JP2008306538A - 単一磁束量子可変遅延回路 - Google Patents

単一磁束量子可変遅延回路 Download PDF

Info

Publication number
JP2008306538A
JP2008306538A JP2007152570A JP2007152570A JP2008306538A JP 2008306538 A JP2008306538 A JP 2008306538A JP 2007152570 A JP2007152570 A JP 2007152570A JP 2007152570 A JP2007152570 A JP 2007152570A JP 2008306538 A JP2008306538 A JP 2008306538A
Authority
JP
Japan
Prior art keywords
circuit
terminal
input
output
flux quantum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007152570A
Other languages
English (en)
Other versions
JP4402136B2 (ja
Inventor
Futoshi Furuta
太 古田
Kazuo Saito
和夫 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007152570A priority Critical patent/JP4402136B2/ja
Publication of JP2008306538A publication Critical patent/JP2008306538A/ja
Application granted granted Critical
Publication of JP4402136B2 publication Critical patent/JP4402136B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Logic Circuits (AREA)

Abstract

【課題】磁束量子を情報担体とする単一磁束量子回路において、回路の正常動作に必須となる各単一磁束量子信号の適切なタイミングを維持するために、単一磁束量子の伝播時間を自由に可変する方法を提供する。
【解決手段】分岐回路と遅延時間の異なる複数のジョセフソン伝送線路またはマイクロストリップライン、それらを選択するスイッチ回路および合流回路で可変遅延回路を構成する。さらに最小変化幅の異なる複数の可変遅延回路を直列に接続して、可変幅の分解能と可変範囲を同時に向上させる。また、シフトレジスタ回路によるシリアル−パラレル変換により、複数の可変遅延回路を制御する制御線の本数を大きく削減する。
【選択図】図3A

