JP2010059426A - Electroconductive adhesive and circuit using the same - Google Patents

Electroconductive adhesive and circuit using the same Download PDF

Info

Publication number
JP2010059426A
JP2010059426A JP2009220718A JP2009220718A JP2010059426A JP 2010059426 A JP2010059426 A JP 2010059426A JP 2009220718 A JP2009220718 A JP 2009220718A JP 2009220718 A JP2009220718 A JP 2009220718A JP 2010059426 A JP2010059426 A JP 2010059426A
Authority
JP
Japan
Prior art keywords
powder
silver
tin
conductive adhesive
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009220718A
Other languages
Japanese (ja)
Other versions
JP5048031B2 (en
Inventor
Michinori Komagata
道典 駒形
Yasuo Shirai
恭夫 白井
Kenichi Suzuki
憲一 鈴木
Katsuaki Suganuma
克昭 菅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namics Corp
Original Assignee
Namics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namics Corp filed Critical Namics Corp
Priority to JP2009220718A priority Critical patent/JP5048031B2/en
Publication of JP2010059426A publication Critical patent/JP2010059426A/en
Application granted granted Critical
Publication of JP5048031B2 publication Critical patent/JP5048031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Adhesives Or Adhesive Processes (AREA)
  • Powder Metallurgy (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Conductive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electroconductive adhesive of excellent electrical conductivity, capable of bonding semiconductor elements and chip parts or discrete parts to printed wiring boards without causing any migrations. <P>SOLUTION: The electroconductive adhesive includes electroconductive particles and a resin. In this adhesive, 30 wt.% of more of the electroconductive particles is composed substantially of silver and tin, wherein the molar ratio of metal components of the electroconductive adhesive: silver/tin is (77.5:22.5) to (0:100). A circuit bonded using the electroconductive adhesive is also provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、導電性接着剤に関し、さらに詳しくは、導電性に優れ、半導体素子、チップ部品またはディスクリート部品を、マイグレーションを発生させないで印刷配線基板に接着できる導電性接着剤に関する。また、本発明は、このような導電性接着剤を用いて、半導体素子などを接合させた回路に関する。   The present invention relates to a conductive adhesive, and more particularly to a conductive adhesive that has excellent conductivity and can bond a semiconductor element, a chip component, or a discrete component to a printed wiring board without causing migration. The present invention also relates to a circuit in which a semiconductor element or the like is bonded using such a conductive adhesive.

半導体の実装技術の一つとして、フリップチップ方式による接合がある。そこでは、ハンダメッキによりバンプを形成した半導体素子を用い、ハンダにより該半導体素子の接合を行う。また、銀などの貴金属粉末を使用した導電性接着剤を用いる接合、および樹脂ボールに金などをメッキした粉末を使用して、異方性導電フィルムを用いる電子部品の接合が試みられている。   As one of semiconductor mounting technologies, there is a flip-chip bonding. There, a semiconductor element in which bumps are formed by solder plating is used, and the semiconductor element is joined by solder. In addition, bonding using a conductive adhesive using a noble metal powder such as silver, and bonding of electronic parts using an anisotropic conductive film using powder obtained by plating a resin ball with gold or the like have been attempted.

一方、印刷配線基板を用いる回路の形成においても、チップ部品やディスクリート部品の接合にはハンダが使用される。ハンダの代わりに導電性接着剤を用いて、これらの部品を実装することも行われている。しかし、該接着剤に導電粒子として銀を使用すると、優れた導電性を有する導電層が得られるが、電圧を印加するとマイグレーションを起こすことがある。(IEEE Transaction on Components, Packaging and Manufacturing Technology, Part B, Vol.17, No.1, p83 参照)。また、錫メッキなどを施す際に、高温の影響を受けて、接着強さが低下する。   On the other hand, also in the formation of a circuit using a printed wiring board, solder is used for joining chip parts and discrete parts. It is also practiced to mount these parts using a conductive adhesive instead of solder. However, when silver is used as the conductive particles in the adhesive, a conductive layer having excellent conductivity can be obtained, but migration may occur when a voltage is applied. (See IEEE Transaction on Components, Packaging and Manufacturing Technology, Part B, Vol. 17, No. 1, p83). Further, when tin plating or the like is performed, the adhesive strength is reduced due to the influence of high temperature.

現在、電子部品の接合には、鉛−錫合金ハンダが使用されている。廃棄された電子機器に使用されているハンダが酸性雨により溶解し、地下水に溶け込み、飲料水などに地下水を使用するところでは、公衆衛生上の問題を生じている。したがって、錫−銀系、錫−亜鉛系のような、融点がより高いハンダを用いる傾向がある。しかしながら、ハンダを用いる方法では、洗浄剤を使用する場合があり、作業環境および安全面で好ましくない。   Currently, lead-tin alloy solder is used for joining electronic components. There is a public health problem where solder used in discarded electronic equipment dissolves in acid rain, dissolves in groundwater, and uses groundwater for drinking water. Therefore, there is a tendency to use solder having a higher melting point such as tin-silver and tin-zinc. However, in the method using solder, a cleaning agent may be used, which is not preferable in terms of work environment and safety.

ニッケルおよびニッケル合金の粉末は、マイグレーションを起こさない導電粒子であるが、それを用いて形成された導電層は、比抵抗が大きく、かつ高温にさらされると比抵抗がさらに大きくなるので、満足できるものではなかった。   Nickel and nickel alloy powders are conductive particles that do not cause migration, but the conductive layer formed using them has a large specific resistance and is satisfactory because it has a higher specific resistance when exposed to high temperatures. It was not a thing.

特開平9−157613号公報には、導電粒子として、表面がニッケルおよび/またはニッケル−ホウ素合金である金属粒子を、ポリオキシアルキレンリン酸エステル誘導体とポリオキシアルキレンアルキル(もしくはアルケニル)アミンまたはその誘導体との混合物で表面処理して得られた導電粒子を、反応性希釈剤を含むエポキシ樹脂と組み合わせることにより、マイグレーションを起こさず、かつ高温にさらされても安定した導電性を有する導電層を与える導電性接着剤が得られることが開示されている。しかし、最近の傾向としては、より高い導電性を有し、かつ高温のハンダに接着するような温度条件で加工しても、比抵抗の上昇が少ない導電性接着剤が求められている。   Japanese Patent Laid-Open No. 9-157613 discloses metal particles whose surfaces are nickel and / or nickel-boron alloy as conductive particles, polyoxyalkylene phosphate derivatives and polyoxyalkylene alkyl (or alkenyl) amines or derivatives thereof. By combining the conductive particles obtained by surface treatment with a mixture with an epoxy resin containing a reactive diluent, a conductive layer that does not cause migration and has stable conductivity even when exposed to high temperatures is obtained. It is disclosed that a conductive adhesive can be obtained. However, as a recent trend, there is a demand for a conductive adhesive that has higher conductivity and has a small increase in specific resistance even when processed under temperature conditions such that it adheres to high-temperature solder.

特開平11−80647またはMaterial stage, Vol.1, No.7, p.51 2001には200℃で加熱すると銀の微粒子が結合することが記載されており導電接着剤への展開が示されている。超微粉の銀を主として使用するので膜厚が得られず、またマイグレーションが起こる。   Japanese Patent Application Laid-Open No. 11-80647 or Material stage, Vol. 1, No. 7, p. 51 2001 describes that fine particles of silver are bonded when heated at 200 ° C., indicating the development to a conductive adhesive. Yes. Since ultrafine silver is mainly used, the film thickness cannot be obtained, and migration occurs.

