JP2008305865A - 光情報放射装置,光走査装置,プリンタおよび画像形成装置 - Google Patents

光情報放射装置,光走査装置,プリンタおよび画像形成装置 Download PDF

Info

Publication number
JP2008305865A
JP2008305865A JP2007149704A JP2007149704A JP2008305865A JP 2008305865 A JP2008305865 A JP 2008305865A JP 2007149704 A JP2007149704 A JP 2007149704A JP 2007149704 A JP2007149704 A JP 2007149704A JP 2008305865 A JP2008305865 A JP 2008305865A
Authority
JP
Japan
Prior art keywords
light
adjustment
signal
lighting signal
light emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007149704A
Other languages
English (en)
Inventor
Yuugo Matsuura
浦 有 吾 松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007149704A priority Critical patent/JP2008305865A/ja
Publication of JP2008305865A publication Critical patent/JP2008305865A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fax Reproducing Arrangements (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

【課題】APC点灯時の光源の熱的な条件を揃える。
【解決手段】発光素子LD;その発光光量を検出する光検出素子PD;発光光量を基準値にあわせるように発光素子に通電する電流値を調節する光量調節手段APC82を含み、点灯信号に応じて発光素子を点灯付勢する発光駆動回路80;および、該回路80に、光情報放射用の点灯信号および前記調節のための調節点灯信号を与えるとともに光量制御手段82に該調節点灯信号に合せて光量制御指示S/Hを与え、かつ、調節点灯信号より設定時間前に、発光素子LDの通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅の温度調節用の点灯信号を、発光駆動回路80に与える、発光制御手段15;を備える光情報放射装置。
【選択図】図6

