JP2008305841A - Manufacturing method for electronic component, and electronic component manufactured by the manufacturing method - Google Patents

Manufacturing method for electronic component, and electronic component manufactured by the manufacturing method Download PDF

Info

Publication number
JP2008305841A
JP2008305841A JP2007149186A JP2007149186A JP2008305841A JP 2008305841 A JP2008305841 A JP 2008305841A JP 2007149186 A JP2007149186 A JP 2007149186A JP 2007149186 A JP2007149186 A JP 2007149186A JP 2008305841 A JP2008305841 A JP 2008305841A
Authority
JP
Japan
Prior art keywords
conductive adhesive
electronic component
temporary curing
curing
electronic element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007149186A
Other languages
Japanese (ja)
Other versions
JP5045251B2 (en
Inventor
Tomonari Kai
朋斉 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Kasei Co Ltd
Original Assignee
Fujikura Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Kasei Co Ltd filed Critical Fujikura Kasei Co Ltd
Priority to JP2007149186A priority Critical patent/JP5045251B2/en
Publication of JP2008305841A publication Critical patent/JP2008305841A/en
Application granted granted Critical
Publication of JP5045251B2 publication Critical patent/JP5045251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an electronic component of preventing short-circuit between electrodes and enhancing adhesive strength upon jointing an electronic element to the electrodes, and to provide an electronic component manufactured by the manufacturing method. <P>SOLUTION: The manufacturing method for the electronic component includes an applying step of applying a conductive adhesive 13 to the electrodes 12; a temporary curing step of temporarily curing the conductive adhesive 13; a load applying step of placing the electronic element 14 on the conductive adhesive 13 to apply load to the electronic element 14; and a full curing step of fully curing the conductive adhesive 13. In the temporary curing step, the conductive adhesive 13 is temporarily cured so that a temporary curing temperature A (°C) and a temporary curing time B (minutes) satisfy equation (1): lnB≥-0.05A+7.5, and that the adhesive strength becomes 10 N/mm<SP>2</SP>or higher, after the temporary curing step. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子部品の製造方法およびこれより製造された電子部品に関する。   The present invention relates to an electronic component manufacturing method and an electronic component manufactured therefrom.

導電性接着剤は、コンデンサ素子などの電子素子と電極との接合に用いられることが多い。
近年、電子部品の小型化に伴い、電子素子も軽量かつ小型化の傾向にあり、電極に塗布した導電性接着剤上に電子素子を載せただけでは、濡れ性が悪く電極と電子素子との接着が不十分であった。
The conductive adhesive is often used for bonding an electronic element such as a capacitor element and an electrode.
In recent years, along with the miniaturization of electronic components, electronic devices have also become lighter and smaller in size, and simply placing an electronic device on a conductive adhesive applied to an electrode results in poor wettability between the electrode and the electronic device. Adhesion was insufficient.

そこで、電子素子と電極との接着強度を高めるため、電子素子を導電性接着剤上に配置させた後に、電子素子に荷重を加えて電子素子の表面の濡れ性を向上させてから、導電性接着剤を硬化させて電子素子と電極とを接着させていた(例えば、特許文献1参照。)。
特開2000−332389号公報
Therefore, in order to increase the adhesive strength between the electronic element and the electrode, after placing the electronic element on the conductive adhesive, a load is applied to the electronic element to improve the wettability of the surface of the electronic element. The adhesive was cured to bond the electronic element and the electrode (for example, see Patent Document 1).
JP 2000-332389 A

しかしながら、電子素子に荷重を加えると、それに伴い導電性接着剤が押しつぶされて横に広がって隣接する電極同士が導通し、短絡することがあった。特に、電子部品が小型になるに連れて、隣接する電極間の距離が短くなるため、短絡が起こりやすかった。
また、導電性接着剤が広がって隣接する電極同士が導通するのを防ぐ目的で、電子素子に加える荷重を調節することは困難であり、生産性も悪かった。
However, when a load is applied to the electronic element, the conductive adhesive is squeezed along with it and spreads sideways, and the adjacent electrodes are electrically connected to each other, which may cause a short circuit. In particular, as the electronic component becomes smaller, the distance between adjacent electrodes becomes shorter, so that a short circuit is likely to occur.
In addition, it is difficult to adjust the load applied to the electronic element in order to prevent the conductive adhesive from spreading and the adjacent electrodes from conducting to each other, and the productivity is also poor.

本発明は上記事情を鑑みてなされたもので、電子素子と電極とを接合する際に電極同士の短絡を防ぎ、かつ、接着強度を高めた電子部品の製造方法、およびこれより製造された電子部品の実現を目的とする。   The present invention has been made in view of the above circumstances, and a method of manufacturing an electronic component that prevents a short circuit between electrodes when bonding an electronic element and an electrode, and has an increased adhesive strength, and an electron manufactured therefrom The purpose is to realize parts.

本発明者らは鋭意検討した結果、電極上に塗布した導電性接着剤に電子素子を配置する前に、導電性接着剤を仮硬化させることで、導電性接着剤に電子素子を配置し、電子素子に荷重を加えても導電性接着剤が横に広がらず、結果、電極同士が短絡するのを防ぐことを見出した。また、仮硬化に適した仮硬化温度と仮硬化時間の関係を見出し、本発明を完成するに至った。
すなわち、本発明の電子部品の製造方法は、電極上に導電性接着剤を塗布する塗布工程と、導電性接着剤を仮硬化する仮硬化工程と、導電性接着剤上に電子素子を配置し、該電子素子に荷重を加える荷重工程と、導電性接着剤を本硬化する本硬化工程とを有する電子部品の製造方法であって、前記仮硬化工程は、仮硬化温度A(℃)と仮硬化時間B(分)が下記式(1)を満足し、かつ、前記本硬化工程後における接着強度が10N/mm以上となるように導電性接着剤を仮硬化することを特徴とする。
lnB≧−0.05A+7.5 ・・・(1)
As a result of intensive studies, the inventors have placed the electronic element in the conductive adhesive by temporarily curing the conductive adhesive before placing the electronic element in the conductive adhesive applied on the electrode. It has been found that even when a load is applied to the electronic element, the conductive adhesive does not spread sideways, and as a result, the electrodes are prevented from being short-circuited. In addition, the present inventors have found a relationship between a temporary curing temperature and a temporary curing time suitable for temporary curing, and have completed the present invention.
That is, the method of manufacturing an electronic component according to the present invention includes an application step of applying a conductive adhesive on an electrode, a temporary curing step of temporarily curing the conductive adhesive, and an electronic element disposed on the conductive adhesive. An electronic component manufacturing method comprising a loading step of applying a load to the electronic element and a main curing step of fully curing the conductive adhesive, wherein the temporary curing step includes a temporary curing temperature A (° C.) and a temporary curing step. The conductive adhesive is temporarily cured so that the curing time B (min) satisfies the following formula (1) and the adhesive strength after the main curing step is 10 N / mm 2 or more.
lnB ≧ −0.05A + 7.5 (1)

ここで、前記塗布工程では、スクリーン印刷またはメタルマスク印刷により導電性接着剤を塗布することが好ましい。
また、本発明の電子部品は、前記電子部品の製造方法により製造されたことを特徴とする。
Here, in the application step, it is preferable to apply the conductive adhesive by screen printing or metal mask printing.
The electronic component of the present invention is manufactured by the method for manufacturing an electronic component.

本発明の電子部品の製造方法によれば、電子素子と電極とを接合する際に電極同士の短絡を防ぎ、かつ、接着強度を高めた電子部品が製造できる。
また、本発明によれば、電子素子に加える荷重の調節が容易になるので、生産性が向上する。
According to the method for manufacturing an electronic component of the present invention, it is possible to manufacture an electronic component that prevents a short circuit between the electrodes when the electronic element and the electrode are joined and that has an increased adhesive strength.
Further, according to the present invention, the load applied to the electronic element can be easily adjusted, so that productivity is improved.

以下、本発明について詳細に説明する。
本発明の電子部品の製造方法は、電極上に導電性接着剤を塗布する塗布工程と、導電性接着剤を仮硬化する仮硬化工程と、導電性接着剤上に電子素子を配置し、該電子素子に荷重を加える荷重工程と、導電性接着剤を本硬化する本硬化工程とを有する。
Hereinafter, the present invention will be described in detail.
The method of manufacturing an electronic component of the present invention includes an application step of applying a conductive adhesive on an electrode, a temporary curing step of temporarily curing the conductive adhesive, an electronic element disposed on the conductive adhesive, A load step of applying a load to the electronic element, and a main curing step of fully curing the conductive adhesive.

