JP2008306026A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
JP2008306026A
JP2008306026A JP2007152495A JP2007152495A JP2008306026A JP 2008306026 A JP2008306026 A JP 2008306026A JP 2007152495 A JP2007152495 A JP 2007152495A JP 2007152495 A JP2007152495 A JP 2007152495A JP 2008306026 A JP2008306026 A JP 2008306026A
Authority
JP
Japan
Prior art keywords
insulating film
gan
heat treatment
semiconductor device
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007152495A
Other languages
Japanese (ja)
Inventor
Hitoshi Ikumatsu
均 生松
Shinko Nishi
眞弘 西
Tsutomu Komatani
務 駒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Device Innovations Inc
Original Assignee
Sumitomo Electric Device Innovations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Device Innovations Inc filed Critical Sumitomo Electric Device Innovations Inc
Priority to JP2007152495A priority Critical patent/JP2008306026A/en
Publication of JP2008306026A publication Critical patent/JP2008306026A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress current collapse and peeling and floating of an insulating film. <P>SOLUTION: The method of manufacturing a semiconductor device performs heat treatment for forming ohmic electrodes 17 and 18 on a GaN semiconductor layer 16. The heat treatment is performed while the side walls of the ohmic electrodes 17 and 18 are away from a side wall of an insulating film 24 provided on the GaN semiconductor layer 16. The invention suppresses current collapse and peeling and floating of the insulating film. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は半導体装置の製造方法に関し、特に、GaとNとを含む化合物半導体層を有する層上にオーミック電極を形成する工程及び熱処理する工程を有する半導体装置の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a semiconductor device including a step of forming an ohmic electrode on a layer having a compound semiconductor layer containing Ga and N and a step of heat treatment.

Ga(ガリウム)とN(窒素)とを含む化合物半導体(GaN系半導体)層を用いた半導体装置、例えばHEMT(High Electron Mobility Transistor)等のFET(Field Effect Transistor)は、携帯電話基地局用増幅器などの高周波数かつ高出力で動作する高周波高出力増幅用素子として注目されている。GaN系半導体としては、例えば、窒化ガリウム(GaN)並びにGaNと窒化アルミニウム(AlN)または窒化インジウム(InN)との混晶であるAlGaNまたはInGaN等の半導体がある。GaN系半導体を用いたFET(以下、GaN系FET)においては、より高性能、高信頼性を実現するための技術開発が進められている。   A semiconductor device using a compound semiconductor (GaN-based semiconductor) layer containing Ga (gallium) and N (nitrogen), for example, an FET (Field Effect Transistor) such as a HEMT (High Electron Mobility Transistor) is an amplifier for a mobile phone base station. As a high-frequency high-power amplifying element that operates at a high frequency and high power, such as Examples of the GaN-based semiconductor include gallium nitride (GaN) and a semiconductor such as AlGaN or InGaN which is a mixed crystal of GaN and aluminum nitride (AlN) or indium nitride (InN). In FETs using GaN-based semiconductors (hereinafter referred to as GaN-based FETs), technological development for realizing higher performance and higher reliability is being promoted.

図1(a)から図1(d)を用い従来例に係るGaN系FETの製造方法を説明する。図1(a)のように、サファイア基板10上にGaN電子走行層12及びAlGaN電子供給層14からなるGaN系半導体層16をMOCVD(Metal Organic Chemical Vapor Deposition)法を用い形成する。図1(b)のように、GaN系半導体層16上にソース電極17及びドレイン電極1となるオーミック電極を形成する。図1(c)を参照に、ソース電極17及びドレイン電極18をGaN系半導体層16と合金化するための熱処理を行う。図1(d)を参照に、GaN系半導体層16上にゲート電極を形成する。
特開平10−335637号公報
A method for manufacturing a GaN-based FET according to a conventional example will be described with reference to FIGS. As shown in FIG. 1A, a GaN-based semiconductor layer 16 including a GaN electron transit layer 12 and an AlGaN electron supply layer 14 is formed on a sapphire substrate 10 by using a MOCVD (Metal Organic Chemical Vapor Deposition) method. As shown in FIG. 1B, ohmic electrodes to be the source electrode 17 and the drain electrode 1 are formed on the GaN-based semiconductor layer 16. Referring to FIG. 1C, a heat treatment for alloying the source electrode 17 and the drain electrode 18 with the GaN-based semiconductor layer 16 is performed. Referring to FIG. 1D, a gate electrode is formed on the GaN-based semiconductor layer 16.
Japanese Patent Laid-Open No. 10-335637

図1(d)の製造工程後、図示しない表面保護膜(後述する図5(c)の保護膜26、例えば窒化シリコン膜など)が形成される。以上のように、従来のGaN系半導体装置のオーミック電極の形成工程は、表面保護膜(窒化シリコン膜など)が被覆されない状態で、オーミック化のための熱処理(図1(c)を参照)が行われている。この理由は、熱処理温度と表面保護膜の形成温度との関係及びGaN系半導体特有の性質に起因している。以下にこの理由を説明する。   After the manufacturing process shown in FIG. 1D, a surface protective film (not shown) (a protective film 26 shown in FIG. 5C described later, for example, a silicon nitride film) is formed. As described above, in the conventional ohmic electrode forming process of the GaN-based semiconductor device, the heat treatment for ohmicization (see FIG. 1C) is performed in a state where the surface protective film (silicon nitride film or the like) is not covered. Has been done. The reason for this is due to the relationship between the heat treatment temperature and the surface protection film formation temperature and the properties unique to the GaN-based semiconductor. The reason for this will be described below.

