation of the present invention (Example 9) is superior in the effect of promoting the cultivation of Korean turf than Masa soil (Comparative Example 8).

植物の根毛が瓦破砕材の内部空隙に入りこむ状態の一例を、650倍に拡大した電子顕微鏡写真で示す説明図である。It is explanatory drawing shown in the electron micrograph expanded to 650 times an example of the state which the root hair of a plant penetrates into the internal space | gap of a tile crushing material. 植物の根毛が瓦破砕材の内部空隙に入りこむ状態の一例を、1600倍に拡大した電子顕微鏡写真で示す説明図である。It is explanatory drawing which shows an example of the state in which the root hair of a plant penetrates into the internal space | gap of a tile crushing material with the electron micrograph expanded 1600 times.

符号の説明Explanation of symbols

1・・・瓦破砕材の表面
2・・・植物の根毛
3・・・瓦破砕材の表面
4・・・植物の根毛
DESCRIPTION OF SYMBOLS 1 ... Surface of tile crushing material 2 ... Plant root hair 3 ... Surface of tile crushing material 4 ... Plant root hair

Claims (6)

平均粒径が0.05〜10mmである瓦破砕材からなる植物育成用土壌。   A soil for plant cultivation composed of a tile crushing material having an average particle size of 0.05 to 10 mm. 前記瓦破砕材は、孔隙径が0.1〜20μmである多孔質である請求項1記載の植物育成用土壌。   The soil for plant cultivation according to claim 1, wherein the tile crushing material is porous having a pore diameter of 0.1 to 20 μm. 前記瓦破砕材は、空隙率が50〜65%である請求項1又は2記載の植物育成用土壌。   The soil for plant cultivation according to claim 1 or 2, wherein the tile crushing material has a porosity of 50 to 65%. 有効水分保持量が50〜300L/mであり、かつ透水係数が0.0001〜1cm/秒である請求項1、2又は3記載の植物育成用土壌。 The soil for plant cultivation according to claim 1, 2 or 3, wherein the effective moisture retention is 50 to 300 L / m 3 and the water permeability is 0.0001 to 1 cm / sec. 請求項1、2、3又は4記載の土壌からなる耐踏圧用土壌。   5. Soil for tread pressure resistance comprising the soil according to claim 1, 2, 3 or 4. 請求項1、2、3、4又は5記載の土壌を用いることを特徴とする植物育成方法。

A plant growing method using the soil according to claim 1, 2, 3, 4 or 5.

JP2008129053A 2007-05-16 2008-05-16 Soil for growing plant and method for growing plant Pending JP2008307050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008129053A JP2008307050A (en) 2007-05-16 2008-05-16 Soil for growing plant and method for growing plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007130855 2007-05-16
JP2008129053A JP2008307050A (en) 2007-05-16 2008-05-16 Soil for growing plant and method for growing plant

Publications (1)

Publication Number Publication Date
JP2008307050A true JP2008307050A (en) 2008-12-25

Family

ID=40235225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008129053A Pending JP2008307050A (en) 2007-05-16 2008-05-16 Soil for growing plant and method for growing plant

Country Status (1)

Country Link
JP (1) JP2008307050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064498A (en) * 2012-09-25 2014-04-17 Kinboshi Inc Greening material and method of producing the same
JP2014176397A (en) * 2012-11-19 2014-09-25 Toyo Tire & Rubber Co Ltd Artificial soil culture medium
JP2015129260A (en) * 2013-12-04 2015-07-16 東和スポーツ施設株式会社 Material for soil
JP2019122327A (en) * 2018-01-18 2019-07-25 近江バラス有限会社 Lawn growth material for golf course green and method for producing the same
JP2019122376A (en) * 2019-02-08 2019-07-25 近江バラス有限会社 Lawn growth material for aeration of golf course green

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064498A (en) * 2012-09-25 2014-04-17 Kinboshi Inc Greening material and method of producing the same
JP2014176397A (en) * 2012-11-19 2014-09-25 Toyo Tire & Rubber Co Ltd Artificial soil culture medium
CN104780754A (en) * 2012-11-19 2015-07-15 东洋橡胶工业株式会社 Artificial soil medium
JP2015129260A (en) * 2013-12-04 2015-07-16 東和スポーツ施設株式会社 Material for soil
JP2019122327A (en) * 2018-01-18 2019-07-25 近江バラス有限会社 Lawn growth material for golf course green and method for producing the same
JP2019122376A (en) * 2019-02-08 2019-07-25 近江バラス有限会社 Lawn growth material for aeration of golf course green

Similar Documents

Publication Publication Date Title
JP2008307050A (en) Soil for growing plant and method for growing plant
Hanson et al. Effects of soil degradation and management practices on the surface water dynamics in the Talgua River watershed in Honduras
CN112219589B (en) Method for recovering vegetation on high and steep fissure development slope in northwest arid region
KR101133542B1 (en) Cultivation method for salt-affected soil
JP2007195455A (en) Planting body and parking lot
CN106810360A (en) Afforesting matrix that a kind of protection against erosion is lost in and preparation method thereof and purposes
CN105409695B (en) A kind of method for improving urban green space water infiltration rate
JP6409892B2 (en) Method for promoting or suppressing plant growth and method for promoting increase in flower buds and number of seeds of plant
CN101810083B (en) Lawn green belt construction method
CN105532369B (en) A method of improving urban green space water infiltration efficiency
JP2006262701A (en) Construction method of environmental greening for controlling root zone
JPH08308376A (en) Development execution of vegetational growth foundation of bedrock slope
CN108040809A (en) Sponge urban facilities medium soil and preparation method thereof
JP7108028B2 (en) SOIL IMPROVEMENT METHOD, SOIL IMPROVEMENT MATERIAL, AND USE THEREOF
JP2724546B2 (en) Greening artificial soil layer for ground
JP2012044961A (en) Gravel culture method, and method for producing container made of tuffaceous sandstone powder
Zwieniecki et al. Water‐holding characteristics of metasedimentary rock in selected forest ecosystems in southwestern Oregon
KR100959233B1 (en) Vegetation material and vegetation method for slope
CN105210800A (en) A kind of method of transplanting sapling
JP5627971B2 (en) Container culture medium
JP2008271857A (en) Natural grass vegetating structure
CN109122062A (en) A kind of construction method on afforestation lawn
KR102585436B1 (en) Eco-friendly top soil composition using kenaf and method of using the same
JP4192270B2 (en) Tree planting structure and planting method
KR20090044016A (en) Coconut plant mat and manufacturing method thereof