本発明の課題は、上記のような状況に対応して、電圧を印加してもマイグレーションを起こさず、高い導電性を有し、ハンダの代わりに使用できる導電性接着剤、および該導電性接着剤を用いた回路を提供することである。   An object of the present invention is to provide a conductive adhesive that does not cause migration even when a voltage is applied, has high conductivity, and can be used in place of solder in response to the above situation, and the conductive adhesion It is to provide a circuit using an agent.

本発明者らは、この課題を達成するために検討を重ねた結果、導電接着剤の金属構成が、特定の組成範囲の銀−錫を存在せしめることで、上記の課題を達成でき、特に予期しなかったことに、上記の銀−錫の組成範囲であれば錫に銀粉を併用してもマイグレーションを起こさず、微粒子の金属粉末を併用することで金属同士が溶融し、接続することを見出して、本発明を完成するに至った。   As a result of repeated studies to achieve this problem, the inventors of the present invention can achieve the above-mentioned problem by making silver-tin having a specific composition range present in the metal composition of the conductive adhesive. The fact that the composition range of the above-mentioned silver-tin did not cause migration even when silver powder was used in combination with tin, and found that metals were melted and connected by using fine metal powder together. Thus, the present invention has been completed.

発明の要旨
本発明の導電性接着剤は、導電粒子および樹脂を含む導電性接着剤において、該導電粒子の30重量%以上が銀と錫から実質的になり、該導電接着剤の金属成分の銀:錫のモル比が77.5:22.5〜0:100の範囲にあることを特徴とするものであり、本発明の回路は、上記の導電性接着剤を用いて、半導体素子、チップ部品、ディスクリート部品またはそれらの組合せを接合させた回路である。
SUMMARY OF THE INVENTION The conductive adhesive of the present invention is a conductive adhesive comprising conductive particles and a resin, wherein 30% by weight or more of the conductive particles are substantially composed of silver and tin, The silver: tin molar ratio is in the range of 77.5: 22.5 to 0: 100, and the circuit of the present invention uses the above-mentioned conductive adhesive to form a semiconductor element, A circuit in which chip parts, discrete parts, or combinations thereof are joined.

本発明に導電粒子として用いられる、銀と錫から実質的になる銀−錫粉は、本発明において特徴的な成分であり、マイグレーションを起こさず、かつ形成される導電層に高い導電性を付与する。該金属粉は、銀と錫のモル比が、77.5:22.5から0:100であり、好ましくは75:25〜20:80である。両成分の合計数を100として表したとき、銀のモル比が77.5を越えるとマイグレーションが発生する。   The silver-tin powder consisting essentially of silver and tin used as conductive particles in the present invention is a characteristic component in the present invention, does not cause migration, and imparts high conductivity to the formed conductive layer. To do. The metal powder has a silver to tin molar ratio of 77.5: 22.5 to 0: 100, preferably 75:25 to 20:80. When the total number of both components is represented as 100, migration occurs when the silver molar ratio exceeds 77.5.

該銀−錫粉は、同じ粉体粒子中の表面に銀と錫の原子が複合的に存在するものであれば、どのような形態のものでもよく、合金粉、混合塩の水溶液から還元共沈法によって得られた共沈粉、およびで被覆した銀粉をスタンプ法によってリン片状にして、表面に銀とが存在する複合粉などが例示される。均質な銀−錫粉が得られて、安定した効果を示すことから、合金粉が好ましい。なお、銀粉と錫粉を単に混合した混合粉でも、本発明の効果を得る事ができる。   The silver-tin powder may have any form as long as silver and tin atoms are present on the surface in the same powder particle, and it can be reduced from an aqueous solution of alloy powder or mixed salt. Examples thereof include a co-precipitated powder obtained by the precipitation method and a composite powder in which silver powder coated with the powder is formed into flakes by the stamp method and silver is present on the surface. Since homogeneous silver-tin powder is obtained and shows a stable effect, alloy powder is preferred. In addition, the effect of this invention can be acquired also with the mixed powder which only mixed silver powder and tin powder.

このような銀−錫合金粉は、たとえば、銀とを所望のモル比になるように混合して溶融した後、アルゴン雰囲気中にノズルより吹き出して合金粉とし、所定の粒径以下のものを採取する方法;このようにしてアトマイズした粉末を、さらにプラズマ炉によって気化し、ついで冷却により固化させて合金粉を得る方法;その他、混合粉を任意の手段で加熱して合金化する方法などによって得ることができる。   Such a silver-tin alloy powder is, for example, mixed with silver in a desired molar ratio and melted, and then blown out from a nozzle into an argon atmosphere to form an alloy powder having a predetermined particle size or less. A method of collecting; a method in which the powder atomized in this way is further vaporized in a plasma furnace and then solidified by cooling to obtain an alloy powder; and a method in which the mixed powder is heated to form an alloy by any means. Obtainable.

銀−錫粉の形状は、球状でもりん片状でもよく、他の形状、たとえば針状や枝状のものを用いてもよい。また、それらの混合物でもよい。   The shape of the silver-tin powder may be spherical or flake shaped, and other shapes such as needles or branches may be used. A mixture thereof may also be used.

接着剤の状態で系が安定に保たれ、印刷の場合に目づまりを起こさず、かつ導電性の高い導電層が得られることから、球状粉の場合、平均粒径が0.1〜10μmのものが好ましく、りん片状の場合、その扁平面の平均直径、すなわち長径と短径の平均として2〜20μmのものが好ましい。アスペクト比は、通常10〜200であり、好ましくは20〜50である。   In the case of spherical powder, the average particle size is 0.1 to 10 μm because the system is kept stable in the state of adhesive, does not cause clogging in printing, and a highly conductive layer is obtained. In the case of flakes, the average diameter of the flat surface, that is, the average of the major axis and the minor axis is preferably 2 to 20 μm. The aspect ratio is usually 10 to 200, preferably 20 to 50.

このような組成の銀−錫粉を、導電粒子中、95重量%以下、好ましくは90重量%以下、さらに好ましくは85重量%以下配合する。該銀と錫の量が接着剤中の金属構成比で77.5:22.5から0:100の範囲では、マイグレーションがなく、かつ導電性の高い導電層を形成しうる導電性接着剤が得られる。   The silver-tin powder having such a composition is blended in the conductive particles by 95% by weight or less, preferably 90% by weight or less, more preferably 85% by weight or less. When the amount of the silver and tin is in the range of 77.5: 22.5 to 0: 100 in terms of the metal composition ratio in the adhesive, there is no conductive adhesive that can form a conductive layer with no migration and high conductivity. can get.

本発明においては、導電粒子として、上記の銀−錫粉のほかに、他の金属粉および/または炭素粉を併用することができる。併用しうる金属粉としては、銀粉、錫粉、ビスマス粉もしくはインジウム粉、またはこれらの金属の2種以上の合金粉、共沈粉および/または複合粉など(以下、「合金粉など」という。ただし、上記のモル比の組成を有する銀−錫粉を除く。)が例示され、該合金粉などとしては、銀−錫ビスマス粉、銀−錫インジウム粉および上記のモル比以外の組成を有する銀−錫粉が例示される。使用される金属の粒子径として5から60nmの範囲、好ましくは8から20nmにある微粒子導電粉が好ましい。   In the present invention, in addition to the above silver-tin powder, other metal powder and / or carbon powder can be used in combination as the conductive particles. Examples of the metal powder that can be used in combination include silver powder, tin powder, bismuth powder or indium powder, or two or more kinds of alloy powders, co-precipitation powders and / or composite powders of these metals (hereinafter referred to as “alloy powders”). However, silver-tin powder having the composition of the above molar ratio is excluded.), And the alloy powder has a composition other than silver-tin bismuth powder, silver-tin indium powder and the above molar ratio. Silver-tin powder is exemplified. A fine particle conductive powder having a particle diameter of 5 to 60 nm, preferably 8 to 20 nm, is preferable.