GaN系半導体層にオーミック電極を形成するには、比較的高温の熱処理が必要である(おおむね550℃以上)。一方、表面保護膜として一般に利用される窒化シリコン膜の成長温度は320℃以下である。このように、表面保護膜の形成温度の方が、オーミック電極の熱処理温度よりも低いため、従来は、高温プロセスであるオーミック電極の熱処理の後に表面保護膜が形成されていた。高温の熱処理プロセスを先に行う理由は、熱処理プロセスにより表面保護膜に熱ストレスを与えないためである。   In order to form an ohmic electrode on the GaN-based semiconductor layer, a relatively high temperature heat treatment is required (generally 550 ° C. or higher). On the other hand, the growth temperature of a silicon nitride film generally used as a surface protective film is 320 ° C. or lower. Thus, since the formation temperature of the surface protective film is lower than the heat treatment temperature of the ohmic electrode, conventionally, the surface protective film has been formed after the heat treatment of the ohmic electrode which is a high temperature process. The reason why the high temperature heat treatment process is performed first is that the heat treatment process does not apply thermal stress to the surface protective film.

上記GaN系FETの製造方法によれば、図1(c)のように、オーミック電極の熱処理において、GaN系半導体層16の表面が露出することになるため、一見、GaN系半導体層16は熱によるダメージを受ける可能性が懸念される。しかし、GaN系半導体層16は1000℃前後の高温で成膜される材料である。これにより、GaN系半導体層16の特有の性質として、耐熱性がある。このため、これまで、GaN系半導体層16上のオーミック電極の熱処理において、GaN系半導体層16表面を保護する必要性は認識されてこなかった。   According to the GaN-based FET manufacturing method, as shown in FIG. 1C, the surface of the GaN-based semiconductor layer 16 is exposed in the heat treatment of the ohmic electrode. There is concern about the possibility of receiving damage. However, the GaN-based semiconductor layer 16 is a material formed at a high temperature of about 1000 ° C. As a result, the unique property of the GaN-based semiconductor layer 16 is heat resistance. For this reason, until now, the necessity of protecting the surface of the GaN-based semiconductor layer 16 has not been recognized in the heat treatment of the ohmic electrode on the GaN-based semiconductor layer 16.

一方、従来例に係るGaN系FETにおいては、電流コラプス等と呼ばれる課題がある。電流コラプスとは、FETのI−V(ドレイン電流−ドレイン電圧)特性において、電圧を増加させたときに、所定の電圧以上となるとドレイン電流が減少する現象である。   On the other hand, the conventional GaN-based FET has a problem called current collapse. The current collapse is a phenomenon in which drain current decreases when the voltage becomes higher than a predetermined voltage when the voltage is increased in the IV (drain current-drain voltage) characteristics of the FET.

本発明は、上記課題に鑑みなされたものであり、GaN系FETの電流コラプスを抑制することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to suppress the current collapse of a GaN-based FET.

上記課題を解決するため、本発明に係る半導体装置の製造方法は、GaN系半導体層に対するオーミック電極形成のための熱処理を実施する半導体装置の製造方法において、前記熱処理は、前記オーミック電極の側壁が、前記GaN系半導体層上に設けられた絶縁膜の側壁と離間した状態で実施される。本発明によれば、GaN系半導体層の表面が絶縁膜に覆われた状態で、熱処理を行う。よって、電流コラプスを抑制することができる。さらに、この熱処理は、オーミック電極の側壁と絶縁膜の側壁とが離間した状態でなされる。よって、熱ストレスに起因した絶縁膜の剥がれや浮きを抑制することができる。   In order to solve the above-described problems, a method for manufacturing a semiconductor device according to the present invention is a method for manufacturing a semiconductor device in which a heat treatment for forming an ohmic electrode on a GaN-based semiconductor layer is performed. This is performed in a state of being separated from the side wall of the insulating film provided on the GaN-based semiconductor layer. According to the present invention, the heat treatment is performed in a state where the surface of the GaN-based semiconductor layer is covered with the insulating film. Therefore, current collapse can be suppressed. Further, this heat treatment is performed in a state where the side wall of the ohmic electrode and the side wall of the insulating film are separated from each other. Therefore, peeling and floating of the insulating film due to thermal stress can be suppressed.

本発明に係る半導体装置の製造方法は、GaN系半導体層上に開口を有する絶縁膜を形成する工程と、前記GaN系半導体層上の前記開口を覆い、前記絶縁膜上に重なる領域を有するようにオーミック電極を形成する工程と、前記オーミック電極を熱処理する工程と、をこの順に、有する。本発明によれば、GaN系半導体層の表面が絶縁膜に覆われた状態で、熱処理を行う。よって、電流コラプスを抑制することができる。また、熱ストレスに起因した絶縁膜の剥がれや浮きを抑制することができる。   The method of manufacturing a semiconductor device according to the present invention includes a step of forming an insulating film having an opening on a GaN-based semiconductor layer, and a region that covers the opening on the GaN-based semiconductor layer and overlaps the insulating film. In this order, an ohmic electrode is formed, and the ohmic electrode is heat-treated in this order. According to the present invention, the heat treatment is performed in a state where the surface of the GaN-based semiconductor layer is covered with the insulating film. Therefore, current collapse can be suppressed. In addition, peeling and floating of the insulating film due to thermal stress can be suppressed.

