JPS6117153B2 - - Google Patents

Info

Publication number
JPS6117153B2
JPS6117153B2 JP3956978A JP3956978A JPS6117153B2 JP S6117153 B2 JPS6117153 B2 JP S6117153B2 JP 3956978 A JP3956978 A JP 3956978A JP 3956978 A JP3956978 A JP 3956978A JP S6117153 B2 JPS6117153 B2 JP S6117153B2
Authority
JP
Japan
Prior art keywords
region
gate
drain
semiconductor layer
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3956978A
Other languages
Japanese (ja)
Other versions
JPS54131881A (en
Inventor
Hiroshi Sakuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP3956978A priority Critical patent/JPS54131881A/en
Publication of JPS54131881A publication Critical patent/JPS54131881A/en
Publication of JPS6117153B2 publication Critical patent/JPS6117153B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】 本発明は、高耐圧で、且つ、ドレイン飽和電流
の大きな接合形電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a junction field effect transistor having a high breakdown voltage and a large drain saturation current.

誘電体絶縁分離基板、もしくは高比低抗半導体
基板上に形成された従来構造の接合形電界効果ト
ランジスタの一例を模式的に第1図に示す。第1
図において、1は誘電体絶縁分離基板、2はn形
半導体層、3,4はそれぞれ、n+形のソースお
よびドレイン拡散領域、5はp+形のゲート拡散
領域、6は保護膜としての二酸化ケイ素被膜、7
は金属電極配線である。
An example of a conventional junction field effect transistor formed on a dielectric insulating isolation substrate or a high-ratio/low-resistance semiconductor substrate is schematically shown in FIG. 1st
In the figure, 1 is a dielectric insulating isolation substrate, 2 is an n-type semiconductor layer, 3 and 4 are n + type source and drain diffusion regions, 5 is a p + type gate diffusion region, and 6 is a protective film. Silicon dioxide coating, 7
is metal electrode wiring.

いわゆる接合形電界効果トランジスタは、ドレ
イン電極4、ソース電極3間を結ぶチヤンネル領
域8の厚さを、ゲート電極5から拡がる空乏層領
域9によつて制御することにより動作せしめられ
る。この場合、接合形電界効果トランジスタの立
ち上り時の抵抗Ronは、可変抵抗として動作する
チヤンネル領域8の厚さdと巾、すなわち、ソー
ス、ドレイン方向断面積に比例し、ソース、ドレ
イン方向長さLに反比例する。又、チヤンネル領
域8および、半導体層2の不純物濃度(第1図の
nチヤンネル接合形電界効果トランジスタの場
合、n形不純物濃度ND)に比例して変わる。従
つて、接合形電界効果トランジスタのドレイン飽
和電流を大きくするためには、チヤンネル領域8
および半導体層2の不純物濃度NDを高くし、厚
さdを厚くして、オン抵抗Ronを下げることが必
要である。一方、ドレイン電流を遮断するのに必
要なピンチオフ電圧Vpは、チヤンネル領域8の
不純物濃度NDおよび厚さdの目乗の積に比例し
て変わるから、dを大きくとれば、Vpは急激に
増大してしまう。従つて、接合形電界効果トラン
ジスタのオン抵抗Ronを下げるためには、むし
ろ、チヤンネル領域8および半導体層2の不純物
濃度NDを高く選ぶことが望ましく、又、一般的
である。
A so-called junction field effect transistor is operated by controlling the thickness of a channel region 8 connecting a drain electrode 4 and a source electrode 3 with a depletion layer region 9 extending from a gate electrode 5. In this case, the resistance Ron at the time of rising of the junction field effect transistor is proportional to the thickness d and width of the channel region 8 that operates as a variable resistor, that is, the cross-sectional area in the source and drain directions, and the length L in the source and drain directions. is inversely proportional to. Further, it changes in proportion to the impurity concentration of the channel region 8 and the semiconductor layer 2 (the n-type impurity concentration N D in the case of the n-channel junction field effect transistor shown in FIG. 1). Therefore, in order to increase the drain saturation current of a junction field effect transistor, it is necessary to increase the channel region 8.
It is also necessary to increase the impurity concentration N D of the semiconductor layer 2, increase the thickness d, and lower the on-resistance Ron. On the other hand, the pinch-off voltage V p required to cut off the drain current changes in proportion to the product of the impurity concentration N D of the channel region 8 and the thickness d, so if d is set large, V p It increases rapidly. Therefore, in order to lower the on-resistance Ron of the junction field effect transistor, it is desirable and common to select a high impurity concentration N D in the channel region 8 and the semiconductor layer 2.