また、炭素粉としては、カーボンブラック、グラファイトおよびそのメソフェーズなどが挙げられる。   Examples of the carbon powder include carbon black, graphite, and mesophase thereof.

これらの微粒子導電粉の配合量は、低い接続抵抗が得られることから、上記の組成の金属粉に対して40重量%から2重量%が好ましい。40重量%以上の場合、ペーストの粘度が上昇し印刷適正、デイスペンス適正が良くない。2重量%以下では金属の結合が少なく、接続抵抗が高くなる。超微粒子導電分は公知の方法で生産することができる。プラズマ、アーク放電による方法などがあげられる。   The blending amount of these fine particle conductive powders is preferably 40% by weight to 2% by weight with respect to the metal powder having the above composition since low connection resistance can be obtained. When the content is 40% by weight or more, the viscosity of the paste increases, and the printing and dispensation are not good. If it is 2% by weight or less, there are few metal bonds and the connection resistance is high. The ultrafine particle conductive component can be produced by a known method. Examples include plasma and arc discharge methods.

このうち、特に注目すべき金属粉は、微粒子の導電粉である。従来、銀粉は、マイグレーションを起こすと考えられてきたが、予期しなかったことに、導電粒子として上記の銀−錫粉と銀粉を併用することにより、マイグレーションを起こさず、導電性の優れた導電層を与える導電性接着剤を得ることができる。このような銀粉は、優れた導電性が得られ、かつマイグレーションがないことから、上記の組成の銀−錫粉に対して4〜12重量%配合することがより好ましい。   Among these, the metal powder that should be particularly noted is a fine conductive powder. Conventionally, silver powder has been thought to cause migration, but unexpectedly, by using the above silver-tin powder and silver powder together as conductive particles, migration does not occur and conductivity is excellent. A conductive adhesive that provides a layer can be obtained. Such silver powder is more preferably blended in an amount of 4 to 12% by weight based on the silver-tin powder having the above composition because excellent conductivity is obtained and there is no migration.

特に注目すべき他の金属粉は、錫粉、ビスマス粉および銀−ビスマス粉である。錫粉、ビスマス粉および/または銀−ビスマス粉を、上記の組成の銀−錫粉と併用することにより、接着剤の硬化温度で、錫粉、銀−錫粉とビスマスとの反応によって金属接合を生じ、高い導電性が得られる。このような錫粉、ビスマス粉または銀−ビスマス粉の配合量は、上記の組成の銀−錫粉に対して0.1〜20重量%の範囲がより好ましい。   Other metal powders of particular interest are tin powder, bismuth powder and silver-bismuth powder. By using tin powder, bismuth powder and / or silver-bismuth powder together with silver-tin powder having the above composition, metal bonding is performed by reaction of tin powder, silver-tin powder and bismuth at the curing temperature of the adhesive. And high conductivity is obtained. The blending amount of such tin powder, bismuth powder or silver-bismuth powder is more preferably in the range of 0.1 to 20% by weight with respect to the silver-tin powder having the above composition.

導電性接着剤中の導電粒子の配合量は、印刷適性と、硬化して得られる導電層の導電性から、該導電粒子と樹脂の合計量に対して、60〜98重量%が好ましく、70〜95重量%がさらに好ましい。   The blending amount of the conductive particles in the conductive adhesive is preferably 60 to 98% by weight with respect to the total amount of the conductive particles and the resin, from the printability and the conductivity of the conductive layer obtained by curing. More preferred is -95% by weight.

本発明の導電性接着剤は、上記の導電粒子に加えて、バインダーとして機能する樹脂を含む。該樹脂は、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱可塑性樹脂としては、アクリル樹脂、エチルセルロース、ポリエステル、ポリスルホン、フェノキシ樹脂、ポリイミドなどが例示される。熱硬化性樹脂としては、尿素樹脂、メラミン樹脂、グアナミン樹脂のようなアミノ樹脂;ビスフェノールA型、ビスフェノールF型、フェノールノボラック型、脂環式などのエポキシ樹脂;オキセタン樹脂;レゾール型、ノボラック型のようなフェノール樹脂;シリコーンエポキシ、シリコーンポリエステルのようなシリコーン変性有機樹脂などが好ましい。これらの樹脂は、単独で用いても、2種以上を併用してもよい。   The conductive adhesive of the present invention contains a resin that functions as a binder in addition to the conductive particles. The resin may be a thermoplastic resin or a thermosetting resin. Examples of the thermoplastic resin include acrylic resin, ethyl cellulose, polyester, polysulfone, phenoxy resin, and polyimide. As thermosetting resins, amino resins such as urea resins, melamine resins, and guanamine resins; epoxy resins such as bisphenol A type, bisphenol F type, phenol novolac type, and alicyclic type; oxetane resins; resol type, novolac type Such phenol resins; silicone-modified organic resins such as silicone epoxy and silicone polyester are preferred. These resins may be used alone or in combination of two or more.

これらのうち、導電性を損ねない量の樹脂を配合しても、優れた接着性が得られ、また耐熱性も優れていることから、エポキシ樹脂およびレゾール型フェノール樹脂が好ましく、ビスフェノールA型およびビスフェノールF型エポキシ樹脂が特に好ましい。   Of these, epoxy resins and resol-type phenol resins are preferred, because even if an amount of resin that does not impair electrical conductivity is blended, excellent adhesiveness is obtained, and heat resistance is excellent, and bisphenol A type and Bisphenol F type epoxy resin is particularly preferred.

樹脂として、常温で液状である樹脂を用いると、有機溶媒を用いないでビヒクルとすることができ、乾燥工程を省略できる。このような液状樹脂としては、液状エポキシ樹脂、液状フェノール樹脂などが例示される。液状エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂の平均分子量が約400以下のもの;p−グリシドキシフェニルジメチルトリルビスフェノールAジグリシジルエーテルのような分岐状多官能ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;フェノールノボラック型エポキシ樹脂の平均分子量が約570以下のもの;ビニル(3,4−シクロヘキセン)ジオキシド、3,4−エポキシシクロヘキシルカルボン酸(3,4−エポキシシクロヘキシル)メチル、アジピン酸ビス(3,4−エポキシ−6−メチルシクロヘキシルメチル)、2−(3,4−エポキシシクロヘキシル)5,1−スピロ(3,4−エポキシシクロヘキシル)−m−ジオキサンの少なくとも一種を構成成分としてなる脂環式エポキシ樹脂;ヘキサヒドロフタル酸ジグリシジル、3−メチルヘキサヒドロフタル酸ジグリシジル、ヘキサヒドロテレフタル酸ジグリシジルの少なくとも一種を構成成分としてなるグリシジルエステル型エポキシ樹脂;ジグリシジルアニリン、ジグリシジルトルイジン、トリグリシジル−p−アミノフェノール、テトラグリシジル−m−キシリレンジアミン、テトラグリシジルビス(アミノメチル)シクロヘキサンの少なくとも一種を構成成分としてなるグリシジルアミン型エポキシ樹脂;ならびに1,3−ジグリシジル−5−メチル−5−エチルヒダントインを構成成分としてなるヒダントイン型エポキシ樹脂が例示される。   When a resin that is liquid at room temperature is used as the resin, a vehicle can be obtained without using an organic solvent, and the drying step can be omitted. Examples of such a liquid resin include a liquid epoxy resin and a liquid phenol resin. Liquid epoxy resins include bisphenol A type epoxy resins having an average molecular weight of about 400 or less; branched polyfunctional bisphenol A type epoxy resins such as p-glycidoxyphenyldimethyltolyl bisphenol A diglycidyl ether; bisphenol F type Epoxy resin; phenol novolac type epoxy resin having an average molecular weight of about 570 or less; vinyl (3,4-cyclohexene) dioxide, 3,4-epoxycyclohexylcarboxylic acid (3,4-epoxycyclohexyl) methyl, bis (adipate) ( 3,4-epoxy-6-methylcyclohexylmethyl), 2- (3,4-epoxycyclohexyl) 5,1-spiro (3,4-epoxycyclohexyl) -m-dioxane Epoxy resin Glycidyl ester type epoxy resin comprising at least one of diglycidyl hexahydrophthalate, diglycidyl 3-methylhexahydrophthalate and diglycidyl hexahydroterephthalate; diglycidyl aniline, diglycidyl toluidine, triglycidyl-p-aminophenol, Glycidylamine type epoxy resin comprising at least one of tetraglycidyl-m-xylylenediamine and tetraglycidylbis (aminomethyl) cyclohexane as a constituent; and 1,3-diglycidyl-5-methyl-5-ethylhydantoin as a constituent Hydantoin type epoxy resin is exemplified.