上記構成において、前記絶縁膜は窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜及び窒化アルミニウム膜のいずれかである構成とすることができる。また、上記構成において、前記オーミック電極を形成する工程は、前記絶縁膜を形成する工程の後実施される構成とすることができる。   In the above structure, the insulating film may be any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, and an aluminum nitride film. Moreover, the said structure WHEREIN: The process of forming the said ohmic electrode can be made into the structure implemented after the process of forming the said insulating film.

上記構成において、前記半導体装置はFETであり、前記オーミック電極はソース電極及びドレイン電極である構成とすることができる。この構成によれば、電流コラプスを抑制することができる。   In the above structure, the semiconductor device may be an FET, and the ohmic electrode may be a source electrode and a drain electrode. According to this configuration, current collapse can be suppressed.

上記構成において、前記オーミック電極は、Alを含有している構成とすることができる。また、上記構成において、前記熱処理の温度は、前記絶縁膜の成長温度よりも高い構成とすることができる。さらに、上記構成において、前記熱処理の温度は、550℃以上である構成とすることができる。さらに、上記構成において、前記絶縁膜の成長温度は、320℃以下である構成とすることができる。   The said structure WHEREIN: The said ohmic electrode can be set as the structure containing Al. In the above structure, the heat treatment temperature may be higher than the growth temperature of the insulating film. Furthermore, the said structure WHEREIN: The temperature of the said heat processing can be set as the structure which is 550 degreeC or more. Further, in the above structure, the growth temperature of the insulating film may be 320 ° C. or lower.

本発明によれば、GaN系半導体層の表面が絶縁膜に覆われた状態で、熱処理を行う。よって、電流コラプスを抑制することができる。さらに、オーミック電極の側壁と絶縁膜側壁とが離間した状態で熱処理される。よって、熱ストレスに起因した絶縁膜の剥がれや浮きを抑制しつつ電流コラプスも抑制することができる。   According to the present invention, the heat treatment is performed in a state where the surface of the GaN-based semiconductor layer is covered with the insulating film. Therefore, current collapse can be suppressed. Further, the heat treatment is performed in a state where the side wall of the ohmic electrode and the side wall of the insulating film are separated from each other. Therefore, current collapse can be suppressed while suppressing peeling and floating of the insulating film due to thermal stress.

まず、本発明者らは電流コラプスを抑制するための手法を検討した。その結果、GaN系半導体層の表面を熱処理時に保護することが効果的であることがわかった。以下、図2(a)から図2(c)を用い、検討のため用いた比較例に係るGaN系FETの製造方法について説明する。   First, the present inventors examined a method for suppressing current collapse. As a result, it has been found that it is effective to protect the surface of the GaN-based semiconductor layer during heat treatment. Hereinafter, a method for manufacturing a GaN-based FET according to a comparative example used for the study will be described with reference to FIGS.

本比較例では、従来例の図1(b)までの工程を行った後、図2(a)のように、ソース電極17、ドレイン電極18及びGaN系半導体層16を覆って窒化シリコンからなる絶縁膜22をプラズマCVD法を用い形成する。次いで、図2(b)のように、熱処理を行った後、図2(c)を参照に、絶縁膜22のゲート電極を形成すべき領域を除去し、ゲート電極20を形成する。   In this comparative example, after performing the steps up to FIG. 1B of the conventional example, the source electrode 17, the drain electrode 18 and the GaN-based semiconductor layer 16 are covered with silicon nitride as shown in FIG. 2A. The insulating film 22 is formed using a plasma CVD method. Next, as shown in FIG. 2B, after performing heat treatment, referring to FIG. 2C, the region of the insulating film 22 where the gate electrode is to be formed is removed, and the gate electrode 20 is formed.

図3(a)及び図3(b)は、従来例及び比較例における電流コラプスの抑制効果を説明するためのI−V(ドレイン電流Ids−ドレイン電圧Vds)特性を示す図である。図3(a)は、図1(c)のようにGaN系半導体層16が露出した状態で熱処理(オーミック電極のオーミック化のための熱処理)を施した場合、図3(b)は、図2(b)のようにGaN系半導体層16の表面に絶縁膜22を形成した状態で、熱処理を施した場合の図である。図3(a)及び図3(b)において、実線はソースドレイン電圧が10V、波線は20V、点線は50Vの場合におけるI−V特性を示している。ゲート電圧は2から−1Vまで1Vステップで印加している。   FIG. 3A and FIG. 3B are diagrams showing IV (drain current Ids−drain voltage Vds) characteristics for explaining the current collapse suppression effect in the conventional example and the comparative example. FIG. 3A shows a case where a heat treatment (heat treatment for forming an ohmic electrode) is performed with the GaN-based semiconductor layer 16 exposed as shown in FIG. It is a figure at the time of heat-processing in the state which formed the insulating film 22 in the surface of the GaN-type semiconductor layer 16 like 2 (b). 3A and 3B, the solid line indicates the IV characteristics when the source-drain voltage is 10V, the broken line is 20V, and the dotted line is 50V. The gate voltage is applied in a 1V step from 2 to -1V.