Description

本発明は、単一磁束量子回路に関わり、単一磁束量子の伝播遅延時間を変化させる方法に関わる。
単一磁束量子(Single Flux Quantum:以下SFQと略す)は、量子化された磁束の最小単位(Φ=h/2e=2.07×10−15Weber)である。このSFQを情報担体とする単一磁束量子回路(SFQ回路)は、数10ギガヘルツ(10Hz)以上の超高速動作と、ゲートあたり数マイクロワット(μW)以下の低消費電力特性を特徴とする超電導回路である。アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、1巻1号(1991年)3頁(非特許文献1)に示される原理に基づいて、これまで種々の論理ゲートが開発され、これらを組み合わせた実用回路の開発が広く進められている。
SFQ回路の特長である高速性を活かしたデジタル分野への応用、また高速性と合わせて磁束の量子化という性質を活かしたミックスドシグナル分野への応用が期待されている。デジタル分野ではハイエンドルータ用ネットワークスイッチ、マイクロプロセッサがアイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)411頁(非特許文献2)、アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)400頁(非特許文献3)で示されている。また、ミックスドシグナル分野では、アナログ/デジタル変換器やジョセフソンサンプラがそれぞれアイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、3巻1号(1993年)2732頁(非特許文献4)、アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)316頁(非特許文献5)で示されている。
SFQ回路は半導体回路と同様に、より規模の小さい論理ゲートを組み合わせて大規模な回路を構成する。論理ゲート間でのSFQ信号の伝送の概略を図1Aに示すブロック図と図1Bに示すタイムチャートで説明する。実際のSFQ信号は、幅が数psの電圧パルスとして回路内を伝播する。このため、SFQ電圧パルス(以下SFQパルス)でデジタル信号を表現するために、各論理ゲートにはデータ信号としてのSFQパルスおよびクロック信号としてのSFQパルスが供給される。たとえば、データ信号を受信する論理ゲート102の入力側では一定の周期で生成したSFQパルスがクロック信号として入力されている。その周期内にデータ信号として1つのSFQパルスが入力されると、論理ゲートはデジタルデータ“1”を受信したと判断する。一方、そのクロック周期内にSFQパルスが入力されない場合、デジタルデータ“0”を受信したと判断する。このためSFQ回路においてゲート101と102間でのデータ信号伝送には、クロック信号用の伝送線103とデータ信号用の伝送線104が必要となる。
論理ゲート間を接続する伝送線には、高周波信号の一般的な伝送線路であるマイクロストリップラインやSFQ回路に特有なジョセフソン伝送線路が用いられる。図2Aにジョセフソン伝送線路の等価回路を示す。ジョセフソン伝送線路は、ジョセフソン接合201とバイアス電流源202およびインダクタ203からなる単位回路204が直列に接続されて構成される。バイアス電流源202は図2Bに示すように電圧源205およびバイアス抵抗206を直列に接続して構成される。SFQ信号が入力端子210から進入すると、伝送線路内のジョセフソン接合は左から右への順次スイッチし、このスイッチングによりSFQが移動する。この動作原理により、SFQ信号が入力端子から出力端子211に伝播される。
一般的に回路全体を正常に動作させるには、論理ゲート単体での正常動作はもとより、ゲート間を往来する信号のタイミングを適切に調整する必要がある。特にSFQ回路では、論理ゲートにおけるクロック信号とデータ信号の入力時間の前後関係(以下タイミングと表現する)が特に重要となる。さらに、クロック信号入力の前後数ピコ秒の間は論理ゲートを正常に動作させるために、データ信号の入力を禁止されている。このためデータ信号は、クロック信号の入力周期内、かつ入力禁止時間帯を避けて入力する必要がある。したがって、SFQ回路をより高速に動作させるには、クロック信号とデータ信号の入力タイミングを適切な時間関係に配置する回路設計が必要となる。実際の回路設計では回路シミュレーションを用いて、マイクロストリップラインの長さとジョセフソン伝送線路の単位回路数つまりジョセフソン接合の数を決定する。
アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、1巻1号(1991年)、p.3 (IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)、p.411 アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)、p.400 アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、3巻1号(1993年)、p.2732 アイトリプリイィ、トランズアクション、アプライド、スーパーコンダクティビティ(IEEE Trans. on Appl. Supercond.)、15巻2号(2005年)、p.316
実際に作製された回路は、作製プロセス条件に起因した回路素子パラメータのバラツキでタイミングが設計値から変動することがある。また、回路設計における回路素子の遅延時間の推定が正確でないために、各信号が適切なタイミングを維持していないことがある。いずれの場合においても、SFQ回路の誤動作や動作周波数の低下を招く。このため従来技術では、回路素子パラメータのバラツキを考慮したトレランス設計、ジョセフソン伝送線路の信号伝播時間の調整によるタイミング調整または多相クロック信号の供給によるタイミング調整が行われてきた。
トレランス設計は、回路シミュレーションを用いて回路パラメータのバラツキによる信号のタイミングの変動範囲を予測して回路設計に反映させる方法である。しかし、想定したバラツキ範囲外で回路が作製された場合には、信号間の適切なタイミング関係は維持できない。また回路パラメータのバラツキが存在しない場合でも、回路設計時の遅延時間の推定が正確でなげればトレランス設計は意味を成さない。このため、トレランス設計を用いても回路の誤動作に繋がることがある。
一方ジョセフソン伝送線路の遅延時間を変化させる方法は、ジョセフソン伝送線路を構成するジョセフソン接合に印加するバイアス電流を調整することでジョセフソン伝送路上のSFQ伝播速度が変化することを利用したものである。バイアス電流を調整する方法は、該当するジョセフソン接合に接続されているすべてのバイアス抵抗206の他端を共通にして、1つの可変電圧源205はまた電流源(以下電源を略す)を接続することで実現する。
この方法では、実際に作製された回路に対してその回路素子パラメータの大小やバラツキに応じて信号のタイミングを調整でき、回路の正常動作を実現できる。しかし、ジョセソン接合1個当たりの遅延時間は2ps以下であり、その可変時間は10%程度である。このため、数十から数100psの可変遅延時間を実現するためには、ジョセフソン伝送線路を長く配線しジョセフソン接合の個数を増やす必要があった。また、伝播時間を変化させたい1つのジョセフソン伝送路につき、可変電流源または可変電圧源が1つ必要となる。よって、N個の伝送路のタイミングを個別に調整する場合はN個のバイアス用電源が必要となる。ところがSFQ回路は半導体回路とは異なり電源を制御できるトランジスタを有しないため、SFQ回路と複数の可変電源を同一チップ上に集積するのは非常に困難である。この場合複数のバイアス電源接続端子をチップ上に配置し、ケーブルで4.2Kの極低温環境と常温環境を接続した上で、外部から電源供給を受けることになる。しかし、電源接続端子の本数を増加させることは実装上好ましくない。なぜなら、ケーブルを介した常温環境からSFQ回路への熱流入か起こりやすくなるからである。結果として、タイミング調整用の可変バイアス電源の個数つまりタイミング調整可能なジョセフソン伝送線路の個数は数個までに制限される。
多相クロック供給方式は、論理ゲートごとに1つのクロック信号を供給する方法である。クロック信号が各論理ゲートへ入力されるときのタイミングを個別に決定できるため、プロセスのバラツキで論理ゲートへ入力されるデータ信号のタイミングが変化してもクロック信号のタイミングを該当するクロック信号源の位相を調整することで適切なタイミングを実現できる。しかし、上述のバイアス電流と同様の理由により、クロック信号の本数つまりゲートの個数は制限される。
上記問題に対して、本発明では伝送線路上のSFQ信号伝播時間の可変幅を拡大した可変遅延回路および遅延時間の制御線を増加させることなく可変伝送線路の個数を増加させる方法を提供する。
まず可変遅延回路について説明する。図3に本発明で提案した単一磁束量子可変遅延回路を示す。回路は、分岐回路301、遅延時間の異なる複数の伝送線路つまりジョセフソン伝送線路やマイクロストリップライン302〜302、その伝送線路に対応したスイッチ回路303〜303および合流回路304からなる。分岐回路は入力された1つのSFQパルスから複数のSFQパルスを出力し、合流回路は複数のSFQパルス入力を合流させて1つの端子から出力する。
本回路は、1つの信号伝送経路に対して複数の異なる遅延時間の迂回路を構成する。入力端子310から入力されたSFQパルスは、分岐回路で分岐され各伝送線路を経てそれぞれスイッチ回路に入力される。1つのスイッチ回路、たとえば303が“ON”であると仮定するとスイッチ回路からSFQパルスが出力され合流回路を経て、出力端子311に到達する。このため、スイッチ回路のいずれかを“ON”状態にすることで、迂回路の一つを選択しその迂回路が有する遅延時間が本可変遅間回路の遅延時間となる。
なお、本発明で用いたスイッチ回路はSFQパルスで制御されるものであり、一般的にはNon−Destructive−Read outゲートを用いる。Set端子314にSFQパルス(Set信号)が入力されると“ON”状態となり入力端子312からのSFQパルスはそのまま出力端子313に出力される。Reset端子315にSFQパルス(Reset信号)を入力することで“ON”状態は解除され“OFF”状態となり、入力端子からのSFQパルスは遮断される。
可変遅延回路の最小変化幅(分解能)は、迂回路を構成する複数の伝送線路の遅延時間の差に依存する。迂回路として複数のジョセフソン伝送線路を用いた場合、伝送線路間の単位回路の差で最小変化幅が決定される。たとえば、迂回路を構成する複数のジョセフソン伝送線路において、単位回路の差が2段であった場合は、接合に流れるバイアス電流の大きさによるが変化幅は2〜4ps程度となる。最小変化幅を大きくする場合は、ジョセフソン伝送線路間の単位回路数の差を増加させれば良い。一方、最小変化幅をジョセフソン伝送線路の単位回路1個分より小さくする場合は、迂回路を構成する伝送線路としてマイクロストリップラインを用い、その長さで調整すればよい。
可変遅延回路の可変範囲T、最小変化幅ΔTおよび迂回回路数つまりスイッチ回路の個数Nには、以下の関係式が成り立つ。