また、液状樹脂に、混合系が流動性を示す範囲内で、相溶性であって、常温で固体ないし超高粘性を呈する樹脂を混合して用いてもよく、そのような樹脂として、高分子量のビスフェノールA型エポキシ樹脂、ジグリシジルビフェニル、ノボラックエポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂のようなエポキシ樹脂;ノボラックフェノール樹脂などが例示される。   In addition, the liquid resin may be mixed with a resin that is compatible within the range in which the mixed system exhibits fluidity and exhibits a solid or ultra-high viscosity at room temperature. Bisphenol A type epoxy resin, diglycidyl biphenyl, novolac epoxy resin, epoxy resin such as tetrabromobisphenol A type epoxy resin; and novolak phenol resin.

エポキシ樹脂の場合、硬化機構としては、自己硬化型樹脂を用いても、アミン類、イミダゾール類、酸無水物またはオニウム塩のような硬化剤や硬化促進剤を用いてもよく、アミノ樹脂やフェノール樹脂を、エポキシ樹脂の硬化剤として機能させてもよい。   In the case of an epoxy resin, the curing mechanism may be a self-curing resin, or a curing agent or curing accelerator such as amines, imidazoles, acid anhydrides or onium salts may be used. The resin may function as a curing agent for the epoxy resin.

本発明に用いられる代表的なエポキシ樹脂は、フェノール樹脂によって硬化するものである。フェノール樹脂としては、エポキシ樹脂の硬化剤として通常用いられるフェノール樹脂初期縮合物であればよく、レゾール型でもノボラック型でもよいが、硬化の際の応力が緩和され、優れた耐ヒートサイクル性を得るためには、その50重量%以上がアルキルレゾール型またはアルキルノボラック型のフェノール樹脂であることが好ましい。また、アルキルレゾール型フェノール樹脂の場合、優れた印刷適性を得るためには、平均分子量が2,000以上であることが好ましい。これらのアルキルレゾール型またはアルキルノボラック型フェノール樹脂において、アルキル基としては、炭素数1〜18のものを用いることができ、エチル、プロピル、ブチル、ペンチル、ヘキシル、オクチル、ノニル、デシル基のような炭素数2〜10のものが好ましい。   A typical epoxy resin used in the present invention is cured by a phenol resin. The phenol resin may be an initial condensate of a phenol resin that is usually used as a curing agent for an epoxy resin, and may be a resol type or a novolac type. However, stress during curing is relieved and excellent heat cycle resistance is obtained. Therefore, it is preferable that 50% by weight or more is an alkylresole type or alkyl novolac type phenol resin. In the case of an alkyl resole type phenol resin, the average molecular weight is preferably 2,000 or more in order to obtain excellent printability. In these alkylresole type or alkyl novolac type phenol resins, alkyl groups having 1 to 18 carbon atoms can be used, such as ethyl, propyl, butyl, pentyl, hexyl, octyl, nonyl, and decyl groups. Those having 2 to 10 carbon atoms are preferred.

エポキシ樹脂の硬化剤として用いるフェノール樹脂の量は、エポキシ樹脂と該フェノール樹脂の種類によっても異なるが、硬化後に比抵抗の高温における優れた安定性を得るためには、エポキシ樹脂とフェノール樹脂の重量比が、4:1〜1:4の範囲が好ましく、4:1〜1:1がさらに好ましい。   The amount of the phenol resin used as the curing agent for the epoxy resin varies depending on the type of the epoxy resin and the phenol resin, but in order to obtain excellent stability at a high specific resistance after curing, the weight of the epoxy resin and the phenol resin. The ratio is preferably in the range of 4: 1 to 1: 4, more preferably 4: 1 to 1: 1.

導電性接着剤中の樹脂の配合量は、印刷適性と、硬化して得られる導電層の導電性から、該樹脂と導電粒子の合計に対して、2〜40重量%が好ましく、5〜30重量%がさらに好ましい。   The blending amount of the resin in the conductive adhesive is preferably 2 to 40% by weight, based on the printability and the conductivity of the conductive layer obtained by curing, with respect to the total of the resin and the conductive particles. More preferred is weight percent.

本発明の導電ペーストは、導電粒子および樹脂の種類と量を選択し、また必要に応じて希釈剤を用いることにより、素子、基板などに印刷または塗布する方法に応じて、適切な粘度に調製することができる。たとえば、スクリーン印刷に用いられる場合、常温における導電ペーストの見掛粘度は、10〜500Pa・sが好ましく、15〜300Pa・sがさらに好ましい。希釈剤としては、有機溶媒、および特に樹脂がエポキシ樹脂の場合には、反応性希釈剤を用いることができる。   The conductive paste of the present invention is prepared to have an appropriate viscosity according to the method of printing or applying to an element, a substrate, etc. by selecting the type and amount of conductive particles and resin, and using a diluent as necessary. can do. For example, when used for screen printing, the apparent viscosity of the conductive paste at room temperature is preferably 10 to 500 Pa · s, and more preferably 15 to 300 Pa · s. As the diluent, an organic solvent, and in particular, when the resin is an epoxy resin, a reactive diluent can be used.

有機溶媒は、樹脂の種類に応じて選択される。有機溶媒としては、トルエン、キシレン、メシチレン、テトラリンのような芳香族炭化水素類;テトラヒドロフランのようなエーテル類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、イソホロンのようなケトン類;2−ピロリドン、1−メチル−2−ピロリドンのようなラクトン類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、さらにこれらに対応するプロピレングリコール誘導体のようなエーテルアルコール類;それらに対応する酢酸エステルのようなエステル類;ならびにマロン酸、コハク酸などのジカルボン酸のメチルエステル、エチルエステルのようなジエステル類が例示される。有機溶媒の使用量は、用いられる導電粒子および樹脂の種類と量比、ならびに導電ペーストを印刷または塗布する方法などにより、任意に選択される。   The organic solvent is selected according to the type of resin. Organic solvents include aromatic hydrocarbons such as toluene, xylene, mesitylene, and tetralin; ethers such as tetrahydrofuran; ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, and isophorone; 2-pyrrolidone, 1-methyl Lactones such as 2-pyrrolidone; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, and the corresponding propylene glycol derivatives Ether alcohols; corresponding esters such as acetates; and malonic acid, succinic acid, etc. Methyl esters of dicarboxylic acids, diesters, such as ethyl esters are exemplified. The amount of the organic solvent used is arbitrarily selected depending on the type and amount ratio of the conductive particles and resin used, the method of printing or applying the conductive paste, and the like.