Description

本発明は、発光素子の光量を一定に制御する自動光量制御(APC)機能がある光情報放射装置に関し、特に、これに限定する意図ではないが、レーザダイオードから放射されるレーザ光量を一定に調節する光情報放射装置に関する。この装置は例えば、レーザビームスキャナ,レーザプリンタ,複写機およびファクシミリ装置、ならびに、光ディスクや光通信などの情報,通信分野において使用されるレーザビーム光源に使用できる。
特開2000−118041号公報 特開2004−111854号公報 特開2007− 38431号公報。
特許文献1には、レーザダイオードが放射するレーザ光をポリゴンミラー(回転多面鏡)で感光体に反射して感光体面を直線にそって繰り返し走査するレーザ走査の、レーザ光量の一定制御が記載されている。レーザダイオードの温度変化を少なくし、熱クロストークを減少させ、濃度ムラの少ない画像を得るために、各走査周期において、画像露光のための有効走査期間の外に補正発光期間を設け、該有効走査期間内での発光画素数の多,少寡に対応して補正発光期間を短,長として、一走査期間中の発光時間積算値を一定にする技術が開示されている。
特許文献2には、レーザダイオードが目標光量を放射するときの発光付勢電流値に基づいてレーザダイオードの劣化を検出する発光駆動装置が記載されている。
特許文献3には、APCでの基準光量を表す光量基準信号を発生する基準信号生成回路およびAPC回路が記載されている。基準信号生成回路は、電源電圧の変動にもかかわらず所定レベルの光量基準信号を発生する。
光ビームを走査し、画像情報を感光体上に露光する画像形成装置においては、発光時に発光源の光量調節を正確に行う必要がある。特許文献1では、光ビーム主走査一周期におけるレーザダイオードの発光時間積算値を一定にする事により、APC実行時のレーザダイオードの温度を一定化する。カラー印刷するために各記録色あてに各レーザダイオードを備える場合、すなわち複数のレーザダイオードを備える場合には、各レーザダイオードの発光時間積算値を一定にする事により、レーザダイオード間の熱クロストークの影響度にムラが生じない。
しかし、APC発光をする時点でのレーザダイオードの熱的な状態は統一されていない。例えば、有効走査期間の前後の二点間で同期検知を行う場合、レーザダイオードがAPCの直前に後端同期検知発光をしていると、レーザダイオード自身、または近接した他の発光ダイオードの後端同期検知発光の余熱によってAPCが正確に行われず、画像に濃度ムラが生じる可能性がある。
本発明は、APC点灯時の光源の熱的な条件を揃える事を目的とする。
(1)発光素子(LD);
該発光素子の発光光量を検出する光検出素子(PD);
前記発光光量を基準値にあわせるように前記発光素子に通電する電流値を調節する光量調節手段(82:APC)を含み、点灯信号に応じて前記発光素子を点灯付勢する発光駆動回路(80);および、
該発光駆動回路(80)に、光情報放射用の点灯信号および前記調節のための調節点灯信号を与えるとともに前記光量制御手段(82)に該調節点灯信号に合せて光量制御指示(S/H)を与え、かつ、前記調節点灯信号より設定時間前に、前記発光素子(LD)の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅(Pw)の温度調節用の点灯信号を、前記発光駆動回路(80)に与える、発光制御手段(15);
を備える光情報放射装置(図4〜図7)。
なお、理解を容易にするために括弧内には、図面に示し後述する実施例の対応又は相当要素の記号を、例示として参考までに付記した。以下も同様である。
(2)発光素子(LD);
該発光素子の発光光量を検出する光検出素子(PD);
前記発光光量を基準値にあわせるように前記発光素子に通電する電流値を調節する光量調節手段(82:APC)を含み、点灯信号に応じて前記発光素子を点灯付勢する発光駆動回路(80);
前記発光素子(LD)の放射光を直線に沿って繰り返し走査する走査手段(30);
前記走査の始端部の放射光を検出する走査始端検出用の光検出素子(38mc);および、
前記放射光の検出を基点にしてタイミングをとって、前記発光駆動回路(80)に、光情報放射用の点灯信号および前記調節のための調節点灯信号を与えるとともに前記光量制御手段(82)に該調節点灯信号に合せて光量制御指示(S/H)を与え、かつ、前記調節点灯信号より設定時間前に、前記発光素子(LD)の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅(Pw)の温度調節用の点灯信号を、前記発光駆動回路(80)に与える、発光制御手段(15);
を備える光走査装置(図3〜図7)。
(3)第1および第2発光素子(LD);
第1および第2発光素子の各発光光量を検出する第1および第2光検出素子(PD);
第1光検出素子(PD)が検出する発光光量を基準値にあわせるように第1発光素子に通電する電流値を第1調節する第1光量調節手段(82:APC)を含み、点灯信号に応じて第1発光素子を点灯付勢する第1発光駆動回路(80);
第2光検出素子(PD)が検出する発光光量を基準値にあわせるように第2発光素子に通電する電流値を第2調節する第2光量調節手段(APC)を含み、点灯信号に応じて第2発光素子を点灯付勢する第2発光駆動回路;
第1および第2発光素子(LD)の第1および第2放射光を直線に沿って繰り返し走査する走査手段(30);および、
第1および第2走査の始端部の放射光を検出する走査始端検出用の光検出素子(38mc);
第1放射光の検出を基点にしてタイミングをとって、第1発光駆動回路(80)に、第1光情報放射用の第1点灯信号および第1調節のための第1調節点灯信号を与えるとともに第1光量制御手段(82)に第1調節点灯信号に合せて第1光量制御指示(S/H)を与え、かつ、第1調節点灯信号より設定時間前に、第1発光素子(LD)の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅(Pw)の温度調節用の点灯信号を、前記発光駆動回路(80)に与え、第2放射光の検出を基点にしてタイミングをとって、第2発光駆動回路に、第2光情報放射用の第2点灯信号および第2調節のための第2調節点灯信号を与えるとともに第2光量制御手段に第2調節点灯信号に合せて第2光量制御指示(S/H)を与える、発光制御手段(15);
を備える光走査装置(図12〜図15)。
(4)前記発光制御手段(15)は、前記放射光の検出の連続複数回につき一回だけ前記温度調節用の点灯信号を、前記発光駆動回路(80)に与える、上記(2)又は(3)に記載の光走査装置(図11,図15)。
(5)前記発光制御手段(15)は、前記放射光の検出の連続複数回につき一回だけ前記調節点灯信号を前記発光駆動回路(80)に与えるとともに前記光量制御手段(82:APC)に該調節点灯信号に合せて光量制御指示(S/H)を与える、上記(2)乃至(4)のいずれか1つに記載の光走査装置(図11,図15)。
(6)光走査装置は更に、前記走査の後端部の放射光を検出する走査後端検出用の光検出素子(40mc);を更に備え、
前記発光制御手段(15)は、前記後端部の放射光検出のタイミングで前記温度調節用の点灯信号を、前記発光駆動回路に与える、上記(2)乃至(5)のいずれか1つに記載の光走査装置(図8,図9)。
(7)感光体(56);
該感光体を荷電する手段;
前記感光体の荷電面を露光して静電潜像を形成する、上記(2)乃至(6)のいずれか1つに記載の光走査装置;
前記静電潜像を顕像剤で顕像にする現像装置(55);および、
前記顕像を直接又は中間転写体を介して用紙に転写する手段;を備えるプリンタ(図2〜図15)。
(8)上記(7)に記載のプリンタ(14);
原稿の画像を読み取り該画像を表す画像データを生成する原稿スキャナ(10);および、
前記画像データを前記プリンタの画像形成に適合する画信号に変換して前記プリンタに出力する画像データ処理手段(IPD);を備える画像形成装置(図1〜図15)。