さて、このような接合形電界効果トランジスタ
の使用可能電圧範囲、すなわちドレイン−ソース
間降伏電圧BVNDSXは、通常、ドレイン−ゲート
間PN接合の逆耐圧BVDGOによつて制限される。
従つて、より動作電圧の高い接合形電界効果トラ
ンジスタを得るためには、ドレイン−ゲート間接
な耐圧を増す必要があり、チヤンネル領域8およ
び半導体層2の不純物濃度NDをより低く選ぶ必
要が生ずる。すなわち、接合形電界効果トランジ
スタにおいて、オン抵抗を下げてドレイン飽和電
流を大きくすることと、ドレイン−ソース間降伏
電圧を上げて、動作可能電圧範囲を拡げることと
は相矛盾する要素であつた。
Now, the usable voltage range of such a junction field effect transistor, that is, the drain-source breakdown voltage BVN DSX , is usually limited by the reverse breakdown voltage BV DGO of the drain-gate PN junction.
Therefore, in order to obtain a junction field effect transistor with a higher operating voltage, it is necessary to increase the drain-gate indirect breakdown voltage, and it becomes necessary to select a lower impurity concentration N D in the channel region 8 and the semiconductor layer 2. . That is, in a junction field effect transistor, lowering the on-resistance to increase the drain saturation current and increasing the drain-source breakdown voltage to widen the operable voltage range are contradictory factors.

たとえば、第1図のトランジスタにおいて、N
D〓5×1015cm-3、厚さd=2μmのチヤンネル
領域を仮定すれば、そのピンチオフ電圧は約15V
になる。このとき、チヤンネル領域の単位面積当
りの電流密度は、約1×1012cm-2である。今、ド
レイン−ゲート間耐圧BVDGOを高めるために、N
Dを10分の1の5×1014cm-3にし、同じオン抵抗
を維持しようとすると、チヤンネル領域の厚さd
は、20μmに設定する必要がある。このときの、
ピンチオフ電圧Vpは150Vと計算される。しか
し、トランジスタのチヤンネル抵抗を制御するの
に必要なゲート印加電圧は、低いことが望ましい
から、ピンチオフ電圧を、そのまま約15Vに保つ
こととすると、dは、約6.2μm程度に抑えねば
ならない。この場合、単位チヤンネル巾当りのチ
ヤンネル抵抗は、3倍以上に増加することにな
る。ドレイン−ゲート間耐任をより高めるため更
にNDを低く選べば、ピンチオフ電圧、およびオ
ン抵抗に対する条件は一層厳しくなることは言う
までもない。
For example, in the transistor of FIG.
Assuming a channel region of D = 5×10 15 cm -3 and thickness d = 2 μm, the pinch-off voltage is approximately 15 V.
become. At this time, the current density per unit area of the channel region is approximately 1×10 12 cm −2 . Now, in order to increase the drain-gate breakdown voltage BV DGO , N
If we reduce D by a tenth to 5×10 14 cm -3 and try to maintain the same on-resistance, the thickness of the channel region d
must be set to 20 μm. At this time,
The pinch-off voltage V p is calculated to be 150V. However, since it is desirable that the gate applied voltage necessary to control the channel resistance of the transistor be low, if the pinch-off voltage is maintained at approximately 15 V, d must be suppressed to approximately 6.2 μm. In this case, the channel resistance per unit channel width will increase by more than three times. Needless to say, if N D is selected to be even lower in order to further enhance the drain-gate durability, the conditions for the pinch-off voltage and on-resistance will become even more severe.