<塗布工程>
塗布工程は、図1(a)に示すように、電子部品の基板11に設けられた電極12(プラス電極12aとマイナス電極12b)上に導電性接着剤13を塗布する工程である。
導電性接着剤13の塗布方法としては、特に制限されないが、スクリーン印刷またはメタルマスク印刷が好ましい。ディスペンサーを用いても導電性接着剤を塗布することはできるが、ディスペンサーを用いる場合は、通常、粘度の低いものでないと塗布が困難となる。しかし、粘度の低い導電性接着剤を隣接する電極上に塗布すると、導電性接着剤が広がって電極が導通しやすくなるので、本発明においては、スクリーン印刷またはメタルマスク印刷が好ましい。特に、スクリーン印刷が作業性の点からも簡便であり好ましい。
<Application process>
As shown in FIG. 1A, the application step is a step of applying a conductive adhesive 13 on the electrodes 12 (plus electrode 12a and minus electrode 12b) provided on the substrate 11 of the electronic component.
The method for applying the conductive adhesive 13 is not particularly limited, but screen printing or metal mask printing is preferable. The conductive adhesive can be applied even when a dispenser is used. However, when a dispenser is used, application is usually difficult unless the viscosity is low. However, when a conductive adhesive having a low viscosity is applied on the adjacent electrode, the conductive adhesive spreads and the electrode is easily conducted. Therefore, in the present invention, screen printing or metal mask printing is preferable. In particular, screen printing is simple and preferable from the viewpoint of workability.

電極12上に塗布された導電性接着剤13の膜厚d1は、20〜300μmが好ましく、20〜150μmがより好ましく、40〜100μmがさらに好ましい。膜厚の下限値が上記値より小さくなると、接着強度が弱くなり、電子素子と電極との密着性が低下する傾向にある。一方、膜厚の上限値が上記値より大きくなると、必要以上にコストが上がってしまう。   20-300 micrometers is preferable, as for the film thickness d1 of the conductive adhesive 13 apply | coated on the electrode 12, 20-150 micrometers is more preferable, and 40-100 micrometers is further more preferable. When the lower limit of the film thickness is smaller than the above value, the adhesive strength is weakened, and the adhesion between the electronic element and the electrode tends to be lowered. On the other hand, if the upper limit value of the film thickness is larger than the above value, the cost increases more than necessary.

<仮硬化工程>
仮硬化工程は、仮硬化温度A(℃)(以下、「温度A」という。)と仮硬化時間B(分)(以下、「時間B」という。)が下記式(1)を満足し、かつ、後述する本硬化工程後における接着強度が10N/mm以上となるように、前記塗布工程で塗布された導電性接着剤を仮硬化する工程である。
lnB≧−0.05A+7.5 ・・・(1)
上記式(1)を満たすような温度Aと時間Bにて導電性接着剤を仮硬化すれば、導電性接着剤は完全に硬化する前の仮硬化の状態となり、次の工程で導電性接着剤上に電子素子を配置して、電子素子に荷重を加えても、導電性接着剤が押しつぶされて横に広がるのを防ぐことができ、結果、電極同士の短絡を防止する。
<Temporary curing process>
In the temporary curing step, the temporary curing temperature A (° C.) (hereinafter referred to as “temperature A”) and the temporary curing time B (minute) (hereinafter referred to as “time B”) satisfy the following formula (1): In addition, the conductive adhesive applied in the application process is temporarily cured so that the adhesive strength after the main curing process described later is 10 N / mm 2 or more.
lnB ≧ −0.05A + 7.5 (1)
If the conductive adhesive is temporarily cured at a temperature A and a time B that satisfy the above formula (1), the conductive adhesive is in a temporarily cured state before being completely cured, and the conductive adhesive is bonded in the next step. Even when an electronic element is arranged on the agent and a load is applied to the electronic element, the conductive adhesive can be prevented from being crushed and spread laterally, and as a result, a short circuit between the electrodes can be prevented.

温度Aは、用いる導電性接着剤の種類によって異なるが、例えば、90〜160℃が好ましく、100〜150℃がより好ましく、110〜130℃がさらに好ましい。温度Aの下限値が上記値より小さくなると、後述する仮硬化時間が長くなり、作業性が低下する。一方、温度Aの上限値が上記値より大きくなると、導電性接着剤を仮硬化の状態で止めておくのが困難となる。
一方、時間Bは、温度Aに依存するが、少なくとも上記式(1)を満たす値であれば特に制限されない。ただし、時間Bが長くなると、本硬化工程後の接着強度が10N/mm以上になりにくくなり、電子素子と電極との密着性が低下する傾向にある。なお、仮硬化時間Bが短くなると、仮硬化が不十分となり、次の工程で電子素子に荷重を加えた際に、導電性接着剤が押しつぶされて横に広がりやすくなり、結果、電極同士が短絡しやすくなる傾向にある。
Although temperature A changes with kinds of conductive adhesive to be used, for example, 90-160 degreeC is preferable, 100-150 degreeC is more preferable, and 110-130 degreeC is further more preferable. When the lower limit value of the temperature A is smaller than the above value, the temporary curing time described later becomes longer and workability is lowered. On the other hand, when the upper limit value of the temperature A is larger than the above value, it is difficult to stop the conductive adhesive in a temporarily cured state.
On the other hand, the time B depends on the temperature A, but is not particularly limited as long as it is a value satisfying at least the above formula (1). However, when the time B becomes longer, the adhesive strength after the main curing step is less likely to be 10 N / mm 2 or more, and the adhesion between the electronic element and the electrode tends to be lowered. In addition, when temporary hardening time B becomes short, temporary hardening becomes inadequate and when a load is applied to the electronic element in the next step, the conductive adhesive is crushed and easily spreads sideways. It tends to be short-circuited easily.

そこで、仮硬化工程では、温度Aと時間Bが例えば下記式(2)を満足するように仮硬化するのが好ましい。
B≦(7×1015)/A ・・・(2)
本発明においては、温度Aと時間Bが上記式(1)、(2)を同時に満たすような範囲、すなわち、図2に示す斜線部分の領域であれば、本硬化工程後の接着強度が概ね10N/mm以上になる。ただし、導電性接着剤の種類によっては、温度Aと時間Bが上記式(2)を満足しない場合でも、上記式(1)を満たせば、本硬化工程後の接着強度が10N/mm以上になることもある。また、温度Aと時間Bが上記式(2)を満たす場合であっても本硬化工程後の接着強度が10N/mm以上にならないこともある。
なお、図2からも明らかなように、温度Aが高くなるに従って、時間Bを短くするのが好ましい。具体的には、温度Aが100℃の場合、時間Bは15〜75分が好ましい。温度Aが110℃の場合、時間Bは10〜35分が好ましい。温度Aが120℃の場合、時間Bは5〜17分が好ましい。温度Aが150℃の場合、時間Bは1〜4分が好ましい。
Therefore, in the temporary curing step, it is preferable to perform temporary curing so that the temperature A and the time B satisfy the following formula (2), for example.
B ≦ (7 × 10 15 ) / A 7 (2)
In the present invention, if the temperature A and the time B are in a range where the above formulas (1) and (2) are simultaneously satisfied, that is, the shaded area shown in FIG. 10 N / mm 2 or more. However, depending on the type of conductive adhesive, even if the temperature A and the time B do not satisfy the above formula (2), if the above formula (1) is satisfied, the adhesive strength after the main curing step is 10 N / mm 2 or more. Sometimes it becomes. Even if the temperature A and the time B satisfy the above formula (2), the adhesive strength after the main curing step may not be 10 N / mm 2 or more.
As is clear from FIG. 2, it is preferable to shorten the time B as the temperature A increases. Specifically, when the temperature A is 100 ° C., the time B is preferably 15 to 75 minutes. When the temperature A is 110 ° C., the time B is preferably 10 to 35 minutes. When the temperature A is 120 ° C., the time B is preferably 5 to 17 minutes. When the temperature A is 150 ° C., the time B is preferably 1 to 4 minutes.