調節点灯信号より設定時間前に、設定時間幅(Pw)の温度調節用の点灯信号によって発光素子が通電されて発光するので、発光素子(LD)の発光光量を基準値にあわせるように発光素子に通電する電流値を調節する光量調節すなわち自動光量制御(APC)を行うときの点灯が、定常的に安定した熱的条件で行われる。これにより、光量制御の精度があがり、濃度ムラの少ない画像を得ることが可能となる。
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
図1に、本発明の第1実施例の複合機能フルカラーデジタル複写機を示す。このフルカラー複写機は、大略で、自動原稿送り装置(ADF)13と、操作ボード20と、カラースキャナ10と、カラープリンタ14およびフィニッシャ100の各ユニットで構成されている。なお、操作ボード20,ADF13付きのカラースキャナ10およびフィニッシャ100は、プリンタ14から分離可能なユニットであり、カラースキャナ10は、動力機器ドライバやセンサ入力およびコントローラを有する制御ボードを有して、プリンタ14の機内の制御ボードの画像データ処理装置IPD(図4)と直接または間接に通信を行いタイミング制御されて原稿画像の読み取りを行う。
画像データ処理装置IPD(図4)には、図1に示すパソコンPCが接続したLAN(Local Area Network)が接続されており、複写機機内のファクシミリコントロールユニットFCUには、電話回線PN(ファクシミリ通信回線)に接続された交換器PBXが接続されている。カラープリンタ14のプリント済の用紙は、フィニッシャ100に排出される。
図2に、カラープリンタ14の機構を示す。この実施例のカラープリンタ14は、レーザプリンタである。1色のトナー像を形成する、感光体56および現像器55ならびに図示を省略したチャージャ,クリーニング装置および転写器の組体(作像ユニット)は、M(マゼンタ),C(シアン),Y(イエロー)およびBk(黒)のそれぞれの作像用に一組、合せて4組があり、個の順に搬送ベルト57に沿ってタンデムに配列されており、それらによって形成された各色トナー像が順次に一枚の転写紙上に重ねて転写される。
第1トレイ48,第2トレイ49および第3トレイ50に積載された転写紙は、各々第1給紙装置51,第2給紙装置52および第3給紙装置53によって給紙され、縦搬送ユニット54によって感光体56に当接する位置まで搬送される。
スキャナ10にて読み込まれた画像データは、画像データ処理装置IPD(図4)で補正され、一旦メモリに書き込まれてから、読み出され、読み出した画像データを用いる図2の書込ユニット30からのレーザ露光によって、図示を省略したチャージャによって均一に荷電した感光体56に書込まれこれにより静電潜像を形成する。この静電潜像が現像ユニット55を通過することによって感光体56上にトナー像が現れる。転写紙が感光体56の回転と等速で搬送ベルト57によって搬送されながら、感光体56上のトナー像が転写される。その後、定着ユニット58にて画像を定着させ、排紙ユニット59によって後処理装置のフィニシャ100に排出される。
図2に示す、後処理装置のフィニシャ100は、本体の排紙ユニット59によって搬送された転写紙を、通常排紙ローラ103方向と、ステープル処理部方向へ導く事ができる。切り替え板101を上に切り替える事により、搬送ローラ103を経由して通常排紙トレイ104側に排紙する事ができる。また、切り替え板101を下方向に切り替える事で、搬送ローラ105,107を経由して、ステープル台108に搬送する事ができる。ステープル台108に積載された転写紙は、一枚排紙されるごとに紙揃え用のジョガー109によって、紙端面が揃えられ、一部のコピー完了と共にステープラ106によって綴じられる。ステープラ106で綴じられた転写紙群は自重によって、ステープル完了排紙トレイ110に収納される。
一方、通常の排紙トレイ104は前後(図2紙面と垂直な方向)に移動可能な排紙トレイである。前後に移動可能な排紙トレイ部104は、原稿毎、あるいは、画像メモリによってソーティングされたコピー部毎に、前後に移動し、排出されてくるコピー紙を簡易的に仕分けるものである。転写紙の両面に画像を作像する場合は、各給紙トレイ48〜50から給紙され作像された転写紙を排紙トレイ104側に導かないで、経路切り替えの為の分岐爪60を下向きに廻す事で、一旦反転ユニット112に導き、そして両面給紙ユニット111にストックする。その後、両面給紙ユニット111にストックされた転写紙は再び、感光体56に作像されたトナー画像を転写するために、両面給紙ユニット111から再給紙され、経路切り替えの為の分岐爪60を図示水平に戻し、排紙トレイ104に導く。この様に転写紙の両面に画像を作成する場合に、反転ユニット112および両面給紙ユニット111が使用される。感光体56,搬送ベルト57,定着ユニット58,排紙ユニット59および現像ユニット55は、図示を省略したメインモータによって駆動され、各給紙装置51〜53はメインモータの駆動を、やはり図示を省略した各給紙クラッチによって伝達することにより駆動される。縦搬送ユニット54は、メインモータの駆動を図示を省略した中間クラッチによって伝達することにより駆動される。
図3は、図2上の書込ユニット(書き込み光学系)30を構成する光学ユニットを上から見下した平面図である。同図において、レーザダイオードおよびそのレーザ光を変調するレーザドライバを含む半導体レーザユニット31bkおよび半導体レーザユニット31mからの光ビームは、シリンダレンズ32bk,32mを通り、反射ミラー33bkおよび反射ミラー33mによってポリゴンミラー34の下部側の面に入射し、ポリゴンミラー34が回転することにより光ビームを偏向し、fθレンズ35ybkおよびfθレンズ35mcを通り、第1ミラー36bkおよび第1ミラー36mによって折り返えされる。
一方、半導体レーザユニット31yおよび半導体レーザユニット31cからの光ビームは、シリンダレンズ32yおよび32cを通り、ポリゴンミラー34上部側の面に入射し、ポリゴンミラー34が回転することにより光ビームを偏向し、fθレンズ35ybkおよびfθレンズ35mcを通り、第1ミラー36yおよび第1ミラー36cによって折り返される。
主走査方向の書き出し位置より上流側にはシリンダミラー37ybkおよび37mcさらにはセンサ38ybkおよび38mcが備わっており、fθレンズ35ybkおよび30mcを通った光ビームがシリンダミラー37ybkおよび37mcによって反射集光されて、センサ38ybkおよび38mcに入射するような構成となっている。これらのセンサ38ybkおよび38mcは、主走査ラインの先端を検出する同期検知センサである。
また、半導体レーザユニット31bkおよび31yからの光ビームの検出では、書き出し側で共通のセンサ38ybkを使用している。半導体レーザユニット31mおよび31cからの光ビームの検出についても同様に、書き出し側で共通のセンサ38mcを使用している。同じセンサに2色の作像用光ビームが入射することとなるので、各色の光ビームのポリゴンミラー34の入射角を異なるようにすることで、それぞれの光ビームが各センサに入射するタイミングを変え、時系列的にパルス列として出力されるようになっている。図からも分かるように、K(bk)とY(y)およびM(m)とC(c)は逆方向に走査される。
図4に、プリンタ14の作像ユニットにあるLD(レーザダイオード)制御板上の、半導体レーザユニット31m〜31kに通電する画像書込制御部16bの、画像データ処理システム要素との繋がりの概要を示す。各ユニット31m〜31kは、各感光体ドラムを露光する発光素子であるレーザダイオードLDと、その出力光の一部の光量(光パワー)を検出する光検出素子であるフォトダイオードPDとが1パッケージに組込まれた、APC(Automatic Power Controller)駆動用のレーザ発光器である。