本発明の導電性接着剤に、印刷や塗布によって任意のパターンを形成したり、細部に充填するために、適切な流動性を与え、かつ、溶媒の揮発による肉やせや作業環境の悪化を防ぐ必要がある場合は、希釈剤の一部または全部として、反応性希釈剤を用いることが好ましい。反応性希釈剤としては、ポリエチレングリコールジグリシジルエーテル、ポリ(2−ヒドロキシプロピレン)グリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ジグリシジルアニリン、1,4−シクロヘキサンジメタノールジグリシジルエーテル、1,3−ビス(3−グリシドキシプロピル)−1,1,3,3−テトラメチルジシロキサンのようなジグリシジル化合物;およびトリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテルのようなトリグリシジル化合物が例示され、必要に応じてn−ブチルグリシジルエーテル、アリルグリシジルエーテル、グリシジルメタクリレートのようなモノグリシジルエーテル型反応性希釈剤、グリシジルアクリレート、グリシジルメタクリレートのようなモノグリシジルエステル型反応性希釈剤を併用してもよい。希釈剤として有機溶媒を用いずに、反応性希釈剤のみを用いた場合は、溶媒除去の代わりに、適切な条件で、これらを重合、硬化させて、導電層中に取り込むことができる。   The conductive adhesive of the present invention is provided with appropriate fluidity in order to form an arbitrary pattern by printing or coating or to be filled in details, and also prevents deterioration of the meat due to the volatilization of the solvent and deterioration of the working environment. If necessary, it is preferable to use a reactive diluent as part or all of the diluent. Examples of reactive diluents include polyethylene glycol diglycidyl ether, poly (2-hydroxypropylene) glycol diglycidyl ether, polypropylene glycol diglycidyl ether, butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, diglycidyl aniline, 1, Diglycidyl compounds such as 4-cyclohexanedimethanol diglycidyl ether, 1,3-bis (3-glycidoxypropyl) -1,1,3,3-tetramethyldisiloxane; and trimethylolpropane triglycidyl ether, glycerin Examples include triglycidyl compounds such as triglycidyl ether, and n-butyl glycidyl ether, allyl glycidyl ether, glycidyl methacrylate, etc. Monoglycidyl ether type reactive diluents are glycidyl acrylate, may be used in combination monoglycidyl ester type reactive diluent such as glycidyl methacrylate. When only a reactive diluent is used without using an organic solvent as a diluent, these can be polymerized and cured under suitable conditions and incorporated into the conductive layer instead of removing the solvent.

本発明の導電性接着剤には、このほか、必要に応じて、分散助剤として、ジイソプロポキシ(エチルアセトアセタト)アルミニウムのようなアルミニウムキレート化合物;イソプロピルトリイソステアロイルチタナートのようなチタン酸エステル;脂肪族多価カルボン酸エステル;不飽和脂肪酸アミン塩;ソルビタンモノオレエートのような界面活性剤;またはポリエステルアミン塩、ポリアミドのような高分子化合物などを用いてもよい。また、無機および有機顔料、シランカップリング剤、レベリング剤、チキソトロピック剤、消泡剤などを配合してもよい。   In addition to the conductive adhesive of the present invention, if necessary, an aluminum chelate compound such as diisopropoxy (ethylacetoacetate) aluminum; a titanium such as isopropyltriisostearoyl titanate as a dispersion aid. An acid ester; an aliphatic polyvalent carboxylic acid ester; an unsaturated fatty acid amine salt; a surfactant such as sorbitan monooleate; or a polymer compound such as a polyesteramine salt or polyamide may be used. Moreover, you may mix | blend an inorganic and organic pigment, a silane coupling agent, a leveling agent, a thixotropic agent, an antifoamer, etc.

本発明の導電性接着剤は、配合成分を、らいかい機、プロペラ撹拌機、ニーダー、ロール、ポットミルなどのような混合手段により、均一に混合して調製することができる。調製温度は、特に限定されず、たとえば常温で調製することができる。   The conductive adhesive of the present invention can be prepared by uniformly mixing the blending components by a mixing means such as a raking machine, a propeller stirrer, a kneader, a roll, a pot mill and the like. Preparation temperature is not specifically limited, For example, it can prepare at normal temperature.

本発明の導電性接着剤は、スクリーン印刷、グラビア印刷、ディスペンスなど、任意の方法で基板に印刷または塗布することができる。有機溶媒を用いる場合は、印刷または塗布の後、常温で、または加熱によって、該溶媒を揮散させる。本発明の導電性接着剤を希釈剤なしに、または希釈剤として反応性希釈剤のみを配合して用いた場合は、上記の溶媒除去の工程は必要ない。ついで、樹脂を、樹脂および硬化剤や硬化触媒の種類に応じて、通常70〜250℃、たとえばフェノール樹脂を硬化剤として用いるエポキシ樹脂の場合、150〜200℃で2〜30分加熱して硬化させて、基板表面の必要な部分に、導電回路を形成させることができる。   The conductive adhesive of the present invention can be printed or applied to a substrate by any method such as screen printing, gravure printing, dispensing, or the like. In the case of using an organic solvent, the solvent is volatilized after printing or application at room temperature or by heating. When the conductive adhesive of the present invention is used without a diluent or only a reactive diluent as a diluent, the above solvent removal step is not necessary. Next, the resin is usually cured by heating at 70 to 250 ° C., for example, an epoxy resin using a phenol resin as a curing agent, at 150 to 200 ° C. for 2 to 30 minutes, depending on the type of resin and curing agent or curing catalyst. Thus, a conductive circuit can be formed on a necessary portion of the substrate surface.

このようにして、本発明の導電性接着剤を用いて、半導体素子、チップ部品およびディスクリート部品の1種または2種以上を接合させた回路を、基板表面に形成させることができる。   In this manner, a circuit in which one or more of a semiconductor element, a chip component, and a discrete component are bonded can be formed on the substrate surface using the conductive adhesive of the present invention.

本発明の導電接着剤を錫メッキ、はんだメッキ、パラジウムメッキ、銀パラジウム端子電極のチップ部品、錫メッキ、はんだメッキ、パラジウムメッキを施した半導体素子と、銅張り基板、銅の上にニッケル、金のメッキをほどこした基板、銀、銅、銀パラジウムペーストをセラミック基板上に印刷、焼成したセラミック基板を本発明の導電接着剤を加熱、接合させる。このとき5から100nmの導電粒子と球状または鱗片状の導電粉末が融着し結合する。この際銀は錫と融着し銀錫合金を生成する。融着温度を下げるため、ビスマス、インジウム、これ尾ら金属を含有した合金粉末も併用する事もできる。接合した接着剤は銀錫合金を含有し、マイグレーションを起こさない。   The conductive adhesive of the present invention is tin-plated, solder-plated, palladium-plated, silver-palladium terminal electrode chip parts, tin-plated, solder-plated, semiconductor elements plated with palladium, a copper-clad board, nickel on gold, gold The conductive adhesive of the present invention is heated and bonded to a ceramic substrate obtained by printing and baking a silver, copper, and silver palladium paste on a ceramic substrate. At this time, conductive particles of 5 to 100 nm and spherical or scaly conductive powder are fused and bonded. At this time, silver fuses with tin to form a silver-tin alloy. In order to lower the fusion temperature, bismuth, indium, and alloy powders containing these metals can also be used in combination. The bonded adhesive contains a silver-tin alloy and does not cause migration.