<荷重工程>
接合工程は、図1(b)に示すように、前記仮硬化工程で仮硬化した導電性接着剤13’上に、陽極端子14aと陰極端子14bを備えた電子素子14を配置し、該電子素子14に荷重を加える工程である。
電子素子14に荷重を加える方法としては、特に制限されず公知の方法を用いることができるが、例えば、チップマウンターを用いて荷重を加える方法などが挙げられる。
電子素子14に加える荷重は、0.2〜4.4kg/cmが好ましく、0.4〜2.2kg/cmがより好ましい。荷重の下限値が上記値より小さくなると、電子素子14の表面の濡れ性が十分に向上せず、電子素子と電極との密着性が低下する傾向にある。一方、荷重の上限値が上記値より大きくなると、導電性接着剤が押しつぶされて、電極同士が短絡しやすくなる。
なお、前記仮硬化工程で導電性接着剤を仮硬化させておくので、電子素子に荷重を加えても、導電性接着剤は広がりにくくなる。従って、電子素子に加える荷重の調節が容易となり、生産性が向上する。
<Loading process>
In the joining step, as shown in FIG. 1 (b), an electronic element 14 having an anode terminal 14a and a cathode terminal 14b is disposed on the conductive adhesive 13 ′ temporarily cured in the temporary curing step, and the electron In this step, a load is applied to the element 14.
A method for applying a load to the electronic element 14 is not particularly limited, and a known method can be used. For example, a method of applying a load using a chip mounter can be used.
Load applied to the electronic device 14 is preferably 0.2~4.4kg / cm 2, more preferably 0.4~2.2kg / cm 2. When the lower limit value of the load is smaller than the above value, the wettability of the surface of the electronic element 14 is not sufficiently improved, and the adhesion between the electronic element and the electrode tends to be lowered. On the other hand, when the upper limit value of the load is larger than the above value, the conductive adhesive is crushed and the electrodes are easily short-circuited.
In addition, since the conductive adhesive is temporarily cured in the temporary curing step, the conductive adhesive is difficult to spread even when a load is applied to the electronic element. Therefore, the load applied to the electronic element can be easily adjusted, and the productivity is improved.

<本硬化工程>
本硬化工程は、仮硬化した導電性接着剤13’を本硬化する工程である。導電性接着剤13’を本硬化することにより、導電性接着剤は完全に硬化した状態となり、電極12と電子素子14とが完全に接合する。これにより、本硬化後の接着強度が10N/mm以上の電子部品が得られる。
<Main curing process>
The main curing step is a step of main curing the temporarily cured conductive adhesive 13 ′. By conducting the main curing of the conductive adhesive 13 ′, the conductive adhesive is completely cured, and the electrode 12 and the electronic element 14 are completely bonded. Thereby, an electronic component having an adhesive strength of 10 N / mm 2 or more after the main curing is obtained.

本硬化する際の温度と時間は、用いる導電性接着剤の種類によってことなるが、例えば、本硬化温度は130〜250℃が好ましく、140〜180℃がより好ましい。本硬化温度の下限値が上記値より小さくなると、導電性接着剤の硬化が不十分となり、電子素子と電極との密着性が低下する。一方、本硬化温度の上限値が上記値より大きくなると、必要以上にコストが上がってしまう。
また、本硬化時間は、5〜60分が好ましく、15〜40分がより好ましい。本硬化時間の下限値が上記値より小さくなると、導電性接着剤の硬化が不十分となり、電極と電子素子との密着性が低下する傾向にある。一方、本硬化時間の上限値が上記値より大きくなると、必要以上にコストが上がってしまう。
The temperature and time for the main curing vary depending on the type of the conductive adhesive used. For example, the main curing temperature is preferably 130 to 250 ° C, more preferably 140 to 180 ° C. When the lower limit value of the main curing temperature is smaller than the above value, the conductive adhesive is not sufficiently cured, and the adhesion between the electronic element and the electrode is lowered. On the other hand, when the upper limit value of the main curing temperature is larger than the above value, the cost is increased more than necessary.
Moreover, 5-60 minutes are preferable and, as for this hardening time, 15-40 minutes are more preferable. When the lower limit of the main curing time is smaller than the above value, the conductive adhesive is not sufficiently cured, and the adhesion between the electrode and the electronic element tends to be lowered. On the other hand, if the upper limit value of the main curing time is larger than the above value, the cost is increased more than necessary.

このように、本発明の電子部品の製造方法によれば、電子素子と電極とを接合する前に、導電性接着剤を仮硬化させておくので、電子素子に荷重を加えても電極同士の短絡が生じにくく、かつ、接着強度を高めた電子部品が製造できる。
本発明の電子部品は、電子素子と電極の接着強度が高い。電子部品の用途としては、例えば、コンデンサ、コイル、トランス等の受動部品や、LSI(大規模集積回路)、ダイオード、トランジスタ等の半導体デバイス部品などが挙げられる。
Thus, according to the method for manufacturing an electronic component of the present invention, the conductive adhesive is temporarily cured before joining the electronic element and the electrode. It is possible to manufacture an electronic component that is less likely to cause a short circuit and has increased adhesive strength.
The electronic component of the present invention has high adhesive strength between the electronic element and the electrode. Applications of electronic components include, for example, passive components such as capacitors, coils, and transformers, and semiconductor device components such as LSIs (Large Scale Integrated Circuits), diodes, and transistors.

本発明の電子部品の製造方法に用いられる電極としては、特に制限されないが、例えば、金、銀、スズ、銅などの金属を含む電極が挙げられる。
また、本発明に用いる電子素子も、特に制限されないが、例えば、コンデンサ素子、CPS、BGA、FC等の半導体チップなどが挙げられる。さらに、電子素子としては、図1(b)に示すものに限定されず、例えば、図3に示すような、陽極15aと陰極15bを備えたコンデンサ15を用いた電子部品の製造においても、本発明は適している。なお、図3においては、図1と同一の構成要素には同一の符号を付して、その説明を省略する。
Although it does not restrict | limit especially as an electrode used for the manufacturing method of the electronic component of this invention, For example, the electrode containing metals, such as gold | metal | money, silver, tin, copper, is mentioned.
The electronic element used in the present invention is not particularly limited, and examples thereof include a capacitor element, a semiconductor chip such as CPS, BGA, and FC. Further, the electronic element is not limited to that shown in FIG. 1B, and for example, in the manufacture of an electronic component using a capacitor 15 having an anode 15a and a cathode 15b as shown in FIG. The invention is suitable. In FIG. 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

ここで、本発明に用いる導電性接着剤について説明する。
<導電性接着剤>
本発明に用いる導電性接着剤は、バインダー樹脂と、導電性粒子と、硬化剤とを含有するのが好ましい。
バインダー樹脂としては、エポキシ樹脂、フェノール樹脂、シリコーン樹脂などの熱硬化性樹脂が挙げられる。中でも、エポキシ樹脂が好ましい。エポキシ樹脂としては、フェノールノボラック型、クレゾールノボラック型、ナフタレン型、ジシクロペンタジエン型、ビスフェノールA型、ビスフェノールF型などが挙げられる。中でも、ビスフェノールF型が好ましい。これらバインダー樹脂は1種単独で使用しても、2種以上を併用してもよい。
バインダー樹脂の含有量は、導電性接着剤100質量%中3〜30質量%が好ましく、5〜20質量%がより好ましい。バインダー樹脂の含有量の下限値が上記値より小さくなると、接着強度が弱くなり、接着剤として機能しにくくなる。一方、含有量の上限値が上記値より大きくなると、導電性粒子の接続が悪くなり、導電性が得られにくくなる。
Here, the conductive adhesive used in the present invention will be described.
<Conductive adhesive>
The conductive adhesive used in the present invention preferably contains a binder resin, conductive particles, and a curing agent.
Examples of the binder resin include thermosetting resins such as epoxy resins, phenol resins, and silicone resins. Among these, an epoxy resin is preferable. Examples of the epoxy resin include a phenol novolak type, a cresol novolak type, a naphthalene type, a dicyclopentadiene type, a bisphenol A type, and a bisphenol F type. Among these, bisphenol F type is preferable. These binder resins may be used alone or in combination of two or more.
3-30 mass% is preferable in 100 mass% of conductive adhesives, and, as for content of binder resin, 5-20 mass% is more preferable. When the lower limit value of the binder resin content is smaller than the above value, the adhesive strength becomes weak and it becomes difficult to function as an adhesive. On the other hand, when the upper limit value of the content is larger than the above value, the connection of the conductive particles is deteriorated, and it becomes difficult to obtain conductivity.