図3(a)から明らかなように、GaN系半導体層16表面に絶縁膜を形成せずに熱処理を実施すると、ソースドレイン電圧Vdsが10Vの場合はドレイン電流Idsの立ち上がりは急峻である。ソースドレイン電圧Vdsが20V及び50Vの場合は、ドレイン電流Idsの立ち上がりが低くなっている。すなわち、ソースドレイン電圧Vdsを高電圧まで印加すると、低電圧側で十分なソースドレイン電流Idsが得られない(つまり電流コラプスが生じている)。   As apparent from FIG. 3A, when the heat treatment is performed without forming an insulating film on the surface of the GaN-based semiconductor layer 16, the rise of the drain current Ids is steep when the source-drain voltage Vds is 10V. When the source drain voltage Vds is 20V and 50V, the rise of the drain current Ids is low. That is, when the source / drain voltage Vds is applied to a high voltage, a sufficient source / drain current Ids cannot be obtained on the low voltage side (that is, current collapse occurs).

一方、図3(b)を参照にすれば明らかなように、GaN系半導体層16表面に絶縁膜22を形成した状態で熱処理が行われると、ソースドレイン電圧Vdsが50Vまで印加される場合であっても低電圧側のドレイン電流Idsはソースドレイン電圧Vdsが10V、20Vのときのドレイン電流Idsと近似している(つまり電流コラプスが抑制されている)。   On the other hand, as apparent from FIG. 3B, when the heat treatment is performed with the insulating film 22 formed on the surface of the GaN-based semiconductor layer 16, the source / drain voltage Vds is applied up to 50V. Even in this case, the drain current Ids on the low voltage side is approximate to the drain current Ids when the source / drain voltage Vds is 10 V or 20 V (that is, current collapse is suppressed).

なお、前述のように高温に耐性のあるGaN系半導体層16においては、例えばGaAsを熱処理した際に生じるAs抜けなどの、熱処理に起因した元素の大量離脱は考え難く、図3(a)および図3(b)で示したように、絶縁膜22を被覆した状態で熱処理することにより電流コラプスが抑制される理由は明らかではない。   As described above, in the GaN-based semiconductor layer 16 that is resistant to high temperatures, it is difficult to think of a large amount of element detachment due to heat treatment such as loss of As that occurs when GaAs is heat-treated. As shown in FIG. 3B, the reason why the current collapse is suppressed by performing the heat treatment while covering the insulating film 22 is not clear.

しかしながら、比較例においては、図2(b)のように、熱処理の際、ソース電極17及びドレイン電極18と絶縁膜22との熱膨張係数の差に起因し、ソース電極17及びドレイン電極18と絶縁膜22との不連続界面Aにおいて熱応力が発生する。これにより、絶縁膜22がGaN系半導体層16から剥がれたり、浮いたりしてしまうという課題がある。   However, in the comparative example, as shown in FIG. 2B, due to the difference in thermal expansion coefficients between the source electrode 17 and the drain electrode 18 and the insulating film 22 during the heat treatment, Thermal stress is generated at the discontinuous interface A with the insulating film 22. As a result, there is a problem that the insulating film 22 is peeled off or floated from the GaN-based semiconductor layer 16.

このような、絶縁膜22の剥がれや浮きに対しては、単純に絶縁膜22を除去して、再度保護膜を形成すれば解消されるものである。しかし、絶縁膜22を除去しようとすると、オーミック電極等がダメージを受けてしまう。特に、GaN系半導体装置においてよく用いられるAl(アルミニウム)を含有するオーミック電極においては、絶縁膜22の除去工程においてAlが損傷を受け易い。本発明者は以上のような知見から本発明をなしたものである。以下に本発明の実施例について説明する。   Such peeling or floating of the insulating film 22 can be eliminated by simply removing the insulating film 22 and forming a protective film again. However, if the insulating film 22 is to be removed, the ohmic electrode or the like is damaged. In particular, in an ohmic electrode containing Al (aluminum) often used in a GaN-based semiconductor device, Al is easily damaged in the process of removing the insulating film 22. The present inventor has made the present invention from the above findings. Examples of the present invention will be described below.

図4(a)から図5(c)を用い、実施例1に係るGaN系FETの製造方法を説明する。従来例の図1(a)までの工程を行った後、図4(a)のように、GaN系半導体層16上に膜厚が例えば20nmから80nmの窒化シリコンからなる絶縁膜24をプラズマCVD法を用い形成する。絶縁膜24の成長温度は290℃から320℃が好ましく、例えば310℃とする。成膜ガスは、SiHまたはSiとNH+Nとを使用する。図4(b)のように、絶縁膜24上に感光性の異なる2層のフォトレジスト層を形成し、露光現像する。これにより、フォトレジスト層50にオーバーハング形状の開口52を形成する。図4(c)のように、フォトレジスト層50をマスクに絶縁膜24をドライエッチングする。このとき、エッチングガスとしてSF、CHFの混合ガスを用い絶縁膜24を等方性エッチングする。これにより、絶縁膜24にフォトレジスト層50の開口52の下部で規定される開口54が形成される。 A method for manufacturing a GaN-based FET according to Example 1 will be described with reference to FIGS. After performing the steps up to FIG. 1A of the conventional example, as shown in FIG. 4A, an insulating film 24 made of silicon nitride having a thickness of, for example, 20 nm to 80 nm is formed on the GaN-based semiconductor layer 16 by plasma CVD. Form using the method. The growth temperature of the insulating film 24 is preferably 290 ° C. to 320 ° C., for example, 310 ° C. Deposition gas, using a SiH 4 or Si 2 H 6 and NH 3 + N 2. As shown in FIG. 4B, two photoresist layers having different photosensitivity are formed on the insulating film 24 and exposed and developed. Thereby, an overhang-shaped opening 52 is formed in the photoresist layer 50. As shown in FIG. 4C, the insulating film 24 is dry etched using the photoresist layer 50 as a mask. At this time, the insulating film 24 is isotropically etched using a mixed gas of SF 6 and CHF 3 as an etching gas. As a result, an opening 54 defined by the lower portion of the opening 52 of the photoresist layer 50 is formed in the insulating film 24.