又、半導体層2の不純物濃度を下げれば、高ド
レイン電圧加時に、ドレイン−ゲート間に大きな
空乏層領域が拡がるから、ドレイン−ゲート電極
間隔は、充分広く設定する必要があり、ここで
も、オン抵抗は高められる結果となる。
Furthermore, if the impurity concentration of the semiconductor layer 2 is lowered, a large depletion layer region will expand between the drain and gate when a high drain voltage is applied, so the distance between the drain and gate electrodes must be set sufficiently wide. The result is that the resistance is increased.

本発明の目的は、従来の接合形電界効果トラン
ジスタの高耐圧化にとつて、障害であつたオン抵
抗と、ドレイン−ゲート間耐圧の前記関係を、新
規素子構造によつて緩和せしめ、高ドレイン耐圧
で、且つ、低オン抵抗を有するようにした接合形
電界効果トランジスタを提供するところにある。
An object of the present invention is to alleviate the relationship between on-resistance and drain-gate breakdown voltage, which has been an obstacle to increasing the breakdown voltage of conventional junction field effect transistors, by using a new device structure. An object of the present invention is to provide a junction field effect transistor that has high breakdown voltage and low on-resistance.

本発明によれば、絶縁性基板上に設けられた半
導体層に、該半導体層と同一の第1の導電形のソ
ース領域およびドレイン領域と、該ソース領域お
よびドレイン領域間の半導体層表面に、該半導体
層と異なる第2の導電形のゲート領域と、該ゲー
ト領域およびドレイン領域間に該ゲート領域に接
して、該ゲート領域と同一の第2の導電形の低不
純物の濃度領域からなる延長ゲート領域が構成さ
れてなり、かつ、ゲートピンチオフ時に、該延長
ゲート領域および、該延長ゲート領域下のチヤン
ネル領域からなる半導体層部全域が、該チヤンネ
ル方向と垂直方向に空乏層化するよう、該延長ゲ
ート領域および延長領域下の該チヤンネル領域の
不純物濃度およびその分布が選択されていること
を特徴とする接合形電界効果トランジスタが得ら
れる。
According to the present invention, a semiconductor layer provided on an insulating substrate includes a source region and a drain region of the same first conductivity type as the semiconductor layer, and a surface of the semiconductor layer between the source region and the drain region. An extension consisting of a gate region of a second conductivity type different from the semiconductor layer, and a low impurity concentration region of the same second conductivity type as the gate region, which is in contact with the gate region between the gate region and the drain region. The gate region is configured such that, at the time of gate pinch-off, the entire semiconductor layer portion consisting of the extended gate region and the channel region under the extended gate region becomes a depletion layer in a direction perpendicular to the channel direction. A junction field effect transistor is obtained, characterized in that the impurity concentration and its distribution in the extension gate region and the channel region under the extension region are selected.

以下、本発明について、絶縁性基板として、誘
電体絶縁分離基板のSOS(シリコンオンサフアイ
ヤ)基板に用いた接合形電界効果トランジスタの
実施例を、図面を用いて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, embodiments of the present invention will be described in detail with reference to the drawings, in which a junction field effect transistor is used as an insulating substrate in an SOS (silicon on sapphire) substrate, which is a dielectric isolation isolation substrate.

第2図は、本発明の一実施例を説明するための
模式図である。まず半導体層として、膜厚約3μ
mで不純物濃度が5〜7×1015cm-3であるn型シ
リコンエピタキシヤル膜2をサフアイヤ基板1上
に形成し、素子構成部分を残して不用シリコンエ
ピタキシヤル膜部を触刻除去した。
FIG. 2 is a schematic diagram for explaining one embodiment of the present invention. First, as a semiconductor layer, the film thickness is approximately 3 μm.
An n-type silicon epitaxial film 2 having an impurity concentration of 5 to 7×10 15 cm -3 was formed on a sapphire substrate 1, and the unnecessary silicon epitaxial film portion was removed by etching, leaving the element component portion.