導電性粒子としては、銀粒子、銅粒子、銀メッキ銅粒子、スズメッキ銅粒子、ニッケル粒子などを使用できる。中でも銀粒子が好ましい。これら導電性粒子は1種単独で使用しても、2種以上を併用してもよい。
また、形状は、略球形のものであっても、フレーク状のものであってもよいが、フレーク状のものが好ましい。
導電性粒子の含有量は、導電性接着剤100質量%中60〜90質量%が好ましく、70〜85質量%がより好ましい。
また、導電性粒子と前記バインダー樹脂の質量比は導電性粒子:バインダー樹脂=75:25〜90:10が好ましく、80:20〜85:15がより好ましい。導電性粒子の割合が上記範囲を下回ると、導電性粒子の接続が悪くなり、導電性が得られにくくなる。一方、導電性粒子の割合が上記範囲を上回ると、接着強度が弱くなると共に、必要以上にコストが上がってしまう。
As the conductive particles, silver particles, copper particles, silver-plated copper particles, tin-plated copper particles, nickel particles and the like can be used. Of these, silver particles are preferred. These conductive particles may be used alone or in combination of two or more.
The shape may be a substantially spherical shape or a flake shape, but a flake shape is preferred.
60-90 mass% is preferable in 100 mass% of conductive adhesives, and, as for content of electroconductive particle, 70-85 mass% is more preferable.
The mass ratio of the conductive particles to the binder resin is preferably conductive particles: binder resin = 75: 25 to 90:10, and more preferably 80:20 to 85:15. When the ratio of the conductive particles is below the above range, the connection of the conductive particles is deteriorated and it is difficult to obtain conductivity. On the other hand, when the ratio of the conductive particles exceeds the above range, the adhesive strength becomes weak and the cost increases more than necessary.

硬化剤としては、フェノール樹脂が好ましい。フェノール樹脂としては、フェノールノボラック型、クレゾールノボラック型、ジシクロペンタジエン型、テルペン型、トリフェノールメタン型、フェノールアラルキル型などが挙げられ、中でもフェノールノボラック型が好ましい。これら硬化剤は1種単独で使用しても、2種以上を併用してもよい。
硬化剤の含有量は、導電性接着剤100質量%中3〜15質量%が好ましく、5〜10質量%がより好ましい。硬化剤の含有量の下限値が上記値より小さくなると、導電性接着剤の強度を充分に高めることができなくなる。一方、含有量の上限値が上記値より大きくなると、高温高湿下やヒートサイクル下での抵抗が上昇する。
As the curing agent, a phenol resin is preferable. Examples of the phenol resin include a phenol novolak type, a cresol novolak type, a dicyclopentadiene type, a terpene type, a triphenolmethane type, and a phenol aralkyl type, and among them, the phenol novolak type is preferable. These curing agents may be used alone or in combination of two or more.
3-15 mass% is preferable in 100 mass% of conductive adhesives, and, as for content of a hardening | curing agent, 5-10 mass% is more preferable. When the lower limit of the content of the curing agent is smaller than the above value, the strength of the conductive adhesive cannot be sufficiently increased. On the other hand, when the upper limit value of the content is larger than the above value, the resistance under high temperature and high humidity or heat cycle increases.

ところで、本発明においては、導電性接着剤は無溶媒型であることが好ましい。無溶媒型の導電性接着剤を用いることにより、導電性接着剤の粘度が高くなるのを抑制できる。そのため、上述したように導電性接着剤をスクリーン印刷やメタルマスク印刷により電極上に塗布する場合でも、印刷面にカスレが生じるのを効果的に防ぐことができる。また、ディスペンサーを用いた塗布方法の場合でも、針先が乾燥するのを防ぐことができるので、導電性接着剤の吐出量を一定に保つことができる。
そこで、本発明においては、フェノール樹脂は室温で液状であることが好ましい。これにより、通常の接着剤には溶剤が含まれることが多いが、本発明においては、無溶剤型の導電性接着剤として用いることができる。
本発明では、硬化剤として液状フェノールノボラック型のフェノール樹脂が好ましい。
By the way, in this invention, it is preferable that a conductive adhesive is a solventless type. By using a solventless conductive adhesive, it is possible to suppress an increase in the viscosity of the conductive adhesive. Therefore, even when the conductive adhesive is applied on the electrode by screen printing or metal mask printing as described above, it is possible to effectively prevent the printed surface from becoming distorted. Further, even in the case of a coating method using a dispenser, the needle tip can be prevented from drying, so that the discharge amount of the conductive adhesive can be kept constant.
Therefore, in the present invention, the phenol resin is preferably liquid at room temperature. As a result, a normal adhesive often contains a solvent, but in the present invention, it can be used as a solventless conductive adhesive.
In the present invention, a liquid phenol novolac type phenol resin is preferred as the curing agent.

導電性接着剤は、本発明の効果を損なわない範囲で、反応性希釈剤、硬化促進剤などの、任意成分を適宜含有してもよい。
反応性希釈剤としては、グリシジルオルトトルイジン、エチレングリコールジグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、グリシジルメタクリレート、シクロヘキサンジメタノールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、フェニルグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどが挙げられる。中でも、グリシジルオルトトルイジンが好ましい。これら反応性希釈剤は1種単独で使用しても、2種以上を併用してもよい。
反応性希釈剤の含有量は、導電性接着剤100質量%中1〜15質量%が好ましく、2〜10質量%がより好ましい。
The conductive adhesive may appropriately contain optional components such as a reactive diluent and a curing accelerator as long as the effects of the present invention are not impaired.
Reactive diluents include glycidyl orthotoluidine, ethylene glycol diglycidyl ether, 2-ethylhexyl glycidyl ether, glycidyl methacrylate, cyclohexanedimethanol diglycidyl ether, trimethylolpropane triglycidyl ether, neopentyl glycol diglycidyl ether, phenyl glycidyl ether Polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and the like. Among these, glycidyl orthotoluidine is preferable. These reactive diluents may be used alone or in combination of two or more.
1-15 mass% is preferable in 100 mass% of conductive adhesives, and, as for content of a reactive diluent, 2-10 mass% is more preferable.

硬化促進剤としては、エポキシ樹脂を硬化できるものであればよく、例えば、イミダゾール系エポキシ硬化促進剤、アミン系エポキシ硬化促進剤、酸無水物系エポキシ硬化促進剤などが挙げられる。中でも、イミダゾール系エポキシ硬化促進剤が好ましい。これら硬化促進剤は1種単独で使用しても、2種以上を併用してもよい。
硬化促進剤の含有量は、接着剤材料100質量%中0.1〜3.0質量%が好ましく、0.5〜2.0質量%がより好ましい。
Any curing accelerator may be used as long as it can cure the epoxy resin. Examples thereof include imidazole epoxy curing accelerators, amine epoxy curing accelerators, and acid anhydride epoxy curing accelerators. Of these, imidazole-based epoxy curing accelerators are preferable. These curing accelerators may be used alone or in combination of two or more.
As for content of a hardening accelerator, 0.1-3.0 mass% is preferable in 100 mass% of adhesive materials, and 0.5-2.0 mass% is more preferable.

本発明に用いる導電性接着剤は、公知の方法により製造できる。例えば、上述した成分を、ロールミルなどを用いて混合することにより得られる。
このようにして得られる導電性接着剤は、23℃における粘度が50〜1000dPa・sであることが好ましく、より好ましくは、200〜800dPa・sであり、さらに好ましくは300〜700dPa・sである。粘度の下限値が上記値より小さくなると、電極上に塗布した際に、導電性接着剤が流れやすくなる。一方、粘度の上限値が上記値より大きくなると、電極上への塗布が困難となる傾向にある。
The conductive adhesive used in the present invention can be produced by a known method. For example, it can be obtained by mixing the above-described components using a roll mill or the like.
The conductive adhesive thus obtained preferably has a viscosity at 23 ° C. of 50 to 1000 dPa · s, more preferably 200 to 800 dPa · s, and still more preferably 300 to 700 dPa · s. . When the lower limit of the viscosity is smaller than the above value, the conductive adhesive easily flows when applied on the electrode. On the other hand, when the upper limit of the viscosity is larger than the above value, application on the electrode tends to be difficult.

このように、本発明によれば、電極上に塗布した導電性接着剤に電子素子配置する前に、導電性接着剤を仮硬化させておくので、導電性接着剤に電子素子を配置し電子素子に荷重を加えても、導電性接着剤が押しつぶされて横に広がるのを抑制できるので、結果、電極同士の短絡を防ぎ、かつ、接着強度を高めた電子部品が製造できる。
また、本発明によれば、電子素子に加える荷重の調節が容易になるので、生産性が向上する。
As described above, according to the present invention, since the conductive adhesive is temporarily cured before the electronic element is placed on the conductive adhesive applied on the electrode, the electronic element is placed on the conductive adhesive and the electron is placed. Even if a load is applied to the element, it is possible to suppress the conductive adhesive from being crushed and spread laterally. As a result, it is possible to manufacture an electronic component that prevents a short circuit between the electrodes and has an increased adhesive strength.
Further, according to the present invention, the load applied to the electronic element can be easily adjusted, so that productivity is improved.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these.