図4(d)を参照に、フォトレジスト層50をマスクにGaN系半導体層16上にソース電極17及びドレイン電極18を蒸着法を用い形成しリフトオフする。ソース電極17及びドレイン電極18の幅は図4(c)のフォトレジスト層50の上部の開口幅で規定される。よって、ソース電極17及びドレイン電極18の側壁と絶縁膜24の側壁との間は距離d離間し、空間56が形成される。ソース電極17及びドレイン電極18は、下から膜厚が10nmのTa(タンタル)膜及び膜厚が300nmのAl膜により構成される。ソース電極17及びドレイン電極18の幅は、数μmから数十μmまで用途に応じ適宜設定することができる。また、ソース電極17及びドレイン電極18としては、Ti(チタン)/AlやNi(ニッケル)/Alを用いることもできる。   Referring to FIG. 4D, the source electrode 17 and the drain electrode 18 are formed on the GaN-based semiconductor layer 16 by using the photoresist layer 50 as a mask, and lifted off. The widths of the source electrode 17 and the drain electrode 18 are defined by the opening width of the upper portion of the photoresist layer 50 in FIG. Therefore, the side wall of the source electrode 17 and the drain electrode 18 and the side wall of the insulating film 24 are separated by a distance d, and a space 56 is formed. The source electrode 17 and the drain electrode 18 are composed of a Ta (tantalum) film having a thickness of 10 nm and an Al film having a thickness of 300 nm from the bottom. The widths of the source electrode 17 and the drain electrode 18 can be appropriately set from several μm to several tens of μm depending on the application. As the source electrode 17 and the drain electrode 18, Ti (titanium) / Al or Ni (nickel) / Al can also be used.

図5(a)のように、ソース電極17及びドレイン電極18と絶縁膜24との間に空間56が形成された状態で570℃の温度の熱処理を行う。熱処理温度は、好ましくは550℃から650℃であり、ソース電極17及びドレイン電極18の材料、ソース電極17及びドレイン電極18がオーミック接触するGaN系半導体層16の構造により適宜設定することができる。図5(b)のように、絶縁膜22のゲート電極を形成すべき領域を除去後、ゲート電極20を形成する。ゲート電極20は、例えば下から膜厚が60nmのTi膜及び膜厚が300nmのAu膜により構成される。ゲート長は例えば0.4μmであり、用途に応じ適宜設定することができる。また、ゲート電極20としては、Ni/Au(金)、Pt(白金)/Au及びPd(パラジウム)/Auのいずれかを用いることができる。   As shown in FIG. 5A, heat treatment is performed at a temperature of 570 ° C. in a state where the space 56 is formed between the source electrode 17 and the drain electrode 18 and the insulating film 24. The heat treatment temperature is preferably 550 ° C. to 650 ° C., and can be appropriately set depending on the material of the source electrode 17 and the drain electrode 18 and the structure of the GaN-based semiconductor layer 16 in which the source electrode 17 and the drain electrode 18 are in ohmic contact. As shown in FIG. 5B, after removing the region where the gate electrode of the insulating film 22 is to be formed, the gate electrode 20 is formed. The gate electrode 20 is composed of, for example, a Ti film having a thickness of 60 nm and an Au film having a thickness of 300 nm from the bottom. The gate length is 0.4 μm, for example, and can be set as appropriate according to the application. As the gate electrode 20, any one of Ni / Au (gold), Pt (platinum) / Au, and Pd (palladium) / Au can be used.

図5(c)を参照に、ソース電極17、ドレイン電極18、ゲート電極20及び絶縁膜24上に保護膜26として窒化シリコン膜を形成する。保護膜26に開口を設け、ソース電極17及びドレイン電極18に接続するAuからなる配線28を形成する。以上により、実施例1に係るGaN系FETが完成する。   With reference to FIG. 5C, a silicon nitride film is formed as a protective film 26 on the source electrode 17, the drain electrode 18, the gate electrode 20, and the insulating film 24. An opening is provided in the protective film 26 and a wiring 28 made of Au connected to the source electrode 17 and the drain electrode 18 is formed. As described above, the GaN-based FET according to Example 1 is completed.

実施例1によれば、図4(c)のように、絶縁膜24を形成した状態で熱処理を行うため、従来例において課題となった電流コラプスを抑制することができる。また、図4(a)から図5(a)までの実施例1の製造方法(図4(a)の絶縁膜24の成膜温度は310℃、図4(d)のオーミック電極はTa/Al、図5(a)の熱処理温度は570℃)を用い形成したサンプルウエハ10枚について、図5(a)の熱処理後の絶縁膜24の状態を観察したが、絶縁膜24の剥がれや浮きは観察されなかった。これは、ソース電極17及びドレイン電極18の側壁と絶縁膜24の側壁とが空間56を挟み離間した状態で熱処理されることによって、絶縁膜24にオーミック電極の熱膨張による熱ストレスが加わり難くなったためと考えられる。ソース電極17及びドレイン電極18と絶縁膜24との距離d(図4(d)参照)は、離間していればよく、例えば0.2μmから1.0μm程度とすることができる。   According to Example 1, since the heat treatment is performed with the insulating film 24 formed as shown in FIG. 4C, the current collapse that is a problem in the conventional example can be suppressed. 4A to FIG. 5A, the film formation temperature of the insulating film 24 in FIG. 4A is 310 ° C., and the ohmic electrode in FIG. The state of the insulating film 24 after the heat treatment of FIG. 5A was observed for 10 sample wafers formed using Al, the heat treatment temperature of FIG. 5A being 570 ° C., but the insulating film 24 was peeled off or floated. Was not observed. This is because heat treatment due to thermal expansion of the ohmic electrode is hardly applied to the insulating film 24 by performing heat treatment in a state where the side walls of the source electrode 17 and the drain electrode 18 and the side wall of the insulating film 24 are spaced apart from each other with the space 56 interposed therebetween. It is thought that it was because of. The distance d (see FIG. 4D) between the source electrode 17 and the drain electrode 18 and the insulating film 24 may be separated, for example, about 0.2 μm to 1.0 μm.