N=T/ΔT

よって可変範囲を拡大するには、最小変化幅とスイッチ回路数を同時に増加させればよい。また、最小変化幅を小さく保ったまま可変範囲を拡大する場合はスイッチ回路の個数のみを大きく増加させればよい。しかし、図4に示す方法でより少ないスイッチ回路数で可変遅延回路が実現できる。最小変化幅の小さい可変遅延回路401と最小変化幅と可変範囲がともに大きい可変遅延回路402を直列に接続する。このため、本可変遅延回路の遅延時間は、2つの可変遅延回路の加算で表される。可変遅延回路402の最小可変幅ΔT2は可変遅延回路401の可変範囲T1と同じかやや小さく設定される。可変遅延回路402は可変遅延回路全体の可変範囲Tをほぼ決定し、可変遅延回路401は最小変化幅ΔTつまり分解能を決定する。
この方法により、可変遅延回路の分解能と可変範囲を同時に向上させかつスイッチ回路の削減を実現できる。可変遅延回路401の可変範囲T1と可変遅延回路2の最小変化幅ΔT2が同値であると仮定すると、スイッチ回路の個数Nは、

N=T/ΔT2+T1/ΔT=T/ΔT2+ΔT2/ΔT

と表される。例えば、Tが100ps、ΔT2が10psおよびΔTが1psである場合を考える。1つの可変遅延回路を構成した場合、必要なスイッチ回路の個数は100となる。一方、2つの可変遅延回路を直列に構成した場合、スイッチ回路は20個で済む。
次に、可変遅延回路の制御線の本数を削減する方法について説明する。先述のスイッチ回路による可変遅延回路では、1つのスイッチ回路につき2つの制御信号、すなわちSet信号とReset信号が必要である。このため、1つの可変遅延回路においてスイッチ回路の個数の2倍の制御線が必要となる。そこで、シフトレジスタを用いたシリアルーパラレル変換回路により、可変遅延回路への制御線数を削減する。図5に本発明による可変遅延回路300の制御回路のブロック図を示す。回路は、おもにNビットシフトレジスタ回路501と2つの遅延回路504および507からなる。制御信号はスイッチ回路の個数に関わらず、Shift信号とReset信号の2つである。以下に回路の動作を説明する。
まず、Reset端子510からSFQパルス(Reset信号)を入力する。SFQパルスは分岐回路502を経て、可変遅延回路300へ入力される。このSFQパルスは、可変遅延回路を構成するすべてのスイッチ回路303〜303のReset端子に供給され、スイッチ回路を“OFF”状態とする。一方、分岐回路502から出力された別のSFQパルスはさらに遅延回路504および分岐回路505を経て、シフトレジスタ回路501のダンプ端子に入力される。このダンプ信号によりシフトレジスタ回路内に記憶されていた情報がパラレル出力で可変遅延回路のスイッチ回路のSet入力として移動する。
ここで、シフトレジスタ回路に保持されていた情報は、Nビット長でありかつ1つのビットが“1”でその他のビットがすべて“0”であることが前提となる。シフトレジスタ回路のダンプ動作により、可変遅延回路を構成するスイッチ回路の1つが“ON状態となり、対応する迂回路が選択される。また、分岐回路505から出力された別のSFQ信号は遅延回路507を経て、シフトレジスタ回路のデータ入力端子に供給される。この信号により、シフトレジスタの第1ビット目に”1“が記憶される。最後に、Shift端子511に向けて、”ON“状態とさせたいスイッチ回路のビット位置に合わせた個数―1のSFQパルスを繰り返し入力することで、シフトレジスタ回路内の”1“を移動させる。この情報は、新たにリセット信号用のSFQパルスを入力することで、可変遅延回路へ反映させることができる。
最後に、複数の可変遅延回路を制御するための方法について説明する。先述のシフトレジスタ回路による可変遅延回路では、1つの可変遅延回路につきReset信号とShift信号の2つの制御線が必要である。そこで、シフトレジスタを用いたシリアルーパラレル変換回路により、複数の可変遅延回路への制御線数を削減する。図6に本発明による複数の可変遅延回路500への制御回路を示す。回路は、おもにMビットシフトレジスタ回路601、可変遅延回路の個数Mにあわせたスイッチ回路608〜608と2つの遅延回路604および607からなる。制御信号は可変遅延回路の個数に関わらず、Adrees信号、Shift信号、Reset1信号およびReset2信号の4つである。以下に回路の動作を説明する。
まず、Reset1端子620からSFQパルス(Reset1信号)を入力する。SFQパルスは分岐回路610〜610M−1を経て、すべての可変遅延回路500〜500にReset信号としてのSFQパルスを供給する。この時点で各々の可変遅延回路は、個々のシフトレジスタ内の情報をスイッチ回路へダンプして、次の新たなShift信号を処理する準備を整える。次にReset2端子622よりSFQパルス(Reset2信号)を入力する。SFQパルスは分岐回路602および603〜603M−1を経て、すべてのスイッチ回路608〜608におけるReset端子に供給される。この動作により、すべてのスイッチ回路608〜608は“OFF”状態となる。
一方、分岐回路602から出力された別のSFQパルスはさらに遅延回路604、分岐回路605および606を経て、シフトレジスタ回路601のダンプ端子に入力される。このダンプ信号によりシフトレジスタ回路内に記憶されていた情報がパラレル出力でスイッチ回路608へ移動する。ここでシフトレジスタ回路に保持されていた情報は、Nビット長かつ1つのビットが“1”でその他のビットがすべて“0”であること前提となる。シフトレジスタ回路のダンプ動作により、“1”が保持されていたビットに対応する1つのスイッチ回路のみが“ON状態となる。
ここで、Shift信号として数個のSFQからなるパルス列をShift端子621へ入力すると、Shift信号は”ON“状態となっているスイッチ回路608を経由して、そのスイッチ回路に接続されている可変遅延回路のみに供給される。この一連の動作により、複数個の可変遅延回路の中から1つを選択し、Shift信号を入力することができる。また、分岐回路605から出力された別のSFQパルスは遅延回路607を経て、シフトレジスタ回路のデータ入力端子に供給される。この信号により、シフトレジスタ回路の第1ビット目に”1“が記憶される。最後に、Address端子623に向けて、”ON“状態とさせたいスイッチ回路のビット位置に合わせた個数ー1のSFQパルスを繰り返し入力することで、シフトレジスタ回路内の”1“を移動させる。この情報は、新たなReset2信号を入力することでスイッチ回路へ反映させることができ、次のShift信号を供給する可変遅延回路を選択することができる。