図5に、画像書込制御部16bの構成を示す。マゼンタM,シアンC,イエローYおよびブラックKの各色画信号宛ての印字画像制御部25m,25c,25yおよび25kは、プロセスコントローラ17のCPUの命令により書込制御部16b全体の制御をし、書込I/F15の各色書込I/F15m,15c,15y,15kの各画信号生成回路から出力される画信号M,C,YおよびKをレーザ駆動回路23m,23c,23yおよび23kに転送する。印字画像制御部25m,25c,25yおよび25kが、発光制御手段である。以下においては、記述を簡単にするために、色成分区分符号m,c,yおよびkを省略して要素符号を示す。
発光制御手段である印字画像制御部25が、点灯信号と共にレーザ駆動回路23に出力する制御信号の中に、調整点灯信号でありしかも光量制御指示であるサンプリング/ホールド指示信号(S/H信号という)があり、これがサンプリングを指示する高レベルH(「1」)であると、レーザ駆動回路23は、目標光量にフィードバック光量が合致するように、ユニット31のLDに通電する電流値を制御する(APC)。S/H信号が「1」から低レベルL(「0」)に切り換わると、レーザ駆動回路23は、そのときのLD電流指令信号をホールドし、S/H信号が「0」の間、フィードバック制御(APC)を行わず、点灯信号(画信号「1」)が到来すると、ホールドした駆動状態(LD電流指令信号)でLDに電流を流す。
書込クロック生成回路21は、主走査画素単位の周期のクロック信号である画素同期クロックCLKを位相同期回路22に送る。位相同期回路22は、分離65,66から送られる各色別のライン同期信号(ライン同期パルス)で、書込クロック生成回路21から送られる画素同期クロックCLKを位相補正しレーザ駆動回路23に転送する。
発光制御手段である印字画像制御部25は、プロセスコントローラ17が与える制御データを保持して画像書込制御部16bの各部に出力すると共に、画像データ枠(用紙面)にトリム領域を設定したり、画像枠(画像面)に任意の枠線を重ねあわせるなどの画像加工処理をプロセスコントローラ17の内部のCPUが指定する内容により行う。すなわちプロセスコントローラ17が与える用紙サイズ,トリム領域データおよび境界線書込有無に基いて、到来する画像信号の用紙上の印字位置を、主走査カウント(画素同期パルスのカウント)と副走査カウント(ライン同期パルスのカウント)で追跡し、トリム領域に割当てられる画像信号の出力を停止又は非記録信号への変換を行い、境界線書込有の場合は更に、トリム領域のエッジの内側の数画素の画像信号を、線書込信号に変換する(トリム境界線の書込)。
発光駆動回路であるレーザ駆動回路23は、印字画像制御部25から送られる画信号M,C,Y,Kを、位相同期回路22からくるCLK信号(画素同期パルス)に同期した駆動信号に変換して、駆動信号に基づき半導体レーザユニット31のLDに通電する。ポリゴンモータ制御回路24は、印字画像制御部25の信号で、ポリゴンモータを所定の回転速度にPLL(Phase Locked Loop)制御する。
分離65は、センサ38mcが発生する、半導体レーザユニット31mのレーザビームを検出したM受光パルスと半導体レーザユニット31cのレーザビームを検出したC受光パルスとを分離して、M受光パルスに同期してライン先端同期信号Mを、また、C受光パルスに同期してライン先端同期信号Cを発生する。同様に分離66は、ライン先端同期信号Yおよびライン先端同期信号Kを発生する。
図6に、半導体レーザユニット31mに通電するレーザ駆動回路23mの構成の概要を示す。なお、他のレーザ駆動回路23c,23yおよび23kも、レーザ駆動回路23mと同じ構成である。半導体レーザユニット31m(および31c,31y,31k)は、感光体ドラムを露光するレーザダイオードLDと、その出力光の一部の光量(光パワー)を検出するフォトダイオードPDとが1パッケージに組込まれた、APC(Automatic Power Controller)駆動用のレーザ発光器である。印字画像制御部25mが与えるサンプリング/ホールド指示信号(S/H信号という)が、サンプリング(APC)を指示する高レベルH(「1」)であると、LDドライバ80が、LDに連続通電してLDの発光を検出したPD(フォトダイオード)の光量検出信号をフィードバックして光量基準信号生成回路85が与える光量基準信号と比較して、両信号の差(光量基準信号レベル−光量検出信号レベル)を表す駆動指令信号(差信号)に基づいてLDに通電する。このフィードバック制御により光量検出信号が安定(LDの発光が所定光量に安定)する。S/H信号がホールド(保持)を指示する低レベルL(「0」)に切り換わると、該安定した駆動指令信号を保持し、画信号が到来すると、ホールドしている駆動指令信号に基づいて、画信号に同期してLDに通電する。
光量基準信号生成回路85は、電源電圧Vccの変動にもかかわらず一定電圧の光量基準信号を発生してコンパレータ84の正相入力端に与える。該コンパレータ84の逆相入力端には、I/V変換回路87が出力する光量フィードバック信号が印加される。S/H信号がAPCを指示する「1」のときには、画素同期回路70の出力が連続して低レベルLとなり、これが通電回路81内の、LDに通電するスイッチングトランジスタのベースに印加され、該トランジスタがオンする。また、S/H信号=「1」により、サンプルホールド回路86のサンプルレベル読込み用のスイッチング回路がオンする。ここで、LDが点灯しないと、I/V変換回路83が出力する光量フィードバック信号のレベルが低く、コンパレータ84の2値信号出力がHでこれが回路86内のサンプル値ホールド用のコンデンサを充電し、該コンデンサの電位が、コンパレータ84内部のH出力の抵抗値と該コンデンサの容量に対応する立上り速度で上昇する。該コンデンサの電位は、サンプルホールド回路86内の高入力インピーダンスのバッファアンプで増幅されて、通電回路81内の電流制御用のトランジスタのベースに印加され、該トランジスタが、前記コンデンサの電位に略比例する導通率で導通し、これにより、前記コンデンサの電位に略比例するレベルの電流がLDに流れる。
前記コンデンサの電位の上昇にともないLDの電流が増大するので、I/V変換回路83が出力する光量フィードバック信号のレベルが上昇する。光量フィードバック信号が基準信号生成回路85が出力する光量基準信号のレベル以上になると、コンパレータ84の2値信号出力がLとなり、前記コンデンサが、サンプルホールド回路86のサンプルレベル読込み用のスイッチング回路を通してコンパレータ84のL出力回路の抵抗を通して放電する。このため、光量基準信号と光量フィードバック信号が拮抗するレベルに、前記コンデンサの電圧が収束して実質的に定値となる。これによりLDの光量が、実質的に一定になる。
S/H信号が「1」から「0」(ホールド指示)に切り換わると、サンプルホールド回路86のサンプルレベル読込み用のスイッチング回路がオフになるので、前記コンデンサの放電路が実質的になくなり、前記コンデンサは、サンプルホールド回路86のサンプルレベル読込み用のスイッチング回路がオンからオフに切り換わったときの電圧を保持する。これがホールド状態である。
なお、ホールド状態では、前記コンデンサの電圧が一定に保持されるので、画素同期回路70が出力する画信号に応じて、通電回路81のLDに通電するスイッチングトランジスタがオンし、通電回路81内の電流制御用のトランジスタが、前記コンデンサの電位に略比例するレベルの電流を、LDに通電する。S/H信号=「0」であるので、画素同期回路70は、連続L出力は停止して、代わりに、画素同期信号に同期して画信号を、通電回路81に出力し、感光体に画像の書き込みが行われる。なお、画素同期回路70のアンドゲートAN1は、APCのサンプル期間にはS/H信号=「1」によりゲートオフとなり、画素同期信号に同期する画信号の出力は停止し、ホールド期間すなわち画像書込み期間にS/H信号=「0」によりゲートオンになって、画素同期信号に同期して画信号を出力し、これがオアゲートOR1を通してインバータI1に与えられ、インバータI1で反転されてトランジスタT3のベースに印加される。APCのサンプル期間にはS/H信号=「1」により、画素同期回路70の出力が連続して「0」であり、これにより通電回路81がLDに連続して給電する。