実施例1では、ソース電極17及びドレイン電極18を形成する工程を、絶縁膜24を形成する工程の後、実施する例を説明した。ソース電極17及びドレイン電極18を形成した後、絶縁膜24を形成し、その後に熱処理を行ってもよい。   In Example 1, the example which implements the process of forming the source electrode 17 and the drain electrode 18 after the process of forming the insulating film 24 was demonstrated. After the source electrode 17 and the drain electrode 18 are formed, the insulating film 24 may be formed, and then heat treatment may be performed.

図6(a)から図6(d)を用い実施例2に係るGaN系FETの製造方法について説明する。実施例1の図4(a)と同様にGaN系半導体層16上に窒化シリコンからなる絶縁膜30を形成する。図6(a)のように、絶縁膜30に開口58を形成する。図6(b)のように、開口58を覆い絶縁膜30上に重なる領域を有するようにソース電極17及びドレイン電極18を蒸着法及びリフトオフ法を用い形成する。図6(c)のように、570℃の熱処理を行う。図6(d)のように、絶縁膜22のゲート電極を形成すべき領域を除去後、ゲート電極20を形成する。その後、実施例1の図5(c)と同様な工程を行う。これにより、実施例2に係るGaN系FETが完成する。   A method for manufacturing a GaN-based FET according to Example 2 will be described with reference to FIGS. Similar to FIG. 4A of the first embodiment, an insulating film 30 made of silicon nitride is formed on the GaN-based semiconductor layer 16. As shown in FIG. 6A, an opening 58 is formed in the insulating film 30. As shown in FIG. 6B, the source electrode 17 and the drain electrode 18 are formed by vapor deposition and lift-off so as to cover the opening 58 and have a region overlapping the insulating film 30. As shown in FIG. 6C, heat treatment at 570 ° C. is performed. As shown in FIG. 6D, after removing the region where the gate electrode of the insulating film 22 is to be formed, the gate electrode 20 is formed. Then, the same process as FIG. 5C of Example 1 is performed. Thereby, the GaN-based FET according to Example 2 is completed.

実施例2においても。絶縁膜30を形成した状態で熱処理が実施されるため、電流コラプスが抑制される。図6(a)から図6(c)までの実施例2の製造方法を用い形成したサンプルウエハ10枚について、図6(c)の熱処理後の絶縁膜30の状態を観察したが、絶縁膜30の剥がれや浮きは観察されなかった。なお、実施例2において絶縁膜30の剥がれや浮きが抑制できる理由は、絶縁膜30上に延在している部分のオーミック電極側壁が、絶縁膜30に当接しておらず、オーミック電極の側壁部分で、オーミック電極の熱膨張に起因するストレスを絶縁膜30が受けないためではないかと考えられる。   Also in Example 2. Since the heat treatment is performed with the insulating film 30 formed, current collapse is suppressed. The state of the insulating film 30 after the heat treatment of FIG. 6C was observed on 10 sample wafers formed using the manufacturing method of Example 2 from FIG. 6A to FIG. 6C. No peeling or lifting of 30 was observed. In Example 2, the reason why the peeling and floating of the insulating film 30 can be suppressed is that the ohmic electrode sidewall extending on the insulating film 30 is not in contact with the insulating film 30 and the ohmic electrode sidewall It is considered that this is because the insulating film 30 does not receive stress due to thermal expansion of the ohmic electrode.

実施例1及び実施例2において、絶縁膜24及び30として窒化シリコンを例に説明したが、熱処理の際の電流コラプスを抑制する絶縁膜であればよい。例えば、膜質が緻密で密着性に優れた酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜を用いることができる。また、基板10としてはSiC基板、GaN基板等を用いることもできる。   In the first and second embodiments, silicon nitride has been described as an example of the insulating films 24 and 30, but any insulating film that suppresses current collapse during heat treatment may be used. For example, a silicon oxide film, an aluminum oxide film, or an aluminum nitride film having a dense film quality and excellent adhesion can be used. Further, as the substrate 10, a SiC substrate, a GaN substrate, or the like can be used.

また、オーミック電極の熱処理の温度が絶縁膜の成長温度よりも高い場合、上記オーミック電極の熱ストレスにより絶縁膜の剥がれや浮きが生じる。よって、オーミック電極の熱処理の温度が絶縁膜の成長温度よりも高い場合、本発明を用いることが有効である。オーミック電極の処理の温度は、550℃以上であることが好ましく、絶縁膜の成長温度は、320℃以下であることが好ましい。   Further, when the temperature of the heat treatment of the ohmic electrode is higher than the growth temperature of the insulating film, the insulating film peels off or floats due to the thermal stress of the ohmic electrode. Therefore, when the temperature of the heat treatment of the ohmic electrode is higher than the growth temperature of the insulating film, it is effective to use the present invention. The treatment temperature of the ohmic electrode is preferably 550 ° C. or higher, and the growth temperature of the insulating film is preferably 320 ° C. or lower.