この制御方式を用いることで、可変遅延回路の個数に依存することなく4本の制御線で複数の信号のタイミングを調整することが可能となる。
本発明によれば、SFQ信号の伝播時間を任意に調整することができる。このため回路パラメータのバラツキによるタイミングの不整合を防ぎ、動作周波数の低下を防ぐ。また遅延時間の調整を積極的に利用することで、高速サンプラの可変遅延回路が実現できる。さらに、本発明では可変遅延回路への制御線を削減できる。このため、設計回路が大規模になり可変遅延回路の個数が増加しても、制御線の本数は増えない。結果として、動作周波数の高速化おける正常動作の保証と対象回路の規模拡大を両立することができる。
以下に本願発明を実施例により説明する。この実施例は本願発明を用いた一例であり、本願発明は実施例により限定されない。
<実施例1>
本発明で提案した単一磁束量子可変遅延回路において、迂回路をジョセフソン伝送線路で構成した場合の等価回路を図7Aに示す。本例では迂回路数すなわちスイッチ回路の個数を4とした。分岐回路は、ジョセフソン伝送線路の単位回路と類似の構造を持つスプリッタ(Splitter:SP)回路を用いた。また、本例では一度に4経路を分岐させずに、ジョセフソン伝送線路の単位回路1回路ずつ付加しながら1つのSP回路701にて1経路ずつ分岐させる構造とした。スイッチ回路には、図7Bで示されるNon−Distructive−ReadOutゲートを用いた。合流回路には、2入力型のコンフルエンスバッファ(Confluence Buffer:CB)回路を用いた。分岐の場合と同様に、本例では一度に4入力を合流させずに、ジョセフソン伝送線路の単位回路1回路ずつ付加しながら1つのCB回路704にて1経路ずつ合流させる構造とした。よって、隣り合う迂回路におけるジョセフソン伝送線路単位回路702の個数差は2となる。
図8に回路シミュレーションによる動作波形を示す。本図に沿って、回路の動作を説明する。すべてのスイッチ回路303〜303のReset端子315〜315にSFQパルスを入力すると、全スイッチ回路がOFF状態となる。この場合、SFQパルスを信号入力端子710に入力しても出力は現れない。ここで、例えばスイッチ回路303のSET端子314にSFQパルスを入力すると、27psの遅延を伴い、SFQパルスが信号出力端子711に出力される。ここで一端、Reset端子315〜315にSFQパルスを入力し、全スイッチ回路をOFF状態にした後、別のスイッチ回路303のSET端子にSFQパルスを入力すると、今度は別のより長い遅延時間31psを伴ってSFQパルスが出力されることが分かる。よって、本回路は、SET端子にSFQパルスを選択的に入力することでON状態となるスイッチ回路を指定し、SFQパルスの伝播時間を4ps刻みで調整することができる。
<実施例2>
本発明で提案した単一磁束量子可変遅延回路において、迂回路をマイクロストリップラインで構成した場合の等価回路を図9に示す。本例ではスイッチ回路の個数を4とした。分岐回路はSP回路901による2分木構造を用い、4つのマイクロストリップライン902〜902に同時にSFQパルスが入力されるように構成した。またマイクロストリップラインの入力側にはインピーダンス整合用の抵抗909を挿入した。スイッチ回路303には、実施例1と同様にNon−Distructive−ReadOutゲートを用いた。合流回路はCB回路904による2分木構造を用い、各スイッチ回路303〜303から出力端子911までのSFQ伝播時間が同一になるように構成した。
図10に回路シミュレーションによる動作波形を示す。本図に沿って、回路の動作を説明する。すべてのスイッチ回路303〜303のReset端子315〜315にSFQパルスを入力すると、全スイッチ回路がOFF状態となる。この場合、SFQパルスを信号入力端子910に入力しても出力端子911からSFQパルスは現れない。ここで、例えばスイッチ回路303のSET端子314にSFQパルスを入力すると、31psの遅延を伴い、SFQパルスが信号出力端子911に出力される。ここで一端、Reset端子315〜315にSFQパルスを入力し、全スイッチ回路をOFF状態にした後、別のスイッチ回路303のSET端子にSFQパルスを入力すると、今度は別のより長い遅延時間32psを伴ってSFQパルスが出力されることが分かる。よって、本回路は、SET端子にSFQパルスを選択的に入力することでON状態となるスイッチ回路を指定し、SFQパルスの伝播時間を1ps刻みで調整することができる。
<実施例3>
本発明で提案した単一磁束量子可変遅延回路において、最小可変幅の異なる2つの遅延回路を直列に接続して構成した場合の等価回路を図11に示す。本例では、可変幅の大きい可変遅延回路として実施例1で示したジョセフソン伝送線路で構成した可変遅延回路700を用い、可変幅の小さい可変遅延回路として実施例2で示したマイクロストリップラインで構成した可変遅延回路900を用いた。図11は、図7および図9で示した2つの可変回路の等価回路をブロック図に置き換えて示した。それぞれの可変遅延回路のスイッチ回路の個数は、実施例1および実施例2と同様に4とした。可変幅の大きい可変遅延回路では、隣り合う迂回路におけるジョセフソン伝送線路単位回路の個数差は2であり、4ps刻みで遅延時間を変化させることができる。一方、小遅延回路のスイッチ回路では、SFQパルスの伝播時間を1ps刻みで4段階調整するようにマイクロストリップラインの長さを調整した。
図12に回路シミュレーションによる動作波形を示す。本図に沿って、回路の動作を説明する。Reset端子315〜315にSFQパルスを入力すると、すべてのスイッチ回路がOFF状態となる。この場合、SFQパルスを信号入力端子1110に入力しても出力は現れない。ここで、可変遅延回路700のスイッチ回路303のSET端子314および可変遅延回路900のスイッチ回路303のSET端子314にSFQパルスを入力すると、約63psの遅延を伴い、SFQが出力端子1111に出力される。ここで一旦、Reset端子315〜315にSFQパルスを入力し、スイッチをOFF状態にした後、可変遅延回路700の別のスイッチ回路303のSET端子314および可変遅延回路900の別のスイッチ回路303のSET端子314にSFQパルスを入力すると、今度は別のより長い遅延時間72psを伴ってSFQパルスが出力されることが分かる。図14では、その他にON状態となるスイッチ回路の組み合わせを2種類示した。