印字画像制御部25mは、上述のS/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号と調節点灯信号である強制点灯信号を加えて、レーザ駆動回路23mの画素同期回路70に出力する。
図7に、ライン走査周期内の上記点灯信号の発生タイミングを示す。印字画像制御部25mが、ライン先端検知用のライン先端点灯信号を画素同期回路70に与えることにより、LDが点灯し、ライン先端センサ38mcがレーザ光検知信号を発生し、このレーザ光検知信号に応答して分離65が、M系統のライン同期信号Mを発生する。印字画像制御部25mは、ライン同期信号Mを基準タイミングにして、レーザ光が感光体上を走査する期間である有効走査期間(図7)に、M画像描画用の画信号をレーザ駆動回路23mの画素同期回路70に出力する。
加えて、印字画像制御部25mは、非有効走査期間において、強制点灯信号によってLDを点灯させた後、一定時間Tc後にS/N信号によってAPC点灯を行う。この際、非有効走査期間における強制点灯は、LDの温度上昇が飽和点又はその近くに達するのに十分な時間Pwの間継続する。この時間Pwは、LDの通電による温度上昇速度が温度飽和又は温度飽和近くの低速となるまでの点灯時間幅であり、実験に基づいて設定する設定値である。この強制点灯により、一旦LDが温度上昇をし、上昇した温度が飽和点又は飽和点近くに達する。これにより、毎回のAPC点灯時すなわちAPC実行時のLD温度のばらつきが小さくなる。また、強制点灯からAPC点灯までの時間を一定とする事で、強制点灯によってLDの温度が飽和した後、一定時間かけて冷却される。この時、冷却時間が一定であるのでLDの温度はほぼ一定である。従って、APC点灯時のLDの温度は毎回のAPCで変動がなくなって、APC精度が向上する。
図8に示すように、第2実施例は、第1実施例の複写機の書込ユニット30に、走査後端検出用の光検出素子であるセンサ40mcおよび40ybkを付加したものである。fθレンズ35ybkおよび30mcを通った光ビームがシリンダミラー37ybkおよび37mcによって反射集光されて、センサ40mcおよび40ybkに入射するような構成となっている。これらのセンサ40mcおよび40ybkは、主走査ラインの後端を検出する同期検知センサである。同じセンサに2色の作像用光ビームが入射することとなるので、各色の光ビームのポリゴンミラー34の入射角を異なるようにすることで、それぞれの光ビームが各センサに入射するタイミングを変え、時系列的にパルス列として出力されるようになっている。
図9に第2実施例の画像書込み制御部16bの構成を示す。画像書込み制御部16bは第1実施例のものと同様なハードウエア構成であるが、第2実施例ではこれに分離67,68が付加接続されている。分離67は、センサ40mcが発生する、半導体レーザユニット31mのレーザビームを検出したM受光パルスと半導体レーザユニット31cのレーザビームを検出したC受光パルスとを分離して、M受光パルスに同期してライン後端同期信号Mを、また、C受光パルスに同期してライン後端同期信号Cを発生する。同様に分離68は、ライン後端同期信号Yおよびライン後端同期信号Kを発生する。
第2実施例の印字画像制御部25mは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号と調節点灯信号である強制点灯信号を加えて、レーザ駆動回路23mの画素同期回路70に出力する。調節点灯信号である強制点灯信号はライン後端点灯信号でもある。すなわち、ライン後端点灯信号を、調節点灯信号である強制点灯信号に兼用している。
図10に、ライン走査周期内の上記点灯信号の発生タイミングを示す。印字画像制御部25mが、ライン先端検知用のライン先端点灯信号を画素同期回路70に与えることにより、LDが点灯し、ライン先端センサ38mcがレーザ光検知信号を発生し、このレーザ光検知信号に応答して分離65が、M系統のライン同期信号Mを発生する。印字画像制御部25mは、ライン同期信号Mを基準タイミングにして、レーザ光が感光体上を走査する期間である有効走査期間(図7)に、M画像描画用の画信号をレーザ駆動回路23mの画素同期回路70に出力する。
加えて、印字画像制御部25mは、ライン後端検知用のライン後端点灯信号と兼用の強制点灯信号を画素同期回路70に与える。これにより、LDが点灯し、ライン後端センサ40mcがレーザ光検知信号を発生し、このレーザ光検知信号に応答して分離67が、M系統のライン後端同期信号Mを発生する。印字画像制御部25mは、強制点灯信号によってLDを点灯させた後、一定時間Tc後にS/N信号によってAPC点灯を行う。この際、ライン後端における強制点灯は、LDの温度上昇が飽和点又はその近くに達するのに十分な時間Pwの間継続する。この時間Pwは、LDの通電による温度上昇速度が温度飽和又は温度飽和近くの低速となるまでの点灯時間幅であり、実験に基づいて設定する設定値である。この強制点灯により、一旦LDが温度上昇をし、上昇した温度が飽和点又は飽和点近くに達する。これにより、毎回のAPC点灯時すなわちAPC実行時のLD温度のばらつきが小さくなる。また、強制点灯からAPC点灯までの時間を一定とする事で、強制点灯によってLDの温度が飽和した後、一定時間かけて冷却される。この時、冷却時間が一定であるのでLDの温度はほぼ一定である。従って、APC点灯時のLDの温度は毎回のAPCで変動がなくなって、APC精度が向上する。
本実施例によれば、ライン先端同期信号とライン後端同期信号により、1ライン上の2点の同期検出が行われるので、これらを用いて、各ライン長(各ラインの画素ピッチ)を一定にする主走査倍率補正を高精度にすることが出来る。
図11には、第2実施例のもう一つの実施態様を示す。この実施態様では、印字画像制御部25mは、ライン周期の2倍の周期で、調節点灯信号である強制点灯信号に兼用のライン後端点灯信号を画素同期回路70に与え、該2倍の周期の中間点でAPC用点灯信号を画素同期回路70に与える。すなわち、LDを後端同期点灯させる時はAPC点灯を行わない。また、LDを後端同期点灯させない時は、APC点灯を行う。このような制御を行う事で、LDに対してAPCを行う時は直前に後端同期点灯をしていないという条件で統一できる。その際、有効走査期間における画像データ点灯終了からLDが冷却され、温度が定常状態に達するのに十分な時間の後にAPCを行うので、LDのAPC時の温度条件を統一する事ができる。なお、LDに対してAPCを行わない主走査ラインに関して、その時は前回APCを行った際の光量をサンプルホールドにより保持する。これによれば、APC点灯前の強制点灯を必要とせず、また、APC点灯をする回数が少ないため、通算のLD点灯時間が短くなり、LDの寿命が長くなるというメリットがある。また、消費電力も少なくできる。
図12に、第3実施例の書込ユニット30の主要部を示す。第3実施例は、半導体レーザユニット31mと31cのレーザダイオードLDすなわち第1および第2発光素子を、1つのVCSEL(Vertical Cavity Surface Emitting Diode Laser:面発光型レーザ)で構成し、該VCSELとPDとを1ユニットに集積して、発光素子ユニット31mcとしたものである。同様に、半導体レーザユニット31yと31bkのレーザダイオードLDを、1つのVCSELで構成し、該VCSELとPDとを1ユニットに集積して、発光素子ユニット31ybkとしたものである。CSELにおいては、隣接する2つのレーザダイオードの距離は僅少であり、一方から他方への熱伝播が速い。すなわち熱クロストークが大きい。
ライン先端点灯信号による発光を検知するライン先端検知センサ(図示略)は、第3実施例では4個あり、それぞれがM,C,Y,Kビームのそれぞれを検出する。