以上、発明の好ましい実施例について詳述したが、本発明は係る特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。   The preferred embodiments of the present invention have been described in detail above. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.

図1(a)から図1(d)は従来例に係るGaN系FETの製造方法を示す断面図である。1 (a) to 1 (d) are cross-sectional views showing a method of manufacturing a GaN-based FET according to a conventional example. 図2(a)から図2(c)は比較例に係るGaN系FETの製造方法を示す断面図である。FIG. 2A to FIG. 2C are cross-sectional views showing a method for manufacturing a GaN-based FET according to a comparative example. 図3(a)及び図3(c)は比較例に係るGaN系FETのI−V特性を示す図である。FIGS. 3A and 3C are diagrams showing IV characteristics of a GaN-based FET according to a comparative example. 図4(a)から図4(d)は実施例1に係るGaN系FETの製造方法を示す断面図(その1)である。4A to 4D are cross-sectional views (part 1) illustrating the method for manufacturing the GaN-based FET according to the first embodiment. 図5(a)から図5(c)は実施例1に係るGaN系FETの製造方法を示す断面図(その2)である。FIGS. 5A to 5C are cross-sectional views (part 2) illustrating the method for manufacturing the GaN-based FET according to the first embodiment. 図6(a)から図6(d)は実施例2に係るGaN系FETの製造方法を示す断面図である。6A to 6D are cross-sectional views illustrating a method for manufacturing a GaN-based FET according to the second embodiment.

符号の説明Explanation of symbols

10 基板
12 GaN電子走行層
14 AlGaN電子供給層
16 GaN系半導体層
17 ソース電極
18 ドレイン電極
20 ゲート電極
22、24、30 絶縁膜
26 保護膜
50 フォトレジスト
52、54、58 開口
DESCRIPTION OF SYMBOLS 10 Substrate 12 GaN electron transit layer 14 AlGaN electron supply layer 16 GaN-based semiconductor layer 17 Source electrode 18 Drain electrode 20 Gate electrode 22, 24, 30 Insulating film 26 Protective film 50 Photoresist 52, 54, 58 Opening

Claims (9)

GaN系半導体層に対するオーミック電極形成のための熱処理を実施する半導体装置の製造方法において、
前記熱処理は、前記オーミック電極の側壁が、前記GaN系半導体層上に設けられた絶縁膜の側壁と離間した状態で実施されることを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device that performs a heat treatment for forming an ohmic electrode on a GaN-based semiconductor layer,
The method of manufacturing a semiconductor device, wherein the heat treatment is performed in a state where a side wall of the ohmic electrode is separated from a side wall of an insulating film provided on the GaN-based semiconductor layer.
GaN系半導体層上に開口を有する絶縁膜を形成する工程と、
前記GaN系半導体層上の前記開口を覆い、前記絶縁膜上に重なる領域を有するようにオーミック電極を形成する工程と、
前記オーミック電極を熱処理する工程と、をこの順に、
有することを特徴とする半導体装置の製造方法。
Forming an insulating film having an opening on the GaN-based semiconductor layer;
Forming an ohmic electrode so as to cover the opening on the GaN-based semiconductor layer and have a region overlapping the insulating film;
The step of heat-treating the ohmic electrode, in this order,
A method for manufacturing a semiconductor device, comprising:
前記絶縁膜は窒化シリコン膜、酸化シリコン膜、酸化アルミニウム膜及び窒化アルミニウム膜のいずれかであることを特徴とする請求項1または2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is any one of a silicon nitride film, a silicon oxide film, an aluminum oxide film, and an aluminum nitride film. 前記オーミック電極を形成する工程は、前記絶縁膜を形成する工程の後実施されることを特徴とする請求項1記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the ohmic electrode is performed after the step of forming the insulating film. 前記半導体装置はFETであり、前記オーミック電極はソース電極及びドレイン電極であることを特徴とする請求項1から4のいずれか一項記載の半導体装置の製造方法。   5. The method of manufacturing a semiconductor device according to claim 1, wherein the semiconductor device is an FET, and the ohmic electrode is a source electrode and a drain electrode. 6. 前記オーミック電極は、Alを含有していることを特徴とする請求項1または2記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 1, wherein the ohmic electrode contains Al. 前記熱処理の温度は、前記絶縁膜の成長温度よりも高いことを特徴とする請求項1または2記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein a temperature of the heat treatment is higher than a growth temperature of the insulating film. 前記熱処理の温度は、550℃以上であることを特徴とする請求項7記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 7, wherein the temperature of the heat treatment is 550 ° C. or higher. 前記絶縁膜の成長温度は、320℃以下であることを特徴とする請求項7記載の半導体装置の製造方法。   The method for manufacturing a semiconductor device according to claim 7, wherein a growth temperature of the insulating film is 320 ° C. or less.
JP2007152495A 2007-06-08 2007-06-08 Method of manufacturing semiconductor device Pending JP2008306026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007152495A JP2008306026A (en) 2007-06-08 2007-06-08 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007152495A JP2008306026A (en) 2007-06-08 2007-06-08 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2008306026A true JP2008306026A (en) 2008-12-18