本回路は、SET端子にSFQパルスを選択的に入力することでON状態となるスイッチ回路を指定し、SFQパルスの伝播時間を58ps〜74psの範囲内で、かつ1ps刻みで調整することができる。
<実施例4>
本発明で提案した単一磁束量子可変遅延回路において、実施例1の4つのスイッチ回路に対応する制御回路について説明する。図13Aに示すように、回路は4ビットシフトレジスタ回路1301と2つの遅延回路1302、1303および複数の分岐回路からなる。本例ではシフトレジスタ回路をラッチ回路の一つであるD2−FF回路1306〜1306で構成した場合を示す。
D2−FF回路は、図1Bに示すように1つのデータ入力(Input)、2つのトリガ入力(Control1、Control2)および2つの出力(Output1、Output2)を持つデータフリップフロップ回路である。Input端子よりSFQパルスを入力すると、回路内にSFQが保持される。その状態で、Control1端子またはControl2端子にSFQパルスを入力すると、その入力番号に応じた出力端子Output1またはOutput2にSFQパルスが出力され回路内のSFQは消失する。なお、回路内にSFQが保持されていない場合は、トリガ信号を入力してもSFQパルスは出力されない。
分岐回路は実施例1と同様にジョセフソン接合1つで構成されたSP回路である。また、遅延回路はジョセフソン伝送線路の単位回路5個程度を直列に接続して構成される。その遅延時間は数10ps程度を確保できればよく、精度は要求されない。
図14に示すタイムチャートに沿って、回路の動作を説明する。まず、回路の初期化のためReset端子1313からSFQパルスを入力する。このSFQパルスは、SP回路1304を通りながら、可変遅延回路700を構成するすべてのスイッチ回路のReset端子に供給され、これによりすべてのスイッチ回路は“OFF”状態となる。一方、SP回路1304から出力された別のSFQパルスはさらに遅延回路1303およびSP回路1305を経て、シフトレジスタ回路1301のダンプ端子1314に入力される。シフトレジスタ回路内において、ダンプ端子はすべてのD2−FF回路のControl2端子に接続されている。このため、ダンプ信号の入力によりすべてのD2−FF1306〜1306内のSFQ、つまりシフトレジスタ回路が保持していた内部状態がOutput2端子よりスイッチ回路に並列に出力される。シフトレジスタのダンプ動作により、可変遅延回路を構成するスイッチ回路の1つが“ON状態となり、対応する迂回路が選択される。図14に示す最初のダンプ信号では、2ビット目つまりD−FF回路1306からSFQパルスが出力され2ビット目のスイッチ回路のSet端子に供給される。これにより、スイッチ回路2のみがON状態となる。
また、SP回路1305から出力された別のSFQパルスは遅延回路1302を経て、シフトレジスタ回路のデータ入力端子1315に供給される。このデータ入力端子は、シフトレジスタ回路内において、第1ビット目のD2−FF回路1306のInput端子に接続されている。このため、データ入力によりシフトレジスタ回路の第1ビット目にSFQが保持される。一方、Shift端子1312は、シフトレジスタ回路内においてすべてのD2−FF回路のControl1端子に接続されている。また、各D2−FF回路のOutput1端子は、隣のD2−FF回路のInput端子に接続されている。このため、Shift信号を入力すると、各D2−FF回路に保持されているSFQパルスがOutput1端子を通じて隣接するD2−FFへ移動する。結果として、Shift端子に、”ON“状態とさせたいスイッチ回路のビット位置に合わせた個数ー1のSFQ信号を繰り返し入力することで、レジスタ内のSFQを第1ビット目から目的のビットまで移動させることができる。この情報は、新たにReset信号を入力することで、可変遅延回路へ反映させることができる。図14に示すタイムチャートでは、2つのSFQパルスをShift端子に入力しているため、Reset信号の入力でスイッチ回路3のみがON状態となる。
この制御回路を用いることで、スイッチ回路の個数に依存することなく制御線は2本に削減することが可能となる。実施例1に本制御回路を適用すると、8本の制御線は2本に削減できる。
<実施例5>
本発明で提案した単一磁束量子可変遅延回路において、実施例3で示した2つの可変遅延回路に対応する制御回路について説明する。図15に示すように、実施例4で示した2つの制御回路付き可変遅延回路13700、13900、2ビットシフトレジスタ回路1501、2つのスイッチ回路1507、1507、分岐回路1505、1504およびジョセフソン伝送線路による2つの遅延回路1502、1503からなる。本例におけるシフトレジスタは、実施例4と同様にD2−FF回路1506により構成される。分岐回路は実施例1と同様にジョセフソン接合1つで構成されたSP回路である。また、遅延回路はジョセフソン伝送線路の単位回路5個程度を直列に接続して構成される。その遅延時間は数10ps程度を確保できればよく、精度は要求されない。
回路の動作を図16に示すタイムチャートに沿って説明する。まず、Reset1端子1512へSFQパルスを入力することで、2つの制御回路付き可変遅延回路13700および13900にReset信号を供給する。この時点で各々の制御回路付き可変遅延回路は、個々のシフトレジスタ回路内の情報をスイッチ回路へダンプして、次の新たなShift信号を処理する準備を整える。次にReset2信号を入力する。Reset2端子1513から入力されたSFQパルスはSP回路1504を経て、可変スイッチ回路1507および1507のReset端子に供給され、すべてのスイッチ回路は“OFF”状態となる。
一方、SP回路1504から出力された別のSFQパルスはさらに遅延回路1503およびSP回路1505を経て、シフトレジスタ回路のダンプ端子1515に入力される。実施例4と同様に、ダンプ信号によりシフトレジスタ回路が保持していた内部状態がOutput2端子よりスイッチ回路に並列に出力される。この動作により、可変遅延回路を構成するスイッチ回路の1つが“ON状態となる。図16に示す最初のダンプ信号では、1ビット目つまりD−FF回路1506からSFQパルスが出力され1ビット目のスイッチ回路1507のSet端子に供給される。これにより、スイッチ回路1のみがON状態となる。