次にシリコン酸化膜をマスタとして、ボロン、
およびリン拡散を行ない、ソース電極、ドレイン
電極用n+高濃度拡散領域3,4およびゲート電
極用p+高濃度拡散領域5を形成した。これらの
工程は、SOS基板を用いたMOSICの製造工程と
まつたく同様に行なうことができる。その後、約
1400Åの熱酸化によるシリコン酸化膜を介し、フ
オトレジスタとして、高濃度ゲート電極領域5
と、ドレイン領域4の間のシリコンエピタキシヤ
ル層表面に該高濃度ゲート電極領域5と接して加
速電圧50Kevでボコンイオンの注入を行ない、長
さ30μmの低濃度延長ゲート電極領域10を形成
した。更に、表面保護のためにウエハー表面主体
を、気相成長法により、リンを含んだ二酸化シリ
コン膜で被い、打ち込みイオンの活性化を兼ねて
950℃、窒素雰囲気中で、アニール処理を行なつ
た。最後にソース、ドレイン、ゲート電極用拡散
領域3,4,5にそれぞれコンタクト孔を設け、
A1配線7を施した。
Next, using the silicon oxide film as a master, boron,
Then, phosphorus was diffused to form n + high concentration diffusion regions 3 and 4 for source and drain electrodes and p + high concentration diffusion region 5 for gate electrode. These steps can be performed in exactly the same way as the MOSIC manufacturing process using an SOS substrate. Then about
A high concentration gate electrode region 5 is formed as a photoresistor through a thermally oxidized silicon oxide film of 1400 Å.
Bocon ions were implanted into the surface of the silicon epitaxial layer between the drain region 4 and in contact with the high concentration gate electrode region 5 at an acceleration voltage of 50 Kev to form a low concentration extended gate electrode region 10 having a length of 30 μm. Furthermore, in order to protect the surface, the main surface of the wafer is covered with a silicon dioxide film containing phosphorus using a vapor phase growth method, which also serves to activate the implanted ions.
Annealing treatment was performed at 950°C in a nitrogen atmosphere. Finally, contact holes are provided in the source, drain, and gate electrode diffusion regions 3, 4, and 5, respectively.
A1 wiring 7 was applied.

ボロイオンの注入ドーズ量を0,1.5,2.0,
2.5,3.0,3.5×1012cm-2と種々変化させたトラン
ジスタ試料について、ドレイン−ゲート接合耐圧
BVDGOを調べたところ、イオン注入のないトラン
ジスタのBVDGOは、約70Vであるのに対して、2.5
×1012cm-2のボロイオン注入を施したトランジス
タでは600V以上のBVDGOが得られた。又、低濃
度延長ゲート領域10の長さLGの異なる種々のト
ランジスタにつき、BVGDOを調べたところ、
BVDGOはLGに比例して、増加し、一定のLGに対
しては2.5×1012cm-2のイオン注入ドーズ量を施し
た場合が最も高いという結果が得られた。
Boro ion implantation dose is 0, 1.5, 2.0,
Drain-gate junction breakdown voltage for transistor samples with various changes of 2.5, 3.0, and 3.5×10 12 cm -2
When we looked at the BV DGO , we found that the BV DGO of a transistor without ion implantation is about 70V, while it is 2.5V.
A BV DGO of more than 600V was obtained in a transistor implanted with ×10 12 cm -2 boro ions. Furthermore, when BV GDO was investigated for various transistors with different lengths L G of the low concentration extended gate region 10, it was found that
The results show that BV DGO increases in proportion to L G and is highest when an ion implantation dose of 2.5×10 12 cm −2 is applied for a constant L G .

すなわち、本発明にかかる接合形電界効果トラ
ンジスタにおいては、チヤンネル領域8の不純物
濃度が高いにもかかわらず、低濃度延長ゲート領
域10の長さLGをより長く設定し、同部へのイ
オン注入ドーズ量を適当に選択することにより、
ドレイン−ゲード間耐圧を著しく高めることがで
きるから、高ドレイン耐圧、且つ、低オン抵抗を
有するトランジスタが実現できることになる。
That is, in the junction field effect transistor according to the present invention, although the impurity concentration in the channel region 8 is high, the length L G of the low concentration extended gate region 10 is set longer, and ions are implanted into the same region. By appropriately selecting the dose,
Since the drain-gate breakdown voltage can be significantly increased, a transistor with high drain breakdown voltage and low on-resistance can be realized.