Family

ID=40234459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007152495A Pending JP2008306026A (en) 2007-06-08 2007-06-08 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2008306026A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192633A (en) * 2009-02-18 2010-09-02 Furukawa Electric Co Ltd:The METHOD FOR MANUFACTURING GaN-BASED FIELD-EFFECT TRANSISTOR
US20100308373A1 (en) * 2009-06-09 2010-12-09 Tetsuzo Nagahisa Field-effect transistor
JP2011129715A (en) * 2009-12-17 2011-06-30 Fujitsu Ltd Method of manufacturing compound semiconductor device
JP2011238805A (en) * 2010-05-11 2011-11-24 Nec Corp Field effect transistor, method of manufacturing field effect transistor and electronic device
JP2013021016A (en) * 2011-07-07 2013-01-31 Sharp Corp GaN-BASED SEMICONDUCTOR ELEMENT MANUFACTURING METHOD
JP2016021495A (en) * 2014-07-14 2016-02-04 富士通株式会社 Compound semiconductor device and manufacturing method of the same
US9379229B2 (en) 2011-02-24 2016-06-28 Fujitsu Limited Semiconductor apparatus including protective film on gate electrode and method for manufacturing the semiconductor apparatus
KR101794714B1 (en) * 2016-03-18 2017-11-08 고려대학교 산학협력단 Semiconductor device and the method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111519A (en) * 1994-08-19 1996-04-30 Fujitsu Ltd Semiconductor device
WO2005076365A1 (en) * 2004-01-16 2005-08-18 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
WO2007007589A1 (en) * 2005-07-08 2007-01-18 Nec Corporation Field effect transistor and method for manufacturing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111519A (en) * 1994-08-19 1996-04-30 Fujitsu Ltd Semiconductor device
WO2005076365A1 (en) * 2004-01-16 2005-08-18 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
WO2007007589A1 (en) * 2005-07-08 2007-01-18 Nec Corporation Field effect transistor and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192633A (en) * 2009-02-18 2010-09-02 Furukawa Electric Co Ltd:The METHOD FOR MANUFACTURING GaN-BASED FIELD-EFFECT TRANSISTOR
US20100308373A1 (en) * 2009-06-09 2010-12-09 Tetsuzo Nagahisa Field-effect transistor
CN101924128A (en) * 2009-06-09 2010-12-22 夏普株式会社 Field-effect transistor
JP2010287605A (en) * 2009-06-09 2010-12-24 Sharp Corp Field-effect transistor
US8258544B2 (en) 2009-06-09 2012-09-04 Sharp Kabushiki Kaisha Field-effect transistor
JP2011129715A (en) * 2009-12-17 2011-06-30 Fujitsu Ltd Method of manufacturing compound semiconductor device
JP2011238805A (en) * 2010-05-11 2011-11-24 Nec Corp Field effect transistor, method of manufacturing field effect transistor and electronic device
US9379229B2 (en) 2011-02-24 2016-06-28 Fujitsu Limited Semiconductor apparatus including protective film on gate electrode and method for manufacturing the semiconductor apparatus
US9685547B2 (en) 2011-02-24 2017-06-20 Fujitsu Limited Semiconductor apparatus including barrier film provided between electrode and protection film
JP2013021016A (en) * 2011-07-07 2013-01-31 Sharp Corp GaN-BASED SEMICONDUCTOR ELEMENT MANUFACTURING METHOD
JP2016021495A (en) * 2014-07-14 2016-02-04 富士通株式会社 Compound semiconductor device and manufacturing method of the same
KR101794714B1 (en) * 2016-03-18 2017-11-08 고려대학교 산학협력단 Semiconductor device and the method thereof

Similar Documents

Publication Publication Date Title
KR101202497B1 (en) Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
JP5345328B2 (en) Manufacturing method of semiconductor device
US8624296B1 (en) High electron mobility transistor including an embedded flourine region
JP2008306026A (en) Method of manufacturing semiconductor device
US9842905B2 (en) Semiconductor device and method for fabricating the same
JP2008166469A (en) Nitride semiconductor device and manufacturing method thereof
JP2010166040A (en) Method for fabricating semiconductor device
JP2009010107A (en) Semiconductor device and manufacturing method therefor
US9564503B2 (en) Semiconductor device and method of manufacturing semiconductor device
WO2007041595A2 (en) Iii-nitride semiconductor fabrication
US9018677B2 (en) Semiconductor structure and method of forming the same
JP5420157B2 (en) Manufacturing method of semiconductor device
WO2013018301A1 (en) Semiconductor device
JP2008091699A (en) Method of manufacturing semiconductor transistor
JP5183975B2 (en) Enhanced mode field effect device and manufacturing method thereof
JP2008306027A (en) Manufacturing method of semiconductor device
US20150179823A1 (en) Electrode structure for nitride semiconductor device, production method therefor, and nitride semiconductor field-effect transistor
JP6787212B2 (en) Manufacturing method of semiconductor devices
JP2007235000A (en) Method for processing semiconductor, semiconductor device, and its manufacturing method
JP2007227449A (en) Method of manufacturing group iii nitride semiconductor high electron mobility transistor
JP2012234984A (en) Semiconductor device
US9305788B2 (en) Method of fabricating semiconductor device
JP5730511B2 (en) Manufacturing method of semiconductor device
JP2010212495A (en) Method of manufacturing hfet composed of group-iii nitride semiconductor
JP2008118082A (en) Nitride semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20100426

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A02 Decision of refusal

Effective date: 20121127

Free format text: JAPANESE INTERMEDIATE CODE: A02