[試験1]
<実施例1−1>
(導電性接着剤の作製)
バインダーとしてビスフェノールF型のエポキシ樹脂(ジャパンエポキシレジン(株)製、「EP806」)5.0質量%と、導電性粒子としてフレーク銀粉(福田金属箔粉工業(株)製、「AGC−GS」)83.0質量%と、硬化剤として液状フェノールノボラック型のフェノール樹脂(明和化成(株)製、「MEH8005」)6.0質量%と、反応性希釈剤としてグリシジルオルトトルイジン(日本化薬(株)製、「GOT」)5.7質量%と、硬化促進剤としてイミダゾール系エポキシ硬化促進剤(四国化成工業(株)製、「2P4MHZ」)0.3質量%とを、ロールミルで混合して、導電性接着剤を作製した。
[Test 1]
<Example 1-1>
(Preparation of conductive adhesive)
Bisphenol F type epoxy resin (Japan Epoxy Resin Co., Ltd., “EP806”) 5.0% by mass as binder and flake silver powder (Fukuda Metal Foil Powder Co., Ltd., “AGC-GS”) as conductive particles ) 83.0% by mass, liquid phenol novolac type phenolic resin (Maywa Kasei Co., Ltd., “MEH8005”) 6.0% by mass as a curing agent, and glycidyl orthotoluidine (Nippon Kayaku Co., Ltd.) as a reactive diluent Co., Ltd., “GOT”) 5.7% by mass and 0.3% by mass of an imidazole-based epoxy curing accelerator (Shikoku Kasei Kogyo Co., Ltd., “2P4MHZ”) as a curing accelerator were mixed with a roll mill. Thus, a conductive adhesive was produced.

<測定>
得られた導電性接着剤について、接着強度、広がり性、比抵抗の各測定を行った。
なお、以下に示す各測定方法は、電子部品の接着強度、広がり性、比抵抗を調べる代用試験であり、各例の導電性接着剤を用いて得られる電子部品についても、これら代用試験の測定結果と同様の傾向を示す。
表1に、各測定を行う際に実施した仮硬化工程での仮硬化温度A(=120℃)と、仮硬化時間B(=10分)、および荷重工程での荷重を示した。また、上記式(1)に、A(=120)を代入した値(式(1)の右辺)と、B(=10)を代入した値(式(1)の左辺)を表1に示した。さらに、AとBが式(1)を満たしている場合は「○」の判定とし、満たしていない場合は「×」の判定として、これらの判定結果を表1に示した。
<Measurement>
The obtained conductive adhesive was measured for adhesive strength, spreadability, and specific resistance.
In addition, each measurement method shown below is a substitute test for examining the adhesive strength, spreadability, and specific resistance of an electronic component, and measurement of these substitute tests is also performed for an electronic component obtained using the conductive adhesive of each example. The same tendency as the result is shown.
Table 1 shows the temporary curing temperature A (= 120 ° C.) in the temporary curing step performed when each measurement was performed, the temporary curing time B (= 10 minutes), and the load in the loading step. Table 1 shows the value obtained by substituting A (= 120) into the above equation (1) (the right side of equation (1)) and the value obtained by substituting B (= 10) (the left side of equation (1)). It was. Further, Table 1 shows the determination results as “◯” when A and B satisfy the formula (1), and as “×” when they do not satisfy the equation (1).

(接着強度の測定)
アセトンで洗浄した無機ガラス板(約80mm×40mm×0.2mm)上にニチバン(株)製のセロテープ(登録商標)(商品名:CT405A−18、厚さ:0.05mm)を、約1cm間隔で平行になるように2枚貼り付けた。次いで、2枚のセロテープ(登録商標)の間に導電性接着剤を載せ、ガラス棒でしごき塗りをした後、2枚のセロテープ(登録商標)を剥がした。その後、仮硬化温度Aが120℃、仮硬化時間Bが10分の条件にて導電性接着剤を仮硬化させた。次いで、5個のステンレスナット(西精工(株)製、「M3」)を、ピンセットを使用して仮硬化させた導電性接着剤上に並べた。5Nスケールのバネ秤を用いて、各ナットの中心にバネ秤の軸の先端が垂直に当たるようにし、表1に示す荷重を加えた。さらに、150℃×30分の条件で導電性接着剤を本硬化させた。
室温に戻した後、アイコーエンジニアリング社製のプッシュプルゲージの軸の先端をナットの一つの面に垂直になるように当て、水平方向に5±0.5mm/分の速度でナットが剥がれるまで押して、剥がれた時点での強度を求めた。5個のナットについて、同様に押して、剥がれた時点での強度を求めた。5個の平均値を接着強度とした。結果を表1に示す。
(Measurement of adhesive strength)
Nichiban Co., Ltd. cello tape (registered trademark) (trade name: CT405A-18, thickness: 0.05 mm) on an inorganic glass plate (about 80 mm × 40 mm × 0.2 mm) washed with acetone, with an interval of about 1 cm. Two sheets were pasted so as to be parallel. Next, a conductive adhesive was placed between the two sheets of cello tape (registered trademark), ironed with a glass rod, and then the two sheets of cello tape (registered trademark) were peeled off. Thereafter, the conductive adhesive was temporarily cured under conditions of a temporary curing temperature A of 120 ° C. and a temporary curing time B of 10 minutes. Next, five stainless nuts (manufactured by Nishi Seiko Co., Ltd., “M3”) were arranged on the conductive adhesive temporarily cured using tweezers. Using a 5N scale spring balance, the end of the shaft of the spring balance was vertically contacted with the center of each nut, and the load shown in Table 1 was applied. Furthermore, the conductive adhesive was fully cured under conditions of 150 ° C. × 30 minutes.
After returning to room temperature, place the tip of the shaft of the push-pull gauge manufactured by Aiko Engineering so that it is perpendicular to one surface of the nut, and push it horizontally at a speed of 5 ± 0.5 mm / min until the nut is removed. The strength at the time of peeling was determined. About five nuts, it pushed in the same way and the intensity | strength when it peeled was calculated | required. The average value of 5 pieces was taken as the adhesive strength. The results are shown in Table 1.

(広がり性の測定)
2枚のガラス板(約80mm×40mm×2mm)を用意し、一方のガラス板の上に、膜厚が30μmになるように導電性接着剤を塗布し、仮硬化温度Aが120℃、仮硬化時間Bが10分の条件にて導電性接着剤を仮硬化させた。その後、もう一方のガラス板を導電性接着剤上に載せて、表1に示す荷重を加えた。荷重を加える前後の導電性接着剤の様子を顕微鏡(25倍)にて観察した。各々の面積を求め、下記式(3)にて広がり性を算出し、以下のように評価した。結果を表1に示す。なお、○を合格とする。
広がり性(%)=荷重後の導電性接着剤の面積(mm)/荷重前の導電性接着剤の面積(mm)×100 ・・・(3)
○:100%以上、120%未満。
△:120%以上、130%未満。
×:130%以上。
(Measurement of spreadability)
Two glass plates (approximately 80 mm × 40 mm × 2 mm) are prepared, and a conductive adhesive is applied on one glass plate so that the film thickness is 30 μm. The temporary curing temperature A is 120 ° C. The conductive adhesive was temporarily cured under conditions where the curing time B was 10 minutes. Thereafter, the other glass plate was placed on the conductive adhesive, and the load shown in Table 1 was applied. The state of the conductive adhesive before and after applying the load was observed with a microscope (25 times). Each area was calculated, spreadability was calculated by the following formula (3), and evaluated as follows. The results are shown in Table 1. In addition, ○ is a pass.
Spreadability (%) = area of conductive adhesive after loading (mm 2 ) / area of conductive adhesive before loading (mm 2 ) × 100 (3)
○: 100% or more and less than 120%.
Δ: 120% or more and less than 130%.
X: 130% or more.