本発明における接合形電界効果トランジスタの
高ドレイン−ゲート接合耐圧は、本出願人らによ
る、誘電体絶縁分離基板上のPN接合ダイオード
素子の高耐圧化に関する特願昭52−81314に配載
の動作原理とまつたく同様に説明することができ
る。すなわち、低濃度延長ゲート領域10下のチ
ヤンネル領域8の単位面積面りに含まれる有効不
純物イオン総量に等しく、該低濃度延長ゲート領
域10の対応する部分に含まれる有効不純物イオ
ン総量を、制御してやれば、ドレイン4とゲート
電極5、および低濃度延長ゲート領域10の間の
PN接合に逆方向電圧が印加され、同接合間に空
乏層が拡がる場合、該低濃度延長ゲート領域10
中の不純物イオンから発した電気力線をほぼすべ
ての同領域下部のチヤンネル領域8中の反対極性
不純物イオンにより終端させることができる。す
なわち、低濃度延長ゲート領域10および同領域
下部のチヤンネル領域8は、同領域間にチヤンネ
ル方向と垂直方向に拡がる空乏層によつて、ゲー
トピンチオフ電圧Vpのところで、低濃度延長ゲ
ート領域10は、シリコン−二酸化シリコン界面
まで、同領域下部のチヤンネル領域8は、シリコ
ン−絶縁物基板界面まで同時にリーチスルーされ
る。従つて、Vpを越えるドレイン−ゲート間電
圧の範囲では、ドレイン電極4とゲート電極5も
しくはソース電極3間には低濃度延長ゲート領域
10の長さLGにほぼ比例した膜厚方向に全域空乏
層化した領域が介在することになり、ドレイン−
ゲート間耐圧、もしくはドレイン−ソース間耐圧
は、LGに対応して増加することになる。ここ
で、チヤンネル領域8および低濃度延長ゲート領
域10の厚さと不純物濃度及び分布は、然るでき
ゲート電圧でチヤンネルがピンチオフされるよ
う、膜厚方向の接合降服電圧も考慮して設定され
るべきことはもちろんである。
The high drain-gate junction breakdown voltage of the junction field effect transistor according to the present invention is based on the operation disclosed in Japanese Patent Application No. 81314/1983, which was filed by the present applicant and others and relates to increasing the breakdown voltage of a PN junction diode element on a dielectric isolation substrate. It can be explained in the same way as the principle. That is, the total amount of effective impurity ions contained in the corresponding portion of the low concentration extended gate region 10 should be controlled to be equal to the total amount of effective impurity ions contained in a unit area of the channel region 8 below the low concentration extended gate region 10. For example, between the drain 4, the gate electrode 5, and the low concentration extended gate region 10,
When a reverse voltage is applied to the PN junction and a depletion layer spreads between the junctions, the low concentration extended gate region 10
Electric lines of force emitted from impurity ions therein can be terminated by almost all impurity ions of opposite polarity in the channel region 8 below the same region. That is, the low concentration extended gate region 10 and the channel region 8 below the same region have a depletion layer extending between the regions in the direction perpendicular to the channel direction, so that at the gate pinch-off voltage V p , the low concentration extended gate region 10 , to the silicon-silicon dioxide interface, and the channel region 8 below the same region is simultaneously reached through to the silicon-insulator substrate interface. Therefore, in the range of the drain-gate voltage exceeding Vp , there is a low concentration extended gate region between the drain electrode 4 and the gate electrode 5 or the source electrode 3.
There is a region where the entire region becomes a depletion layer in the film thickness direction, which is approximately proportional to the length L G of 10, and the drain -
The gate-to-gate breakdown voltage or the drain-source breakdown voltage increases in accordance with L G . Here, the thickness, impurity concentration and distribution of the channel region 8 and the low concentration extended gate region 10 should be set in consideration of the junction breakdown voltage in the film thickness direction so that the channel is pinched off at the appropriate gate voltage. Of course.