以下、参考例、実施例および比較例によって、本発明をさらに詳細に説明する。本発明は、これらの実施例によって限定されるものではない。なお、これらの例において、部は重量部を示す。   Hereinafter, the present invention will be described in more detail with reference examples, examples and comparative examples. The present invention is not limited by these examples. In these examples, parts indicate parts by weight.

参考例1 − 銀−錫合金粉の作製
表1に示すモル比になるように、銀粉と錫粉を混合して得た混合粉を、ノズルを設けた溶融装置内で溶融し、ノズルから合金の融点よりも低い温度のアルゴン雰囲気中に噴出することにより、微粉末を得た。これを分級して、表1に示す平均粒径を有する球状の銀−錫合金粉を作製した。
Reference Example 1-Production of silver-tin alloy powder A mixed powder obtained by mixing silver powder and tin powder so as to have a molar ratio shown in Table 1 was melted in a melting apparatus provided with a nozzle, and the alloy was discharged from the nozzle. By spraying into an argon atmosphere having a temperature lower than the melting point, fine powder was obtained. This was classified to produce spherical silver-tin alloy powder having an average particle size shown in Table 1.

Figure 2010059426
Figure 2010059426

上記の銀−錫合金粉以外に、下記の金属粉を用いた。
銀粉、フレーク状、平均粒径10μm;
ビスマス粉、球状、平均粒径15μm;
銀−ビスマス粉、Ag:Biのモル比5:1の合金粉、球状、平均粒径15μm;
銀−インジウム粉、Ag:Inのモル比5:1の合金粉、球状、平均粒径20μm;
錫粉、球状、平均粒径15μm
In addition to the above silver-tin alloy powder, the following metal powder was used.
Silver powder, flakes, average particle size 10 μm;
Bismuth powder, spherical, average particle size 15 μm;
Silver-bismuth powder, alloy powder with a molar ratio of Ag: Bi of 5: 1, spherical, average particle size 15 μm;
Silver-indium powder, alloy powder of 5: 1 molar ratio of Ag: In, spherical, average particle size 20 μm;
Tin powder, spherical, average particle size 15μm

実施例1〜8、比較例1
三本ロールを用いて、表2に示す導電粒子、平均分子量900のビスフェノールA型エポキシ樹脂およびレゾール型アルキルフェノール樹脂を配合し、均一になるまで混合した後、2−エチル−4−メチルイミダゾールを加えて混合した。混合物をニーダーに移し、混合しながらジエチレングリコールモノブチルエーテルを、25℃における系の見掛粘度が150Pa・sになるように加え、混合を続けることにより、導電性接着剤を調製した。いずれも、導電粒子の合計配合量が85部、樹脂の配合量が15部である。ただし、導電粒子として、比較例1の接着剤は、銀粉のみを用いたものである。
Examples 1-8, Comparative Example 1
Using three rolls, blend the conductive particles shown in Table 2, the bisphenol A type epoxy resin having an average molecular weight of 900 and the resol type alkylphenol resin, and mix until uniform, then add 2-ethyl-4-methylimidazole And mixed. The mixture was transferred to a kneader, diethylene glycol monobutyl ether was added with mixing so that the apparent viscosity of the system at 25 ° C. was 150 Pa · s, and mixing was continued to prepare a conductive adhesive. In either case, the total blending amount of the conductive particles is 85 parts and the blending amount of the resin is 15 parts. However, as the conductive particles, the adhesive of Comparative Example 1 uses only silver powder.

(1) 回路試料の作製
上記のようにして得られた導電性接着剤を、厚さ75μmのメタルマスクを用いて、銅張ガラスエポキシ回路基板の銅面に孔版印刷した。これに錫メッキされた2012サイズのチップ抵抗器を圧着し、150℃で30分加熱して、該接着剤を硬化させることにより、回路基板にチップ抵抗器を接続させて、回路試料を作製した。
(1) Production of Circuit Sample The conductive adhesive obtained as described above was stencil-printed on the copper surface of a copper-clad glass epoxy circuit board using a metal mask having a thickness of 75 μm. A tin-plated 2012-size chip resistor was pressure-bonded and heated at 150 ° C. for 30 minutes to cure the adhesive, thereby connecting the chip resistor to the circuit board to produce a circuit sample. .

(2) 接続抵抗の測定
回路試料の接続抵抗を測定した。
(2) Measurement of connection resistance The connection resistance of the circuit sample was measured.

(3) 接着強度の測定
回路試料の接着部を横からプッシュプルゲージ(丸菱科学機械製作所製、PGD II型)で突いて、数値を読みとることにより剥離に要する力を測定して、接着強度(初期値)とした。
(3) Measurement of adhesive strength Adhesive strength is measured by pushing the adhesive part of the circuit sample from the side with a push-pull gauge (manufactured by Maruhishi Kagaku Kikai Seisakusho Co., Ltd., PGD II type) and reading the numerical value to measure the force required for peeling. (Initial value).

同様の回路試料を、下記:
150℃に30分放置
85℃、85%RHに30分放置
−40℃に30分放置
を1サイクルとするヒートサイクル試験に1,000サイクルかけた後、同様に接着強度を測定した。
A similar circuit sample is shown below:
Standing at 150 ° C. for 30 minutes Standing at 85 ° C. and 85% RH for 30 minutes After leaving the cycle for 30 minutes at −40 ° C. for 1,000 cycles, the adhesive strength was measured in the same manner.

(4) マイグレーション試験
前記のようにして調製した接着性組成物を、セラミックス基板上にスクリーン印刷し、150℃で30分加熱して硬化させて、線間2mmの対向電極を作成した。電極間に電圧10Vを印加して、イオン交換水を1滴、電極間に滴下し、電流が100mA流れた時間をマイグレーション時間とした。
(4) Migration test The adhesive composition prepared as described above was screen-printed on a ceramic substrate and cured by heating at 150 ° C. for 30 minutes to produce a counter electrode having a line spacing of 2 mm. A voltage of 10 V was applied between the electrodes, one drop of ion exchange water and one electrode were dropped between the electrodes, and the time when the current flowed 100 mA was defined as the migration time.

以上の結果を、まとめて表2に示す。   The above results are summarized in Table 2.

Figure 2010059426
Figure 2010059426

表2から明らかなように、比較例1の導電性接着剤から得られた試料は、マイグレーションが著しく、またヒートサイクル試験後の接着強度が著しく低下していた。それに対して、本発明の導電性接着剤から得られた試料は、優れた接続抵抗と接着強度を示すばかりでなく、マイグレーションが少なく、かつヒートサイクル試験後も、接着強度の低下がほとんどなかった。   As is clear from Table 2, the sample obtained from the conductive adhesive of Comparative Example 1 showed significant migration and markedly decreased adhesive strength after the heat cycle test. On the other hand, the sample obtained from the conductive adhesive of the present invention showed not only excellent connection resistance and adhesive strength, but also little migration, and almost no decrease in adhesive strength after the heat cycle test. .

参考例2 銀−錫合金粉の作製
表3に示すモル比になるように、銀粉と錫粉を混合して得た混合粉を、ノズルを設けた溶融装置内で溶融し、ノズルから合金の融点よりも低い温度のアルゴン雰囲気中に噴出することにより、微粉末を得た。これを分級して、表3に示す平均粒径を有する球状の銀−錫合金粉を作製した。
Reference Example 2 Production of Silver-Tin Alloy Powder A mixed powder obtained by mixing silver powder and tin powder so as to have a molar ratio shown in Table 3 was melted in a melting apparatus provided with a nozzle. Fine powder was obtained by jetting into an argon atmosphere at a temperature lower than the melting point. This was classified to produce spherical silver-tin alloy powder having an average particle size shown in Table 3.