(比抵抗の測定)
ガラス板(約80mm×40mm×2mm)上にニチバン(株)製のセロテープ(登録商標)(商品名:CT405A−18、厚さ:0.05mm)を、約1cm間隔で平行になるように2枚貼り付けた。次いで、2枚のセロテープ(登録商標)の間に導電性接着剤を載せ、ガラス棒でしごき塗りをした後、2枚のセロテープ(登録商標)を剥がした。その後、仮硬化温度Aが120℃、仮硬化時間Bが10分の条件にて導電性接着剤を仮硬化させた。さらに、150℃×30分の条件で導電性接着剤を本硬化させ、室温に戻した後、抵抗値、膜厚、電極幅を測定した。
抵抗値はADVANTEST社製のデジタルマルチメーター(商品名:R6581D)を用いて測定した。膜厚は、(株)小坂研究所製の表面粗さ計(商品名:SE3500)を用いて測定した。
各測定値をもとに、比抵抗(ρ[Ω・cm])を下記式(4)にて算出し、以下のように評価した。結果を表1に示す。なお、式(4)中、Rは測定サンプルの抵抗値(Ω)、Aは測定サンプルの電極間距離(cm)、Bは測定サンプルの電極幅(cm)、Cは測定サンプルの膜厚(cm)であり、○を合格とする。
ρ=R×{(B×C)/A} ・・・(4)
○:5×10−4Ω・cm未満。
△:5×10−4Ω・cm以上、1×10−3Ω・cm未満。
×:1×10−3Ω・cm以上。
(Measurement of specific resistance)
2 on a glass plate (approximately 80 mm × 40 mm × 2 mm) with cello tape (registered trademark) (trade name: CT405A-18, thickness: 0.05 mm) manufactured by Nichiban Co., Ltd. I stuck the sheets. Next, a conductive adhesive was placed between the two sheets of cello tape (registered trademark), ironed with a glass rod, and then the two sheets of cello tape (registered trademark) were peeled off. Thereafter, the conductive adhesive was temporarily cured under conditions of a temporary curing temperature A of 120 ° C. and a temporary curing time B of 10 minutes. Further, the conductive adhesive was fully cured under conditions of 150 ° C. × 30 minutes, and after returning to room temperature, the resistance value, film thickness, and electrode width were measured.
The resistance value was measured using a digital multimeter (trade name: R6581D) manufactured by ADVANTEST. The film thickness was measured using a surface roughness meter (trade name: SE3500) manufactured by Kosaka Laboratory.
Based on each measured value, the specific resistance (ρ [Ω · cm]) was calculated by the following formula (4) and evaluated as follows. The results are shown in Table 1. In Equation (4), R is the resistance value (Ω) of the measurement sample, A is the distance between electrodes of the measurement sample (cm), B is the electrode width (cm) of the measurement sample, and C is the film thickness ( cm) and ○ is acceptable.
ρ = R × {(B × C) / A} (4)
○: Less than 5 × 10 −4 Ω · cm.
Δ: 5 × 10 −4 Ω · cm or more and less than 1 × 10 −3 Ω · cm.
×: 1 × 10 −3 Ω · cm or more.

<実施例1−2〜1−5>
導電性接着剤を構成する各成分の配合量を表1に示す値に変更した以外は、実施例1−1と同様にして導電性接着剤を作製し、各測定を行った。結果を表1に示す。
<Examples 1-2 to 1-5>
Except having changed the compounding quantity of each component which comprises a conductive adhesive into the value shown in Table 1, the conductive adhesive was produced similarly to Example 1-1, and each measurement was performed. The results are shown in Table 1.

<比較例1−1、1−2>
導電性接着剤を構成する各成分の配合量を表1に示す値に変更した以外は、実施例1−1と同様にして導電性接着剤を作製し、各測定を行った。結果を表1に示す。
<Comparative Examples 1-1 and 1-2>
Except having changed the compounding quantity of each component which comprises a conductive adhesive into the value shown in Table 1, the conductive adhesive was produced similarly to Example 1-1, and each measurement was performed. The results are shown in Table 1.

<比較例1−3>
導電性接着剤を構成する各成分の配合量を表1に示す値に変更し、かつ、硬化剤として液状フェノールノボラック型のフェノール樹脂の代わりに、固形フェノールノボラック型のフェノール樹脂(群栄化学工業(株)製、「PSM−6200」)3.0質量%を用いた以外は、実施例1−1と同様にして導電性接着剤を作製し、各測定を行った。結果を表1に示す。
<Comparative Example 1-3>
The amount of each component constituting the conductive adhesive was changed to the values shown in Table 1, and instead of a liquid phenol novolac type phenol resin as a curing agent, a solid phenol novolac type phenol resin (Gunei Chemical Industry Co., Ltd.) A conductive adhesive was prepared in the same manner as in Example 1-1 except that 3.0% by mass (“PSM-6200” manufactured by Co., Ltd.) was used, and each measurement was performed. The results are shown in Table 1.

Figure 2008305841
Figure 2008305841

表1から明らかなように、式(1)を満たし、かつ、本硬化後の接着強度が10N/mm以上である各実施例では、導電性接着剤の種類に関係なく広がり性と比抵抗が共に良好であった。
一方、本硬化後の接着強度が10N/mm未満である各比較例では、広がり性と比抵抗の両立が困難であった。
このように、本発明によれば、導電性接着剤に関係なく接着強度を高めることができる。また、広がり性を良好にできるため、電極同士が短絡しにくい。
As is apparent from Table 1, in each example that satisfies the formula (1) and the adhesive strength after the main curing is 10 N / mm 2 or more, the spreadability and the specific resistance regardless of the type of the conductive adhesive. Both were good.
On the other hand, in each comparative example having an adhesive strength after main curing of less than 10 N / mm 2 , it was difficult to achieve both spreadability and specific resistance.
Thus, according to the present invention, the adhesive strength can be increased regardless of the conductive adhesive. Moreover, since the spreadability can be improved, the electrodes are not easily short-circuited.

[試験2(実施例2−1〜2−8、比較例2−1〜2−4):仮硬化温度100℃の場合]
実施例1−1で作製した導電性接着剤を用い、仮硬化温度Aを100℃に変更し、仮硬化時間Bと荷重を表2に示す値に変化させて、各測定を実施した。
上記式(1)に、A(=100)を代入した値(式(1)の右辺)と、B(表2に示す値)を代入した値(式(1)の左辺)を表2に示す。また、AとBが式(1)を満たしている場合は「○」の判定とし、満たしていない場合は「×」の判定として、これらの判定結果を表2に示す。
[Test 2 (Examples 2-1 to 2-8, Comparative Examples 2-1 to 2-4): Temporary curing temperature 100 ° C.]
Using the conductive adhesive produced in Example 1-1, the temporary curing temperature A was changed to 100 ° C., the temporary curing time B and the load were changed to the values shown in Table 2, and each measurement was performed.
Table 2 shows values obtained by substituting A (= 100) into the above equation (1) (the right side of equation (1)) and values obtained by substituting B (the value shown in Table 2) (the left side of equation (1)). Show. In addition, Table 2 shows the determination results as “◯” when A and B satisfy Expression (1), and as “×” when they do not satisfy Expression (1).

<測定>
(接着強度の測定)
仮硬化温度Aを100℃に変更し、仮硬化時間Bとナットに加える荷重を表2に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表2に示す。
(広がり性の測定)
仮硬化温度Aを100℃に変更し、仮硬化時間Bとガラス板に加える荷重を表2に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表2に示す。
(比抵抗の測定)
仮硬化温度Aを100℃に変更した以外は、実施例1−1と同様にして測定した。結果を表2に示す。
<Measurement>
(Measurement of adhesive strength)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 100 ° C. and the temporary curing time B and the load applied to the nut were changed to the values shown in Table 2. The results are shown in Table 2.
(Measurement of spreadability)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 100 ° C. and the temporary curing time B and the load applied to the glass plate were changed to the values shown in Table 2. The results are shown in Table 2.
(Measurement of specific resistance)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 100 ° C. The results are shown in Table 2.

Figure 2008305841
Figure 2008305841

表2から明らかなように、式(1)を満たすものは、広がり性と比抵抗が共に良好であった。従って、本発明のものであれば接着強度が低下しにくい。また、広がり性を良好にできるため、電極同士が短絡しにくい。
一方、式(1)を満たさないものは、広がり性が劣っており、電極同士が短絡しやすい。
As is clear from Table 2, both the spreadability and the specific resistance were satisfactory for those satisfying the formula (1). Therefore, if it is a thing of this invention, adhesive strength will not fall easily. Moreover, since the spreadability can be improved, the electrodes are not easily short-circuited.
On the other hand, those not satisfying the formula (1) have poor spreadability, and the electrodes are easily short-circuited.

[試験3(実施例3−1〜3−4、比較例3−1〜3−6):仮硬化温度110℃の場合]
実施例1−1で作製した導電性接着剤を用い、仮硬化温度Aを110℃に変更し、仮硬化時間Bと荷重を表3に示す値に変化させて、各測定を実施した。
上記式(1)に、A(=110)を代入した値(式(1)の右辺)と、B(表3に示す値)を代入した値(式(1)の左辺)を表3に示す。また、AとBが式(1)を満たしている場合は「○」の判定とし、満たしていない場合は「×」の判定として、これらの判定結果を表3に示す。
[Test 3 (Examples 3-1 to 3-4, Comparative Examples 3-1 to 3-6): Temporary curing temperature 110 ° C.]
Using the conductive adhesive produced in Example 1-1, the temporary curing temperature A was changed to 110 ° C., the temporary curing time B and the load were changed to the values shown in Table 3, and each measurement was performed.
A value obtained by substituting A (= 110) into the above equation (1) (the right side of equation (1)) and a value obtained by substituting B (the value shown in Table 3) (the left side of equation (1)) are shown in Table 3. Show. Table 3 shows the results of these determinations, with A and B satisfying the formula (1) as “◯”, and when not satisfying “X”.