図13に示すように、第3実施例の印字画像制御部25mは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号と調節点灯信号である強制点灯信号を加えて、レーザ駆動回路23mの画素同期回路70に出力する。ここでMの強制点灯信号と、Cの強制点灯信号とが同時に1つのPDに入らないよう、これらの強制点灯信号のタイミングはずらされている。第3実施例の印字画像制御部25cは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号を加えてレーザ駆動回路23mの画素同期回路70に出力するが、調整用の強制点灯信号は発生しない。
同様に、第3実施例の印字画像制御部25yは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号と調節点灯信号である強制点灯信号を加えて、レーザ駆動回路23yの画素同期回路に出力する。しかし第3実施例の印字画像制御部25bkは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号を加えてレーザ駆動回路23bkの画素同期回路70に出力するが、強制点灯信号は発生しない。
M(Y)ライン走査用の第1レーザダイオードとC(K)ライン走査用の第2レーザダイオードとが1ユニット31mc(31ybk)内で僅少距離で接近しているので、第1レーザダイオードの強制点灯による熱が第2レーザダイオードに高速で伝播する。これにより、第1レーザダイオードの強制点灯により、第1および第2レーザダイオードが温度上昇をし、上昇した温度が飽和点又は飽和点近くに達する。これにより、毎回のAPC点灯時すなわちAPC実行時の第2素子M,KのLD温度のばらつきが小さくなる。また、強制点灯からAPC点灯までの時間を一定とする事で、強制点灯によって第1および第2レーザダイオード温度が飽和した後、一定時間かけて冷却される。この時、冷却時間が一定であるので第1および第2レーザダイオードの温度はほぼ一定である。従って、APC点灯時の第1および第2レーザダイオードの温度は毎回のAPCで変動がなくなって、APC精度が向上する。
第4実施例は、第3実施例に、第2実施例と同様に図12に示す書込ユニット30に、走査後端検出用の光検出素子であるセンサ40mcおよび40ybk相当の4個のライン後端検知センサ(図示略)を付加したものであり、これらが接続した検出信号処理回路が第4実施例の画像書込み制御部16bに、第2実施例(図9)の分離67,68に代えて接続されている。該検出信号処理回路が4個のライン後端検知センサが発生する、レーザビームM,C,Y,Kを検出したM,C,Y,K受光パルスを分離して、M受光パルスに同期してライン後端同期信号Mを、C受光パルスに同期してライン後端同期信号Cを、Y受光パルスに同期してライン後端同期信号Yを、また、C受光パルスに同期してライン後端同期信号Kを発生する。
図14に示すように、第4実施例の印字画像制御部25mは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号と調節点灯信号である強制点灯信号を加えて、レーザ駆動回路23mの画素同期回路70に出力する。調節点灯信号である強制点灯信号はライン後端点灯信号でもある。すなわち、ライン後端点灯信号を、調節点灯信号である強制点灯信号に兼用している。第4実施例の印字画像制御部25cは、S/H信号の他に、各ライン書込みのための画信号に、ライン先端検知用のライン先端点灯信号を加えて、レーザ駆動回路23cの画素同期回路に出力するが、調節点灯信号である強制点灯信号は生成しない。
第5実施例は、第3実施例のハードウエアと同様であるが、印字画像制御部25の機能が少し異なる。第5実施例の印字画像制御部25mは、ライン周期の2倍の周期で、調節点灯信号である強制点灯信号を画素同期回路70に与え、該2倍の周期の中間点でAPC用点灯信号を画素同期回路70に与える。すなわち、LDを強制点灯させる時はAPC点灯を行わない。また、LDを強制点灯させない時は、APC点灯を行う。印字画像制御部25cも印字画像制御部25mと同様に、ライン周期の2倍の周期で、調節点灯信号である強制点灯信号を画素同期回路に与え、該2倍の周期の中間点でAPC用点灯信号を画素同期回路に与えるが、この制御出力は、図15に示すように、印字画像制御部25mの制御出力より1ライン周期ずれている。このような制御を行う事で、LDに対してAPCを行う時は直前に強制点灯をしていないという条件で統一できる。その際、有効走査期間における画像データ点灯終了からLDが冷却され、温度が定常状態に達するのに十分な時間の後にAPCを行うので、LDのAPC時の温度条件を統一する事ができる。なお、LDに対してAPCを行わない主走査ラインに関して、その時は前回APCを行った際の光量をサンプルホールドにより保持する。これによれば、APC点灯前の強制点灯を必要とせず、また、APC点灯をする回数が少ないため、通算のLD点灯時間が短くなり、LDの寿命が長くなるというメリットがある。また、消費電力も少なくできる。
なお、本発明の本質は常に同じ熱条件で発光源のAPCを行う事であるため、上記ではAPC点灯一定時間前に一度発光源を点灯させる、もしくは、点灯させないという条件で統一したが、温度センサやペルチェ素子を用いてAPC時の発光源の温度を制御する方法も有効だと考えられる。
本発明の1実施例の画像形成装置であるフルカラー複合機能複写機の正面図である。 図1に示すフルカラープリンタ14の作像機構の概要を示す拡大縦断面図である。 図2に示す書込ユニット30の拡大平面図である。 図2に示すプリンタ14の作像ユニット16にあるLD制御板上の、半導体レーザユニット31m〜31kに通電する画像書込制御部16bの、複写機内画像データ処理システム要素との繋がりの概要を示すブロック図である。 図4に示す画像書込制御部16bの機能構成を示すブロック図である。 図5に示すレーザ駆動回路23mの構成の概要を示すブロック図である。 図5に示す印字画像制御部25mがレーザ駆動回路23mに与える制御信号および画信号の変化を示すタイムチャートである。 第2実施例で用いられた書込ユニット30の拡大平面図である。 第2実施例で用いられた画像書込制御部16bの構成を示すブロック図である。 第2実施例の印字画像制御部25mがレーザ駆動回路23mに与える制御信号および画信号の変化を示すタイムチャートである。 第2実施例のもう一つの実施態様の印字画像制御部25mがレーザ駆動回路23mに与える制御信号および画信号の変化を示すタイムチャートである。 第3実施例で用いられた書込ユニット30の拡大側面図である。 第3実施例の印字画像制御部25m,25cがレーザ駆動回路23m,23cに与える制御信号および画信号の変化を示すタイムチャートである。 第4実施例の印字画像制御部25m,25cがレーザ駆動回路23m,23cに与える制御信号および画信号の変化を示すタイムチャートである。 第5実施例の印字画像制御部25m,25cがレーザ駆動回路23m,23cに与える制御信号および画信号の変化を示すタイムチャートである。
符号の説明
30:書込ユニット
31y,31m,31c,31bk:半導体レーザユニット
32y,32m,32c,32bk:シリンダレンズ
33bk,33y:反射ミラー
34:ポリゴンミラー
35bkc,35ym:fθレンズ
36y,36m,36c,36bk:第1ミラー
37bkc,37ym:シリンダミラー
38bkc ,38ym :センサ
48:第1トレイ
49:第2トレイ 50:第3トレイ
51:第1給紙装置 52:第2給紙装置
53:第3給紙装置 54:縦搬送ユニット
56:感光体 57:搬送ベルト
58:定着ユニット 59:排紙ユニット
60:分岐爪 26:搬送モータ
55:現像器 100:フィニシャ
101:切り替え板 103:排紙ローラ
104:排紙トレイ 105:搬送ローラ
106:ステープラ 107:搬送ローラ
108:ステープル台
109:ジョガー 110:排紙トレイ
111:両面給紙ユニット
112:反転ユニット

Claims (8)

  1. 発光素子;
    該発光素子の発光光量を検出する光検出素子;
    前記発光光量を基準値にあわせるように前記発光素子に通電する電流値を調節する光量調節手段を含み、点灯信号に応じて前記発光素子を点灯付勢する発光駆動回路;および、
    該発光駆動回路に、光情報放射用の点灯信号および前記調節のための調節点灯信号を与えるとともに前記光量制御手段に該調節点灯信号に合せて光量制御指示を与え、かつ、前記調節点灯信号より設定時間前に、前記発光素子の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅の温度調節用の点灯信号を、前記発光駆動回路に与える、発光制御手段;
    を備える光情報放射装置。
  2. 発光素子;
    該発光素子の発光光量を検出する光検出素子;
    前記発光光量を基準値にあわせるように前記発光素子に通電する電流値を調節する光量調節手段を含み、点灯信号に応じて前記発光素子を点灯付勢する発光駆動回路;
    前記発光素子の放射光を直線に沿って繰り返し走査する走査手段;
    前記走査の始端部の放射光を検出する走査始端検出用の光検出素子;および、
    前記放射光の検出を基点にしてタイミングをとって、前記発光駆動回路に、光情報放射用の点灯信号および前記調節のための調節点灯信号を与えるとともに前記光量制御手段に該調節点灯信号に合せて光量制御指示を与え、かつ、前記調節点灯信号より設定時間前に、前記発光素子の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅の温度調節用の点灯信号を、前記発光駆動回路に与える、発光制御手段;
    を備える光走査装置。
  3. 第1および第2発光素子;
    第1および第2発光素子の各発光光量を検出する第1および第2光検出素子;
    第1光検出素子が検出する発光光量を基準値にあわせるように第1発光素子に通電する電流値を第1調節する第1光量調節手段を含み、点灯信号に応じて第1発光素子を点灯付勢する第1発光駆動回路;
    第2光検出素子が検出する発光光量を基準値にあわせるように第2発光素子に通電する電流値を第2調節する第2光量調節手段を含み、点灯信号に応じて第2発光素子を点灯付勢する第2発光駆動回路;
    第1および第2発光素子の第1および第2放射光を直線に沿って繰り返し走査する走査手段;および、
    第1および第2走査の始端部の放射光を検出する走査始端検出用の光検出素子;
    第1放射光の検出を基点にしてタイミングをとって、第1発光駆動回路に、第1光情報放射用の第1点灯信号および第1調節のための第1調節点灯信号を与えるとともに第1光量制御手段に第1調節点灯信号に合せて第1光量制御指示を与え、かつ、第1調節点灯信号より設定時間前に、第1発光素子の通電による温度上昇速度が温度飽和又は温度飽和近くの低速の設定値以下となる設定時間幅の温度調節用の点灯信号を、前記発光駆動回路に与え、第2放射光の検出を基点にしてタイミングをとって、第2発光駆動回路に、第2光情報放射用の第2点灯信号および第2調節のための第2調節点灯信号を与えるとともに第2光量制御手段に第2調節点灯信号に合せて第2光量制御指示を与える、発光制御手段;
    を備える光走査装置。
  4. 前記発光制御手段は、前記放射光の検出の連続複数回につき一回だけ前記温度調節用の点灯信号を、前記発光駆動回路に与える、請求項2又は3に記載の光走査装置。
  5. 前記発光制御手段は、前記放射光の検出の連続複数回につき一回だけ前記調節点灯信号を前記発光駆動回路に与えるとともに前記光量制御手段に該調節点灯信号に合せて光量制御指示を与える、請求項2乃至4のいずれか1つに記載の光走査装置。
  6. 光走査装置は更に、前記走査の後端部の放射光を検出する走査後端検出用の光検出素子;を更に備え、
    前記発光制御手段は、前記後端部の放射光検出のタイミングで前記温度調節用の点灯信号を、前記発光駆動回路に与える、請求項2乃至5のいずれか1つに記載の光走査装置。
  7. 感光体;
    該感光体を荷電する手段;
    前記感光体の荷電面を露光して静電潜像を形成する、請求項2乃至6のいずれか1つに記載の光走査装置;
    前記静電潜像を顕像剤で顕像にする現像装置;および、
    前記顕像を直接又は中間転写体を介して用紙に転写する手段;を備えるプリンタ。
  8. 請求項7に記載のプリンタ;
    原稿の画像を読み取り該画像を表す画像データを生成する原稿スキャナ;および、
    前記画像データを前記プリンタの画像形成に適合する画信号に変換して前記プリンタに出力する画像データ処理手段;を備える画像形成装置。
JP2007149704A 2007-06-05 2007-06-05 光情報放射装置,光走査装置,プリンタおよび画像形成装置 Pending JP2008305865A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149704A JP2008305865A (ja) 2007-06-05 2007-06-05 光情報放射装置,光走査装置,プリンタおよび画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149704A JP2008305865A (ja) 2007-06-05 2007-06-05 光情報放射装置,光走査装置,プリンタおよび画像形成装置