ここで、Shift信号として数個のSFQからなるパルス列をShift端子1517へ入力すると、Shift信号は”ON“状態となっているスイッチ回路1を経由して、そのスイッチ回路に接続されている制御回路付き可変遅延回路(ここでは13700)のみに供給される。この一連の動作により、複数個の制御回路付き可変遅延回路の中から1つを選択し、Shift信号を入力することができる。また、SP回路1505から出力された別のSFQパルスは遅延回路1502を経て、シフトレジスタ回路のデータ入力端子1516に供給される。この信号により、シフトレジスタ回路の第1ビット目つまりD−FF回路1506に”1“が記憶される。最後に、Address端子1514より、”ON“状態とさせたいスイッチ回路のビット位置に合わせた個数−1のSFQパルスを繰り返し入力することで、レジスタ内の”1“を移動させる。この情報は、新たなReset2信号を入力することでスイッチ回路へ反映させることができ、次のShift信号を供給する制御回路付き可変遅延回路を選択することができる。
図16に示すタイムチャートでは、1つのSFQパルスをAddress端子に入力しているため、Reset2信号の入力で今度はスイッチ回路2のみがON状態となり、制御回路付き可変遅延回路13900のみへShift信号を供給することができる。本例では、制御回路付き可変遅延回路13700が指定されたときにShift信号としてSFQパルス3個、制御回路付き可変遅延回路13900が指定されたときにShift信号としてSFQパルス2個を入力した場合を想定している。このため、可変遅延回路700ではスイッチ4、可変遅延回路900ではスイッチ3が選択され、所定の遅延時間が決定される。
この制御方式を用いることで、可変遅延回路の個数に依存することなく4本の制御線で複数の信号の伝播遅延時間制御し、各信号の入力タイミングを調整することが可能となる。
SFQ回路における論理ゲート間のデータ伝送を示すブロック図。 SFQ回路における論理ゲート間のデータ伝送を示すタイムチャート図。 ジョセフソン伝送線路の等価回路を示す図。 バイアス電流源の等価回路を示す図。 本願発明の単一磁束量子可変遅延回路のブロック図。 スイッチ回路を示す図。 本願発明の単一磁束量子可変遅延回路の直列接続図。 本願発明の単一磁束量子可変遅延回路の制御回路のブロック図。 本願発明の制御回路を伴う単一磁束量子可変遅延回路の複数を制御する回路のブロック図。 本願発明の第1の実施例における、単一磁束量子可変遅延回路の等価回路図。 スイッチ回路の等価回路図。 本願発明の第1の実施例で示す単一磁束量子可変遅延回路の回路シミュレーションによる動作波形を示す図。 本願発明の第2の実施例における、単一磁束量子可変遅延回路の等価回路図。 本願発明の第2の実施例で示す単一磁束量子可変遅延回路の回路シミュレーションによる動作波形を示す図。 本願発明の第3の実施例における、単一磁束量子可変遅延回路のブロック図。 図7Aで用いる記号の説明図。 本願発明の第3の実施例で示す単一磁束量子可変遅延回路の回路シミュレーションによる動作波形を示す図。 本願発明の第4の実施例における、単一磁束量子可変遅延回路の制御回路のブロック図。 D2−FF回路の等価回路図。 本願発明の第4の実施例における、単一磁束量子可変遅延回路の制御回路のフローチャート図。 本願発明の第5の実施例における、単一磁束量子可変遅延回路の制御回路のブロック図。 本願発明の第5の実施例における、単一磁束量子可変遅延回路の制御回路のフローチャート図。
符号の説明
101:送信側論理ゲート、102:受信側論理ゲート、103:クロック信号用伝送線、104:データ信号用伝送線、201:ジョセフソン接合、202:バイアス電流源、203:インダクタ、204:単位回路、205:電圧源、206:バイアス抵抗、300:可変遅延回路、301:分岐回路、302:伝送線路、303:スイッチ回路、304:合流回路、310:入力端子、311:出力端子、312:入力端子、313:出力端子、314:Set端子、315:Reset端子、401:可変遅延回路、402:可変遅延回路、405:遅延回路、406:遅延回路、407:遅延回路、408:遅延回路、410:入力端子、411:出力端子、500:制御回路付き可変遅延回路、501:Nビットシフトレジスタ回路、502:分岐回路、503:スイッチ回路、504:遅延回路、505:分岐回路、506:分岐回路、507:遅延回路、601:Mビットシフトレジスタ回路、602:分岐回路、603:分岐回路、604:遅延回路、605:分岐回路、606:分岐回路、607:遅延回路、608:スイッチ回路、609:分岐回路、610:分岐回路、620:Reset1端子、621:Shift端子、622:Reset2端子、623:Address端子、700:可変遅延回路、701:SP回路、702:ジョセフソン伝送線路単位回路、704:CB回路、710:入力端子、711:出力端子、900:可変遅延回路、901:SP回路、902:マイクロストリップライン、904:CB回路、905:ジョセフソン伝送線路、907:ジョセフソン伝送線路、908:ジョセフソン伝送線路単位回路、909:インピーダンス整合用抵抗、910:入力端子、911:出力端子、1110:入力端子、1111:出力端子、1301:4ビットシフトレジスタ回路、1302:遅延回路、1303:遅延回路、1304:SP回路、1305:SP回路、1306:D2−FF回路、1310:入力端子、1311:出力端子、1312:Shift端子、1313:Reset端子、1314:シフトレジスタ回路ダンプ端子、1315:シフトレジスタ回路データ入力端子、1501:2ビットシフトレジスタ回路、1502:遅延回路、1503:遅延回路、1504:SP回路、1505:SP回路、1506:D2−FF回路、1507:スイッチ回路、1510:入力端子、1511:出力端子、1512:Reset1端子、1513:Reset2端子、1514:Shift端子、1515:シフトレジスタ回路ダンプ端子、1516:シフトレジスタ回路データ入力端子。