参考例3〜6 超微粒子銀粉、錫粉、ビスマス粉、銅粉、銀錫合金粉
アルゴン雰囲気下でプラズマ放電する中を金属粉末が通過する際、蒸発し、補修タンクで超微粒子の粉末とさせた。合金粉はあらかじめ溶融噴霧し50μm近辺の粉末を準備した。この粉末をアルゴン雰囲気下でプラズマ気化させた。
Reference Examples 3-6 Ultrafine silver powder, tin powder, bismuth powder, copper powder, silver tin alloy powder When the metal powder passes through the plasma discharge in an argon atmosphere, it evaporates and is made into ultrafine powder in a repair tank. It was. The alloy powder was melted and sprayed in advance to prepare a powder in the vicinity of 50 μm. This powder was vaporized in an argon atmosphere.

上記の銀−錫合金粉以外に、下記の金属粉を用いた。   In addition to the above silver-tin alloy powder, the following metal powder was used.

球状銀粉、フレーク状銀粉、球状錫粉で粒径は表3に記載した。   Table 3 shows the particle diameter of spherical silver powder, flaky silver powder, and spherical tin powder.

実施例9〜19、比較例2〜5
三本ロールを用いて、表3に示す導電粒子、平均分子量900のビスフェノールA型エポキシ樹脂(平均分子量:380)およびレゾール型アルキルフェノール樹脂(平均分子量:3400)をエポキシ樹脂:フェノール樹脂=10:5(重量比)の割合で配合し、均一になるまで混合した後、2−エチル−4−メチルイミダゾールを加えて混合した。混合物をニーダーに移し、混合しながらジエチレングリコールモノブチルエーテルを、25℃における系の見掛粘度が150Pa・sになるように加え、混合を続けることにより、導電性接着剤を調製した。いずれも、導電粒子の合計配合量が85重量部、樹脂の配合量が15重量部である。ただし、導電粒子として、比較例2の接着剤は、銀粉のみを用いたものであり、比較例3の接着剤は、銀粉の一部を10nmの微粉に置き換えたものである。接続抵抗は低下するがマイグレーションは悪い。比較例4は銀錫合金粉末を使った例だが、粒子径が大きく、金属融着がないので接続抵抗が高い。また、比較例5は従来の鉛錫共晶はんだを用いたものである。
Examples 9-19, Comparative Examples 2-5
Using three rolls, the conductive particles shown in Table 3, the average molecular weight 900 bisphenol A type epoxy resin (average molecular weight: 380) and the resol type alkylphenol resin (average molecular weight: 3400) were changed to epoxy resin: phenol resin = 10: 5. After blending at a ratio of (weight ratio) and mixing until uniform, 2-ethyl-4-methylimidazole was added and mixed. The mixture was transferred to a kneader, diethylene glycol monobutyl ether was added with mixing so that the apparent viscosity of the system at 25 ° C. was 150 Pa · s, and mixing was continued to prepare a conductive adhesive. In any case, the total blending amount of the conductive particles is 85 parts by weight, and the blending amount of the resin is 15 parts by weight. However, the adhesive of Comparative Example 2 uses only silver powder as the conductive particles, and the adhesive of Comparative Example 3 is obtained by replacing part of the silver powder with 10 nm fine powder. Connection resistance decreases, but migration is bad. Comparative Example 4 is an example using silver-tin alloy powder, but the connection resistance is high because the particle size is large and there is no metal fusion. Comparative Example 5 uses conventional lead-tin eutectic solder.

(1) 回路試料の作製
上記のようにして得られた導電性接着剤を、実施例1〜8と同様にして、回路試料を作製した。
(1) Production of Circuit Sample A circuit sample was produced in the same manner as in Examples 1 to 8 using the conductive adhesive obtained as described above.

(2) 接続抵抗の測定
回路試料の接続抵抗を測定した。
(2) Measurement of connection resistance The connection resistance of the circuit sample was measured.

(3) 接着強度の測定
実施例1〜8と同様にして、接着強度を測定した。
(3) Measurement of adhesive strength Adhesive strength was measured in the same manner as in Examples 1-8.

(4) マイグレーション試験
実施例1〜8と同様にして、マイグレーション時間を測定した。
(4) Migration test The migration time was measured in the same manner as in Examples 1-8.

以上の結果を、まとめて表3に示す。   The above results are summarized in Table 3.

Figure 2010059426
Figure 2010059426

表3から明らかなように、比較例2および比較例3の導電性接着剤から得られた試料は、マイグレーションが著しく、またヒートサイクル試験後の接着強度が著しく低下していた。それに対して、本発明の導電性接着剤から得られた試料は、優れた接続抵抗と接着強度を示すばかりでなく、マイグレーションが少なく、かつヒートサイクル試験後も、接着強度の低下がほとんどなかった。   As can be seen from Table 3, the samples obtained from the conductive adhesives of Comparative Examples 2 and 3 showed significant migration and significantly reduced adhesive strength after the heat cycle test. On the other hand, the sample obtained from the conductive adhesive of the present invention showed not only excellent connection resistance and adhesive strength, but also little migration, and almost no decrease in adhesive strength after the heat cycle test. .

加熱硬化後の接着剤層を観察すると実施例15以外において銀3錫の結晶を観察することができた。この安定な結晶が生成することでマイグレーションが防止できると考えられる。   When the adhesive layer after heat curing was observed, crystals of silver 3 tin could be observed except in Example 15. It is considered that migration can be prevented by the formation of this stable crystal.

本発明の導電性接着剤は、基材に印刷または塗布して硬化させることにより、マイグレーションを起こさず、高い導電性を有し、ハンダの代わりに使用でき、あるいは溶融状態の高融点ハンダと接触するなど、高温にさらしても比抵抗の変化が少なく、特に高温において湿分の存在に起因する腐食により比抵抗が上昇することがない導電層を形成することができる。   The conductive adhesive of the present invention is printed or coated on a substrate and cured to cause no migration, has high conductivity, can be used instead of solder, or is in contact with molten high melting point solder. Thus, it is possible to form a conductive layer in which the specific resistance hardly changes even when exposed to high temperatures, and in which the specific resistance does not increase due to corrosion caused by the presence of moisture at high temperatures.

このような利点を生かして、本発明の導電性接着剤は、半導体や電子部品の接合や実装にきわめて有用であり、これを用いてマイクロ電子回路の形成を有利に行うことができる。   Taking advantage of such advantages, the conductive adhesive of the present invention is extremely useful for bonding and mounting of semiconductors and electronic components, and can be used to advantageously form microelectronic circuits.