実際、実施例の接合形電界効果トランジスタに
おいて、半導体薄膜2の不純物濃度が約5×1015
cm-3であるとすれば、同膜中には、膜厚が3μm
であるから単位面積当り約1.5×1012cm-2の不純物
イオンが存在することになる。一方、イオン注入
により、低濃度延長ゲート領域10に導入された
活性不純物イオンの量をイオン注入ドーズ量の6
〜7割と推定すれば、本実施例における有効不純
物イオン注入量は2.5×1012cm-2のイオン注入ドー
ズ量に対して、1.5×1.75×1012cm-2となる。すな
わち、本実施例における最適イオン注入条件のも
とでは、表面酸化膜中に含まれる1×2×1011cm
-2程度の表面準位を考慮して、低濃度延長ゲート
領域10と、該低濃度延長ゲート領域10下のチ
ヤンネル領域8のそれぞれ含まれる互に反対極性
の不純物イオンの総量がほぼ等しくなつており、
前記ドレインゲート間高耐圧化の条件が整つてい
るものと考えられる。
In fact, in the junction field effect transistor of the example, the impurity concentration of the semiconductor thin film 2 is approximately 5×10 15
cm -3 , the film has a thickness of 3 μm.
Therefore, approximately 1.5×10 12 cm -2 of impurity ions exist per unit area. On the other hand, the amount of active impurity ions introduced into the low concentration extended gate region 10 by ion implantation is reduced to 6 of the ion implantation dose.
If estimated to be ~70%, the effective impurity ion implantation amount in this example is 1.5×1.75×10 12 cm −2 for the ion implantation dose of 2.5×10 12 cm −2 . That is, under the optimal ion implantation conditions in this example, the 1×2×10 11 cm contained in the surface oxide film
Considering the surface level of about -2 , the total amount of impurity ions of opposite polarity contained in each of the low concentration extended gate region 10 and the channel region 8 below the low concentration extended gate region 10 is approximately equal. Ori,
It is considered that the conditions for increasing the withstand voltage between the drain and gate have been met.

このように本発明によれば、ドレイン−ゲート
間耐圧は、実施例でも示されたように、直接チヤ
ンネル領域8もしくは半導体領域2の不純物濃度
に制約されず、むしろ、低濃度延長ゲート領域10
長LGによつて決まるから、上述の範囲で、チヤ
ンネル領域8もしくは半導体薄膜2の不純物濃度
を、より高く選ぶことにより、高ドレイン耐圧
で、低チヤンネル低抗を有し、且つ、ゲートピン
チオフ電圧の低い接合形電界効果トランジスタが
実現できる。
As described above, according to the present invention, the drain-gate breakdown voltage is not restricted by the impurity concentration of the direct channel region 8 or the semiconductor region 2, as shown in the embodiments, but rather by the impurity concentration of the low concentration extended gate region 10.
Therefore , by selecting a higher impurity concentration in the channel region 8 or the semiconductor thin film 2 within the above range, it is possible to obtain a high drain breakdown voltage, a low channel resistance, and a gate pinch-off voltage. It is possible to realize a junction field effect transistor with low

本発明にかかる接合形電界効果トランジスタで
は低濃度延長ゲート領域10の長さ分だけゲート
長が増加し、高周波特性には好ましくない。しか
し、高ドレイン耐圧を得るにはいづれにしても、
ドレイン−ゲート間に空乏層の拡がるでき充分な
距離が必要であり、チヤンネル領域8がより高い
不純物濃度を有し、低低抗であることは、同じド
レイン耐圧を有する接合形電界効果トランジスタ
同志を比較した場合、はるかに有利となる。
In the junction field effect transistor according to the present invention, the gate length increases by the length of the lightly doped extended gate region 10, which is unfavorable for high frequency characteristics. However, in order to obtain a high drain breakdown voltage,
A sufficient distance is required between the drain and the gate to allow the depletion layer to expand, and the fact that the channel region 8 has a higher impurity concentration and low resistivity makes it possible for junction field effect transistors with the same drain breakdown voltage to The comparison is much more favorable.

ところで、本発明においては、ドレイン−ゲー
ト間電圧増加時に、ドレインゲート間に膜厚方向
に全域空乏層化した領域を生ぜしめドレイン−ゲ
ート間、もしくは、ドレイン−ソース間の降伏電
圧を高めることを目的として、ゲート電極5に接
して、有効不純物イオン量を制御した低濃度延長
ゲート領域を設けることが特徴であり、本発明の
構造を実現するためには、本実施例に示した製造
工程以外の、種々製造工程の変形が可能であるこ
とは言うまでもない。同様の趣旨から、ゲート電
極用高濃度拡散領域5は、外部に電気的接触をと
るため、必要充分な大きさおよび深さがあればよ
い。
By the way, in the present invention, when the voltage between the drain and the gate increases, the breakdown voltage between the drain and the gate or between the drain and the source is increased by creating a region where the entire area is depleted in the film thickness direction between the drain and the gate. The purpose is to provide a low concentration extended gate region in contact with the gate electrode 5 in which the effective amount of impurity ions is controlled, and in order to realize the structure of the present invention, manufacturing steps other than those shown in this embodiment are required. It goes without saying that various modifications of the manufacturing process are possible. From the same point of view, the gate electrode high concentration diffusion region 5 only needs to have a necessary and sufficient size and depth in order to make electrical contact with the outside.

なお、本実施例ではnチヤンネル接合形電界効
果トランジスタについて述べて来たが、本発明は
pチヤンネル接合形電界効果トランジスタについ
てもまつたく同様に実施できることは、これまで
の説明からも明らかである。
Although this embodiment has been described with respect to an n-channel junction field effect transistor, it is clear from the above description that the present invention can be implemented in the same manner with a p-channel junction field effect transistor.

又、本実施例では絶縁性基板として、シリコン
オンサフアイヤ基板を用いたが、本発明における
基板材料はもちろんシリコンオンサフアイヤ基板
である必要はなく、たとえば、ポリシリコン厚膜
上に、シリコン酸化膜を介して形成されたシリコ
ン単結晶薄膜のような誘電体絶縁分離基板であつ
てもよい。さらに、絶縁性基板としては、本発明
の主旨が、生かされる範囲で、半絶縁性の高比低
抗半導体基板であつてもよく、特に、絶縁性基板
上の半導体層と異なる第2の導電形を有する高比
抵抗半導体基板の使用が有利である。又、半導体
層としては、シリコン以外のものであつても本発
明の実施が可能であることは言うまでもない。
Furthermore, although a silicon-on-sapphire substrate was used as the insulating substrate in this example, the substrate material in the present invention need not necessarily be a silicon-on-sapphire substrate; for example, silicon oxide on a polysilicon thick film is used. It may also be a dielectric insulating isolation substrate such as a silicon single crystal thin film formed through a film. Further, the insulating substrate may be a semi-insulating high-ratio/low-resistance semiconductor substrate as long as the gist of the present invention is utilized, and in particular, a second conductive substrate different from the semiconductor layer on the insulating substrate may be used. It is advantageous to use a high resistivity semiconductor substrate having a shape. Furthermore, it goes without saying that the present invention can be practiced using materials other than silicon as the semiconductor layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は誘電体絶縁基板上に設けられた従来構
造の接合形電界効果トランジスタの断面模式図、
第2図は本発明による誘電体絶縁分離基板上に設
けられた高耐圧接合形電界効果トランジスタの一
実施例を示す断面構造図である。 図において、1は誘電体絶縁基板、2は半導体
薄膜、3および4はソースおよびドレイン電極用
N+拡散領域、5はゲート電極用、P+拡散領域、
6は二酸化シリコン被膜、7はAl電極配線、8
はチヤンネル領域、9はゲート電極の周囲に拡が
る空乏層端、10は低濃度延長ゲート領域を、そ
れぞれ示す。
Figure 1 is a cross-sectional schematic diagram of a conventional junction field effect transistor provided on a dielectric insulating substrate.
FIG. 2 is a cross-sectional structural diagram showing an embodiment of a high voltage junction field effect transistor provided on a dielectric insulating isolation substrate according to the present invention. In the figure, 1 is a dielectric insulating substrate, 2 is a semiconductor thin film, and 3 and 4 are for source and drain electrodes.
N + diffusion region, 5 is for gate electrode, P + diffusion region,
6 is silicon dioxide film, 7 is Al electrode wiring, 8 is
9 indicates a channel region, 9 indicates an end of a depletion layer extending around the gate electrode, and 10 indicates a low concentration extended gate region.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁性基板上に設けられた半導体層に、該半
導体層と同一の第1の導電形のソース領域および
ドレイン領域と、該ソース領域およびドレイン領
域間の半導体層表面に、該半導体層と異なる第2
の道電形のゲート領域と、該ゲート領域およびド
レイン領域間に該ゲート領域に接して、該ゲート
領域と同一の第2の導電形の低不純物濃度領域か
らなる延長ゲート領域が構成されてなり、かつ、
ゲートピンチオフ時に、該延長ゲート領域およ
び、該延長ゲート領域下のチヤンネル領域からな
る半導体層部全域が、該チヤンネル方向と垂直方
向に空乏層化するよう、該延長ゲート領域およ
び、延長ゲート領域下の該チヤンネル領域の不純
物濃度、およびその分布が選択されていることを
特徴とする接合形電界効果トランジスタ。
1 A semiconductor layer provided on an insulating substrate has a source region and a drain region of the same first conductivity type as the semiconductor layer, and a region different from the semiconductor layer on the surface of the semiconductor layer between the source region and the drain region. Second
An extended gate region is formed between the gate region and the drain region, and in contact with the gate region, the extended gate region is composed of a low impurity concentration region of the same second conductivity type as the gate region. ,and,
The extended gate region and the area under the extended gate region are formed such that the entire semiconductor layer portion consisting of the extended gate region and the channel region under the extended gate region becomes a depletion layer in the direction perpendicular to the channel direction during gate pinch-off. A junction field effect transistor characterized in that the impurity concentration and its distribution in the channel region are selected.
JP3956978A 1978-04-03 1978-04-03 Junction-type field effect transistor Granted JPS54131881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3956978A JPS54131881A (en) 1978-04-03 1978-04-03 Junction-type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3956978A JPS54131881A (en) 1978-04-03 1978-04-03 Junction-type field effect transistor