Claims (6)

  1. 1個の入力端子とN個(N=2、3、・・・)の出力端子をもち前記入力端子より入力された単一磁束量子をN個の単一磁束量子に複製してそれぞれ前記N個の出力端子より1出力端子につき1個の単一磁束量子を出力する1個の分岐回路と、
    N個の入力端子と1個の出力端子をもち該N個の入力端子のうちいずれか1つの入力端子に入力された単一磁束量子を該出力端子に出力する1個の合流回路と、
    単一磁束量子を伝播させるN本の伝送線路と、
    1つの入力端子と1つの出力端子を備え1つの単一磁束量子の伝播と遮断とを選択できるN個のスイッチ回路とを備え、
    前記分岐回路の1つの出力端子に前記伝送線路の一端が接続され、前記伝送線路の他端に前記スイッチ回路の入力端子が接続され、前記スイッチ回路の出力端子に前記合流回路の入力端子の1つが接続され、
    前記N個のスイッチ回路のうち、選択された1つのスイッチ回路が単一磁束量子を伝播するように制御され、その他N−1個のスイッチ回路が単一磁束量子を遮断するように制御され、
    前記選択された1つのスイッチ回路を経由して、前記分岐回路の入力端子から前記合流回路の出力端子までの経路を伝播する単一磁束量子の遅延時間が、前記スイッチ回路の選択に応じて決定される前記経路ごとに異なることを特徴とする単一磁束量子可変遅延回路。
  2. 前記分岐回路は、1つの入力端子と2個の出力端子をもち前記入力端子より入力された単一磁束量子を2個の単一磁束量子に複製してそれぞれ前記2個の出力端子より1出力端子につき1個の単一磁束量子を出力する第1乃至第Nのスプリッタ回路をN個備え、
    前記第1のスプリッタ回路の入力端子を前記分岐回路の入力端子とし、前記第1のスプリッタ回路の1つの出力端子と前記第2のスプリッタの入力端子とを第1のジョセフソン伝送線路で接続し、前記第2のスプリッタ回路の1つの出力端子と前記第3のスプリッタの入力端子とを第2のジョセフソン伝送線路で接続する構成を前記第Nのスプリッタ回路まで繰り返した上で、前記第1から第N−1までのスプリッタ回路の他方の出力端子と前記第Nのスプリッタ回路の1つの出力端子を前記分岐回路の出力端子とした上で、
    前記合流回路は、2個の入力端子と1個の出力端子をもち該2個の入力端子のうちいずれか1つの入力端子に入力された単一磁束量子を該出力端子に出力する第1乃至第Nのコンフルエンスバッファ回路をN個備え、
    前記第1のコンフルエンスバッファ回路の出力端子を前記合流回路の出力端子とし、前記第1のコンフルエンスバッファ回路の1つの入力端子と前記第2のコンフルエンスバッファ回路の出力端子とを第N+1のジョセフソン伝送線路で接続し、前記第2のコンフルエンスバッファ回路の1つの入力端子と前記第3のコンフルエンスバッファ回路の出力端子とを第N+2のジョセフソン伝送線路で接続する構成を前記第Nのコンフルエンスバッファ回路まで繰り返した上で、前記第1から第N−1までのコンフルエンスバッファ回路の他方の入力端子と前記第Nのコンフルエンスバッファ回路の1つの入力端子を前記合流回路の入力端子とした上で、前記伝送線路はジョセフソン伝送線路であることを特徴とする請求項1記載の単一磁束量子可変遅延回路。
  3. 前記分岐回路は、1つの入力端子と2個の出力端子をもち前記入力端子より入力された単一磁束量子を2個の単一磁束量子に複製してそれぞれ前記2個の出力端子より1出力端子につき1個の単一磁束量子を出力する第1乃至第N−1のスプリッタ回路をN−1個備え、
    前記第1のスプリッタ回路の入力端子を前記分岐回路の入力端子とし、前記第1のスプリッタ回路の2つの出力端子をそれぞれ第2および第3のスプリッタの入力端子に第1および第2のジョセフソン伝送線路で接続し、さらに前記第2のスプリッタ回路の2つの出力端子と第4および第5のスプリッタ回路の入力端子とを第4、第5のジョセフソン伝送線路で接続する構造を繰り返して得られる2分木構造の末端のスプリッタ回路の出力端子を前記分岐回路の出力端子とした上で、
    前記合流回路は、2個の入力端子と1個の出力端子をもち該2個の入力端子のうちいずれか1つの入力端子に入力された単一磁束量子を該出力端子に出力する第1乃至第N−1のコンフルエンスバッファ回路をN−1個備え、
    前記第1のコンフルエンスバッファ回路の出力端子を前記合流回路の出力端子とし、前記第1のコンフルエンスバッファ回路の2つの入力端子をそれぞれ第2および第3のコンフルエンスバッファ回路の出力端子と第N+1、第N+2のジョセフソン伝送線路で接続し、さらに前記第2のコンフルエンスバッファ回路の2つの入力端子と第4、第5のコンフルエンスバッファ回路の出力端子とを第N+4、第N+5のジョセフソン伝送線路で接続する構造を繰り返して得られる2分木構造の末端のコンフルエンスバッファ回路の入力端子を前記合流回路の入力端子とした上で、前記伝送線路はマイクロストリップラインであることを特徴とする請求項1記載の単一磁束量子可変遅延回路。
  4. 前記単一磁束量子可変遅延回路を有する第1および第2の単位回路を備え、
    前記第1の単位回路の出力端子と前記第2の単位回路の入力端子とが第1のジョセフソン伝送線路で接続され、前記第1の単位回路において前記スイッチ回路の選択により設定できる単一磁束量子の伝播時間の可変範囲が、前記第2の単位回路において前記スイッチ回路の選択で設定できる単一磁束量子の伝播時間の刻み幅より大きいことを特徴とする請求項1記載の単一磁束量子可変遅延回路。
  5. 1個の入力端子とN個(N=2、3、・・・)の出力端子をもち前記入力端子より入力された単一磁束量子をN個の単一磁束量子に複製してそれぞれ前記N個の出力端子より1出力端子につき1個の単一磁束量子を出力する1個の分岐回路と、
    N個の入力端子と1個の出力端子をもち該N個の入力端子のうちいずれか1つの入力端子に入力された単一磁束量子を該出力端子に出力する1個の合流回路と、
    単一磁束量子を伝播させるN本の伝送線路と、
    1つ入力端子と1つの出力端子を備え1つの単一磁束量子の伝播と遮断とを選択できるN個のスイッチ回路とを備え、
    前記分岐回路の1つの出力端子に前記伝送線路の一端が接続され、前記伝送線路の他端と前記スイッチ回路の入力端子が接続され、前記スイッチ回路の出力端子に前記合流回路の入力端子の1つが接続され、
    前記N個のスイッチ回路のうち、選択された1つのスイッチ回路が単一磁束量子を伝播するように制御され、その他N−1個のスイッチ回路が単一磁束量子を遮断するように制御され、
    前記選択された1つのスイッチ回路を経由して、前記分岐回路の入力端子から前記合流回路の出力端子までの経路を伝播する単一磁束量子の遅延時間が、前記スイッチ回路の選択に応じて決定される前記経路ごとに異なり、
    前記N個のスイッチ回路は、それぞれがSET端子とRESET端子を有し、
    前記SET端子へ単一磁束量子を入力することで単一磁束量子を伝播し、
    前記RESET端子へ単一磁束量子を入力することで単一磁束量子を遮断する機能を持ち、
    前記N個のスイッチ回路が有するRESET端子に接続されたN個の出力端子を有する第2の分岐回路と、
    前記N個のスイッチ回路のSET端子に接続され、N個のデータ出力端子を有する第1のダンプ機能付きNビットシフトレジスタと、
    前記第2の分岐回路の入力端子に、2つの出力端子のうち一方が接続された第3の分岐回路と、
    前記第3の分岐回路の2つの出力端子のうち他方を第1の遅延回路を介してその入力端子に接続された第4の分岐回路と、を有し
    前記分岐回路の2つの出力端子のうち一方の出力端子を前記Nビットシフトレジスタのダンプ端子に接続し、前記分岐回路の2つの出力端子のうち他方の出力端子を第2の遅延回路を介して前記シフトレジスタのデータ入力端子に接続し、前記NビットシフトレジスタのSHIFT端子により前記N個のスイッチ回路のうち一つを伝播状態に指定することを特徴とする制御回路付き単一磁束量子可変遅延回路。
  6. 請求項5記載の制御回路付き単一磁束量子可変遅延回路がM個と、
    第1のダンプ機能付きMビットシフトレジスタと、
    M個の前記スイッチ回路とを備え、
    前記M個のスイッチ回路のRESET端子と前記第1の分岐回路のM個の出力端子とを接続し、前記のダンプ機能付きMビットシフトレジスタのM個のデータ出力端子と前記M個のスイッチ回路のSET端子とをそれぞれ接続し、第2の分岐回路の2つの出力端子のうち一方を前記第1の分岐回路の入力端子に接続し、前記第2の分岐回路の2つの出力端子のうち他方を前記第1の遅延回路を介して前記第3の分岐回路の入力端子に接続し、前記分岐回路の2つの出力端子のうち一方の出力端子を前記Mビットシフトレジスタのダンプ端子に接続し、前記分岐回路の2つの出力端子のうち他方の出力端子を前記第2の遅延回路を介して前記Mビットシフトレジスタのデータ入力端子に接続し、前記第4の分岐回路のM個の出力端子と前記M個のスイッチ回路の入力端子を接続し、前記M個のスイッチ回路の出力端子を前記M個の制御回路付き単一磁束量子可変遅延回路のSHIFT端子とをそれぞれ接続し、前記M個の制御回路付き単一磁束量子可変遅延回路の前記第3の分岐回路の入力端子と第5の分岐回路のM個の出力端子とをそれぞれ接続したことを特徴する請求項5記載の制御回路つき単一磁束量子可変遅延回路。
JP2007152570A 2007-06-08 2007-06-08 単一磁束量子可変遅延回路 Expired - Fee Related JP4402136B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152570A JP4402136B2 (ja) 2007-06-08 2007-06-08 単一磁束量子可変遅延回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152570A JP4402136B2 (ja) 2007-06-08 2007-06-08 単一磁束量子可変遅延回路