<評価>
(接着強度の測定)
仮硬化温度Aを110℃に変更し、仮硬化時間Bとナットに加える荷重を表3に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表3に示す。
(広がり性の測定)
仮硬化温度Aを110℃に変更し、仮硬化時間Bとガラス板に加える荷重を表3に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表3に示す。
(比抵抗の測定)
仮硬化温度Aを110℃に変更した以外は、実施例1−1と同様にして測定した。結果を表3に示す。
<Evaluation>
(Measurement of adhesive strength)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 110 ° C. and the temporary curing time B and the load applied to the nut were changed to the values shown in Table 3. The results are shown in Table 3.
(Measurement of spreadability)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 110 ° C. and the temporary curing time B and the load applied to the glass plate were changed to the values shown in Table 3. The results are shown in Table 3.
(Measurement of specific resistance)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 110 ° C. The results are shown in Table 3.

Figure 2008305841
Figure 2008305841

表3から明らかなように、式(1)を満たすものは、広がり性と比抵抗が共に良好であった。従って、本発明のものであれば接着強度が低下しにくい。また、広がり性を良好にできるため、電極同士が短絡しにくい。
一方、式(1)を満たさないものは、広がり性が劣っており、電極同士が短絡しやすい。
As can be seen from Table 3, those satisfying the formula (1) were good in both spreadability and specific resistance. Therefore, if it is a thing of this invention, adhesive strength will not fall easily. Moreover, since the spreadability can be improved, the electrodes are not easily short-circuited.
On the other hand, those not satisfying the formula (1) have poor spreadability, and the electrodes are easily short-circuited.

[試験4(実施例4−1〜4−6、比較例4−1〜4−5):仮硬化温度120℃の場合]
実施例1−1で作製した導電性接着剤を用い、仮硬化温度Aを120℃に変更し、仮硬化時間Bと荷重を表4に示す値に変化させて、各測定を実施した。
上記式(1)に、A(=120)を代入した値(式(1)の右辺)と、B(表4に示す値)を代入した値(式(1)の左辺)を表4に示す。また、AとBが式(1)を満たしている場合は「○」の判定とし、満たしていない場合は「×」の判定として、これらの判定結果を表4に示す。
[Test 4 (Examples 4-1 to 4-6, Comparative Examples 4-1 to 4-5): Temporary curing temperature of 120 ° C.]
Using the conductive adhesive produced in Example 1-1, the temporary curing temperature A was changed to 120 ° C., the temporary curing time B and the load were changed to the values shown in Table 4, and each measurement was performed.
Table 4 shows values obtained by substituting A (= 120) into the above equation (1) (the right side of equation (1)) and values obtained by substituting B (the value shown in Table 4) (the left side of equation (1)). Show. In addition, Table 4 shows the determination results as “◯” when A and B satisfy Expression (1), and as “×” when they do not satisfy Expression (1).

<評価>
(接着強度の測定)
仮硬化温度Aを120℃に変更し、仮硬化時間Bとナットに加える荷重を表4に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表4に示す。
(広がり性の測定)
仮硬化温度Aを120℃に変更し、仮硬化時間Bとガラス板に加える荷重を表4に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表4に示す。なお、比較例4−1(荷重前と荷重後)、実施例4−1(荷重後)の顕微鏡写真(観察画像、25倍)を図4〜6に示す。
(比抵抗の測定)
仮硬化温度Aを120℃に変更した以外は、実施例1−1と同様にして測定した。結果を表4に示す。
<Evaluation>
(Measurement of adhesive strength)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 120 ° C. and the temporary curing time B and the load applied to the nut were changed to the values shown in Table 4. The results are shown in Table 4.
(Measurement of spreadability)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 120 ° C. and the temporary curing time B and the load applied to the glass plate were changed to the values shown in Table 4. The results are shown in Table 4. In addition, the micrograph (observation image, 25 time) of Comparative Example 4-1 (before and after loading) and Example 4-1 (after loading) is shown in FIGS.
(Measurement of specific resistance)
The measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 120 ° C. The results are shown in Table 4.

Figure 2008305841
Figure 2008305841

表4、図6から明らかなように、式(1)を満たすものは、広がり性と比抵抗が共に良好であった。従って、本発明のものであれば接着強度が低下しにくい。また、広がり性を良好にできるため、電極同士が短絡しにくい。
一方、式(1)を満たさないものは、広がり性が劣っており、電極同士が短絡しやすい。特に、仮硬化を実施しなかった場合(比較例3−1;B=0分)は、図4、5からも明らかなように、0.2kg/cmの荷重を加えると、導電性接着剤が荷重前の導電性接着剤に比べてより広がりやすく、電極同士が短絡しやすくなることがわかった。
As is clear from Table 4 and FIG. 6, those satisfying the formula (1) were good in both spreadability and specific resistance. Therefore, if it is a thing of this invention, adhesive strength will not fall easily. Moreover, since the spreadability can be improved, the electrodes are not easily short-circuited.
On the other hand, those not satisfying the formula (1) have poor spreadability, and the electrodes are easily short-circuited. In particular, when pre-curing was not performed (Comparative Example 3-1; B = 0 min), as is apparent from FIGS. 4 and 5, when a load of 0.2 kg / cm 2 was applied, conductive adhesion was achieved. It was found that the agent spreads more easily than the conductive adhesive before loading, and the electrodes are easily short-circuited.

[試験5(実施例5−1〜5−4、比較例5−1〜5−4):仮硬化温度150℃の場合]
実施例1−1で作製した導電性接着剤を用い、仮硬化温度Aを150℃に変更し、仮硬化時間Bと荷重を表5に示す値に変化させて、各測定を実施した。
上記式(1)に、A(=150)を代入した値(式(1)の右辺)と、B(表5に示す値)を代入した値(式(1)の左辺)を表5に示す。また、AとBが式(1)を満たしている場合は「○」の判定とし、満たしていない場合は「×」の判定として、これらの判定結果を表5に示す。
[Test 5 (Examples 5-1 to 5-4, Comparative Examples 5-1 to 5-4): Temporary curing temperature 150 ° C.]
Using the conductive adhesive produced in Example 1-1, the temporary curing temperature A was changed to 150 ° C., the temporary curing time B and the load were changed to the values shown in Table 5, and each measurement was performed.
Table 5 shows the value obtained by substituting A (= 150) into the above equation (1) (the right side of equation (1)) and the value obtained by substituting B (the value shown in Table 5) (the left side of equation (1)). Show. In addition, Table 5 shows the determination results as “◯” when A and B satisfy Expression (1), and as “X” when they do not satisfy Expression (1).

<評価>
(接着強度の測定)
仮硬化温度Aを150℃に変更し、仮硬化時間Bとナットに加える荷重を表5に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表5に示す。
(広がり性の測定)
仮硬化温度Aを150℃に変更し、仮硬化時間Bとガラス板に加える荷重を表5に示す値に変化させた以外は、実施例1−1と同様にして測定した。結果を表5に示す。
(比抵抗の測定)
仮硬化温度Aを150℃に変更した以外は、実施例1−1と同様にして測定した。結果を表5に示す。
<Evaluation>
(Measurement of adhesive strength)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 150 ° C. and the temporary curing time B and the load applied to the nut were changed to the values shown in Table 5. The results are shown in Table 5.
(Measurement of spreadability)
Measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 150 ° C., and the temporary curing time B and the load applied to the glass plate were changed to the values shown in Table 5. The results are shown in Table 5.
(Measurement of specific resistance)
The measurement was performed in the same manner as in Example 1-1 except that the temporary curing temperature A was changed to 150 ° C. The results are shown in Table 5.

Figure 2008305841
Figure 2008305841

表5から明らかなように、式(1)を満たすものは、広がり性と比抵抗が共に良好であった。従って、本発明のものであれば接着強度が低下しにくい。また、広がり性を良好にできるため、電極同士が短絡しにくい。
一方、式(1)を満たさないものは、広がり性が劣っており、電極同士が短絡しやすい。
As is clear from Table 5, those satisfying the formula (1) had good expansibility and specific resistance. Therefore, if it is a thing of this invention, adhesive strength will not fall easily. Moreover, since the spreadability can be improved, the electrodes are not easily short-circuited.
On the other hand, those not satisfying the formula (1) have poor spreadability, and the electrodes are easily short-circuited.