Publications (2)

Publication Number Publication Date
JPS54131881A JPS54131881A (en) 1979-10-13
JPS6117153B2 true JPS6117153B2 (en) 1986-05-06

Family

ID=12556698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3956978A Granted JPS54131881A (en) 1978-04-03 1978-04-03 Junction-type field effect transistor

Country Status (1)

Country Link
JP (1) JPS54131881A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091699A (en) 2006-10-03 2008-04-17 Furukawa Electric Co Ltd:The Method of manufacturing semiconductor transistor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4364072A (en) * 1978-03-17 1982-12-14 Zaidan Hojin Handotai Kenkyu Shinkokai Static induction type semiconductor device with multiple doped layers for potential modification
JPS554912A (en) * 1978-06-26 1980-01-14 Hitachi Ltd Fieldeffect lateral transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091699A (en) 2006-10-03 2008-04-17 Furukawa Electric Co Ltd:The Method of manufacturing semiconductor transistor

Also Published As

Publication number Publication date
JPS54131881A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
JP2681192B2 (en) Field effect transistor
US4232327A (en) Extended drain self-aligned silicon gate MOSFET
JPH0330310B2 (en)
US4729001A (en) Short-channel field effect transistor
US5187552A (en) Shielded field-effect transistor devices
KR930024156A (en) Semiconductor device and manufacturing method thereof
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
US4841347A (en) MOS VLSI device having shallow junctions and method of making same
US3514676A (en) Insulated gate complementary field effect transistors gate structure
KR20040078698A (en) Method of forming a vertical double gate semiconductor device and structure thereof
US4885618A (en) Insulated gate FET having a buried insulating barrier
US5138409A (en) High voltage semiconductor device having silicon-on-insulator structure with reduced on-resistance
US4914491A (en) Junction field-effect transistors formed on insulator substrates
KR890013796A (en) Semiconductor device and manufacturing method
EP0071335B1 (en) Field effect transistor
KR100256387B1 (en) A lateral insulated gate field effect semiconductor device
US4735914A (en) FET for high reverse bias voltage and geometrical design for low on resistance
US6255694B1 (en) Multi-function semiconductor structure and method
GB2045525A (en) Field effect transistor construction
US4466008A (en) Field effect transistor
US8247840B2 (en) Apparatus and method for improved leakage current of silicon on insulator transistors using a forward biased diode
US4958204A (en) Junction field-effect transistor with a novel gate
JPS6117153B2 (en)
US4916500A (en) MOS field effect transistor device with buried channel
JP2000068372A (en) Semiconductor device and manufacture thereof