Publications (2)

Publication Number Publication Date
JP2008306538A true JP2008306538A (ja) 2008-12-18
JP4402136B2 JP4402136B2 (ja) 2010-01-20

Family

ID=40234845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152570A Expired - Fee Related JP4402136B2 (ja) 2007-06-08 2007-06-08 単一磁束量子可変遅延回路

Country Status (1)

Country Link
JP (1) JP4402136B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152238A (ja) * 2015-02-16 2016-08-22 三菱電機株式会社 電力用半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11687148B1 (en) 2022-04-26 2023-06-27 International Business Machines Corporation Stacked, reconfigurable co-regulation of processing units for ultra-wide DVFS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016152238A (ja) * 2015-02-16 2016-08-22 三菱電機株式会社 電力用半導体装置

Also Published As

Publication number Publication date
JP4402136B2 (ja) 2010-01-20

Similar Documents

Publication Publication Date Title
US7772871B2 (en) Method and apparatus for high density superconductor circuit
Jabbari et al. Splitter trees in single flux quantum circuits
JP2002374152A (ja) 超電導単一磁束量子回路
CN111903060A (zh) 具有经由感应耦合而分配的时钟信号的超导集成电路
KR20010095133A (ko) 디지털 위상 제어회로
Krylov et al. Design for testability of SFQ circuits
JP2020524332A (ja) オンチップ・タイミング不確実性測定の分解能を増大させるシステムおよび方法
US6304122B1 (en) Low power LSSD flip flops and a flushable single clock splitter for flip flops
US6285229B1 (en) Digital delay line with low insertion delay
US7750664B2 (en) Digital programmable phase generator
KR20000034914A (ko) 반도체 집적 회로 장치
JP4402136B2 (ja) 単一磁束量子可変遅延回路
US7120214B2 (en) Synchronous signal transfer and processing device
US20230205257A1 (en) Asynchronous asic
Kawaguchi et al. Demonstration of an 8-bit SFQ carry look-ahead adder using clockless logic cells
Hashimoto et al. Implementation of a 4/spl times/4 switch with passive interconnects
Hashimoto et al. Design and investigation of gate-to-gate passive interconnections for SFQ logic circuits
Kameda et al. High-speed demonstration of single-flux-quantum cross-bar switch up to 50 GHz
Bautista et al. Superconducting shuttle-flux shift register for race logic and its applications
JP3435336B2 (ja) クロック同期遅延制御回路及びクロック同期遅延制御方法
US20070075752A1 (en) Digital programmable frequency divider
Miller et al. A single-flux-quantum demultiplexer
JPH11261388A (ja) 可変遅延回路
JP2002135111A (ja) 超伝導回路及び超伝導回路システム
Datta et al. A High Performance and Robust FIFO Synchronizer-Interface for Crossing Clock Domains in SFQ Logic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees