JP2008091699A - Method of manufacturing semiconductor transistor - Google Patents

Method of manufacturing semiconductor transistor Download PDF

Info

Publication number
JP2008091699A
JP2008091699A JP2006271988A JP2006271988A JP2008091699A JP 2008091699 A JP2008091699 A JP 2008091699A JP 2006271988 A JP2006271988 A JP 2006271988A JP 2006271988 A JP2006271988 A JP 2006271988A JP 2008091699 A JP2008091699 A JP 2008091699A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
group iii
protective film
semiconductor layer
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006271988A
Other languages
Japanese (ja)
Other versions
JP5520432B2 (en
Inventor
Takehiko Nomura
剛彦 野村
Shigeaki Ikeda
成明 池田
Yuuki Niiyama
勇樹 新山
Ko Ri
江 李
Kiyoteru Yoshida
清輝 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2006271988A priority Critical patent/JP5520432B2/en
Publication of JP2008091699A publication Critical patent/JP2008091699A/en
Application granted granted Critical
Publication of JP5520432B2 publication Critical patent/JP5520432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a current collapse phenomenon of a semiconductor transistor having a group III-V nitride semiconductor as a channel region. <P>SOLUTION: The method of manufacturing the semiconductor transistor comprises the stages of: forming group III-V nitride semiconductor layers 3 and 4 on a substrate 1; forming a protective film 5 on the group III-V nitride semiconductor layers 3 and 4; annealing the protective film 5 and group III-V nitride semiconductor layers 3 and 4 at temperature of ≥900°C; forming first and second openings 7s and 7d at least in source regions and drain regions of the group III-V nitride semiconductor layers 3 and 4 in the protective film 5; forming a source electrode 9s which comes into ohmic contact with the group III-V nitride semiconductor layers 3 and 4 in the first opening 7s; forming a drain electrode 9d which comes into ohmic contact with the group III-V nitride semiconductors 3 and 4 in the second opening 7d; and forming a gate electrode 11 which comes into Schottky contact with the group III-V nitride semiconductor layers 3 and 4 between the source electrode 9s and drain electrode 9d. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体トランジスタの製造方法に関し、より詳しくは、III−V族窒化物半導体をチャネル領域とする半導体トランジスタの製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor transistor, and more particularly to a method for manufacturing a semiconductor transistor having a group III-V nitride semiconductor as a channel region.

III−V族窒化物に代表されるワイドバンドギャップ半導体は、高い絶縁破壊耐圧、良好な電子輸送特性、良好な熱伝導度を持ち、高温で大きなパワー用のデバイスとして非常に有用である。   Wide band gap semiconductors typified by III-V nitrides have high breakdown voltage, good electron transport properties, and good thermal conductivity, and are very useful as devices for large power at high temperatures.

種々のIII−V族窒化物の中で、例えばAlGaN/GaNヘテロ接合構造はピエゾ効果によって高い電子移動度とキャリア密度を持つ2次元電子ガスを有している。   Among various III-V nitrides, for example, an AlGaN / GaN heterojunction structure has a two-dimensional electron gas having high electron mobility and carrier density due to the piezoelectric effect.

AlGaN/GaNを用いたヘテロ接合電界効果トランジスタ(HFET)はシリコン結晶を用いた種々のFETよりも良好な特性を持ち、また、そのHFETのオン抵抗は、シリコン結晶やGaAs結晶を用いたトランジスタよりも低くなることが期待できる。   Heterojunction field effect transistors (HFETs) using AlGaN / GaN have better characteristics than various FETs using silicon crystals, and the on-resistance of the HFETs is higher than that of transistors using silicon crystals or GaAs crystals. Can be expected to be lower.

このように、HFETは、低いオン抵抗、速いスイッチング特性を持ち、高温動作が可能であり、パワースイッチングの応用に非常に好適であり、システムの冷却系の簡略化が可能になる。   Thus, the HFET has low on-resistance and fast switching characteristics, can operate at high temperature, is very suitable for power switching applications, and can simplify the cooling system of the system.

次に、従来のHFETの製造方法を、図7に基づいて簡単に説明する。   Next, a conventional HFET manufacturing method will be briefly described with reference to FIG.

まず、図7(a)に示すように、サファイア基板101上にAlNよりなるバッファ層102、アンドープGaNよりなる電子走行層103、アンドープAlGaNよりなる電子供給層104を順にエピタキシャル成長した後に、SiO2よりなる保護膜105をCVD法により成長する。 First, as shown in FIG. 7A, a buffer layer 102 made of AlN, an electron transit layer 103 made of undoped GaN, and an electron supply layer 104 made of undoped AlGaN are epitaxially grown in this order on a sapphire substrate 101, and then SiO 2 . A protective film 105 to be formed is grown by the CVD method.

次に、図7(b)に示すように、フォトレジストとエッチングを用いたリソグラフィにより、保護膜105のうちソース領域とドレイン領域のそれぞれに第1、第2の開口部105s、105dを形成する。   Next, as shown in FIG. 7B, first and second openings 105s and 105d are formed in the source region and the drain region of the protective film 105 by lithography using a photoresist and etching, respectively. .

さらに、図7(c)に示すように、第1、第2の開口部105s、105dを通して電子供給層104にオーミック接触するソース電極106sとドレイン電極106dをリフトオフ法により形成する。   Further, as shown in FIG. 7C, a source electrode 106s and a drain electrode 106d that are in ohmic contact with the electron supply layer 104 through the first and second openings 105s and 105d are formed by a lift-off method.

続いて、図7(d)に示すように、フォトレジストとエッチングを用いたリソグラフィにより、ソース電極106sとドレイン電極106dの間に配置されるゲート領域に第3の開口部105gを形成する。   Subsequently, as shown in FIG. 7D, a third opening 105g is formed in the gate region disposed between the source electrode 106s and the drain electrode 106d by lithography using a photoresist and etching.

さらに、図7(e)に示すように、第3の開口部105gを通して電子供給層104にショットキー接触するゲート電極107を形成する。以上のような工程は、例えば下記の特許文献1に記載されている。   Further, as shown in FIG. 7E, a gate electrode 107 that is in Schottky contact with the electron supply layer 104 through the third opening 105g is formed. The above process is described in, for example, Patent Document 1 below.

これにより、HFETのユニットが形成され、大電流動作用のマルチフィンガーFETを作成する場合には、必要に応じて多層配線が形成されてHFETのユニット同士が連結される。
特開2003−59946号公報
Thereby, an HFET unit is formed, and when a multi-finger FET for large current operation is created, a multilayer wiring is formed as necessary to connect the HFET units to each other.
JP 2003-59946 A

ところで、AlGaNとGaNヘテロ接合構造を有するHFETにおいて、ソース・ドレイン間に印可する電圧を高くするとオン抵抗が増大する電流コラプス現象が知られている。この現象は、高電圧印可時のHFETにおける発熱の発生や消費電力の増大、素子寿命の短命化などを引き起こす要因の1つとなっている。   By the way, in the HFET having an AlGaN and GaN heterojunction structure, a current collapse phenomenon is known in which the on-resistance increases when the voltage applied between the source and the drain is increased. This phenomenon is one of the factors that cause generation of heat in the HFET when a high voltage is applied, an increase in power consumption, and a shortened device life.

電流コラプスの原因としては、HFETのAlGaN層と保護膜の間の界面準位や、HFETのGaN層内の深い準位が影響していると考えられている。   The cause of current collapse is considered to be influenced by the interface level between the AlGaN layer of the HFET and the protective film and the deep level in the GaN layer of the HFET.

本発明の目的は、電流コラプス現象の低減を図ることができる半導体トランジスタの製造方法を提供することにある。   An object of the present invention is to provide a method for manufacturing a semiconductor transistor capable of reducing the current collapse phenomenon.

上記の課題を解決するための本発明の第1の態様は、基板の上にIII−V族窒化物半導体層を形成する工程と、前記III−V族窒化物半導体層の上に保護膜を形成する工程と、前記保護膜及び前記III−V族窒化物半導体層を900℃以上の温度でアニールする工程と、前記保護膜のうち前記III−V族窒化物半導体層の少なくともソース領域とドレイン領域に第1、第2の開口を形成する工程と、前記III−V族窒化物半導体層にオーミック接触するソース電極を前記第1の開口内に形成し、前記III−V族窒化物半導体層にオーミック接触するドレイン電極を前記第2の開口内に形成する工程と、前記ソース電極と前記ドレイン電極の間の領域で前記III−V族窒化物半導体層にショットキー接触するゲート電極を形成する工程とを有することを特徴とする半導体トランジスタの製造方法である。   A first aspect of the present invention for solving the above-described problems includes a step of forming a group III-V nitride semiconductor layer on a substrate, and a protective film on the group III-V nitride semiconductor layer. A step of forming, a step of annealing the protective film and the group III-V nitride semiconductor layer at a temperature of 900 ° C. or higher, and at least a source region and a drain of the group III-V nitride semiconductor layer of the protective film. Forming a first and second opening in the region; forming a source electrode in ohmic contact with the group III-V nitride semiconductor layer in the first opening; and group III-V nitride semiconductor layer Forming a drain electrode in ohmic contact with the second opening, and forming a gate electrode in Schottky contact with the III-V nitride semiconductor layer in a region between the source electrode and the drain electrode. And having a process That is a method of manufacturing a semiconductor transistor.

本発明の第2の態様は、前記第1の態様に係る半導体トランジスタの製造方法において、前記保護膜及び前記III−V族窒化物半導体層をアニールする工程において、前記保護膜は窒素雰囲気、窒素含有雰囲気のいずれかの中に配置されることを特徴とする。   According to a second aspect of the present invention, in the method of manufacturing a semiconductor transistor according to the first aspect, in the step of annealing the protective film and the group III-V nitride semiconductor layer, the protective film has a nitrogen atmosphere, nitrogen It is arranged in any of the contained atmospheres.

本発明の第3の態様は、前記第1又は第2の態様に係る半導体トランジスタの製造方法において、前記保護膜及び前記III−V族窒化物半導体層をアニールする温度は、900℃〜1000℃の範囲にあることを特徴とする。   According to a third aspect of the present invention, in the method of manufacturing a semiconductor transistor according to the first or second aspect, the temperature for annealing the protective film and the group III-V nitride semiconductor layer is 900 ° C. to 1000 ° C. It is characterized by being in the range of

本発明の第4の態様は、前記第1乃至第3の態様のいずれかに係る半導体トランジスタの製造方法において、前記保護膜は、二酸化シリコン、窒化シリコン、酸化マグネシウム、アルミナのいずれかの絶縁膜であることを特徴とする。   According to a fourth aspect of the present invention, in the method of manufacturing a semiconductor transistor according to any one of the first to third aspects, the protective film is an insulating film of any one of silicon dioxide, silicon nitride, magnesium oxide, and alumina. It is characterized by being.

本発明の第5の態様は、前記第1乃至第4の態様のいずれかに係る半導体トランジスタの製造方法において、前記III−V族窒化物半導体層は、互いにヘテロ接合される第1のIII−V族窒化物半導体層と第2のIII−V族窒化物半導体層を有し、前記第1のIII−V族窒化物半導体層と前記第2のIII−V族窒化物半導体層の界面には二次元電子ガスが生成されることを特徴とする。   According to a fifth aspect of the present invention, in the method for manufacturing a semiconductor transistor according to any one of the first to fourth aspects, the III-V nitride semiconductor layers are heterojunctioned with each other. A group V nitride semiconductor layer and a second group III-V nitride semiconductor layer are provided at the interface between the first group III-V nitride semiconductor layer and the second group III-V nitride semiconductor layer. Is characterized in that a two-dimensional electron gas is produced.

本発明によれば、III−V族窒化物半導体層の表面を保護膜で覆った状態で900℃以上の温度でアニールしている。
これによれば、III−V族窒化物半導体層の表面の界面準位等を低減することができ、電流コラプスが抑制された半導体トランジスタを得ることが可能になる。
According to the present invention, annealing is performed at a temperature of 900 ° C. or higher with the surface of the III-V nitride semiconductor layer covered with the protective film.
According to this, it is possible to reduce the interface state on the surface of the III-V nitride semiconductor layer, and to obtain a semiconductor transistor in which current collapse is suppressed.

以下に本発明の実施の形態を図面に基づいて詳細に説明する。
図1〜図3は、本発明の実施形態に係る半導体トランジスタの製造工程を示す断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 to 3 are cross-sectional views illustrating manufacturing steps of a semiconductor transistor according to an embodiment of the present invention.

まず、図1(a)に示すように、有機金属気相成長(MOCVD)法によりサファイア基板1上に、AlN又はGaNよりなる厚さ20nm程度のバッファ層2と、厚さ1μm程度のGaNよりなる電子走行層3と、厚さ20nm程度のAlGaNよりなる電子供給層4とを順に形成する。電子走行層3と電子供給層4はヘテロ接合であり、その界面には二次元電子ガス3Eが生成される。   First, as shown in FIG. 1A, a buffer layer 2 made of AlN or GaN having a thickness of about 20 nm and a GaN having a thickness of about 1 μm are formed on a sapphire substrate 1 by metal organic chemical vapor deposition (MOCVD). An electron transit layer 3 and an electron supply layer 4 made of AlGaN having a thickness of about 20 nm are sequentially formed. The electron transit layer 3 and the electron supply layer 4 are heterojunction, and a two-dimensional electron gas 3E is generated at the interface.

なお、基板として、サファイア基板に限られるものではなく、SiC、Si、GaN等の他の基板を用いてもよい。また、基板上に成長されるGaN等は、MOCVD法に限られるものではなく、ハイドライド気相成長(HVPE)法、分子線エピタキシー(MBE)法等の他の成長法を用いてもよい。   The substrate is not limited to the sapphire substrate, and other substrates such as SiC, Si, and GaN may be used. Further, GaN or the like grown on the substrate is not limited to the MOCVD method, and other growth methods such as a hydride vapor phase epitaxy (HVPE) method and a molecular beam epitaxy (MBE) method may be used.

次に、図1(b)に示すように、電子供給層4上にフォトレジスト5を塗布し、これを露光、現像することにより、トランジスタ活性領域Aを覆い且つその周囲を露出させるパターンを形成する。   Next, as shown in FIG. 1B, a photoresist 5 is applied on the electron supply layer 4, and this is exposed and developed to form a pattern that covers the transistor active region A and exposes its periphery. To do.

さらに、図1(c)に示すように、パターニングされたフォトレジスト5をマスクにして、電子供給層4から電子走行層3の途中までエッチングして凹状の素子分離部6を形成する。エッチングとして反応性イオンエッチング(RIE)、誘導結合方式(ICP)エッチング等を用いる。   Further, as shown in FIG. 1C, using the patterned photoresist 5 as a mask, etching is performed from the electron supply layer 4 to the middle of the electron transit layer 3 to form a concave element isolation portion 6. As the etching, reactive ion etching (RIE), inductive coupling (ICP) etching, or the like is used.

この後に、図1(d)に示すように、溶剤を用いてフォトレジスト5を除去し、電子供給層4の表面を露出させる。   Thereafter, as shown in FIG. 1D, the photoresist 5 is removed using a solvent to expose the surface of the electron supply layer 4.

さらに、図2(a)に示すように、二酸化シリコン(SiO2)からなる保護膜7を電子供給層4及び電子走行層3の表面上にプラズマCVD法により形成する。その厚さは、0.5μm程度が好ましい。 Further, as shown in FIG. 2A, a protective film 7 made of silicon dioxide (SiO 2 ) is formed on the surfaces of the electron supply layer 4 and the electron transit layer 3 by plasma CVD. The thickness is preferably about 0.5 μm.

次に、図2(b)に示すように、基板1を窒素雰囲気の加熱室(不図示)内に搬送して例えば900℃で30分間アニールを行う。
これにより、電子供給層4と保護膜7との界面の準位や半導体中の深い準位が低減するとともに、保護膜7の緻密化が図れる。
保護膜7の緻密化によりエッチングレートは遅くなるが、外部からのイオン等の汚染に対する耐性が向上するという利点があり、保護膜7としての保護機能が高められる。
Next, as shown in FIG. 2B, the substrate 1 is transferred into a heating chamber (not shown) in a nitrogen atmosphere and annealed at, for example, 900 ° C. for 30 minutes.
Thereby, the level of the interface between the electron supply layer 4 and the protective film 7 and the deep level in the semiconductor are reduced, and the protective film 7 can be densified.
Although the etching rate is slowed by densification of the protective film 7, there is an advantage that resistance to contamination such as external ions is improved, and the protective function as the protective film 7 is enhanced.

なお、加熱室内は窒素雰囲気の他、窒素と他のガス、例えばアルゴン(Ar)等の他の不活性ガスを混合した窒素含有雰囲気であってもよい。
続いて、図2(c)に示すように、フォトレジスト8を保護膜7上に塗布し、これを露光、現像してソース領域とドレイン領域にそれぞれ窓8s、8dを形成する。さらに、フォトレジスト8をマスクにして保護膜7を例えばフッ酸溶液を用いてエッチングして、図2(d)に示すように窓8s、8dを通して開口部7s、7dを形成する。
Note that the heating chamber may be a nitrogen-containing atmosphere in which nitrogen and another gas such as argon (Ar) are mixed in addition to the nitrogen atmosphere.
Subsequently, as shown in FIG. 2C, a photoresist 8 is applied on the protective film 7, and this is exposed and developed to form windows 8s and 8d in the source region and the drain region, respectively. Further, the protective film 7 is etched using, for example, a hydrofluoric acid solution using the photoresist 8 as a mask to form openings 7s and 7d through the windows 8s and 8d as shown in FIG.

次に、フォトレジスト8の開口部7s、7dを通してスパッタ等によりアルミニウム(Al)とチタン(Ti)を順に積層し、その後にフォトレジスト8を溶剤により除去すると、図3(a)に示すように、Ti/Alからなる金属膜は、ソース電極9d及びドレイン電極9sとして適用され、開口7s、7dを通して電子供給層4上に形成されてオーミック接触する。   Next, aluminum (Al) and titanium (Ti) are sequentially laminated by sputtering or the like through the openings 7s and 7d of the photoresist 8, and then the photoresist 8 is removed with a solvent, as shown in FIG. The metal film made of Ti / Al is applied as the source electrode 9d and the drain electrode 9s, and is formed on the electron supply layer 4 through the openings 7s and 7d to be in ohmic contact.

さらに、図3(b)、(c)に示すように、保護膜7、ソース電極9s及びドレイン電極9dの上にフォトレジスト10を塗布し、これを露光、現像してゲート領域に窓10gを形成し、続いて、窓10gを通して保護膜7をエッチングして開口部7gを形成する。   Further, as shown in FIGS. 3B and 3C, a photoresist 10 is applied on the protective film 7, the source electrode 9s and the drain electrode 9d, and this is exposed and developed to form a window 10g in the gate region. Then, the protective film 7 is etched through the window 10g to form an opening 7g.

開口部7gは、ドレイン電極9dとソース電極9sの間の領域に形成され、ドレイン電極9dから約15〜20μm程度の間隔で、且つソース電極9sから約3μmの間隔で配置される。   The openings 7g are formed in a region between the drain electrode 9d and the source electrode 9s, and are arranged at an interval of about 15 to 20 μm from the drain electrode 9d and at an interval of about 3 μm from the source electrode 9s.

さらに、スパッタ等によって、開口部7gと窓10gを通して金(Au)、ニッケル(Ni)を電子供給層4上に順に積層する。そして、フォトレジスト10を除去することにより、図3(d)に示すように、開口部7gを通して電子供給層4にショットキー接触するNi/Auからなるゲート電極11が形成される。   Further, gold (Au) and nickel (Ni) are sequentially stacked on the electron supply layer 4 through the opening 7g and the window 10g by sputtering or the like. Then, by removing the photoresist 10, as shown in FIG. 3D, a gate electrode 11 made of Ni / Au that is in Schottky contact with the electron supply layer 4 through the opening 7g is formed.

以上のような工程により、電界効果トランジスタとしてHFETが形成される。
ノーマリオンのHFETの製造工程において、電子供給層4を保護膜7により覆った後に、図2(b)に示すようにアニールを行った場合と従来技術のように行わなかった場合について、オン抵抗を測定したところ図4に示すような結果が得られた。
Through the above process, an HFET is formed as a field effect transistor.
In the normally-on HFET manufacturing process, after the electron supply layer 4 is covered with the protective film 7, the annealing is performed as shown in FIG. 2B, and the case where the annealing is not performed as in the prior art. As a result, the results as shown in FIG. 4 were obtained.

オン抵抗の測定は、ゲート電極11に電圧を印可しない状態で、ソース電極9sとドレイン電極9dの間の電圧を変化させ、ソース電極9sとドレイン電極9dの間の電流10A当たりのオン抵抗を測定して求めた。   The on-resistance is measured by changing the voltage between the source electrode 9s and the drain electrode 9d in a state where no voltage is applied to the gate electrode 11, and measuring the on-resistance per current 10A between the source electrode 9s and the drain electrode 9d. And asked.

図4によれば、保護膜7の形成後にアニールしなかった場合には、ソース・ドレイン間電圧Vdsが250V以上になるとオン抵抗Ronの上昇率が高くなるのに対し、保護膜7の形成後にアニールを行った場合には、ソース・ドレイン間電圧Vdsが250V以上になってもオン抵抗の上昇率は殆ど変化せずに低い状態のままとなっていた。   According to FIG. 4, when annealing is not performed after the formation of the protective film 7, the rate of increase of the on-resistance Ron increases when the source-drain voltage Vds becomes 250 V or higher, whereas after the formation of the protective film 7. When annealing was performed, even when the source-drain voltage Vds was 250 V or higher, the increase rate of the on-resistance remained almost unchanged and remained low.

このように、本実施形態のように電子供給層4の上に保護膜7を形成した後に窒素雰囲気でアニールを施すと電流コラプスの効果が低減するのは、そのアニールによって保護膜7と電子供給層4の間の界面準位が低減したり、GaNのバンドギャップ間の準位密度が低減したりすることに起因すると考えられる。   Thus, when annealing is performed in a nitrogen atmosphere after the protective film 7 is formed on the electron supply layer 4 as in this embodiment, the effect of current collapse is reduced by the annealing. It is considered that the interface state between the layers 4 is reduced or the state density between the band gaps of GaN is reduced.

しかも、保護膜7はそのアニールによって膜質が緻密になるので、外部からのイオン等による耐性が向上する効果がある。   In addition, since the film quality of the protective film 7 becomes dense by the annealing, there is an effect of improving the resistance due to external ions and the like.

次に、保護膜7の形成後のアニールの効果を検証するために、アニール温度をパラメータにして実験を行った。   Next, in order to verify the effect of annealing after the formation of the protective film 7, an experiment was performed using the annealing temperature as a parameter.

例えば、図5に示すように、n型不純物を含むシリコン(Si)基板11上にn型GaN層12を成長しその上に二酸化シリコンの保護膜13を形成し、さらに保護膜13上に第1電極14を形成し、シリコン基板11の下に第2の電極15を形成して、保護膜13の形成後に行うアニール温度を800℃、900℃、1000℃と変えた試料をそれぞれ複数用意してCV測定を行って不純物準位を求めたところ、図6に示すような結果が得られた。   For example, as shown in FIG. 5, an n-type GaN layer 12 is grown on a silicon (Si) substrate 11 containing an n-type impurity, a silicon dioxide protective film 13 is formed on the n-type GaN layer 12, and a protective film 13 is formed on the protective film 13. 1 electrode 14 is formed, second electrode 15 is formed under silicon substrate 11, and a plurality of samples are prepared in which the annealing temperatures performed after formation of protective film 13 are changed to 800 ° C., 900 ° C., and 1000 ° C., respectively. Then, the CV measurement was performed to obtain the impurity level, and the result shown in FIG. 6 was obtained.

それらの試料のアニールは、全て窒素雰囲気で30分間行われている。   All of these samples are annealed in a nitrogen atmosphere for 30 minutes.

図6によれば、GaNの伝導帯Ecを基準にして示される不純物準位Ec−Eの密度Ditをアニールにより小さくすることが可能であることがわかる。特に、不純物準位Ec−Eのうち0.6eV以下の浅い準位については、アニール温度を特に900℃〜1000℃の範囲に設定することにより、その密度Ditを確実に小さくすることができる。   According to FIG. 6, it can be seen that the density Dit of the impurity level Ec-E shown with reference to the conduction band Ec of GaN can be reduced by annealing. In particular, regarding the shallow level of 0.6 eV or less among the impurity levels Ec-E, the density Dit can be reliably reduced by setting the annealing temperature in the range of 900 ° C. to 1000 ° C. in particular.

図6と図4によれば、保護膜7の形成後の窒素雰囲気中でのアニールにより、界面準位、不純物準位の密度を低減して電流コラプス効果の低減を図ることが可能になることがわかる。   According to FIG. 6 and FIG. 4, it is possible to reduce the current collapse effect by reducing the density of interface states and impurity levels by annealing in a nitrogen atmosphere after the formation of the protective film 7. I understand.

なお、上記した実施形態においては、電子供給層4、電子走行層5を覆う保護膜7として二酸化シリコン膜を形成したが、窒化シリコン(SiNx、酸化マグネシウム(MgO)、アルミナ(Al23)のいずれかの絶縁膜を形成してもよい。 In the embodiment described above, a silicon dioxide film is formed as the protective film 7 covering the electron supply layer 4 and the electron transit layer 5, but silicon nitride (SiN x , magnesium oxide (MgO), alumina (Al 2 O 3). )) May be formed.

また、上記した実施形態では、AlGaN/GaNヘテロ接合構造を基板上に形成したが、その他のIII−V族窒化物半導体層を基板上に形成してもよい。また、電界効果トランジスタとしては、HFETに限るものではなく、ショットキーゲートを有するMESFET(Metal Semiconductor Field Effect Transistor)、その他のIII−V族窒化物半導体トランジスタであってもよい。   In the above-described embodiment, the AlGaN / GaN heterojunction structure is formed on the substrate. However, other group III-V nitride semiconductor layers may be formed on the substrate. Further, the field effect transistor is not limited to the HFET, but may be a MESFET (Metal Semiconductor Field Effect Transistor) having a Schottky gate or other group III-V nitride semiconductor transistor.

それらのトランジスタは、同一基板上に複数個形成された大電流動作用のマルチフィンガーFETを構成するものであってもよく、必要に応じて多層配線が形成されてユニットFETが連結される。   These transistors may constitute a multi-finger FET for large current operation formed on the same substrate, and multilayer FETs are formed as necessary to connect unit FETs.

図1は、本発明の実施形態に係る半導体トランジスタの形成工程を示す断面図(その1)である。FIG. 1 is a cross-sectional view (No. 1) showing a process for forming a semiconductor transistor according to an embodiment of the present invention. 図2は、本発明の実施形態に係る半導体トランジスタの形成工程を示す断面図(その2)である。FIG. 2 is a cross-sectional view (No. 2) showing a step of forming a semiconductor transistor according to the embodiment of the present invention. 図3は、本発明の実施形態に係る半導体トランジスタの形成工程を示す断面図(その3)である。FIG. 3 is a cross-sectional view (No. 3) showing the formation process of the semiconductor transistor according to the embodiment of the present invention. 図4は、本発明の実施形態に係る半導体トランジスタのノーマリオン型についてのオン抵抗を示す特性図である。FIG. 4 is a characteristic diagram showing the on-resistance of the normally-on type semiconductor transistor according to the embodiment of the present invention. 図5は、本発明の実施形態に係る半導体トランジスタの界面準位を測定するための試料の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a sample for measuring the interface state of the semiconductor transistor according to the embodiment of the present invention. 図6は、本発明の実施形態に係る半導体トランジスタを構成するGaNのエネルギーギャップの伝導帯近傍での界面準位密度分布を示す図である。FIG. 6 is a diagram showing an interface state density distribution in the vicinity of the conduction band of the energy gap of GaN constituting the semiconductor transistor according to the embodiment of the present invention. 図7は、従来の半導体トランジスタの製造工程を示す断面図である。FIG. 7 is a cross-sectional view showing a manufacturing process of a conventional semiconductor transistor.

符号の説明Explanation of symbols

1:基板
2:バッファ層
3:電子走行層
4:電子供給層
5、8、10:フォトレジスト
6:素子分離部
7:保護膜
9s:ソース電極
9d:ドレイン電極
11:ゲート電極
1: Substrate 2: Buffer layer 3: Electron travel layer 4: Electron supply layers 5, 8, 10: Photoresist 6: Element isolation part 7: Protective film 9s: Source electrode 9d: Drain electrode 11: Gate electrode

Claims (5)

基板の上にIII−V族窒化物半導体層を形成する工程と、
前記III−V族窒化物半導体層の上に保護膜を形成する工程と、
前記保護膜及び前記III−V族窒化物半導体層を900℃以上の温度でアニールする工程と、
前記保護膜のうち前記III−V族窒化物半導体層の少なくともソース領域とドレイン領域に第1、第2の開口を形成する工程と、
前記III−V族窒化物半導体層にオーミック接触するソース電極を前記第1の開口内に形成し、前記III−V族窒化物半導体層にオーミック接触するドレイン電極を前記第2の開口内に形成する工程と、
前記ソース電極と前記ドレイン電極の間の領域で前記III−V族窒化物半導体層にショットキー接触するゲート電極を形成する工程と
を有することを特徴とする半導体トランジスタの製造方法。
Forming a group III-V nitride semiconductor layer on the substrate;
Forming a protective film on the III-V nitride semiconductor layer;
Annealing the protective film and the III-V nitride semiconductor layer at a temperature of 900 ° C. or higher;
Forming first and second openings in at least a source region and a drain region of the III-V nitride semiconductor layer of the protective film;
A source electrode in ohmic contact with the group III-V nitride semiconductor layer is formed in the first opening, and a drain electrode in ohmic contact with the group III-V nitride semiconductor layer is formed in the second opening. And a process of
Forming a gate electrode in Schottky contact with the III-V nitride semiconductor layer in a region between the source electrode and the drain electrode.
前記保護膜及び前記III−V族窒化物半導体層をアニールする工程において、前記保護膜は窒素雰囲気、窒素含有雰囲気のいずれかの中に配置される請求項1に記載の半導体トランジスタの製造方法。   2. The method of manufacturing a semiconductor transistor according to claim 1, wherein in the step of annealing the protective film and the group III-V nitride semiconductor layer, the protective film is disposed in either a nitrogen atmosphere or a nitrogen-containing atmosphere. 前記保護膜及び前記III−V族窒化物半導体層をアニールする温度は、900℃〜1000℃の範囲にあることを特徴とする請求項1又は請求項2に記載の半導体トランジスタの製造方法。   3. The method of manufacturing a semiconductor transistor according to claim 1, wherein a temperature for annealing the protective film and the group III-V nitride semiconductor layer is in a range of 900 ° C. to 1000 ° C. 3. 前記保護膜は、二酸化シリコン、窒化シリコン、酸化マグネシウム、アルミナのいずれかの絶縁膜であることを特徴とする請求項1乃至請求項3のいずれか1つに記載の半導体トランジスタの製造方法。   4. The method of manufacturing a semiconductor transistor according to claim 1, wherein the protective film is an insulating film of any one of silicon dioxide, silicon nitride, magnesium oxide, and alumina. 前記III−V族窒化物半導体層は、互いにヘテロ接合される第1のIII−V族窒化物半導体層と第2のIII−V族窒化物半導体層を有し、前記第1のIII−V族窒化物半導体層と前記第2のIII−V族窒化物半導体層の界面には二次元電子ガスが生成されることを特徴とする請求項1乃至請求項4のいずれか1つに記載の半導体トランジスタ。   The group III-V nitride semiconductor layer includes a first group III-V nitride semiconductor layer and a second group III-V nitride semiconductor layer that are heterojunctioned with each other, and the first group III-V 5. The two-dimensional electron gas is generated at an interface between the group nitride semiconductor layer and the second group III-V nitride semiconductor layer, according to claim 1. Semiconductor transistor.
JP2006271988A 2006-10-03 2006-10-03 Manufacturing method of semiconductor transistor Active JP5520432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006271988A JP5520432B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006271988A JP5520432B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor transistor

Publications (2)

Publication Number Publication Date
JP2008091699A true JP2008091699A (en) 2008-04-17
JP5520432B2 JP5520432B2 (en) 2014-06-11

Family

ID=39375531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006271988A Active JP5520432B2 (en) 2006-10-03 2006-10-03 Manufacturing method of semiconductor transistor

Country Status (1)

Country Link
JP (1) JP5520432B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012028581A (en) * 2010-07-23 2012-02-09 Sumitomo Electric Ind Ltd Manufacturing method of semiconductor device
JP2013503483A (en) * 2009-08-28 2013-01-31 トランスフォーム インコーポレーテッド Semiconductor device having field plate
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9590060B2 (en) 2013-03-13 2017-03-07 Transphorm Inc. Enhancement-mode III-nitride devices
US9833345B2 (en) 2008-02-08 2017-12-05 Cook Medical Technologies Llc Stent designs for use with one or more trigger wires
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168643A (en) 1983-03-15 1984-09-22 Fuji Electric Corp Res & Dev Ltd Compacting treatment method of oxide film
JPS6117153B2 (en) 1978-04-03 1986-05-06 Nippon Electric Co
JPH0582555A (en) * 1991-09-25 1993-04-02 Matsushita Electric Ind Co Ltd Method of annealing gaas substrate and manufacture of gaas semiconductor device
JPH1074775A (en) 1996-08-30 1998-03-17 Toshiba Corp Semiconductor device and its manufacture
JP2003045896A (en) * 2001-07-26 2003-02-14 Honda Motor Co Ltd Manufacturing method for semiconductor device
JP2003152138A (en) * 2001-11-08 2003-05-23 Furukawa Electric Co Ltd:The Semiconductor device excellent in heat dissipation
JP2003533051A (en) * 2000-05-10 2003-11-05 クリー インコーポレイテッド Silicon carbide metal semiconductor field effect transistor and method of manufacturing silicon carbide metal semiconductor field effect transistor
JP2003347316A (en) * 2002-05-30 2003-12-05 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004273658A (en) * 2003-03-07 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing nitride semiconductor element
JP2005101565A (en) * 2003-08-20 2005-04-14 Matsushita Electric Ind Co Ltd Semiconductor device for switch, and switching circuit
JP2005136001A (en) 2003-10-28 2005-05-26 Fujitsu Ltd Compound semiconductor device and its manufacturing method
WO2005076365A1 (en) 2004-01-16 2005-08-18 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
JP2005276978A (en) 2004-03-24 2005-10-06 Nissan Motor Co Ltd Ohmic electrode structure, manufacturing method thereof, semiconductor manufacturing device, and semiconductor device
JP2005286135A (en) 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2006013017A (en) 2004-06-24 2006-01-12 Toyota Motor Corp Manufacture of insulated gate type semiconductor device
JP2006120694A (en) 2004-10-19 2006-05-11 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2008016762A (en) * 2006-07-10 2008-01-24 Oki Electric Ind Co Ltd MANUFACTURING METHOD OF GaN-HEMT

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117153B2 (en) 1978-04-03 1986-05-06 Nippon Electric Co
JPS59168643A (en) 1983-03-15 1984-09-22 Fuji Electric Corp Res & Dev Ltd Compacting treatment method of oxide film
JPH0582555A (en) * 1991-09-25 1993-04-02 Matsushita Electric Ind Co Ltd Method of annealing gaas substrate and manufacture of gaas semiconductor device
JPH1074775A (en) 1996-08-30 1998-03-17 Toshiba Corp Semiconductor device and its manufacture
JP2003533051A (en) * 2000-05-10 2003-11-05 クリー インコーポレイテッド Silicon carbide metal semiconductor field effect transistor and method of manufacturing silicon carbide metal semiconductor field effect transistor
JP2003045896A (en) * 2001-07-26 2003-02-14 Honda Motor Co Ltd Manufacturing method for semiconductor device
JP2003152138A (en) * 2001-11-08 2003-05-23 Furukawa Electric Co Ltd:The Semiconductor device excellent in heat dissipation
JP2003347316A (en) * 2002-05-30 2003-12-05 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2004273658A (en) * 2003-03-07 2004-09-30 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing nitride semiconductor element
JP2005101565A (en) * 2003-08-20 2005-04-14 Matsushita Electric Ind Co Ltd Semiconductor device for switch, and switching circuit
JP2005136001A (en) 2003-10-28 2005-05-26 Fujitsu Ltd Compound semiconductor device and its manufacturing method
WO2005076365A1 (en) 2004-01-16 2005-08-18 Cree, Inc. Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
JP2007518265A (en) 2004-01-16 2007-07-05 クリー インコーポレイテッド Nitride-based transistor with protective layer and low damage recess and method of fabrication
JP2005276978A (en) 2004-03-24 2005-10-06 Nissan Motor Co Ltd Ohmic electrode structure, manufacturing method thereof, semiconductor manufacturing device, and semiconductor device
JP2005286135A (en) 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2006013017A (en) 2004-06-24 2006-01-12 Toyota Motor Corp Manufacture of insulated gate type semiconductor device
JP2006120694A (en) 2004-10-19 2006-05-11 Oki Electric Ind Co Ltd Semiconductor device and its manufacturing method
JP2008016762A (en) * 2006-07-10 2008-01-24 Oki Electric Ind Co Ltd MANUFACTURING METHOD OF GaN-HEMT

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9833345B2 (en) 2008-02-08 2017-12-05 Cook Medical Technologies Llc Stent designs for use with one or more trigger wires
US10363154B2 (en) 2008-02-08 2019-07-30 Cook Medical Technologies Llc Stent designs for use with one or more trigger wires
US9831315B2 (en) 2009-08-28 2017-11-28 Transphorm Inc. Semiconductor devices with field plates
JP2013503483A (en) * 2009-08-28 2013-01-31 トランスフォーム インコーポレーテッド Semiconductor device having field plate
US9373699B2 (en) 2009-08-28 2016-06-21 Transphorm Inc. Semiconductor devices with field plates
US9111961B2 (en) 2009-08-28 2015-08-18 Transphorm Inc. Semiconductor devices with field plates
JP2012028581A (en) * 2010-07-23 2012-02-09 Sumitomo Electric Ind Ltd Manufacturing method of semiconductor device
US10535763B2 (en) 2013-03-13 2020-01-14 Transphorm Inc. Enhancement-mode III-nitride devices
US9590060B2 (en) 2013-03-13 2017-03-07 Transphorm Inc. Enhancement-mode III-nitride devices
US10043898B2 (en) 2013-03-13 2018-08-07 Transphorm Inc. Enhancement-mode III-nitride devices
US9318593B2 (en) 2014-07-21 2016-04-19 Transphorm Inc. Forming enhancement mode III-nitride devices
US9935190B2 (en) 2014-07-21 2018-04-03 Transphorm Inc. Forming enhancement mode III-nitride devices
US9536966B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Gate structures for III-N devices
US9536967B2 (en) 2014-12-16 2017-01-03 Transphorm Inc. Recessed ohmic contacts in a III-N device
US11322599B2 (en) 2016-01-15 2022-05-03 Transphorm Technology, Inc. Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
US10224401B2 (en) 2016-05-31 2019-03-05 Transphorm Inc. III-nitride devices including a graded depleting layer
US10629681B2 (en) 2016-05-31 2020-04-21 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer
US11121216B2 (en) 2016-05-31 2021-09-14 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer

Also Published As

Publication number Publication date
JP5520432B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
KR101202497B1 (en) Nitride-based transistors with a protective layer and a low-damage recess and methods of fabrication thereof
JP5520432B2 (en) Manufacturing method of semiconductor transistor
US20200111876A1 (en) Algan/gan heterojunction hemt device compatible with si-cmos process and manufacturing method therefor
KR101108344B1 (en) Methods of fabricating nitride-based transistors with a cap layer and a recessed gate
TWI656644B (en) Heterostructure power transistor and method of fabricating heterostructure semiconductor device
TWI429076B (en) Binary group iii-nitride based high electron mobility transistors and methods of fabricating same
US7550784B2 (en) Nitride-based transistors and methods of fabrication thereof using non-etched contact recesses
TWI525814B (en) Heterostructure transistor with multiple gate dielectric layers
US9666683B2 (en) Surface treatment and passivation for high electron mobility transistors
US8551821B2 (en) Enhancement normally off nitride semiconductor device manufacturing the same
JP2007149794A (en) Field effect transistor
US20090001381A1 (en) Semiconductor device
JP2008166469A (en) Nitride semiconductor device and manufacturing method thereof
JP2007165431A (en) Field effect transistor, and method of fabrication same
JP2002076329A (en) Semiconductor device
JP2010192633A (en) METHOD FOR MANUFACTURING GaN-BASED FIELD-EFFECT TRANSISTOR
JP2008103408A (en) Nitride compound semiconductor transistor and manufacturing method thereof
JP2020517119A (en) Diamond air bridge for thermal management of high power devices
CN108538723A (en) Nitrogen face polar gallium nitride device based on diamond and its manufacturing method
JP4906023B2 (en) GaN-based semiconductor device
JP2004165387A (en) Gan-based field effect transistor
CN113140630B (en) Preparation method of p-type nitride gate of enhanced HEMT and method for preparing enhanced nitride HEMT by using p-type nitride gate
JP5087235B2 (en) Manufacturing method of nitride semiconductor device
JP6156038B2 (en) Manufacturing method of semiconductor device
JP2010010412A (en) Semiconductor element, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131011

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20131101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R151 Written notification of patent or utility model registration

Ref document number: 5520432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350