このように、仮硬化温度Aと仮硬化時間Bが式(1)を満たし、かつ、本硬化後の接着強度が10N/mm以上となるように仮硬化を行って電子部品を製造すれば、電子素子に荷重を加えても導電性接着剤は広がりにくくなる。従って、本発明によれば、電子素子と電極とを接合する際に電極同士の短絡を防ぎ、かつ、接着強度を高めた電子部品が得られる。 In this way, when the temporary curing temperature A and the temporary curing time B satisfy the formula (1) and the temporary curing is performed so that the adhesive strength after the final curing is 10 N / mm 2 or more, an electronic component is manufactured. Even when a load is applied to the electronic element, the conductive adhesive is difficult to spread. Therefore, according to this invention, when joining an electronic element and an electrode, the electronic component which prevented the short circuit of electrodes and improved adhesive strength is obtained.

電子部品の製造方法を説明する断面図であり、(a)は塗布工程を、(b)は接合工程を説明する断面図である。It is sectional drawing explaining the manufacturing method of an electronic component, (a) is an application process, (b) is sectional drawing explaining a joining process. 仮硬化工程における、仮硬化温度Aと仮硬化時間Bとの関係を表すグラフである。It is a graph showing the relationship between temporary hardening temperature A and temporary hardening time B in a temporary hardening process. 他の例の電子素子を用いた電子部品の一例を示す断面図である。It is sectional drawing which shows an example of the electronic component using the electronic element of another example. 広がり性の測定における、比較例4−1(荷重前)の顕微鏡写真である。It is a microscope picture of the comparative example 4-1 (before load) in the measurement of spread property. 広がり性の測定における、比較例4−1(荷重後)の顕微鏡写真である。It is a microscope picture of Comparative Example 4-1 (after load) in the measurement of spreadability. 広がり性の測定における、実施例4−1(荷重後)の顕微鏡写真である。It is a microscope picture of Example 4-1 (after load) in the measurement of spread property.

符号の説明Explanation of symbols

11:基板
12:電極
13:導電性接着剤
14:電子素子
15:コンデンサ
11: Substrate 12: Electrode 13: Conductive adhesive 14: Electronic element 15: Capacitor

Claims (3)

電極上に導電性接着剤を塗布する塗布工程と、導電性接着剤を仮硬化する仮硬化工程と、導電性接着剤上に電子素子を配置し、該電子素子に荷重を加える荷重工程と、導電性接着剤を本硬化する本硬化工程とを有する電子部品の製造方法であって、
前記仮硬化工程は、仮硬化温度A(℃)と仮硬化時間B(分)が下記式(1)を満足し、かつ、前記本硬化工程後における接着強度が10N/mm以上となるように導電性接着剤を仮硬化することを特徴とする電子部品の製造方法。
lnB≧−0.05A+7.5 ・・・(1)
An application step of applying a conductive adhesive on the electrode; a temporary curing step of temporarily curing the conductive adhesive; a load step of placing an electronic element on the conductive adhesive and applying a load to the electronic element; A method of manufacturing an electronic component having a main curing step of main curing the conductive adhesive,
In the temporary curing step, the temporary curing temperature A (° C.) and the temporary curing time B (minute) satisfy the following formula (1), and the adhesive strength after the main curing step is 10 N / mm 2 or more. A method for producing an electronic component, wherein the conductive adhesive is temporarily cured.
lnB ≧ −0.05A + 7.5 (1)
前記塗布工程では、スクリーン印刷またはメタルマスク印刷により導電性接着剤を塗布することを特徴とする請求項1に記載の電子部品の製造方法。   The method for manufacturing an electronic component according to claim 1, wherein in the applying step, the conductive adhesive is applied by screen printing or metal mask printing. 請求項1または2に記載の電子部品の製造方法により製造されたことを特徴とする電子部品。   An electronic component manufactured by the method for manufacturing an electronic component according to claim 1.
JP2007149186A 2007-06-05 2007-06-05 Manufacturing method of electronic parts Active JP5045251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007149186A JP5045251B2 (en) 2007-06-05 2007-06-05 Manufacturing method of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007149186A JP5045251B2 (en) 2007-06-05 2007-06-05 Manufacturing method of electronic parts

Publications (2)

Publication Number Publication Date
JP2008305841A true JP2008305841A (en) 2008-12-18
JP5045251B2 JP5045251B2 (en) 2012-10-10

Family

ID=40234329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007149186A Active JP5045251B2 (en) 2007-06-05 2007-06-05 Manufacturing method of electronic parts

Country Status (1)

Country Link
JP (1) JP5045251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088811A (en) * 2013-10-29 2015-05-07 株式会社大真空 Temperature compensation crystal oscillator
WO2015083809A1 (en) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 Method for producing connection structure, and anisotropic conductive film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107003A (en) * 1996-09-09 1997-04-22 Fujitsu Ltd Component mounting structure and method
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2001143529A (en) * 1999-11-12 2001-05-25 Nippon Handa Kk Conductive bonding agent by cream solder mixing and bonding method using the same
JP2001274277A (en) * 2000-03-27 2001-10-05 Taiyo Ink Mfg Ltd Printed wiring substrate with projection electrode and its manufacturing method
JP2002100501A (en) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Electronic component and its packaging body
JP2002222833A (en) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd Conductive adhesive, and electronic component package and its manufacturing method
JP2002271005A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd Mounting structure and method of manufacturing the same
JP2006093420A (en) * 2004-09-24 2006-04-06 Oki Electric Ind Co Ltd Mounting method of semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09107003A (en) * 1996-09-09 1997-04-22 Fujitsu Ltd Component mounting structure and method
JP2000236000A (en) * 1999-02-17 2000-08-29 Mitsui High Tec Inc Bump for connecting with outside
JP2001143529A (en) * 1999-11-12 2001-05-25 Nippon Handa Kk Conductive bonding agent by cream solder mixing and bonding method using the same
JP2001274277A (en) * 2000-03-27 2001-10-05 Taiyo Ink Mfg Ltd Printed wiring substrate with projection electrode and its manufacturing method
JP2002100501A (en) * 2000-09-22 2002-04-05 Matsushita Electric Ind Co Ltd Electronic component and its packaging body
JP2002222833A (en) * 2001-01-29 2002-08-09 Matsushita Electric Ind Co Ltd Conductive adhesive, and electronic component package and its manufacturing method
JP2002271005A (en) * 2001-03-08 2002-09-20 Matsushita Electric Ind Co Ltd Mounting structure and method of manufacturing the same
JP2006093420A (en) * 2004-09-24 2006-04-06 Oki Electric Ind Co Ltd Mounting method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088811A (en) * 2013-10-29 2015-05-07 株式会社大真空 Temperature compensation crystal oscillator
WO2015083809A1 (en) * 2013-12-05 2015-06-11 デクセリアルズ株式会社 Method for producing connection structure, and anisotropic conductive film

Also Published As

Publication number Publication date
JP5045251B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
KR101225497B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP5468199B2 (en) Conductive adhesive composition, electronic component mounting substrate, and semiconductor device
KR100929136B1 (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP2009242508A (en) Adhesive and bonded body
WO2019189512A1 (en) Electroconductive adhesive composition
JP2013254921A (en) Circuit board and electronic-component mounting board
JP2002265920A (en) Electroconductive adhesive and circuit using the same
JP5045251B2 (en) Manufacturing method of electronic parts
JP5169517B2 (en) Conductive adhesive and electronic components
JP4802987B2 (en) Adhesive film
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
JP2017071707A (en) Liquid thermally conductive resin composition and electronic component
JPH10279902A (en) Electroconductive adhesive
JP2000290617A (en) Electroconductive adhesive and usage thereof
JP5076412B2 (en) Conductive adhesive
JP5119766B2 (en) Conductive adhesive and electronic component using the same
US20060261315A1 (en) Insulation-coated electroconductive particles
JP2009205899A (en) Conductive paste composition and printed-wiring board
JPH10279903A (en) Electroconductive adhesive
JP2005132854A (en) Conductive adhesive composition
JPH10251606A (en) Conductive adhesive
JPH02288019A (en) Anisotropic conductive film
JPH07179833A (en) Conductive resin paste
KR20100093452A (en) Conductive paste and the manufacturing method thereof and the electric device comprising thereof
JP2010059426A (en) Electroconductive adhesive and circuit using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100311

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250