Claims (12)

導電粒子および樹脂を含む導電性接着剤において、該導電粒子の30重量%以上が銀と錫から実質的になり、該導電接着剤の金属成分の銀:錫のモル比が77.5:22.5〜0:100の範囲にあることを特徴とする導電性接着剤。   In the conductive adhesive containing the conductive particles and the resin, 30% by weight or more of the conductive particles are substantially composed of silver and tin, and the molar ratio of silver: tin of the metal component of the conductive adhesive is 77.5: 22. A conductive adhesive in the range of 0.5 to 0: 100. 導電粒子が銀−錫合金粉、銀粉と錫粉の混合粉、または銀錫合金粉、銀粉および錫粉の混合粉である、請求の範囲第1項記載の導電性接着剤。   The conductive adhesive according to claim 1, wherein the conductive particles are silver-tin alloy powder, mixed powder of silver powder and tin powder, or mixed powder of silver-tin alloy powder, silver powder and tin powder. 導電粒子が更に、平均粒径0.1〜10μmの球状粉および/または扁平面の平均直径が2〜20μmのリン片状粉および平均直径が5から60nmの銀、錫、銀錫、ビスマス、銅またはこれらの2種以上の合金粉からなる群より選択される少なくとも一種の金属粉を含む、請求の範囲第1項または第2項記載の導電性接着剤。   The conductive particles further include spherical powder having an average particle diameter of 0.1 to 10 μm and / or flake powder having an average flat plane diameter of 2 to 20 μm and silver, tin, silver tin, bismuth having an average diameter of 5 to 60 nm, The conductive adhesive according to claim 1 or 2, comprising at least one metal powder selected from the group consisting of copper or two or more kinds of these alloy powders. 導電粒子として、さらに、銀粉、錫粉、銅粉、ビスマス粉もしくはインジウム粉、またはこれらの金属の2種以上の合金粉および/または混成粉
ただし、請求の範囲第1項記載のモル比の組成を有する銀−錫粉を除く、
を、請求の範囲第1項記載の金属粉に対して25重量%以下含み、粒子径が5〜50nmである、請求の範囲第1項〜第3項のいずれか一項に記載の導電性接着剤。
Further, as the conductive particles, silver powder, tin powder, copper powder, bismuth powder or indium powder, or two or more alloy powders and / or mixed powders of these metals, provided that the composition has a molar ratio according to claim 1. Except silver-tin powder having
The conductivity according to any one of claims 1 to 3, wherein the metal powder is contained in an amount of 25% by weight or less with respect to the metal powder according to claim 1 and the particle diameter is 5 to 50 nm. adhesive.
該導電性接着剤の導電粒子の40重量%以上が、銀とスズから実質的になるものである請求の範囲第1項〜第4項のいずれか一項に記載の導電性接着剤。   The conductive adhesive according to any one of claims 1 to 4, wherein 40% by weight or more of the conductive particles of the conductive adhesive is substantially composed of silver and tin. 該導電接着剤の金属成分の銀:錫のモル比が75:25〜20:80の範囲にある請求の範囲第1項〜第5項のいずれか一項に記載の導電性接着剤。   The conductive adhesive according to any one of claims 1 to 5, wherein the molar ratio of silver: tin of the metal component of the conductive adhesive is in the range of 75:25 to 20:80. 該導電接着剤の金属成分の銀:錫のモル比が62.5:37.5〜77.5:22.5の範囲にある請求の範囲第1項〜第5項のいずれか一項に記載の導電性接着剤。   6. The molar ratio of silver: tin of the metal component of the conductive adhesive is in the range of 62.5: 37.5 to 77.5: 22.5. The conductive adhesive as described. 導電粒子として、請求の範囲第7項記載の銀−スズ粉に対して4〜12重量%の銀粉を含む導電性接着剤。   The electroconductive adhesive agent which contains 4-12 weight% silver powder with respect to the silver-tin powder of Claim 7 as electroconductive particle. 導電粒子として、請求の範囲第7項記載の銀−スズ粉に対して0.1〜20重量%のビスマス粉および/または銀−ビスマス粉を含む導電性接着剤。   The electroconductive adhesive agent which contains 0.1-20 weight% bismuth powder and / or silver-bismuth powder with respect to the silver-tin powder of Claim 7 as electroconductive particle. 請求の範囲第1項〜第9項のいずれか一項記載の導電性接着剤を用いて、半導体素子、チップ部品、ディスクリート部品またはそれらの組合せを接合させた回路。   A circuit in which a semiconductor element, a chip component, a discrete component, or a combination thereof is bonded using the conductive adhesive according to any one of claims 1 to 9. 請求の範囲第1項〜第9項のいずれか一項記載の導電接着剤で接続した接着剤の組成が半導体素子、チップ部品、デイスクリート部品の端子電極、基板のランド部の金属と合金化している接続を持つ回路。   The composition of the adhesive connected by the conductive adhesive according to any one of claims 1 to 9 is alloyed with a metal of a semiconductor element, a chip component, a terminal electrode of a discrete component, and a land portion of a substrate. Circuit with connections. 請求の範囲第11項記載の合金化した接続構造部に銀錫合金が金属中に含有される回路。   A circuit in which a silver-tin alloy is contained in a metal in the alloyed connection structure according to claim 11.
JP2009220718A 2009-09-25 2009-09-25 Conductive adhesive and circuit using the same Expired - Lifetime JP5048031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009220718A JP5048031B2 (en) 2009-09-25 2009-09-25 Conductive adhesive and circuit using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009220718A JP5048031B2 (en) 2009-09-25 2009-09-25 Conductive adhesive and circuit using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004534068A Division JP4401294B2 (en) 2002-09-04 2002-09-04 Conductive adhesive and circuit using the same

Publications (2)

Publication Number Publication Date
JP2010059426A true JP2010059426A (en) 2010-03-18
JP5048031B2 JP5048031B2 (en) 2012-10-17

Family

ID=42186570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009220718A Expired - Lifetime JP5048031B2 (en) 2009-09-25 2009-09-25 Conductive adhesive and circuit using the same

Country Status (1)

Country Link
JP (1) JP5048031B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114751A1 (en) * 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
CN107492404A (en) * 2017-08-17 2017-12-19 黄琴 A kind of conductive silver tin cream
JP2020006441A (en) * 2018-07-05 2020-01-16 慧隆科技股▲ふん▼有限公司 Manufacturing method for graphene metal composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011114751A1 (en) * 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
JP5158904B2 (en) * 2010-03-19 2013-03-06 古河電気工業株式会社 Conductive connection member and method for producing conductive connection member
US10177079B2 (en) 2010-03-19 2019-01-08 Furukawa Electric Co., Ltd. Conductive connecting member and manufacturing method of same
CN107492404A (en) * 2017-08-17 2017-12-19 黄琴 A kind of conductive silver tin cream
JP2020006441A (en) * 2018-07-05 2020-01-16 慧隆科技股▲ふん▼有限公司 Manufacturing method for graphene metal composite material

Also Published As

Publication number Publication date
JP5048031B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP4401294B2 (en) Conductive adhesive and circuit using the same
KR100832628B1 (en) Conductive paste
JP4928021B2 (en) Conductive adhesive and circuit using the same
WO2008004287A1 (en) Conductive adhesive
JP5200662B2 (en) Conductive adhesive and electronic components
JP2007269959A (en) Electroconductive adhesive, electronic device and method for producing the same
JP3837858B2 (en) Conductive adhesive and method of using the same
JP7259219B2 (en) Resin composition, cured product thereof, and method for manufacturing semiconductor device
JP4235888B2 (en) Conductive paste
JP4831978B2 (en) Conductive adhesive
JP5048031B2 (en) Conductive adhesive and circuit using the same
JP5563932B2 (en) Anisotropic conductive film
WO2017038572A1 (en) Conductive paste
JP5169517B2 (en) Conductive adhesive and electronic components
JP2000290617A (en) Electroconductive adhesive and usage thereof
JP2009205899A (en) Conductive paste composition and printed-wiring board
JP2017203109A (en) Resin composition containing conductive particle and electronic device including the resin composition
KR100619390B1 (en) Conductive adhesive and circuit comprising it
JP5034577B2 (en) Conductive paste
JP2000192000A (en) Electrically conductive adhesive
JP5119766B2 (en) Conductive adhesive and electronic component using the same
JPH11209716A (en) Electroconductive adhesive
JP2007197498A (en) Conductive adhesive
JP2010055787A (en) Silver paste
JP2004047419A (en) Conductive paste

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5048031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term