Publications (1)

Publication Number Publication Date
JP2008305865A true JP2008305865A (ja) 2008-12-18

Family

ID=40234343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149704A Pending JP2008305865A (ja) 2007-06-05 2007-06-05 光情報放射装置,光走査装置,プリンタおよび画像形成装置

Country Status (1)

Country Link
JP (1) JP2008305865A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218612A (ja) * 2010-04-07 2011-11-04 Canon Inc 半導体レーザの駆動方法
JP2019043020A (ja) * 2017-08-31 2019-03-22 キヤノン株式会社 画像形成装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218612A (ja) * 2010-04-07 2011-11-04 Canon Inc 半導体レーザの駆動方法
JP2019043020A (ja) * 2017-08-31 2019-03-22 キヤノン株式会社 画像形成装置
JP7039217B2 (ja) 2017-08-31 2022-03-22 キヤノン株式会社 画像形成装置

Similar Documents

Publication Publication Date Title
JP5988677B2 (ja) 画像形成装置
JP2009292075A (ja) 光書込装置および画像形成装置
US7629991B2 (en) Writing controlling device and a color image forming apparatus
US9207560B2 (en) Laser light control device and image forming apparatus
JP2008305865A (ja) 光情報放射装置,光走査装置,プリンタおよび画像形成装置
JP6700970B2 (ja) 画像形成装置
US8446649B2 (en) Optical scanning apparatus and image forming apparatus
JP2001257420A (ja) 画像形成装置およびその制御方法
JP6123270B2 (ja) 書き込み制御装置、画像形成装置およびプログラム
US6323887B1 (en) Color image forming apparatus driving a recording-element array and a method for controlling the same
JPH1140875A (ja) レーザ駆動回路、画像形成装置及び複写機
JP2005153283A (ja) 光走査装置および画像形成装置
JP5923966B2 (ja) 光書込装置および画像形成装置
JP2005193452A (ja) 光書込装置及びデジタル複写機
JP2001253111A (ja) 光量制御装置
JP4707183B2 (ja) 発光駆動装置,それを用いるプリンタおよび画像形成装置
JP2004106234A (ja) マルチビーム画像形成装置
US8233016B2 (en) Image forming apparatus, and exposure control method therefor
US8471882B2 (en) Image forming apparatus
JP2009126109A (ja) 画像形成装置及びその制御方法
JP4554387B2 (ja) 光書込装置及び画像形成装置
JP2006137087A (ja) 画像形成装置
JP2008194898A (ja) 画像形成装置
JP2006184435A (ja) 画像形成装置
JP2014167591A (ja) レーザー光制御装置及び画像形成装置